09.07.2015 Views

Semidefinite Programming Relaxation vs Polyhedral Homotopy ...

Semidefinite Programming Relaxation vs Polyhedral Homotopy ...

Semidefinite Programming Relaxation vs Polyhedral Homotopy ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Discretization of Mimura’s ODE with 2 unknowns u, v : [0, 5] → Ru xx = −(20/9)(35 + 16u − u 2 )u + 20uv,v xx = (1/4)((1 + (2/5)v)v − uv),u x (0) = u x (5) = v x (0) = v x (5) = 0,Discretize:x i = i∆x (i = 0, 1, 2,... ), u x (x i ) ≈ (u(x i+1 ) − u(x i−1 ))/(2∆x).Numerical results on SparsePOP∆x n obj.funct. relax. order r cpu1.0 8 ∑ r i u(x i ) ↑ 3 11.30.5 18 ∑ r i u(x i ) ↑ 3 57.8Here r i ∈ (0, 1) : random numbers.Workshop on Advances in Optimization, April 19-21, 2007 – p.17/24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!