10.07.2015 Views

Semidefinite Programming and Application to Hard ... - Users

Semidefinite Programming and Application to Hard ... - Users

Semidefinite Programming and Application to Hard ... - Users

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, Problem<strong>Semidefinite</strong> <strong>Programming</strong><strong>Application</strong>s <strong>and</strong> ImplementationsHenry WolkowiczDept. of Combina<strong>to</strong>rics <strong>and</strong> OptimizationUniversity of WaterlooCORS/MOPGPNiagara Falls, June 11, 2012


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemOutline1 Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)What? Why? How?2 Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSTRENGTH of Relaxa<strong>to</strong>n; Theory <strong>and</strong> Empirical3 SDP from General Quadratic Approximations (QQP)SDP Relaxation is EQUIVALENT <strong>to</strong> Lagrangian Relaxation4 Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsQQP Model of QAPQAP with ADDITIONAL REDUNDANT Constraints5 The Sensor Network Localization, SNL, ProblemEXPLOIT DEGENERACY <strong>and</strong> FACIAL Structure


3Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemBackgroundWhat? Why? How?His<strong>to</strong>rical EventsLyapunov (stability) 1890SDP (cone optimization/duality) 1960’sEngineering applications 60’smatrix completion problems 80’spolynomial time algorithms Nesterov-Nemirovski 80’scombina<strong>to</strong>rial appl., primal-dual interior-point (p-d i-p)algorithms (explosion of activity) 90’ssparsity/special-structure/low-rank/large-scale/robust-opt.00’s


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemWhat are SDPs ?What? Why? How?Primal <strong>and</strong> Dual SDPs (look like LPs with matrix variables)⎧⎨(DSDP)(PSDP)⎧⎨⎩⎩p ∗ := max trace CX (= 〈C, X〉)s.t. A X = b (b i = 〈A i , X〉)X ≽ 0.d ∗ := min b T y (= 〈b, y〉)s.t. A ∗ y − Z = C (A ∗ y = ∑ mi=1 y iA i )Z ≽ 0,S n space of n×n real symmetric matrices, A i , X, Z, C ∈ S n≻ 0 (≽ 0) pos. (semi)definiteness; (Loewner partial order)A : S n → R m lin. transf.; A ∗ adjoint transf. (transpose)


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemWhat? Why? How?Characterization of (p-d) OptimalityCharacterization of Optimality for Z, X ≽ 0{ A(∗)∗ y − Z − C = 0 dual feasibilityb−A(X) = 0 primal feasibility(∗∗) { ZX = 0 complementary slacknessX,(y, Z) a primal-dual optimal pair; Z (dual) slack variablePerturbed complementary slacknessFor primal-dual interior-point (p-d i-p) methods, replace (**) with(***) ZX = µI, Z, X ≻ 0,µ > 0solve (*) <strong>and</strong> (***): X µ , y µ , Z µ on Central Path; µ ↓ 0Difference with LPZ, X ∈ S n but ZX is not necessarily symmetric!6


8Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemNew pointWhat? Why? How?Backsolve <strong>to</strong> keep X, Z ≻ 0X ← X + t 1 2 (∆X +∆X T )y ← y + t∆yZ ← Z + t∆ZConvergenceGiven ǫ > 0; if µ is chosen properly at each iteration, then a fullNew<strong>to</strong>n step t = 1 is feasible; a duality gap b T y − trace CX < ǫcan be obtained in O( √ n|logǫ|) iterations.If the problem is feasible, then there exists an optimum on theboundary.


9Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemWhat? Why? How?(unlike LP) Strong Duality Can Fail for SDPStrong Duality for PSDPzero duality gap:p ∗ = d ∗AND d ∗ is attained.(in the case of attainment for both; X, y, Z feasible:)p ∗ = d ∗ iff 〈Z, X〉 = 0 iff ZX = 0Regularization using Facesref. Borwein-W/80, Ramana/97,Ramana-Tuncel-W/97


10Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemFaces of ConesWhat? Why? How?FaceA convex cone F is a face of K , denoted F K , ifx, y ∈ K <strong>and</strong> x + y ∈ F =⇒ x, y ∈ F.If F K <strong>and</strong> F ≠ K , write F ⊳ K .Conjugate FaceIf F K , the conjugate face (or complementary face) of F isF c := F ⊥ ∩ K ∗ K ∗ ,where K ∗ = {φ : 〈φ, k〉 ≥ 0,∀k ∈ K} (dual/polar cone)If x ∈ relint(F), then F c = {x} ⊥ ∩ K ∗ .


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemFaces of SDP ConeWhat? Why? How?Face F S n + Characterized by any X ∈ relint FX = UDU T ∈ relint F S n +, U T U = I t , D ∈ S t ++iffF = US t +U TConjugate Face of F S n +the conjugate face (or complementary face) of F isF c := F ⊥ ∩S n + = VS n−t+ V T , V T U = 0, V T V = I n−t


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemMinimal Face (Minimal Cone)What? Why? How?Feasible set of DSDPLet F D := {y : Z = A ∗ y − C ≽ 0}Minimal FaceAssume F D is nonempty, the minimal face (or minimal cone) ofDSDP isf D := ⋂ {F K : A ∗ (F D )−C ⊂ F}i.e., the minimal face that contains all the feasible slacks.


13Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemWhat? Why? How?DSDP for Example from Ramana, 1995DSDP (Max instead of Min)⎧ ⎛ ⎞ ⎛ ⎞⎫⎨ y 2 0 0 1 0 0 ⎬0 = d ∗ = maxy ⎩ y 2 : ⎝ 0 y 1 y 2⎠ ≼ ⎝0 0 0⎠⎭0 y 2 0 0 0 0⎛ ⎞y ∗ = ( y1 ∗ 0 ) 1 0 0T , y∗1≤ 0, Z ∗ = C −A ∗ y ∗ = ⎝0 −y1 ∗ 0⎠0 0 0Constraint Qualification (CQ) FailsSlater’s CQ (strict feasibility) fails for dual


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemWhat? Why? How?PSDP for Example from Ramana, 1995Primal Program, PSDP (Min instead of Max)1 = p ∗ = minX≽0{X 11 : trace A 1 X = X 22 = 0,⎛ ⎞1 0 X 13X ∗ = ⎝ 0 0 0 ⎠, X 33 ≥ (X13 2 )X 13 0 X 33trace A 2 X = X 11 + 2X 23 = 1}Slater’s CQ for (primal) dual & complementarity failsduality gap = p ∗ − d ∗ = 1−0 = 1 > 0,trace X ∗ Z ∗ = trace( 1 0 X13)( 1 0 00 0 0 0 −y1 ∗ 0X 13 0 X 33 0 0 0)= 1 > 0


15Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemWhat? Why? How?Minimal Face for Ramana ExampleFeasible Set/Minimal FaceF D = {y ∈ R 2 : y 1 ≤ 0, y 2 = 0}f D = ⋂ ({F S) + 3 : C −A∗ (F D ) ⊂ F}S2= + 00 0⊳ S+3Slater CQ <strong>and</strong> Minimal FaceIf DSDP is feasible, thenC −A ∗ y ⊁ K 0,∀y ( Slater’s CQ fails for DSDP )⇐⇒ f D ⊳ K


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemRegularization of DSDPWhat? Why? How?Borwein-W (1981)If d ∗ is finite, then DSDP is equivalent <strong>to</strong> regularized DSDPd ∗ RD = maxy{〈b, y〉 : A ∗ y ≼ fD C}.(RD)Lagrangian Dual DRD Satisfies Strong Duality:d ∗ = d ∗ RD = d∗ DRD = minX {〈C, X〉 : A X = b, X ≽ f ∗ D0} (DRD)<strong>and</strong> d ∗ DRP is attained 16


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemWhat? Why? How?Implementation Problems with Regularization; but,Many <strong>Application</strong>sDifficultiesBorwein <strong>and</strong> W. also gave an algorithm <strong>to</strong> compute f D .But Difficulties:1 The algorithm requires the solution of several(homogeneous) cone programs (constraints are:A x = 0,〈c, x〉 = 0, 0 ≠ x ≽ K 0)2 If Slater’s CQ fails for PSDP then it also fails for each ofthese cone programs.<strong>Application</strong> <strong>to</strong> Combina<strong>to</strong>rial ProblemsSlater CQ fails for many applications <strong>to</strong> combina<strong>to</strong>rial problems.But, f D can be found explicitly.


18Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemFurther Differences with LPWhat? Why? How?Strict Complementarity can FailZ + X ≻ 0 Theorem of Goldman <strong>and</strong> Tucker for LP can fail,though conditions hold generically; ref. Shapiro/99,Pataki-Tuncel/98, Alizadeh-Haeberly-Over<strong>to</strong>n/98)Polynomial Time Complexity/AlgorithmsSDP are convex programs; can be approximately solved inpolynomial time by interior point algorithms (ref.Nesterov-Nemirovski/88)


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemWhat? Why? How?Strong Relaxations of Computationally <strong>Hard</strong> ProblemsModelling Computationally <strong>Hard</strong> ProblemsMany computationally hard problems can be modelled asquadratically constrained quadratic programs, (QQP)(rather than LPs).QQPs are themselves computationally hard.But, Lagrangian relaxation can be solved efficiently usingSDP.<strong>Application</strong>sstatistics, engineering, matrix completions, approximationtheory, nonlinear programming, Euclidean distance matrixcompletion, (EDM); sensor network localiz. (SNL)combina<strong>to</strong>rial optimization: max-cut; graph partitioning;quadratic assignment problem; graph colouring; max-clique.19


20Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemSDP Software WebpageWhat? Why? How?SoftwareList <strong>and</strong> references available at:www-user.tu-chemnitz.de/ helmberg/sdp_software.htmlSDPLIB SDPLIB is a collection of semidefiniteprogramming test problems. (in SDPA sparse format)CVS, Disciplined Convex <strong>Programming</strong>Solvers: CSDP (exploits BLAS); SeDuMi1.1(dependable, popular); SDPT3(includingquadratic/sensor localization); SDPA (including parallel);GloptiPoly-3 (moments; optimization; <strong>and</strong> SDP);PENNON (nonlinear SDP); SBmethod(first ordermethod/large scale);


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemNotes on SoftwareWhat? Why? How?"The State-of-the-Art in Conic Optimization Software", HansMittlemannin recent "H<strong>and</strong>book on <strong>Semidefinite</strong>, Conic <strong>and</strong> PolynomialOptimization" edi<strong>to</strong>rs Anjos <strong>and</strong> Lasserre


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemSTRENGTH of Relaxa<strong>to</strong>n; Theory <strong>and</strong> EmpiricalSDP Relaxation of Max-Cut Problem, (MC)Max-Cut Problemundirected, complete, graph G = (V, E), |V| = n, with edgeweights w ij ; divide nodes in<strong>to</strong> two sets <strong>to</strong> maximize the sum ofweights of cut edges.A Maximum Cut


23Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemSTRENGTH of Relaxa<strong>to</strong>n; Theory <strong>and</strong> EmpiricalQuadratic-Quadratic (QQP) Model for MCQuadratic Model of MC with Integer Constraintsmax 1 ∑2 i


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemSTRENGTH of Relaxa<strong>to</strong>n; Theory <strong>and</strong> EmpiricalSDP Relaxation; use commutativity trace AB = trace BADirect Relaxation(4) p ∗ := max{x T Lx : x ∈ {±1} n}Replace x ∈ {±1} n with x 2i= 1. Note thatx T Lx = trace x T Lx = trace Lxx T = trace LX, withrank-1{ }} {X = xx Talso:X ≽ 0, diag(X) = e, q(x) = trace LXRelax the hard rank-1 condition on X; get SDP relaxationThe SDP Relaxation of MCp ∗ := max{trace LX : diag(X) = e, X ≽ 0}


25Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemDuality for SDP Relaxation of MCPrimal-Dual Programs(PSDP)d ∗ = p ∗ := maxs.t.STRENGTH of Relaxa<strong>to</strong>n; Theory <strong>and</strong> Empiricaltrace LXdiag(X) = eX ≽ 0, X ∈ S n ,diag : vec<strong>to</strong>r from diagonal; Diag : diagonal matrix from vec<strong>to</strong>r; evec<strong>to</strong>r of ones;(DSDP)p ∗ = d ∗ := mins.t.e T yDiag(y)−Z = LZ ≽ 0, Z ∈ S n ,Slater PointsˆX = I ≻ 0; Ẑ = L−Diag(ŷ) ≻ 0 for ŷ


26Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemModern Optimality FrameworkSTRENGTH of Relaxa<strong>to</strong>n; Theory <strong>and</strong> Empirical(Perturbed) Overdetermined Optimality Conditions, X, Z ≻ 0⎧R d := Diag(y)−Z − L = 0 dual feas.⎪⎨RF µ (X, y, Z) = p := diag(X)−e = 0 primal feas.ZX = 0 compl. slack.⎪⎩R c := ZX −µI = 0 pert. compl. slack.ZX NOT nec. symmetricLinearization/(Gauss)-New<strong>to</strong>n Direction⎛ ⎞ ⎡ ⎤∆X Diag(∆y)−∆ZF µ ′ (X, y, Z) ⎝∆y⎠ = ⎣ diag(∆X) ⎦ = −F µ (X, y, Z)∆Z Z∆X +∆ZX


28Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemMATLAB CodeSTRENGTH of Relaxa<strong>to</strong>n; Theory <strong>and</strong> EmpiricalInitialization: X, Z ≻ 0function [phi, X, y] = psd_ip( L);% solves: max trace(LX) s.t. X psd, diag(X) = b; b = ones(n,1)/4% min b’y s.t. Diag(y) - L psd, y unconstrained,%**input: L ... symmetric matrix%**output: phi ... optimal value of primal, phi =trace(LX)% X ... optimal primal matrix% y ... optimal dual vec<strong>to</strong>r% call: [phi, X, y] = psd_ip( L);%%%%%%%%%%%%%%%%%%%%%Initializationdigits = 6;% 6 significant digits of phi[n, n1] = size( L);% problem sizeb = ones( n,1 ) / 4;% any b>0 works just as wellX = diag( b);% initial primal matrix is pos. def.y = sum( abs( L))’ * 1.1; % initial y is chosen so thatZ = diag( y) - L;% initial dual slack Z is pos. def.phi = b’*y;% initial dual costspsi = L(:)’ * X( :);% <strong>and</strong> initial primal costsmu = Z( :)’ * X( :)/( 2*n); % initial complementarityiter=0;% iteration count


29Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemFind Search Direction/Symmetrize dXSTRENGTH of Relaxa<strong>to</strong>n; Theory <strong>and</strong> EmpiricalSolve: dy; backsolve: dZ, dX ; symmetrize dXdisp([’ iter alphap alphad gap lower upper’]);while phi-psi > max([1,abs(phi)]) * 10^(-digits)iter = iter + 1;% start a new iterationZi = inv( Z);% inv(Z) is needed explicitlyZi = (Zi + Zi’)/2;dy = (Zi.*X) \ (mu * diag(Zi) - b); % solve for dydX = - Zi * diag( dy) * X + mu * Zi - X; % back substitute for dXdX = ( dX + dX’)/2; % symmetrize


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemSTRENGTH of Relaxa<strong>to</strong>n; Theory <strong>and</strong> EmpiricalLine Search <strong>to</strong> Stay Interior; <strong>and</strong> UpdateBacktrack <strong>to</strong> keep X, Z ≻ 0; Update X, y, Z% line search on primalalphap = 1;% initial steplength[dummy,posdef] = chol( X + alphap * dX ); % test if pos.defwhile posdef > 0,alphap = alphap * .8;[dummy,posdef] = chol( X + alphap * dX );end;if alphap < 1, alphap = alphap * .95; end; % stay away from boundary% line search on dual; dZ is h<strong>and</strong>led implicitly: dZ = diag( dy);alphad = 1;[dummy,posdef] = chol( Z + alphad * diag(dy) );while posdef > 0;alphad = alphad * .8;[dummy,posdef] = chol( Z + alphad * diag(dy) );end;if alphad < 1, alphad = alphad * .95; end;% updateX = X + alphap * dX;y = y + alphad * dy;Z = Z + alphad * diag(dy);mu = X( :)’ * Z( :) / (2*n);if alphap + alphad > 1.8, mu = mu/2; end; % speed up for long stepsphi = b’ * y; psi = L( :)’ * X( :);% display current iterationdisp([ iter alphap alphad (phi-psi) psi phi ]);30


31Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemSuccess of SDP Relaxation of MCSTRENGTH of Relaxa<strong>to</strong>n; Theory <strong>and</strong> EmpiricalGoemans-Williamson .878 approx. algor. for MCMC is one of Karp’s NP-complete problems (APX-hard);G-W ’94 showed (with nonnegative weights on edges):.87856(bnd SDP ) ≤ optvalue MC ≤ bnd SDPExtensions/NumericsThis result has been extended (e.g. Nesterov/97) <strong>to</strong> moregeneral quadratic functions <strong>to</strong> obtain a π 2 guaranteeIn practice, the strength of the bound is much tighter; largeproblems can be solved (many authors).


32Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemSDP Relaxation is EQUIVALENT <strong>to</strong> Lagrangian RelaxationSDP arise from general quadratic approximations?General Quadratic ApproximationsApproximations from quadratic functions are stronger than fromlinear functions. E.g.x ∈ {±1} iff x 2 = 1 x ∈ {0, 1} iff x 2 − x = 0QQPsLetq i (y) = 1 2 y T Q i y + y T b i + c i , y ∈ R n(QQP)q ∗ = min q 0 (y)s.t. q i (y) ≤ 0i = 1,...m


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemLagrangian RelaxationSDP Relaxation is EQUIVALENT <strong>to</strong> Lagrangian RelaxationLagrangian; x Lagrange multiplier vec<strong>to</strong>rL(y, x) = q 0 (y)+ ∑ mi=1 x iq i (y)or equivalently (combine quad./lin. terms)L(y, x) = 1 2 y T (Q 0 + ∑ mi=1 x iQ i )y+y T (b 0 + ∑ mi=1 x ib i )+(c 0 + ∑ mi=1 x ic i )Weak DualityUse hidden constraintsd ∗ = maxminx≥0 yL(y, x) ≤ q ∗ = min33ymax L(y, x)x≥0


34Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemHomogenizationSDP Relaxation is EQUIVALENT <strong>to</strong> Lagrangian RelaxationHomogenize the Lagrangianmultiply linear term by new variable y 0 :y 0 y T (b 0 + ∑ mi=1 x ib i ), y0 2 = 1use: strong duality for TRS; hidden SDP constraintsd ∗ = max min y L(y, x)x≥0= max min 1x≥0 y0 2=1 2 y T (Q 0 + ∑ mi=1 x iQ i )y + ty02= max minx≥0,t y+y 0 y T (b 0 + ∑ mi=1 x ib i )+(c 0 + ∑ mi=1 x ic i )−t12 y T (Q 0 + ∑ mi=1 x iQ i )y + ty02+y 0 y T (b 0 + ∑ mi=1 x ib i )+(c 0 + ∑ mi=1 x ic i )−t


NOTE: There is NO hidden constraint needed in convex case;e.g. if all q i are convex.35Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemSDP Relaxation is EQUIVALENT <strong>to</strong> Lagrangian RelaxationHidden SDP Constraint in Lagrangian DualHessian is ≽ 0( ) 0 bTB := 0,b 0 Q 0( [ ∑ t tmA := − ∑ i=1x)x ibiT ]mi=1 x ∑ mib i i=1 x , : R m+1 → S n+1iQ i<strong>and</strong> the SDP constraint( tB −Ax)≽ 0.


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemSDP Relaxation is EQUIVALENT <strong>to</strong> Lagrangian RelaxationLagrangian Relaxation <strong>and</strong> Equivalent SDPDual-Primal ProgramsLagrangian Relaxation is equivalent <strong>to</strong> SDP (with c 0 = 0)(DSDP)d ∗ = sups.t.−t + ∑ m( i=1 )x ic itA ≼ Bxx ∈ R m , t ∈ RAs in LP, Dual of Dual; Use Opt. Strategy of Competing Playerd ∗ ≤ p ∗ := inf trace(BY) −1(DD)s.t. A ∗ Y =cY ≽ 0.36


37Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemQQP Model of QAPQAP with ADDITIONAL REDUNDANT ConstraintsQuadratic Assignment Problem, (QAP)QAP Problemn facilities i, l, A il flow or weight;n locations j, k, B jk distances;C ij location costsn ≥ 16 considered hard; SDP provides strong (thoughexpensive) bounds/1998;Nugent n = 30 solved for first time using weakened SDPrelaxation on computational grids (CONDOR)/2002;Exploit group symmetry in SDP relaxation of QAP; majoradvance in size <strong>and</strong> efficiency/2007


38Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemQAP FormulationQQP Model of QAPQAP with ADDITIONAL REDUNDANT ConstraintsQAP <strong>Application</strong>sdesigning of facility layouts; VLSI design (location of moduleson chips); campus planning; scheduling; processcommunication; turbine balancing; typewriter keyboard design;many more . . .QAP Trace Formulation/Model(QAP) µ ∗ := minX∈Π trace AXBX T − 2CX TA, B, C ∈ M n ; Π set of permutaion matrices.


39Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemQQP Model of QAPQAP with ADDITIONAL REDUNDANT ConstraintsQuadratic Assignment Problem, (QAP)Permutation MatricesΠ = {n×n : (0, 1), row/col sums 1}= { X ∈ M n : X ◦ X = X, Xe = X T e = e }= { X ∈ M n : X T X = I, Xe = X T e = e, X ≥ 0 }= { X ∈ M n : X T X = XX T = I, Xe = X T e = e,X ◦ X = X, X ≥ 0}QQP Model of QAP/Add Redundant Constraints(QAP E )µ ∗ := min trace AXBX T − 2CX Ts.t. XX T = I, X T X = IXe = X T e = eXij 2 − X ij = 0, ∀i, j.


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemLagrangian Relaxation of QAPQQP Model of QAPQAP with ADDITIONAL REDUNDANT ConstraintsFind SDP relaxation of QAP by taking dual of dual(ignore Xe = X T e = e for now)• Add (0, 1)-constraints <strong>to</strong> objective function; use Lagrangemultipliers W ijµ O = min max trace AXBX T − 2CX T + ∑XX T ij W ij(Xij 2 − X ij )=I WX T X=Ihomogenize obj. fn; multiply by a constrained scalar x 0µ O ≥ µ R = maxWminXX T =X T X=Ix 2 0 =140trace [ AXBX T + W(X ◦ X) T−x 0 (2C + W)X T] .


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemLagrangian Relaxation/DualQQP Model of QAPQAP with ADDITIONAL REDUNDANT ConstraintsGrouping: quadratic, linear, constant termsLagrange multiplier w 0 for constraint on x 0 ; Lagrange multipliersS b for XX T = I, S o for X T X = Iµ O ≥ µ R := maxWmin trace [ AXBX T + W(X ◦ X) T + w 0 x02 X, x 0+S b XX T + S o X T X ]−trace x 0 (2C + W)X T−w 0 − trace S b − trace S o .


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemLagrangian Relaxation/DualQQP Model of QAPQAP with ADDITIONAL REDUNDANT ConstraintsVec<strong>to</strong>rize Xdefine x := vec X, y T := (x 0 , x T ) <strong>and</strong> w T := (w 0 , vec W T )µ R = max minW yy T [ L Q + Arrow(w)+B 0 Diag(S b )+O 0 Diag(S o ) ] y−w 0 − trace S b − trace S o


43Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemLinear TransformationsQQP Model of QAPQAP with ADDITIONAL REDUNDANT Constraints<strong>and</strong>[L Q :=0 −vec(C) T−vec(C) B ⊗ A[Arrow(w) :=B 0 Diag(S) :=O 0 Diag(S) :=], (n 2 + 1)×(n 2 + 1)w 0 − 1 2 w T ]1:n 2− 1 2 w 1:n 2 Diag (w 1:n 2) ,[ ]0 00 I ⊗ S b[ 0 00 S o ⊗ I].


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemDual of DualQQP Model of QAPQAP with ADDITIONAL REDUNDANT ConstraintsHidden <strong>Semidefinite</strong> Constraint Yields the Equivalend SDP(D O )maxs.t.−w 0 − trace S b − trace S oL Q + Arrow(w)+B 0 Diag(S b )+O 0 Diag(S o ) ≽ 0,dual of this dual yields the semidefinite relaxation; Y ≽ 0 is(n 2 + 1)×(n 2 + 1), the dual matrix variable(SDP O )min trace L Q Ys.t. b 0 diag(Y) = I o 0 diag(Y) = Iarrow(Y) = e 0 Y ≽ 0


45Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemLagrangian Relaxation/DualQQP Model of QAPQAP with ADDITIONAL REDUNDANT ConstraintsAdjoint Opera<strong>to</strong>rsarrow(Y) := diag(Y)−(0,(Y 0,1:n 2) T .b 0 diag(Y) :=n∑k=1Y (k−1)n+1:kn,(k−1)n+1:kn[o 0 diag(Y)] ij := trace Y (i−1)n+1:in,(j−1)n+1:jn


46Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemDirect Approach <strong>to</strong> SDP RelaxationQQP Model of QAPQAP with ADDITIONAL REDUNDANT ConstraintsVec<strong>to</strong>rize Permutation MatrixX ∈ Π; x = vec(X), c = vec(C).q(X) = trace AXBX T − 2CX T= x T (B ⊗ A)x − 2c T x= trace xx T (B ⊗ A)−2c T x= trace L Q Y X ,[ ] 1 xTY X :=x xx T


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemLoss of Slater CQQQP Model of QAPQAP with ADDITIONAL REDUNDANT ConstraintsCommentsAfter adding the row/column sum constraints Xe = X T e = e,we get that Slater’s CQ fails; but we can explicitly regularize, i.e.find the smallest face/minimal cone. the SDP relaxationprovides strong bounds, but expensive. Exploit groupsymmetries/special structure.


48Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureSensor Network Localization, SNL, (Krislock <strong>and</strong> W.)Wireless Sensor Networkn ad hoc wireless sensors (nodes) <strong>to</strong> locate in R r ,(r is embedding dimension;sensors p i ∈ R r , i ∈ V := 1,...,n)m of the sensors are anchors, p i , i = n− m+1,...,n)(e.g. using GPS)pairwise distances known within radio range R,D ij = ‖p i − p j ‖ 2 , ij ∈ ECurrent Techniques: Nearest, Weighted, SDP Approx.min Y≽0,Y∈Ω ‖H ◦(K(Y)−D)‖SDP program is: Expensive/low accuracy/implicitly highlydegenerate (cliques restrict ranks of feasible Y s)


49Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, Problem<strong>Application</strong>sEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureTracking Humans/Animals/Equipmentmoni<strong>to</strong>ring: natural habitat; earthquakes <strong>and</strong> volcanos;weather <strong>and</strong> ocean currents.military, tracking of goods, vehicle positions, surveillance,(where open-air positioning is not feasible), r<strong>and</strong>omdeployment in inaccessible terrains or disaster reliefoperations


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureUnderlying Graph Realization/Partial EDMGraph G = (V ,E ,ω)node set V = {1,...,n}edge set (i, j) ∈ E ; ω ij = ‖p i − p j ‖ 2 known approximatelyThe anchors form a clique (complete subgraph)Realization of G in R r : a mapping of node v i → p i ∈ R rwith squared distances given by ω.Corresponding Partial Euclidean Distance Matrix, EDM{ d2D ij = ijif (i, j) ∈ E0 otherwise,d 2ij= ω ij are known squared Euclidean distances betweensensors p i , p j ; anchors correspond <strong>to</strong> a clique.50


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureSensor Localization Problem/Partial EDMSensors ◦ <strong>and</strong> Anchors109Initial position of pointssensorsanchorssens−anch8765432100 1 2 3 4 5 6 7 8 9 10# sensors n = 300, # anchors m = 9, radio range R = 1.251


Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemFurther NotationEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureMatrix with Fixed Principal SubmatrixFor Y ∈ S n , α ⊆ {1,..., n}: Y[α] denotes principal submatrixformed from rows & cols with indices α.Sets with Fixed Principal SubmatricesIf |α| = k <strong>and</strong> Ȳ ∈ Sk , then:S n (α, Ȳ) := { Y ∈ S k : Y[α] = Ȳ} ,S+ n (α, Ȳ) := { Y ∈ S+ k : Y[α] = Ȳ}i.e. the subset of matrices Y ∈ S k (Y ∈ S+ k ) with principalsubmatrix Y[α] fixed <strong>to</strong> Ȳ . 52


53Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureSNL Connection <strong>to</strong> SDP (Lin. Trans., Adjoints)v = diag(S) ∈ R n , S = Diag(v) ∈ S ndiag = Diag ∗ (adjoint)for B ∈ S n , offDiag(B) := B − Diag(diag(B))D = K(B) ∈ E n , B = K † (D) ∈ S n ∩S CLet P T = [ p 1 p 2 ... p n]∈ M r×n ;B := PP T ∈ S n ; D ∈ E n be corresponding EDM .(from S n ) K(B) := D e (B)−2B:= diag(B) e T + e diag(B) T − 2B( ) n= pi T p i + pj T p j − 2pi T p ji,j=1= ( ‖p i − p j ‖ 2 2) ni,j=1= D (<strong>to</strong> E n ).


54Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemK : S n + ∩S C → E nEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureLinear Transformations: D v (B),K(B),T (D)allow: D v (B) := diag(B) v T + v diag(B) T ;D v (y) := yv T + vy Tadjoint K ∗ (D) = 2(Diag(De)−D).K is 1−1, on<strong>to</strong> between centered <strong>and</strong> hollow subspaces:S C := {B ∈ S n : Be = 0};S H := {D ∈ S n : diag(D) = 0} = R(offDiag)J := I − 1 n eeT (orthogonal projection on<strong>to</strong> M := {e} ⊥ );T (D) := − 1 2 JoffDiag(D)J(= K † (D))


55Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemProperties of Linear TransformationsEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureK,T , Diag,D eR(K) = S H ; N (K) = R(D e );R(K ∗ ) = R(T ) = S C ;N (K ∗ ) = N (T ) = R(Diag);S n = S H ⊕R(Diag) = S C ⊕R(D e ).T (E n ) = S n +∩S C <strong>and</strong> K(S n +∩S C ) = E n .


56Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemSingle Clique/Facial ReductionEXPLOIT DEGENERACY <strong>and</strong> FACIAL Structure¯D ∈ E k , α ⊆ 1:n, |α| = kDefine E n (α, ¯D) := { D ∈ E n : D[α] = ¯D } .Given ¯D; find a corresponding B ≽ 0; find the correspondingface; find the corresponding subspace.


Note that we add 1 √ke <strong>to</strong> represent N (K); then we use V <strong>to</strong>eliminate e <strong>to</strong> recover centered face.57Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureBasic Theorem for Single Clique/Facial ReductionTHEOREM 1: Single Clique ReductionLet ¯D := D[1:k] ∈ E k , k < n, with embedding dimension t ≤ r,<strong>and</strong> B := K † (¯D) = ŪBSŪT B , where ŪB ∈ M k×t ], ŪT B ŪB = I t , <strong>and</strong>S ∈ S++. t 1Furthermore, let U B :=[ŪB √k e ∈ M k×(t+1) ,[ ]UB 0[ ]UU :=, <strong>and</strong> let VT e∈ M n−k+t+1 be0 I ‖U T e‖n−korthogonal. Then:faceK †( E n (1:k, ¯D) ) (= US+ n−k+t+1 U)∩S T C= (UV)S+ n−k+t (UV) T


For each clique |α| = k, we get a corresponding face/subspace(k × r matrix) representation. We now see how <strong>to</strong> h<strong>and</strong>le twocliques, α 1 ,α 2 , that intersect.58Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructurePositive Integers for Intersecting CliquesTwo Intersection Sets, α 1 ,α 2 .α 1α 2¯k 1¯k 2¯k3


59Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureTwo (Intersecting) Clique Reduction/Subsp. Repres.THEOREM 2: Clique Intersection Reduction/Subsp. Repres.α 1 := 1:(¯k 1 + ¯k 2 ), α 2 := (¯k 1 + 1):(¯k 1 + ¯k 2 + ¯k 3 ) ⊆ 1:n,k 1 := |α 1 | = ¯k 1 + ¯k 2 , k 2 := |α 2 | = ¯k 2 + ¯k 3 ,k := ¯k 1 + ¯k 2 + ¯k 3 .For i = 1, 2, let ¯D i := D[α i ] ∈ E k i, with embedding dimension t i ,<strong>and</strong> B i := K † (¯D i ) = ŪiS i Ūi T , where Ūi ∈ M k i×t i, ŪT iŪ i = I ti ,<strong>and</strong> S i ∈ S t i++ . Furthermore, for i = 1, 2, let1[ŪiU i :=√ e ]ki∈ M k i×(t i +1) , <strong>and</strong> let Ū ∈ M k×(t+1) satisfy([ ])I¯k10, with0 U ŪT Ū = I t+12([ ])R(Ū) = RU1 0∩R0 I¯k3cont. . .


60Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureTwo (Intersecting) Clique Reduction, cont. . .THEOREM 2 Nonsing. Clique Inters. cont. . .cont. . . with([ ])R(Ū) = RU1 0∩R0 I¯k3[Ū ] 0let U := ∈ M n×(n−k+t+1) <strong>and</strong> let0 I[ ] n−kV ∈ M n−k+t+1 be orthogonal. ThenU T e‖U T e‖⋂ 2i=1 faceK†( E n (α i , ¯D i ) ) =([I¯k100 U 2]), with ŪT Ū = I t+1 ,(US n−k+t+1+ U T )∩S C= (UV)S n−k+t+ (UV) TBasic work: find Ū <strong>to</strong> repres. inters. of 2 subspaces.


Completion: missing distances can be recovered if desired.61Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureTwo (Intersecting) Clique Reduction Figure


62Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureTwo (Intersecting) Clique Explicit CompletionCOR. Intersection with Embedding Dim. r/CompletionHypotheses of Theorem 2 holds. Let ¯D i := D[α i ] ∈ E k i, fori = 1, 2, β ⊆ α 1 ∩α 2 ,γ := α 1 ∪α 2 , ¯D := D[β], B :=K † (¯D), Ū β := Ū(β,:), where Ū ∈ M k×(t+1) satisfiesintersection equation of Theorem 2. Let[¯VŪ T e‖ŪT e‖be orthogonal. Let Z := (JŪβ¯V) † B((JŪβ¯V) † ) T . If the]∈ M t+1embedding dimension for ¯D is r, THEN t = r in Theorem 2, <strong>and</strong>Z ∈ S+ r is the unique solution of the equation(JŪβ¯V)Z(JŪβ¯V) T = B, <strong>and</strong> the exact completion isD[γ] = K ( (Ū¯V)Z(Ū¯V) T) .


63Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemEXPLOIT DEGENERACY <strong>and</strong> FACIAL Structure2 (Inters.) Clique Reduction/Singular CaseTwo (Intersecting) Clique Reduction/Singular CaseC iC jUse R as lower bound in singular/nonrigid case.


64Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemAlgorithmEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureInitializeC i := { j : (D p ) ij < (R/2) 2} , for i = 1,...,nIterateFinalizeFor |C i ∩ C j | ≥ r + 1, do Rigid Clique UnionFor |C i ∩N (j)| ≥ r + 1, do Rigid Node AbsorptionFor |C i ∩ C j | = r, do Non-Rigid Clique Union (lower bnds)For |C i ∩N (j)| = r, do Non-Rigid Node Absorp. (lowerbnds)When ∃ a clique containing all anchors, use computed facialrepresentation <strong>and</strong> positions of anchors <strong>to</strong> solve for X


65Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemAlgorithmEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureClique UnionNode AbsorptionRigidNon-rigidC iCiC jj


66Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureResults - Data for R<strong>and</strong>om Noisless Problems2.16 GHz Intel Core 2 Duo, 2 GB of RAMDimension r = 2Square region: [0, 1]×[0, 1]m = 9 anchorsUsing only Rigid Clique Union <strong>and</strong> Rigid Node AbsorptionError measure: Root Mean Square DeviationRMSD =(1nn∑i=1‖p i − p truei ‖ 2 ) 1/2


67Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureResults - Large n (SDP size O(n 2 ))n # of Sensors Locatedn # sensors \ R 0.07 0.06 0.05 0.042000 2000 2000 1956 13746000 6000 6000 6000 600010000 10000 10000 10000 10000CPU Seconds# sensors \ R 0.07 0.06 0.05 0.042000 1 1 1 36000 5 5 4 410000 10 10 9 8RMSD (over located sensors)n # sensors \ R 0.07 0.06 0.05 0.042000 4e−16 5e−16 6e−16 3e−166000 4e−16 4e−16 3e−16 3e−1610000 3e−16 5e−16 4e−16 4e−16


68Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemResults - N Huge SDPs SolvedEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureLarge-Scale Problems# sensors # anchors radio range RMSD Time20000 9 .025 5e−16 25s40000 9 .02 8e−16 1m 23s60000 9 .015 5e−16 3m 13s100000 9 .01 6e−16 9m 8s( nSize of SDPs Solved: N = (# vrbls)2)E n (density of G) = πR 2 ; M = E n (|E|) = πR 2 N (# constraints)Size of SDP Problems:M = [ 3, 078, 915 12, 315, 351 27, 709, 309 76, 969, 790 ]N = 10 9[ 0.2000 0.8000 1.8000 5.0000 ]


69Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemSummaryEXPLOIT DEGENERACY <strong>and</strong> FACIAL StructureMany hard (combina<strong>to</strong>rial) problems can be modelledusing quadratic objectives <strong>and</strong> constraints, QQPs.QQPs are generally NP-hard problems. But, theLagrangian relaxation can be solved efficiently using theequivalent SDP (relaxation).The special structure of the SDP relaxations can beexploited in order <strong>to</strong> get efficient solutions for large scaleproblems.Many SDP relaxations of combina<strong>to</strong>rial problems aredegenerate. But, this degeneracy can be exploited. Inparticular, the SDP relaxation of SNL is highly (implicitly)degenerate. This degeneracy allows for a fast, accuratesolution technique.


70Preliminaries: <strong>Semidefinite</strong> <strong>Programming</strong> (SDP)Max-Cut Problem (MC); Simplest of <strong>Hard</strong> ProblemsSDP from General Quadratic Approximations (QQP)Quadratic Assignment Problem, (QAP);<strong>Hard</strong>est of <strong>Hard</strong> ProblemsThe Sensor Network Localization, SNL, ProblemThanks for your attention!EXPLOIT DEGENERACY <strong>and</strong> FACIAL Structure<strong>Semidefinite</strong> <strong>Programming</strong><strong>Application</strong>s <strong>and</strong> ImplementationsHenry WolkowiczDept. of Combina<strong>to</strong>rics <strong>and</strong> OptimizationUniversity of WaterlooCORS/MOPGPNiagara Falls, June 11, 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!