08.07.2015 Views

Fuzzy Self-Tuning PID Semiglobal Regulator for ... - Homepages

Fuzzy Self-Tuning PID Semiglobal Regulator for ... - Homepages

Fuzzy Self-Tuning PID Semiglobal Regulator for ... - Homepages

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2716 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 6, JUNE 2012VII. CONCLUSIONFig. 10. Proportional gain k p2 .Fig. 11. Integral gain k i1 .In this paper, we have proposed a fuzzy adaptation scheme<strong>for</strong> tuning the proportional, integral, and derivative statedependentgains of a <strong>PID</strong> controller <strong>for</strong> robot manipulators.Moreover, a semiglobal asymptotic stability proof <strong>for</strong> the proposedfuzzy self-tuning <strong>PID</strong> controller <strong>for</strong> robot manipulators ispresented. The proposed approach allows to consider importantpractical features in real robots, such as achievement of desiredaccuracy and avoidance of working of the actuators’ torques beyondtheir capabilities. The per<strong>for</strong>mance of the proposed fuzzyscheme has been verified by means of real-time experimentaltests on a two-degree-of-freedom direct-drive robot arm.In summary, we have extended the stability analysis presentedin [34] from <strong>PID</strong> controllers with fixed gains to <strong>PID</strong>controllers with variable gains <strong>for</strong> robot manipulators. Furthermore,we have applied such an analysis in order to self-tune,via fuzzy logic, the proportional, derivative, and integral gainmatrices. The new resulting control scheme is superior to thatshown in [34] due to the use of variable gain matrices and isalso superior to control schemes introduced in [18] and [25],because the new proposed controller does not employ explicitlythe knowledge of the robot dynamics model. Our result is asynergy of [34] and [25].Fig. 12. Integral gain k i2 .Fig. 13. Derivative gain k v1 .Fig. 14. Derivative gain k v2 .REFERENCES[1] V. Mummadi, “Design of robust digital <strong>PID</strong> controller <strong>for</strong> H-bridge softswitchingboost converter,” IEEE Trans. Ind. Electron., vol. 58, no. 7,pp. 2883–2897, Jul. 2011.[2] R. J. Wai, J. D. Lee, and K. L. Chuang, “Real-time <strong>PID</strong> controlstrategy <strong>for</strong> maglev transportation system via particle swarm optimization,”IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 629–646,Feb. 2011.[3] K. Kim, P. Rao, and J. A. Burnworth, “<strong>Self</strong>-tuning of <strong>PID</strong> controller <strong>for</strong> adigital excitation control system,” IEEE Trans. Ind. Appl., vol. 46, no. 4,pp. 1518–1524, Jul./Aug. 2010.[4] R. Muszynski and J. Deskur, “Damping of torsional vibrations in highdynamicindustrial drives,” IEEE Trans. Ind. Electron., vol. 57, no. 2,pp. 544–552, Feb. 2010.[5] M. A. S. K. Khan and M. A. Rahman, “Implementation of a waveletbasedMR<strong>PID</strong> controller <strong>for</strong> benchmark thermal system,” IEEE Trans.Ind. Electron., vol. 57, no. 12, pp. 4160–4169, Dec. 2010.[6] R. E. Brown, G. N. Maliotis, and J. A. Gibby, “<strong>PID</strong> self-tuning controller<strong>for</strong> aluminum rolling mill,” IEEE Trans. Ind. Electron., vol. 29, no. 3,pp. 578–583, May/Jun. 1993.[7] S. Skoczowski, S. Domek, K. Pietrusewicz, and B. Broel-Plater, “Amethod <strong>for</strong> improving the robustness of <strong>PID</strong> control,” IEEE Trans. Ind.Electron., vol. 52, no. 6, pp. 1669–1676, Dec. 2005.[8] L. Guo, J. Y. Hung, and R. M. Nelms, “Evaluation of DSP-based <strong>PID</strong>and fuzzy controllers <strong>for</strong> DC–DC converters,” IEEE Trans. Ind. Electron.,vol. 56, no. 6, pp. 2237–2248, Jun. 2009.[9] J. Moreno-Valenzuela and R. Campa, “Two classes of velocity regulators<strong>for</strong> input—Saturated motor drives,” IEEE Trans. Ind. Electron., vol. 56,no. 6, pp. 2190–2202, Jun. 2009.[10] S. Arimoto and F. Miyazaki, “Stability and robustness of <strong>PID</strong> feedbackcontrol <strong>for</strong> robot manipulators of sensory capability,” in Robotics. ResearchFirst Int. Symp., M. Brady and R. P. Paul, Eds. Cambridge, MA:MIT Press, 1984, pp. 228–235.[11] CIRSSE Document 54 J. T. Wen and S. Murphy, <strong>PID</strong> Control <strong>for</strong> RobotManipulators1990.[12] P. Roco, “Stability of <strong>PID</strong> control <strong>for</strong> industrial robot arms,” IEEE Trans.Robot. Automation, vol. 12, no. 4, pp. 606–614, Aug. 1996.[13] Z. Qu and J. Dorsey, “Robust <strong>PID</strong> control robots,” Int. J. Robot. Autom.,vol. 6, pp. 228–235, 1991.[14] R. Ortega, A. Loria, and R. Kelly, “A semiglobally stable output feedbackPI 2 D regulator <strong>for</strong> robot manipulators,” IEEE Trans. Autom. Control,vol. 40, no. 8, pp. 1432–1436, Aug. 1995.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!