10.07.2015 Views

Effects of ocean acidification on invertebrate ... - ResearchGate

Effects of ocean acidification on invertebrate ... - ResearchGate

Effects of ocean acidification on invertebrate ... - ResearchGate

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Mar Biol (2010) 157:2489–2502DOI 10.1007/s00227-010-1513-6ORIGINAL PAPEREVects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ocean</str<strong>on</strong>g> acidiWcati<strong>on</strong> <strong>on</strong> <strong>invertebrate</strong> settlementat volcanic CO 2 ventsM. Cigliano · M. C. Gambi · R. Rodolfo-Metalpa ·F. P. Patti · J. M. Hall-SpencerReceived: 8 April 2010 / Accepted: 30 June 2010 / Published <strong>on</strong>line: 16 July 2010© Springer-Verlag 2010Abstract We present the Wrst study <str<strong>on</strong>g>of</str<strong>on</strong>g> the eVects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ocean</str<strong>on</strong>g>acidiWcati<strong>on</strong> <strong>on</strong> settlement <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic <strong>invertebrate</strong>s andmicr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna. ArtiWcial collectors were placed for 1 m<strong>on</strong>thal<strong>on</strong>g pH gradients at CO 2 vents oV Ischia (Tyrrhenian Sea,Italy). Seventy-nine taxa were identiWed from six maintax<strong>on</strong>omic groups (foraminiferans, nematodes, polychaetes,molluscs, crustaceans and chaetognaths). Calcareous foraminiferans,serpulid polychaetes, gastropods and bivalvesshowed highly signiWcant reducti<strong>on</strong>s in recruitment to thecollectors as pCO 2 rose from normal (336–341 ppm, pH8.09–8.15) to high levels (886–5,148 ppm) causing acidi-Wed c<strong>on</strong>diti<strong>on</strong>s near the vents (pH 7.08–7.79). Only the syllidpolychaete Syllis prolifera had higher abundances at themost acidiWed stati<strong>on</strong>, although a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> polychaetesand small crustaceans was able to settle and survive underthese c<strong>on</strong>diti<strong>on</strong>s. A few taxa (Amphiglena mediterranea,Leptochelia dubia, Caprella acanthifera) were particularlyabundant at stati<strong>on</strong>s acidiWed by intermediate amounts <str<strong>on</strong>g>of</str<strong>on</strong>g>CO 2 (pH 7.41–7.99). These results show that increasedCommunicated by F. Bulleri.M. Cigliano and M. C. Gambi c<strong>on</strong>tributed equally.M. Cigliano · M. C. Gambi (&) · F. P. PattiStazi<strong>on</strong>e Zoologica Ant<strong>on</strong> Dohrn,Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> Functi<strong>on</strong>al and Evoluti<strong>on</strong>ary Ecology,Villa Comunale, 80121 Naples, Italye-mail: gambimc@szn.itR. Rodolfo-Metalpa · J. M. Hall-SpencerMarine Institute, Marine Biology and Ecology Research Centre,University <str<strong>on</strong>g>of</str<strong>on</strong>g> Plymouth, Plymouth, UKR. Rodolfo-MetalpaIAEA, Marine Envir<strong>on</strong>ment Laboratories,M<strong>on</strong>aco, MC, M<strong>on</strong>acolevels <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 can pr<str<strong>on</strong>g>of</str<strong>on</strong>g>oundly aVect the settlement <str<strong>on</strong>g>of</str<strong>on</strong>g> a widerange <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic organisms.Introducti<strong>on</strong>Increasing atmospheric CO 2 c<strong>on</strong>centrati<strong>on</strong>s are causing arise in pCO 2 c<strong>on</strong>centrati<strong>on</strong>s at the <str<strong>on</strong>g>ocean</str<strong>on</strong>g> surface (Hought<strong>on</strong>et al. 1992; Keeling and Whorf 1994) due to atmosphericCO 2 <str<strong>on</strong>g>ocean</str<strong>on</strong>g> exchange <strong>on</strong> time scales <str<strong>on</strong>g>of</str<strong>on</strong>g> several m<strong>on</strong>ths(Zeebe and Wolf-Gladrow 2001). By 2100, the c<strong>on</strong>centrati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in the <str<strong>on</strong>g>ocean</str<strong>on</strong>g> is expected to rise to 750 ppm,which is about twice the present 385–390 ppm (Feely et al.2004; Raven et al. 2005). As CO 2 dissolves in the surface<str<strong>on</strong>g>ocean</str<strong>on</strong>g>, it reacts with water to form carb<strong>on</strong>ic acid (H 2 CO 3 ),which dissociates to bicarb<strong>on</strong>ate (HCO 3 ¡ ), carb<strong>on</strong>ate i<strong>on</strong>s(CO 3 2¡ ) and prot<strong>on</strong>s (H + ). With increasing atmosphericpCO 2 , the equilibrium <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong>ate system will shift tohigher CO 2 and HCO 3¡levels, while CO 32¡c<strong>on</strong>centrati<strong>on</strong>and pH will decrease.These changes in carb<strong>on</strong>ate chemistry, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten referred toas ‘<str<strong>on</strong>g>ocean</str<strong>on</strong>g> acidiWcati<strong>on</strong>’, are already occurring and areexpected to intensify in the future. Models predict that thepH <str<strong>on</strong>g>of</str<strong>on</strong>g> surface seawater will drop by 0.4 units by the year2100 (Caldeira and Wickett 2003). C<strong>on</strong>sequently, the rise<str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in <str<strong>on</strong>g>ocean</str<strong>on</strong>g> waters leads to more corrosive c<strong>on</strong>diti<strong>on</strong>sfor calcifying organisms, making it more diYcult for themto build and maintain their carb<strong>on</strong>ate skelet<strong>on</strong>s (Ravenet al. 2005). CalciWcati<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> several species, includingcoralline algae, coccolithophores, corals, bivalves and echinoderms,decreases with increasing pCO 2 (e.g. Kleypaset al. 2006; Fabry et al. 2008), although the resp<strong>on</strong>se is speciesspeciWc with the up-regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calciWcati<strong>on</strong> in somespecies (Wood et al. 2008; Ries et al. 2009; Jury et al.2009; Rodolfo-Metalpa et al. 2010a). The recruitment rate123


2490 Mar Biol (2010) 157:2489–2502and the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> crustose coralline algae is severely inhibitedunder elevated pCO 2 , suggesting that changes in benthiccommunity structure may occur owing to the impact<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ocean</str<strong>on</strong>g> acidiWcati<strong>on</strong> <strong>on</strong> recruitment and competiti<strong>on</strong>for space (KuVner et al. 2007; Hall-Spencer et al. 2008;Jokiel et al. 2008). Initial results by Porzio et al. (2008)dem<strong>on</strong>strate signiWcant loss <str<strong>on</strong>g>of</str<strong>on</strong>g> algal diversity and changesin macroalgal community structure in a naturally acidiWedenvir<strong>on</strong>ment.However, eVects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ocean</str<strong>on</strong>g> acidiWcati<strong>on</strong> <strong>on</strong> larval pelagicstages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>invertebrate</strong>s are still poorly understood (Vézinaand Hoegh-Guldberg 2008). Many laboratory studies haveshown that the early life history stages <str<strong>on</strong>g>of</str<strong>on</strong>g> several organismsare negatively impacted by acidiWed seawater, includingwork <strong>on</strong> echinoderms, crustaceans and molluscs (Kuriharaand Shirayama 2004; Kurihara et al. 2004, 2007; Dup<strong>on</strong>tet al. 2008; Kurihara and Ishimatsu 2008; Ellis et al. 2009;Findlay et al. 2009). However, potential shifts in benthicrecruitment that may result from these eVects <strong>on</strong> early lifehistory changes are unknown due to the diYculties <str<strong>on</strong>g>of</str<strong>on</strong>g> maintainingmixed populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> delicate larval stages in laboratoryc<strong>on</strong>diti<strong>on</strong>s.Hall-Spencer et al. (2008) have shown that natural CO 2venting sites may be useful for assessing the l<strong>on</strong>g-termeVects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ocean</str<strong>on</strong>g> acidiWcati<strong>on</strong> <strong>on</strong> benthic biota and sea-Xoorecosystems. They indicate that, although natural CO 2 ventingsites are not precise analogues <str<strong>on</strong>g>of</str<strong>on</strong>g> global-scale <str<strong>on</strong>g>ocean</str<strong>on</strong>g>acidiWcati<strong>on</strong>, they can provide essential informati<strong>on</strong> abouthigh-CO 2 eVects <strong>on</strong> spatial and temporal scales which areotherwise diYcult to address. Here, we provide Wrst data <strong>on</strong>the eVects <str<strong>on</strong>g>of</str<strong>on</strong>g> acidiWcati<strong>on</strong> <strong>on</strong> <strong>invertebrate</strong>s and micr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunasettled <strong>on</strong> artiWcial collectors placed at various distancesfrom CO 2 vents, creating a gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> diVerent pH c<strong>on</strong>diti<strong>on</strong>s.Study siteCastello Arag<strong>on</strong>ese, located at the north-eastern side <str<strong>on</strong>g>of</str<strong>on</strong>g>Ischia island (Fig. 1, 40° 43.84 N, 13° 57.08 E) is part <str<strong>on</strong>g>of</str<strong>on</strong>g> a132,000 years old volcano (Rittmann and Gottini 1981)where gas vents occur in shallow water (Tedesco 1996).The gas comprises 90–95% CO 2 , 3–6% N 2 , 0.6–0.8% O 2 ,0.2–0.8% CH 4 and 0.08–0.1% air and bubbles at about1.4 £ 10 6 l d ¡1 at ambient temperature. The site is microtidal(0.30–0.50 m range) and the CO 2 vents lack sulphur(Tedesco 1996); they acidify normal salinity and alkalinity<str<strong>on</strong>g>of</str<strong>on</strong>g> seawater al<strong>on</strong>g a pH gradient from 8.17 down to 6.57 for300 m running parallel to the rocky shore <strong>on</strong> the north andsouth sides <str<strong>on</strong>g>of</str<strong>on</strong>g> the Castello (Hall-Spencer et al. 2008). Thesouth side is more sheltered from wave acti<strong>on</strong> and has ashallow (0.5 m depth) Posid<strong>on</strong>ia <str<strong>on</strong>g>ocean</str<strong>on</strong>g>ica meadow forminga reef-like structure (sensu Augier and Boudouresque1970), where leaves Xoat <strong>on</strong> the water surface at low tidewith the highest mean shoot density recorded around Ischia(up to 900 shoots/m 2 , Buia et al. 2003). Previous studies atthe Castello report rich algal (Bourdouresque and Cinelli1971, 1976) and sp<strong>on</strong>ge communities (Sarà 1959; PulitzerFinali 1970; Pulitzer Finali and Pr<strong>on</strong>zato 1976), as well asdiverse <strong>invertebrate</strong> and Wsh faunas associated with thePosid<strong>on</strong>ia <str<strong>on</strong>g>ocean</str<strong>on</strong>g>ica meadows (Russo et al. 1984a; Guidettiand Bussotti 1998; Scipi<strong>on</strong>e 1999; Gambi and CaWero2001) in the areas nearby and partially inXuenced by thevents. Hall-Spencer et al. (2008) reported a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 64megabenthic taxa al<strong>on</strong>g the gradient at the vents areas,where reducti<strong>on</strong>s in the diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> adult populati<strong>on</strong>s arecaused partly by the dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calciWed species due tolowered pH (Martin et al. 2008; Rodolfo-Metalpa et al.2010b). Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> macroalgal diversity was also shown byPorzio et al. (2008). Although CO 2 vents are localised andhighly variable in pH, they provide informati<strong>on</strong> about theecological eVects <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term exposures to high CO 2 levelsencompassing the life cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting macrobenthicorganisms as well as the feedbacks and indirect eVectsthat occur within natural marine systems (Hall-Spenceret al. 2008; Riebesell 2008). The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was touse artiWcial collectors to determine whether <strong>invertebrate</strong>sand micr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna varied al<strong>on</strong>g gradients in pH where acidiWcati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> water by CO 2 aVects natural marine communities.We focus <strong>on</strong> early-settled stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>invertebrate</strong>s andforaminiferans, a fauna comp<strong>on</strong>ent which was not c<strong>on</strong>sideredat the vents initial survey by Hall-Spencer et al.(2008). Our null hypothesis was that there would be no signiWcantdiVerences in species compositi<strong>on</strong> and communitystructure in the collectors placed al<strong>on</strong>g the pH gradientsstudied.Materials and methodsArtiWcial collectors (scouring pads) were placed in situal<strong>on</strong>g 300 m transects <strong>on</strong> the north and south sides <str<strong>on</strong>g>of</str<strong>on</strong>g> CastelloArag<strong>on</strong>ese at six stati<strong>on</strong>s (N1, N2, N3, S1, S2, S3)where Hall-Spencer et al. (2008) had recorded signiWcantdiVerences in pH due to CO 2 vents (Fig. 1). N1 and S1 arem<strong>on</strong>itoring stati<strong>on</strong>s located under normal pH c<strong>on</strong>diti<strong>on</strong>s,N2 and S2 are intermediate stati<strong>on</strong>s, characterized by highpH Xuctuati<strong>on</strong>s and mean intermediate values, while N3and S3 are characterized by low pH, acidiWed c<strong>on</strong>diti<strong>on</strong>s.Water samples (n = 3–5) were taken at buoyed stati<strong>on</strong>s bySCUBA divers using glass bottles (250 cc volume) duringthe m<strong>on</strong>th <str<strong>on</strong>g>of</str<strong>on</strong>g> collector deployment, and the pH T (totalscale) was measured immediately using a meter accurate to0.01 pH units (Metrohm 826 pH mobile) calibrated usingTRIS/HCl and 2-aminopyridine/HCl buVer soluti<strong>on</strong>s (DOE1994). Seawater samples were then passed through 0.45-μm123


Mar Biol (2010) 157:2489–2502 2491Class and Order) and counted, the foraminiferans, polychaetes,molluscs, isopods and amphipods were classiWedto genus and, where possible, to species.Data analysesFig. 1 Map <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area at the Castello Arag<strong>on</strong>ese (Ischia island,Italy) with locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sampling stati<strong>on</strong>s <strong>on</strong> the north and southsides al<strong>on</strong>g a pH gradient from normal (N1, S1) to acidiWed (N3, S3)c<strong>on</strong>diti<strong>on</strong>s. The graph inside the map represents the mean and SD <str<strong>on</strong>g>of</str<strong>on</strong>g>the pH values measured during the sampling period in April–May 2008(see also Table 1)pore size Wlters (GF/F Whatman) and pois<strong>on</strong>ed with0.05 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 50% HgCl 2 (Merck, Analar) to avoid biologicalalterati<strong>on</strong> and stored in the dark at 4°C. Total alkalinity(TA) was measured using a titrati<strong>on</strong> system composed <str<strong>on</strong>g>of</str<strong>on</strong>g> apH meter with an ORION pH electrode and a 1 ml automaticburette (METHROM). TA was calculated from theGran functi<strong>on</strong> applied to pH variati<strong>on</strong>s from 4.2 to 3.0 asmEq l ¡1 from the slope <str<strong>on</strong>g>of</str<strong>on</strong>g> the curve HCl volume vs. pH.Parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong>ate system [pCO 2 , CO 3 2¡ , HCO 3¡and saturati<strong>on</strong> state <str<strong>on</strong>g>of</str<strong>on</strong>g> calcite (Ω calcite )] were calculatedfrom pH T , TA, temperature and salinity (38) using the CO 2Systat package.ArtiWcial collectors were 8 cm diameter rounded scouringpads formed by an enrolled coarse nyl<strong>on</strong> net. These collectorswere chosen as they have been widely used tocollect both larval and adult stages <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic <strong>invertebrate</strong>s(e.g. Menge 1992; Kendall et al. 1996; Porri et al. 2006;Gobin and Warwick 2006). At each stati<strong>on</strong> (N1, N2, N3,S1, S2, S3), three scouring pad collectors (labelled as, a, b, c)were Wxed to buoyed moorings 1 m from the bottomadjacent to the rocky shore at 1.5–2.0 m depth from the surfacefor a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 18 samples. The artiWcial collectors wereplaced in situ <strong>on</strong> the 18th April 2008 and removed after1 m<strong>on</strong>th (19th May). After removal, scouring pads wereimmediately Wxed in 4% formalin in sea water. They werelater unrolled and the nyl<strong>on</strong> net was rinsed with sea water<strong>on</strong> a 100-μm sieve and the retained material transferred to70% alcohol for sorting under a £40 stereomicroscope. Allorganisms were sorted by high tax<strong>on</strong>omic groups (Phylum,Number <str<strong>on</strong>g>of</str<strong>on</strong>g> species, abundance, Shann<strong>on</strong> diversity (H’) andPielou’s evenness (J) were calculated for each collector andplotted as means § SD (n = 3 at each stati<strong>on</strong>). DiVerencesam<strong>on</strong>g stati<strong>on</strong>s al<strong>on</strong>g the pH gradient and between sides(North vs. South) were tested using 2-way ANOVA for pHand carb<strong>on</strong>ate parameter values, for the faunal structuralparameters, as well as for most comm<strong>on</strong> tax<strong>on</strong>omic groupsand the four most abundant species. Homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> varianceswas veriWed using Cochran test (P < 0.05) and forthose variables that were not homogeneous, an appropriatedata transformati<strong>on</strong> was applied. ANOVA pair-wise comparis<strong>on</strong>sam<strong>on</strong>g stati<strong>on</strong>s were also performed. All statisticalanalyses were performed using the STATISTICA 8 freepackage.Structural analysis at community level was performedusing the cluster analysis (Bray-Curtis similarity, groupaverage <strong>on</strong> square-root-transformed abundance data tosmooth and down-weight the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> highly abundanttaxa) and the n<strong>on</strong>-parametric multi-dimensi<strong>on</strong>al scaling(nMDS) (Bray-Curtis similarity <strong>on</strong> square-root transformedabundance data; PRIMER v6). In the nMDS graph, samplepoints were circled according to clusters obtained with theBray-Curtis cluster analysis and that were signiWcant usingthe SIMPROF test (P < 0.05). For the multivariate analysis,each sample (scouring pad) was separately c<strong>on</strong>sidered(labelled as a, b, c in the nMDS graph). The SIMPER analysiswas performed <strong>on</strong> the species matrix to highlight thespecies that most c<strong>on</strong>tribute to distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> thestati<strong>on</strong>s. ANOSIM was applied to test the signiWcance level<str<strong>on</strong>g>of</str<strong>on</strong>g> the stati<strong>on</strong> factor (pH gradient), <str<strong>on</strong>g>of</str<strong>on</strong>g> the side factor (Northvs. South) and <str<strong>on</strong>g>of</str<strong>on</strong>g> the side/stati<strong>on</strong> interacti<strong>on</strong>.ResultsM<strong>on</strong>itoring stati<strong>on</strong>s N1 and S1 (Fig. 1) had normal pH(range 8.06–8.15); N2 and S2 had low pH (range 7.27–7.99and 7.49–7.89, respectively); N3 and S3 had very low pH(range 7.26–7.60 and 7.08–7.79, respectively), but am<strong>on</strong>gstati<strong>on</strong>s, there were no diVerences in temperature (range15.9–22.4°C), total alkalinity (range 2.5–2.6) or salinity(always 38) throughout the experimental period (Table 1).Table 1 shows measured and calculated diVerences in carb<strong>on</strong>atechemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> the stati<strong>on</strong>s with pCO 2 peaks <str<strong>on</strong>g>of</str<strong>on</strong>g>>3,000 ppm and periods <str<strong>on</strong>g>of</str<strong>on</strong>g> arag<strong>on</strong>ite under-saturati<strong>on</strong>recorded at stati<strong>on</strong>s N3, S2 and S3 and periods <str<strong>on</strong>g>of</str<strong>on</strong>g> calcite123


2492 Mar Biol (2010) 157:2489–2502Table 1 Seawater carb<strong>on</strong>ate chemistry measured (pH T , temperatureand total alkalinity TA) and calculated using CO2 Systat s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware(salinity = 38) during the deployment <str<strong>on</strong>g>of</str<strong>on</strong>g> settlement collectors <strong>on</strong> thenorth (N1, N2, N3) and south (S1, S2, S3) side <str<strong>on</strong>g>of</str<strong>on</strong>g> the Castello Àrag<strong>on</strong>ese(Ischia, Italy) in April–May 2008Stati<strong>on</strong>Temperature(°C)TA(mmol kg ¡1 )pCO 2(μatm)pH T(total scale)CO 2(mmol kg ¡1 )HCO 3¡(mmol kg ¡1 )CO 32¡(mmol kg ¡1 )DIC(mmol kg ¡1 )Ω arag<strong>on</strong>iteΩ calciteN118-April 16 2.568 336 8.15 0.012 1.97 0.25 2.229 3.70 5.7308-May 20.3 2.576 431 8.06 0.014 1.99 0.24 2.253 3.67 5.6210-May 19.9 2.571 430 8.06 0.014 1.99 0.37 2.250 3.61 5.53N218-April 16.0 2.609 1,908 7.49 0.680 2.45 0.07 2.583 1.00 1.5508-May 19.9 2.596 955 7.77 0.030 2.27 0.14 2.445 2.11 3.2310-May 20.2 2.614 697 7.89 0.022 2.19 0.18 2.387 2.70 4.14N318-April 16.0 2.581 2,838 7.32 0.062 2.41 0.07 2.544 1.06 1.6408-May 20.0 2.596 1,461 7.60 0.014 1.99 0.24 2.253 3.67 5.6210-May 19.9 2.563 3,316 7.26 0.106 2.45 0.05 2.604 0.70 1.08S117-April 15.9 2.568 345 8.14 0.012 1.98 0.24 2.237 3.62 5.6106-May 19.9 2.580 333 8.15 0.011 2.00 0.28 2.186 4.24 6.5008-May 20.0 2.571 395 8.09 0.012 1.97 0.25 2.229 3.82 5.8510-May 20.6 2.581 384 8.10 0.012 1.95 0.26 2.225 3.98 6.118-May 18.7 2.614 370 8.12 0.012 1.99 0.26 2.261 3.92 6.04S217-April 15.9 2.570 524 7.99 0.019 2.13 0.18 2.329 2.75 4.2606-May 20.0 2.580 618 7.93 0.019 2.13 0.19 2.336 2.86 4.3808-May 20.0 2.585 3,278 7.27 0.104 2.47 0.05 2.622 0.73 1.1110-May 20.3 2.561 2,316 7.41 0.073 2.41 0.07 2.543 0.99 1.5112-May 22.4 2.561 1,775 7.52 0.073 2.40 0.06 2.542 0.99 1.55S317-April 16.0 2.567 2,226 7.42 0.079 2.43 0.06 2.566 0.85 1.3106-May 20.0 2.585 3,786 7.21 0.120 2.48 0.04 2.647 0.64 0.9808-May 20.8 2.570 5,148 7.08 0.160 2.49 0.03 2.685 0.49 0.7510-May 20.7 2.556 4,543 7.13 0.140 2.47 0.04 2.648 0.54 0.8318-May 19.7 2.552 886 7.79 0.028 2.22 0.14 2.38 2.13 3.27under-saturati<strong>on</strong> <strong>on</strong>ly recorded at stati<strong>on</strong> S3. Although pHand carb<strong>on</strong>ate chemistry values were quite variable at thevents stati<strong>on</strong>s (especially in the intermediate, N2 and S2,and very low pH stati<strong>on</strong>s N3 and S3) compared to the c<strong>on</strong>trolstati<strong>on</strong>s (N1, S1), 2-way ANOVA showed that pH values(F = 9.551, P < 0.001), pCO 2 (F = 5.303, P = 0.004),Ω arag<strong>on</strong>ite (F = 6.550; P < 0.001) and Ω calcite (F =8.540;P < 0.001) were signiWcantly diVerent between stati<strong>on</strong>s.Such diVerences were mainly due to stati<strong>on</strong>s S3 and N3which showed the lowest values. In c<strong>on</strong>trast, the DIC valuesdid not change signiWcantly am<strong>on</strong>g stati<strong>on</strong>s (F =0.336;n.s.).A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 4,463 individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic <strong>invertebrate</strong>s andmicr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna were sampled in the collectors and separatedinto 79 taxa (Table 2). Half the individuals collected wereCrustacea (Copepoda 1136, Amphipoda 398, Tanaidacea408, Isopoda 148, Ostracoda 148, Cumacea 11 and Decapoda2), they were followed in abundance by Mollusca(770 Bivalvia and 216 Gastropoda), by Polychaeta (876individuals), while Foraminifera (239 individuals), Nematoda(82 individuals) and Chaetognatha (29 individuals)made up


Mar Biol (2010) 157:2489–2502 2493Table 2 List <str<strong>on</strong>g>of</str<strong>on</strong>g> species and taxa collected at the studied stati<strong>on</strong>s and their abundances (number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals)Taxa/Samples S1a S1b S1c S2a S2b S2c S3a S3b S3c N1a N1b N1c N2a N2b N2c N3a N3b N3cForaminiferaElphidium complanatum (d’Orbigny, 1839) 3 4 7Elphidium aculeatum (d’Orbigny, 1846) 3 14 5 1 2 14 12 12 28 66 23Elphidium depressulum Cushman, 1933 2 2 1 1 6 1 2Massilina secans (d’Orbigny, 1826) 1 1Mili<strong>on</strong>ella subrotundata (M<strong>on</strong>tagu, 1803) 5 2 10Quinqueloculina parvula Schlumberger, 1894 1 3Quinqueloculina aV. parvula Schlumberger, 1895 2Quinqueloculina berthelotiana d’Orbigny, 1839 1Triloculina plicata Terquem, 1876 1Triloculina schreiberiana d’Orbigny, 1839 1 1Vertebralina striata d’Orbigny, 1826 1Nematoda 3 6 3 9 3 3 12 3 9 2 8 12 9PolychaetaAmphiglena mediterranea (Leydig, 1851) 3 6 6 4 22 21 1 1 10 5 4 1 5 4 2 4 4Cerat<strong>on</strong>ereis costae (Grube, 1840) 1Exog<strong>on</strong>e (Paraexog<strong>on</strong>e) meridi<strong>on</strong>alis Cognetti, 1955 2 4 2 14 1 3 1 5 1 11 3 24Exog<strong>on</strong>e (Exog<strong>on</strong>e) naidina (Orsted, 1845) 8 22 16 4 27 8 10 6 18 11 5 10 20 8 25 15Gyptis propinqua Mari<strong>on</strong> & Bobretzky, 1875 3 3 1 2 7 5 1Neodexiospira pseudocorrugata (Bush, 1905) 11 4 13 7 12 6Platynereis dumerilii (Audouin & Milne-Edwards, 1833) 1 1 1 7 8 30 5 17 19 3 7 3 1 2 6 5Polyophtalmus pictus Dujardin, 1839 1 4 3 4 5 3 5 1 2 5 2Spio decoratus Bobretzky, 1870 1 2 1 1 1 1 4 1Spirorbis mari<strong>on</strong>i Caullery & Mesnil, 1897 3 5 12 4Syllis prolifera Krohn, 1869 6 14 16 5 7 16 7 46 29 30 4 11 8 2 15 9Trichobranchus glacialis Malmgren, 1866 1MolluscaGastropodaAlvania subcrenulata (Bucquoy, Dautzenberg & Dollfus,1884) 1Clanculus jussieui (Payreaudeau, 1826) 1Dikoleps nitens (Philippi, 1884) 1 6Fossarus ambigus (Linnè 1758) 1Gibbula fanulum (Gmelin, 1791) 1Gibbula richardi (Payreaudeau, 1826) 1123


2494 Mar Biol (2010) 157:2489–2502Table 2 c<strong>on</strong>tinuedTaxa/Samples S1a S1b S1c S2a S2b S2c S3a S3b S3c N1a N1b N1c N2a N2b N2c N3a N3b N3cGibbula varia (Linnè, 1758) 11Hydrobia sp. 1Jujubinus gravinae (Dautzenberg, 1881) 6 1Melanella polita (Linnè, 1758) 1 3Osilinus turbinatus (V<strong>on</strong> Born, 1778) 12 4 15 1 12 1 3Pusillina margiminia (Nordsieck, 1972) 1Pusillina sp. 4 2 1 1Rissoa variabilis (V<strong>on</strong> Muehtfeldt, 1824) 5 7 7 11 13 10 16 7 8 7 12 4 4 4Rissoa ventricosa (Desmarest, 1814) 1 1Rissoa violacea (Desmarest, 1814) 1 2 1Tricolia pullus pullus (Linnè, 1758) 1 1 1Bivalvia 70 80 112 45 20 18 2 28 0 23 46 25 26 96 68 18 80 13CrustaceaOstracoda 2 0 1 12 3 8 2 20 21 4 7 0 0 4 5 13 36 10Copepoda 20 29 67 102 97 106 68 117 33 23 50 48 2 47 48 54 102 123AmphipodaAmpithoe ram<strong>on</strong>di Audouin, 1826 8 3 10 7 12 1 3 1Leptocheirus pilosus Zaddach, 1844 1 1 1Microdeutopus spp. 2 3 3 3 8 5 1 7 16 1 1 2 2 1Dexamine spiniventris (A.Costa, 1853) 2 1 1 1Apherusa cf chiereghinii Giordani Soika, 1950 2 1 1Hyale campt<strong>on</strong>yx (Heller, 1866) 7 3 1 3 2 1 1 2 5 1Protohyale schmidtii (Heller, 1866) 6Iphimedia minuta G.O.Sars, 1882 1Gammaropsis palmata Stebbing & Roberts<strong>on</strong>, 1891 1 1Ericth<strong>on</strong>ius punctatus (Bate, 1857) 1 2Ischyrocerus inexpectatus RuVo, 1959 1 1 1 1 1 1 2Jassa marmorata Holmes, 1903 2 1 1 1 1 3Lysianassa costae Milne Edwards, 1830 1Elasmopus rapax A.Costa, 1853 1 1 1Gammarella fucicola (Leach, 1814) 2Quadrimaera inaequipes (A.Costa, 1857) 2Stenothoe cavimana Chevreux, 1908 1 1Stenothoe m<strong>on</strong>oculoides (M<strong>on</strong>tagu, 1813) 1Caprella acanthifera Leach, 1814 1 8 23 9 45 11 17 6 8 14 3 16 21 1 24 12123


Mar Biol (2010) 157:2489–2502 2495Table 2 c<strong>on</strong>tinuedTaxa/Samples S1a S1b S1c S2a S2b S2c S3a S3b S3c N1a N1b N1c N2a N2b N2c N3a N3b N3cCaprella sp. 1TanaidaceaParapseudes latifr<strong>on</strong>s Grube,1864 1 3 3 2Tanais dul<strong>on</strong>gii (Audouin, 1826) 1Leptochelia dubia (Kroyer, 1842) 30 28 29 64 66 77 5 34 20 4 5 1 3 5 3 4 8 6Tanaidacea indet. 1 1 3 1IsopodaCleantis prismatica (Risso, 1826) 1Paranthura nigropunctata (Lucas, 1846) 1Paranthura indet. 2 1 1Cymodoce truncata (Leach, 1814) 12 13 4 1 1 1Cymodoce hanseni (Dumay, 1972) 1Dynamene cf biWda Torelli, 1930 5 13 3 62 25 1Cumacea 3 1 0 0 0 0 0 0 0 0 2 4 0 0 0 0 0 1Decapoda 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Chaetognata 4 11 3 0 0 0 0 0 0 0 4 0 3 3 0 1 0 0Total number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals 218 260 336 303 299 371 114 404 221 132 269 205 100 308 234 122 323 244Total number <str<strong>on</strong>g>of</str<strong>on</strong>g> species 28 22 25 14 12 15 13 22 14 20 22 30 16 18 17 11 12 15Total number <str<strong>on</strong>g>of</str<strong>on</strong>g> taxa 33 28 31 18 15 20 18 27 18 24 29 31 20 24 21 16 17 21Diversity (H’ index) 3.69 3.59 3.37 2.91 3 3.17 2.19 3.42 3.51 3.75 3.86 4.1 3.18 3.06 3.2 2.6 2.76 2.68Evenness (J’) 0.73 0.75 0.68 0.71 0.77 0.75 0.55 0.74 0.88 0.83 0.81 0.81 0.75 0.69 0.74 0.66 0.71 0.62123


2496 Mar Biol (2010) 157:2489–2502total taxaDiversity H'3530252015104.54.03.53.02.52.0taxaindividualsS1 (3.92) S2 (1.66) S3 (0.53) N1 (3.66) N2 (1.94) N3 (1.81)Diversity H'Stati<strong>on</strong>sEveness JS1 (3.92) S2 (1.66) S3 (0.53) N1 (3.66) N2 (1.94) N3 (1.81)Stati<strong>on</strong>sFig. 2 Trend <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> taxa and <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals (above graphs)and Diversity (Shann<strong>on</strong> H’) and Evenness (Pielou J) (below graphs) inthe studied stati<strong>on</strong>s. In parentheses, next to stati<strong>on</strong> name are mean values<str<strong>on</strong>g>of</str<strong>on</strong>g> Ω arag<strong>on</strong>itepH collectors were signiWcantly (P < 0.001) more diverse,as also shown by the Shann<strong>on</strong> H’ (Fig. 2, Table 3). A signiWcantinteracti<strong>on</strong> between stati<strong>on</strong> and side was alsoobserved (Table 3).Foraminifera (11 taxa) were represented exclusively bybenthic forms and were dominated by Elphidium aculeatum;they showed signiWcantly fewer individuals (P < 0.01) andnumber <str<strong>on</strong>g>of</str<strong>on</strong>g> taxa (P < 0.001) in the low pH c<strong>on</strong>diti<strong>on</strong>s(Fig. 3, Table 3). Nematoda and Chaetognatha occurredin low numbers throughout the pH range and were not identiWedfurther, precluding any investigati<strong>on</strong>s into speciesspeciWcresp<strong>on</strong>ses. Polychaeta (12 taxa) were signiWcantlymore diverse (P < 0.01) at normal pH c<strong>on</strong>diti<strong>on</strong>s with thecalcareous tube-dwelling spirorbids Spirorbis mari<strong>on</strong>i andNeodexiospira pseudocorrugata <strong>on</strong>ly occurring at normalpH stati<strong>on</strong>s. Polychaetes showed mixed resp<strong>on</strong>ses to the pHgradient, with Syllis prolifera most abundant at the lowestpH sites (Fig. 4) and Amphiglena mediterranea signiWcantlymore abundant at intermediate pH stati<strong>on</strong> S2(Table 3, Fig. 4). Mollusca (18 taxa) were mostly juvenilestages and had signiWcantly fewer individuals (P < 0.01)and species (P < 0.01) at acidiWed sites. The bivalves werediYcult to identify, as they were small and with damagedshells, but the most comm<strong>on</strong> genera were tentatively identi-4003002001001.00.90.80.70.60.5total individualsEvenness JWed as Tellina and Macoma. Gastropod species were signiWcantlymore diverse at normal pH c<strong>on</strong>diti<strong>on</strong>s (P < 0.01)although adults <str<strong>on</strong>g>of</str<strong>on</strong>g> the most abundant species, Rissoa variabilis,were also found at the lowest pH stati<strong>on</strong>s. Crustacea(34 taxa) also had signiWcantly fewer individuals (P < 0.01)at the most acidiWed stati<strong>on</strong>s, but the total number <str<strong>on</strong>g>of</str<strong>on</strong>g> taxadid not diVer signiWcantly as there were a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> ostracods,copepods, amphipods, tanaids and isopods that weretolerant <str<strong>on</strong>g>of</str<strong>on</strong>g> high CO 2 c<strong>on</strong>diti<strong>on</strong>s (Fig. 3). When theresp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> crustacean taxa are examined individually,they exhibit mixed resp<strong>on</strong>ses with some resp<strong>on</strong>ding positivelyand others negatively al<strong>on</strong>g the pH gradient, and withsome showing peak abundance at intermediate pH. Forexample, copepods (the numerically dominant crustaceangroup represented by both pelagic and benthic forms) hadsigniWcantly fewer individuals at low pH (Table 3),whereas Leptochelia dubia (the most abundant <str<strong>on</strong>g>of</str<strong>on</strong>g> the threespecies <str<strong>on</strong>g>of</str<strong>on</strong>g> tanaids present) and Caprella acanthifera (themost abundant <str<strong>on</strong>g>of</str<strong>on</strong>g> the 20 species <str<strong>on</strong>g>of</str<strong>on</strong>g> amphipods present)were signiWcantly more abundant at intermediate pH stati<strong>on</strong>S2 (Table 3, Fig. 4), whereas Dynamene cf biWda (the mostabundant isopod) was comm<strong>on</strong> at the most acidiWed site.The ANOVA pair-wise analysis (Table 4) showed thatfor most taxa and species c<strong>on</strong>sidered, the diVerences weremainly between stati<strong>on</strong> S1 and S2–S3, and with a lower frequencybetween N1 and N2–N3. In general, stati<strong>on</strong>s S2 andS3, and N2 and N3 showed less pr<strong>on</strong>ounced diVerences.Cluster analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the taxa/stati<strong>on</strong> matrix, based <strong>on</strong>Bray-Curtis similarity (not shown), separated three principalgroups <str<strong>on</strong>g>of</str<strong>on</strong>g> samples at 57% similarity level and which aresigniWcant at the SIMPROF test (P < 0.05): the groupincluding normal pH samples, N1b–c, S1a–c, the groupwith <strong>on</strong>ly samples N1a and N2a which are however closerto the Wrst group, and the group including all the otherintermediate and low pH samples, except the outliers S3aand N3a.The nMDS ordinati<strong>on</strong> (based <strong>on</strong> Bray-Curtis similarity)grouped samples in a way very c<strong>on</strong>sistent with the clusteranalysis (circled samples corresp<strong>on</strong>d to signiWcant clustersat the SIMPROF test) with samples from normal pH c<strong>on</strong>diti<strong>on</strong>swell separated from the others (Fig. 5). According tostati<strong>on</strong> (pH gradient), this ordinati<strong>on</strong> was signiWcant(ANOSIM for stati<strong>on</strong> factor: Global R = 0.424, P


Mar Biol (2010) 157:2489–2502 2497Table 3 ANOVA analyses <str<strong>on</strong>g>of</str<strong>on</strong>g>the main taxa and species,according to side (North vs.South) and stati<strong>on</strong> (al<strong>on</strong>g thepH gradient)* P < 0.05; ** P < 0.01;*** P < 0.001;n.s., Not signiWcantTaxa Variable Factors (F values) Interacti<strong>on</strong>Stati<strong>on</strong> Side Side/Stati<strong>on</strong>Foraminifera Individuals 7.23** n.s. 3.60*Species 7.76** n.s. 8.98**Polychaeta Individuals n.s. n.s. n.s.Species 7.43* n.s. 9.67***Gasteropoda Individuals 5.91** n.s. 7.76**Species 8.64** n.s. 7.78*Bivalvia Individuals 3.72* n.s. 5.01**Total Mollusca Individuals 3.77* n.s. 5.06*Copepoda Individuals 3.55* n.s. 3.94*Amphipoda Individuals n.s. n.s. n.s.Species n.s. n.s. n.s.Tanaidacea Individuals 44.23*** 22.13** n.s.Species n.s. 5.60* n.s.Total Crustacea Individuals 5.17** 6.15* n.s.Species n.s. n.s. n.s.Abundant speciesSyllis prolifera Individuals n.s. n.s. n.s.Amphiglena mediterranea Individuals n.s. n.s. n.s.Leptochelia dubia Individuals 42.72*** 18.75** n.s.Caprella acanthifera Individuals n.s. n.s. n.s.Total n. taxa 8.03** n.s. 10.72***Total n. individuals n.s. n.s. n.s.Diversity (H’) 7.95*** n.s. 8.51***Evenness (J’) n.s. n.s. n.s.Copepoda, Elphidium aculeatum, Neodexiospira pseudocorrugataand Bivalvia (again most are calciWers). Whilethose diVerentiating the intermediate from the low pH stati<strong>on</strong>swere Bivalvia, E. aculeatum, Leptochelia dubia,Copepoda, Caprella acanthifera and Exog<strong>on</strong>e naidina.The species/taxa which most c<strong>on</strong>tribute in diVerentiatingsouth from north side samples were L. dubia, Bivalvia andCopepoda.Discussi<strong>on</strong>Ocean acidiWcati<strong>on</strong> causes changes in seawater chemistrythat may have a large impact <strong>on</strong> marine life and biogeochemicalprocesses; however, these impacts are still poorlyunderstood at the ecosystem level (Vézina and Hoegh-Guldberg 2008). Here, we provide a Wrst assessment <str<strong>on</strong>g>of</str<strong>on</strong>g>which benthic faunal groups successfully settle out al<strong>on</strong>g apH gradient in natural CO 2 vents. Such data are required toadvance our understanding <strong>on</strong> how marine coastal benthiccommunities may adjust to <str<strong>on</strong>g>ocean</str<strong>on</strong>g> acidiWcati<strong>on</strong>. There arefew experimental studies that explore the eVects <str<strong>on</strong>g>of</str<strong>on</strong>g> elevatedCO 2 levels <strong>on</strong> benthic ecosystems, although mesocosmwork has shown eVects <strong>on</strong> primary producti<strong>on</strong> and theexport <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material (Riebesell et al. 2007) as well asnutrient Xux in sediments (Widdicombe and Needham2007), bioturbati<strong>on</strong> (DashWeld et al. 2008) and communitychanges in tropical corals (Jokiel et al. 2008).Although pH was variable during the study period, signiWcantdiVerences am<strong>on</strong>g stati<strong>on</strong>s were observed <strong>on</strong> averagedvalues, especially in the most acidiWed stati<strong>on</strong>s (S3and N3). Such variability in pH values is due to variablelocal c<strong>on</strong>diti<strong>on</strong>s at small and medium scale and in time, andit is a problem to face when working in situ. This variabilityis c<strong>on</strong>sistent with what has been observed in other shortmedium-termmeasurements performed in the area, both inthe acidiWed as well as in the intermediate stati<strong>on</strong>s (S2 andN2) (Hall-Spencer et al. 2008; Rodolfo-Metalpa et al.2010b; Lombardi et al. unpublished data). The intermediatestati<strong>on</strong>s had higher Xuctuati<strong>on</strong>s in pH values as they werelocated between areas with high venting activity and normalpH <strong>on</strong>es and show which organisms can tolerate highlyvariable pH and carb<strong>on</strong>ate chemistry c<strong>on</strong>diti<strong>on</strong>s.After 1 m<strong>on</strong>th, our artiWcial collectors (scouring pads)hosted a relatively abundant and rich group <str<strong>on</strong>g>of</str<strong>on</strong>g> species,particularly at stati<strong>on</strong>s with normal pH, as indicated by the123


2498 Mar Biol (2010) 157:2489–2502PolychaetaMollusca1010012090888010070680660506044403040222020100000S1 (3.92) S2 (1.66) S3 (0.53) N1 (3.66) N2 (1.94) N3 (1.81)S1 (3.92) S2 (1.66) S3 (0.53) N1 (3.66) N2 (1.94) N3 (1.81)Stati<strong>on</strong>sStati<strong>on</strong>sN. species N. individualsCrustacea6Foraminifera701515060504101004030550220100000S1 (3.92) S2 (1.66) S3 (0.53) N1 (3.66) N2 (1.94) N3 (1.81)S1 (3.92) S2 (1.66) S3 (0.53) N1 (3.66) N2 (1.94) N3 (1.81)Stati<strong>on</strong>sStati<strong>on</strong>sFig. 3 Trend <str<strong>on</strong>g>of</str<strong>on</strong>g> the abundance (number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals) and number <str<strong>on</strong>g>of</str<strong>on</strong>g> species <str<strong>on</strong>g>of</str<strong>on</strong>g> the main higher taxa collected in the studied stati<strong>on</strong>s. In parenthesesare mean values <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω arag<strong>on</strong>iteN. speciesN. speciesN. individualsN. individualsN. speciesN. species10140N. individualsN. individualsvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> diversity (H’), as well as by the total number <str<strong>on</strong>g>of</str<strong>on</strong>g>taxa/species recorded (79 and 64, respectively). Am<strong>on</strong>g thefew abundant taxa, calciWers were mainly restricted to thenormal pH stati<strong>on</strong>s, such as most <str<strong>on</strong>g>of</str<strong>on</strong>g> the Foraminifera,Neodexiospira pseudocorrugata and Spirobis mari<strong>on</strong>i(Spirorbidae), the gastropod Osilinus turbinatus, most <str<strong>on</strong>g>of</str<strong>on</strong>g>Bivalvia and the isopod Cymodoce truncata. Other speciesoccurred all al<strong>on</strong>g the pH gradient, both <strong>on</strong> the north andsouth sides, such as the polychaetes Exog<strong>on</strong>e naidina,Amphiglena mediterranea and Platynereis dumerilii, thegastropod Rissoa variabilis and the amphipod Caprellaacanthifera. Finally, <strong>on</strong>ly the polychaete Syllis proliferaand the tanaid Leptochelia dubia showed higher abundancesin some intermediate and low pH stati<strong>on</strong>s. On thewhole, a clear decrease in species diversity is evident al<strong>on</strong>gthe pH gradient <strong>on</strong> both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> Castello Arag<strong>on</strong>ese. Thisis mainly due to disappearance or str<strong>on</strong>g reducti<strong>on</strong> in thelow pH stati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> most <str<strong>on</strong>g>of</str<strong>on</strong>g> the calcifying organisms, suchas the majority <str<strong>on</strong>g>of</str<strong>on</strong>g> Foraminifera, Bivalvia, many Gastropodaand all Spirorbidae polychaetes. This pattern seems clearlyrelated to the negative eVect that low pH exert <strong>on</strong> the calcareousstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> such organisms, as observed in thesame area in the study <str<strong>on</strong>g>of</str<strong>on</strong>g> Hall-Spencer et al. (2008) withsimilar and other calciWed groups. These organisms, whichrely <strong>on</strong> the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calciWed tests or shells forsurvival, e.g. corals (Seibel and Fabry 2003), molluscs(Lindinger et al. 1984; Michaelidis et al. 2005), crustaceans(deFur and McMah<strong>on</strong>, 1984) and calciWed algal species(Riebesell et al. 2000), are therefore particularly vulnerableto lowering <str<strong>on</strong>g>of</str<strong>on</strong>g> the pH or its Xuctuati<strong>on</strong>s. Recent studieshave shown that the calciWcati<strong>on</strong> rate within calcifyingorganisms decreases with increasing pCO 2 , even in seawatersupersaturated with respect to CaCO 3 (Gattuso et al.1998; Riebesell et al. 1993, 2000; Thornt<strong>on</strong> and Shirayama2001; Bijma et al. 2002; Green et al. 2004; Kleypas et al.2006; Gazeau et al. 2007; Rodolfo-Metalpa et al. 2010a).Other studies have shown that calcareous macroalgae (Rieset al. 2009), coccolithophores (Iglesias-Rodriguez et al. 2008),foraminiferans, echinoderms (Wood et al. 2008), molluscs(Ries et al. 2009), corals (Ries et al. 2009; Jury et al. 2009,Rodolfo-Metalpa et al. 2010a), bryozoans (Rodolfo-Metalpaet al. 2010b), and crustaceans (Ries et al. 2009) eitherincreased or maintained the same levels <str<strong>on</strong>g>of</str<strong>on</strong>g> calciWcati<strong>on</strong>under moderate elevati<strong>on</strong> in pCO 2 (400–1,000 ppm pCO 2 ).Finally, a few calcareous organisms, such as the barnacleChthamalus stellatus, may survive and grow at extremelylow mean pH 6.6 as shown in our study area (Hall-Spenceret al. 2008).At intermediate and low pH stati<strong>on</strong>s, the species presentwere in relatively high abundances perhaps indicating adecrease in species competiti<strong>on</strong> favouring the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g>the few survivors or that the organism’s survival is compatible123


Mar Biol (2010) 157:2489–2502 2499Fig. 4 Trend <str<strong>on</strong>g>of</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g>some <str<strong>on</strong>g>of</str<strong>on</strong>g> the most abundant andrelevant species collected in thestudied stati<strong>on</strong>s. In parenthesesare mean values <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω arag<strong>on</strong>iteN. individuals302010Amphiglena mediterraneaN=103N. individuals604020Syllis proliferaN=2250S1 (3.92) S2 (1.66) S3 (0.53) N1 (3.66) N2 (1.94) N3 (1.81)Stati<strong>on</strong>s0S1 (3.92) S2 (1.66) S3 (0.53) N1 (3.66) N2 (1.94) N3 (1.81)Stati<strong>on</strong>s60Caprella acanthifera80Leptochelia dubiaN. individuals4020N=219N. individuals604020N=3920S1 (3.92) S2 (1.66) S3 (0.53) N1 (3.66) N2 (1.94) N3 (1.81)Stati<strong>on</strong>s0S1 (3.92) S2 (1.66) S3 (0.53) N1 (3.66) N2 (1.94) N3 (1.81)Stati<strong>on</strong>swith elevated DIC and HCO 3 ¡ levels that characterize thelow pH z<strong>on</strong>es.The majority <str<strong>on</strong>g>of</str<strong>on</strong>g> the organisms settled <strong>on</strong> the scouringpads were juveniles or adult stages <str<strong>on</strong>g>of</str<strong>on</strong>g> small mesoherbivorespecies typically associated with Posid<strong>on</strong>ia <str<strong>on</strong>g>ocean</str<strong>on</strong>g>ica meadowsand infralittoral macroalgal assemblages. Such habitatsare very comm<strong>on</strong> around the study area and act as sourcefor larvae, as well as juvenile and small adult dispersi<strong>on</strong>stages, some <str<strong>on</strong>g>of</str<strong>on</strong>g> which were also bearing eggs (e.g. thepolychaete Exog<strong>on</strong>e naidina). This was particularly evidentfor pericarid crustaceans (amphipods, isopods, tanaids)which are active swimmers, and for gastropods, whichtogether with peracarids also undergo str<strong>on</strong>g daily migrati<strong>on</strong>in seagrasses and macroalgal habitats (Russo et al.1984b; Lorenti and Scipi<strong>on</strong>e 1990; Cozzolino et al. 1992).It is likely that peracarids migrated to the collectors fromthe macroalgal and Posid<strong>on</strong>ia habitats that surround thestudy area <strong>on</strong> both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> the Castello. The active behaviour<str<strong>on</strong>g>of</str<strong>on</strong>g> peracarids and the pelagic habits <str<strong>on</strong>g>of</str<strong>on</strong>g> copepods andostracods may explain why crustaceans were so evenly distributedin all stati<strong>on</strong>s at both sides, relative to other lessmobile organisms (e.g. polychaetes).Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the species collected have been previouslyrecorded <strong>on</strong> such vegetated habitats (shallow infralittoralmacroalgae and Posid<strong>on</strong>ia meadows) and are comm<strong>on</strong>around the island <str<strong>on</strong>g>of</str<strong>on</strong>g> Ischia (Gambi et al. 2003), as well asaround the Castello at normal pH (Russo et al. 1984a;Scipi<strong>on</strong>e 1999). However, a few <str<strong>on</strong>g>of</str<strong>on</strong>g> the most abundantpolychaete species, Platynereis dumerilii, Syllis proliferaand Amphiglena mediterranea, were previously observedalso <strong>on</strong> the intermediate and low pH z<strong>on</strong>es (Gambi et al.1997, 2000; Rouse and Gambi 1997). Their relatively highoccurrence <strong>on</strong> the collectors is a c<strong>on</strong>Wrmati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> their abilityto thrive in such variable, and low pH c<strong>on</strong>diti<strong>on</strong>s.There are no studies <strong>on</strong> the physiological eVects <str<strong>on</strong>g>of</str<strong>on</strong>g> pCO 2and pH variability <strong>on</strong> the species recorded in our study.From an ecological view point, P. dumerilli is particularlytolerant to organic polluti<strong>on</strong>, being c<strong>on</strong>sidered as a“polluted waters biological detector” (Bellan 1980).Am<strong>on</strong>g the species listed for the area in the study <str<strong>on</strong>g>of</str<strong>on</strong>g>Hall-Spencer et al. (2008), <strong>on</strong>ly the gastropod Osilinusturbinatus was present also in our samples. This is surelydue to the diVerent methods <str<strong>on</strong>g>of</str<strong>on</strong>g> faunal collecti<strong>on</strong> am<strong>on</strong>g thetwo studies.Reducti<strong>on</strong> in the overall biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>invertebrate</strong>sal<strong>on</strong>g with the reducti<strong>on</strong> in pH is c<strong>on</strong>sistent also with data<strong>on</strong> epiphytes <str<strong>on</strong>g>of</str<strong>on</strong>g> P. <str<strong>on</strong>g>ocean</str<strong>on</strong>g>ica leaves (Martin et al. 2008) and<strong>on</strong> macroalgae (Porzio et al. 2008) observed in the samearea, building <strong>on</strong> evidence for biodiversity loss and alteredcommunity compositi<strong>on</strong> in waters acidiWed by CO 2 (Fabryet al. 2008; Barry et al. 2010).Vent systems are not perfect predictors <str<strong>on</strong>g>of</str<strong>on</strong>g> future <str<strong>on</strong>g>ocean</str<strong>on</strong>g>ecology owing to temporal variability in pH, spatial proximity<str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s unaVected by acidiWcati<strong>on</strong> and theunknown eVects <str<strong>on</strong>g>of</str<strong>on</strong>g> other global changes in parameters suchas temperature, currents and sea level (Reibesell 2008).However, such vents acidify sea water <strong>on</strong> suYciently largespatial and temporal scales to integrate ecosystem processessuch as producti<strong>on</strong>, competiti<strong>on</strong> and predati<strong>on</strong> (Hall-Spenceret al. 2008). A further step in this study will be to test if the123


2500 Mar Biol (2010) 157:2489–2502Table 4 ANOVA pair-wiseanalyses am<strong>on</strong>g the stati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>the main taxa and species* P < 0.05; ** P < 0.01;*** P


Mar Biol (2010) 157:2489–2502 2501Acknowledgments Thanks are due to MC Buia and the staV <str<strong>on</strong>g>of</str<strong>on</strong>g> thebenthic ecology group <str<strong>on</strong>g>of</str<strong>on</strong>g> the Stazi<strong>on</strong>e Zoologica Ant<strong>on</strong> Dohrn, locatedat Villa Dohrn (Ischia), for support in the laboratory and at sea. We arealso indebted to E Vecchi (foraminiferans), MB Scipi<strong>on</strong>e (amphipods)and M Lorenti (isopods and tanaids) for the identiWcati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g>the benthic taxa. C Vasapollo helped with the statistical analyses. Thecaptain V Rando and B Iac<strong>on</strong>o supported the work at sea. We alsothank two an<strong>on</strong>ymous reviewers whose comments improved the Ms.This work is a c<strong>on</strong>tributi<strong>on</strong> to the European Project <strong>on</strong> Ocean AcidiWcati<strong>on</strong>(EPOCA FP7/2007-2013 grant agreement no 211384) and waspartly funded by the Save Our Seas Foundati<strong>on</strong>.ReferencesAugier H, Boudouresque C-F (1970) Végetati<strong>on</strong> marine de l’ile de PortCros. Le recif barrière de posid<strong>on</strong>ies. Bull Mus Hist Nat Marseille30:221–228Barry JP, Hall-Spencer JM, Tyrell T (2010) In situ perturbati<strong>on</strong> experiments:natural venting sites, spatial/temporal gradients in <str<strong>on</strong>g>ocean</str<strong>on</strong>g>pH, manipulative in situ pCO 2 perturbati<strong>on</strong>s. In: Riebesell U,Fabry VJ, Hanss<strong>on</strong> L, Gattuso J-P (eds) Guide to best practices for<str<strong>on</strong>g>ocean</str<strong>on</strong>g> acidiWcati<strong>on</strong> research and data reporting. Publicati<strong>on</strong>sOYce <str<strong>on</strong>g>of</str<strong>on</strong>g> the European Uni<strong>on</strong>, LuxembourgBellan G (1980) Relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> polluti<strong>on</strong> to rocky substratum polychaetes<strong>on</strong> the French Mediterranean coast. Mar Pollut Bull11(11):318–321Bijma J, Hönisch B, Zeebe RE (2002) Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>ocean</str<strong>on</strong>g> carb<strong>on</strong>atechemistry <strong>on</strong> living foraminiferal shell weight: comment <strong>on</strong>‘Carb<strong>on</strong>ate i<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> in glacial-age deep waters <str<strong>on</strong>g>of</str<strong>on</strong>g> theCaribbean Sea’ by Broecker WS, Clark E. Geochem GeophysGeosyst 3(11):1064. doi:10.1029/2009GC000388Boudouresque CF, Cinelli F (1971) Le peuplement des biotopes sciaphilessuperWciels de mode battu de l’île d’Ischia (Golfe deNaples, Italie). Pubbl St Zool Napoli 39:1–43Boudouresque CF, Cinelli F (1976) Les peuplement algal des biotopessciaphiles superWciles de mode battu en Mediterranée occidentale.Pubbl St Zool Napoli 40:433–459Buia MC, Gambi MC, Lorenti M, Dappiano M, Zupo V (2003)Aggiornamento sulla distribuzi<strong>on</strong>e e sullo stato ambientale deisistemi a fanerogame marine (Posid<strong>on</strong>ia <str<strong>on</strong>g>ocean</str<strong>on</strong>g>ica e Cymod<str<strong>on</strong>g>ocean</str<strong>on</strong>g>odosa) delle isole Flegree. Acc Sc Lett Arti Napoli, Mem Soc ScFis Mat 5:163–186Caldeira K, Wickett ME (2003) Anthropogenic carb<strong>on</strong> and <str<strong>on</strong>g>ocean</str<strong>on</strong>g> pH.Nature 425:365Cozzolino GC, Scipi<strong>on</strong>e MB, Lorenti M, Zupo V (1992) Migrazi<strong>on</strong>inictemerali e struttura del popolamento a crostacei Peracaridi eDecapodi in una prateria a Posid<strong>on</strong>ia <str<strong>on</strong>g>ocean</str<strong>on</strong>g>ica dell’isola d’Ischia(Golfo di Napoli). Oebalia suppl 17:343–346DashWeld SL, SomerWeld PJ, Widdicombe S, Austen MC, Nimmo M(2008) Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ocean</str<strong>on</strong>g> acidiWcati<strong>on</strong> and burrowing urchins <strong>on</strong>within-sediment proWles and subtidal nematode communities.J Exp Mar Biol Ecol 365(1):46–52deFur PL, McMah<strong>on</strong> BR (1984) Physiological compensati<strong>on</strong> to shortterm air exposure in red rock crabs, Cancer productus Randall,from littoral and sublittoral habitats: acid-base balance. PhysiolZool 57:151–160Dup<strong>on</strong>t S, Havenhand J, Thorndyke W, Peck L, Thorndyke M (2008)Near-future level <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 -driven <str<strong>on</strong>g>ocean</str<strong>on</strong>g> acidiWcati<strong>on</strong> radicallyaVects larval survival and development in the brittlestar Ophiothrixfragilis. Mar Ecol Prog Ser 373:285–294Ellis RP, Bersey J, Rundle SD, Hall-Spencer JM, Spicer JI (2009) Subtlebut signiWcant eVects <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 acidiWed sea water <strong>on</strong> embryos <str<strong>on</strong>g>of</str<strong>on</strong>g>the intertidal snail, Littorina obtusata. Aquat Biol 5:41–48Fabry VJ, Siebel BA, Feeley RA, Orr JC 2008. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ocean</str<strong>on</strong>g> acidi-Wcati<strong>on</strong> <strong>on</strong> marine fauna and ecosystem processes. Internati<strong>on</strong>alcouncil for the explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sea. Oxford Journal 414–432Feely RA, Sabine CL, Lee K, Berels<strong>on</strong> W, Kleypas J, Fabry VJ,Millero FJ (2004) Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic CO 2 <strong>on</strong> the CaCO 3system in the <str<strong>on</strong>g>ocean</str<strong>on</strong>g>s. Science 305:362–366Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2009) Future highCO 2 in the intertidal may compromise adult barnacle Semibalanusbalanoides survival and embry<strong>on</strong>ic development rate. Mar EcolProg Ser 389:193–202Gambi MC, CaWero G (2001) Functi<strong>on</strong>al diversity in the Posid<strong>on</strong>ia<str<strong>on</strong>g>ocean</str<strong>on</strong>g>ica ecosystem: an example with polychaete borers <str<strong>on</strong>g>of</str<strong>on</strong>g> thescales. In: Faranda FM, Guglielmo L, Spezie G (eds) MediterraneanEcosystems: Structure and Processes. Springer-Verlag,Italy, pp 399–405Gambi MC, Ramella L, Sella G, Protto P, Aldieri E (1997) Variati<strong>on</strong>in genome size in benthic polychaetes: systematic and ecologicalrelati<strong>on</strong>ships. J Mar Biol Ass UK 77:1045–1057Gambi MC, Zupo V, Buia MC, Mazzella L (2000) Feeding ecology <str<strong>on</strong>g>of</str<strong>on</strong>g>the polychaete Platynereis dumerilii (Audouin & Milne Edwards)(Nereididae) in the seagrass Posid<strong>on</strong>ia <str<strong>on</strong>g>ocean</str<strong>on</strong>g>ica system: role <str<strong>on</strong>g>of</str<strong>on</strong>g>the epiphytic Xora. Ophelia 53(3):189–202Gambi MC, De Lauro M, Iannuzzi F (Eds) (2003) Ambiente marinocostiero e territorio delle isole Flegree (Ischia Procida Vivara).Acc Sc Lett Arti Napoli. Mem Soc Sc Fis Mat 5:425Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW(1998) EVect <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium carb<strong>on</strong>ate saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater in coralcalciWcati<strong>on</strong>. Glob Planet Chan 18:37–46Gazeau F, Quiblier C, Jansen JM, Gattuso JP, Middelburg JJ, HeipCHR (2007) Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> elevated CO 2 <strong>on</strong> shellWsh calciWcati<strong>on</strong>.Geophys Res Lett 34:L07603Gobin J, Warwick RM (2006) Geographical variati<strong>on</strong> in species diversity:a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marine polychaetes and nematodes. J ExpMar Biol Ecol 330:234–244Green MA, J<strong>on</strong>es ME, Boudreau CL, Moore RL, Westman BA (2004)Dissoluti<strong>on</strong> mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> juvenile bivalves in coastal marinedeposits. Limnol Oceanogr 49:727–734Guidetti P, Bussotti S (1998) Juveniles <str<strong>on</strong>g>of</str<strong>on</strong>g> littoral Wsh species in shallowseagrass beds: preliminary quali-quantitative data. Biol MarMediter 5:347–350Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome S, Fine M,Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcaniccarb<strong>on</strong> dioxide vents show ecosystem eVects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ocean</str<strong>on</strong>g> acidiWcati<strong>on</strong>.Nature 454:96–99Hought<strong>on</strong> JT, Callander BA, Varney SK (1992) Climate Change: thesupplementary report to the IPCC ScientiWc. Cambridge UniversityPress, CambridgeIglesias-Rodriguez D, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrrell T, Gibb S, v<strong>on</strong>Dassow P, Rehm E, Armbrust EV, Boessenkool KP (2008)Phytoplankt<strong>on</strong> calciWcati<strong>on</strong> in a high-CO 2 world. Science320(5874):336–340Jokiel PL, Rodgers KS, KuVner IB, Anderss<strong>on</strong> AJ, Cox EF, MackenzieFT (2008) Ocean acidiWcati<strong>on</strong> and calcifying reef organisms: amesocosm investigati<strong>on</strong>. Coral Reefs 27:473–483Jury C, Whitehead R, Szmant A (2009) EVects <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong>s in carb<strong>on</strong>atechemistry <strong>on</strong> the calciWcati<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> Madracis auretenra(=Madracis mirabilis sensu Wells, 1973): bicarb<strong>on</strong>ate c<strong>on</strong>centrati<strong>on</strong>sbest predict calciWcati<strong>on</strong> rates Global Chan Biol doi:10.1111/j.1365-2486.2009.02057.xKeeling CD, Whorf TP (1994) Atmospheric CO 2 records from sites inthe SIO air sampling network. In: Boden TA, Kaiser DP, SepankiRJ, Stoss FW (eds) Trends ‘93: a compendium <str<strong>on</strong>g>of</str<strong>on</strong>g> data <strong>on</strong> globalchange. Carb<strong>on</strong> Dioxide Informati<strong>on</strong> Analysis Center, Oak RidgeNati<strong>on</strong>al Laboratory. Oak Ridge, TN, pp 16–26123


2502 Mar Biol (2010) 157:2489–2502Kendall MA, Widdicombe S, Davey JT, SomerWeld PJ, Austen MCV,Warwick RM (1996) The biogeography <str<strong>on</strong>g>of</str<strong>on</strong>g> islands: preliminaryresults from a comparative study <str<strong>on</strong>g>of</str<strong>on</strong>g> the isles <str<strong>on</strong>g>of</str<strong>on</strong>g> Scilly and Cornwall.J Mar Biol Ass UK 76:219–222Kleypas JA, Feely RA, Fabry VJ, Langd<strong>on</strong> C, Sabine CL, Robbins LL(2006) Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> Ocean AcidiWcati<strong>on</strong> <strong>on</strong> Coral Reefs and OtherMarine CalciWers: A Guide for Future Research. Report <str<strong>on</strong>g>of</str<strong>on</strong>g> aworkshop held 18–20 April 2005, St. Petersburg, FLKuVner IB, Anderss<strong>on</strong> AJ, Jokiel PL, Rodgers KS, Mackenzie FT(2007) Decreased abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> crustose coralline algae due to<str<strong>on</strong>g>ocean</str<strong>on</strong>g> acidiWcati<strong>on</strong>. Nat Geosci 1(2):114–117Kurihara H, Ishimatsu A (2008) EVects <str<strong>on</strong>g>of</str<strong>on</strong>g> high CO 2 seawater <strong>on</strong> thecopepod (Acartia tsuensis) through all life stages and subsequentgenerati<strong>on</strong>s. Mar Pollut Bull 56:1086–1090Kurihara H, Shirayama Y (2004) EVects <str<strong>on</strong>g>of</str<strong>on</strong>g> increased atmospheric CO 2<strong>on</strong> sea urchin early development. Mar Ecol Prog Ser 274:161–169Kurihara H, Shimode S, Shirayama Y (2004) Sub-lethal eVects <str<strong>on</strong>g>of</str<strong>on</strong>g> elevatedc<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 <strong>on</strong> plankt<strong>on</strong>ic copepods and seaurchins. J Oceanogr 60:743–750Kurihara H, Kato S, Ishimatsu A (2007) EVects <str<strong>on</strong>g>of</str<strong>on</strong>g> increased seawaterpCO 2 <strong>on</strong> early development <str<strong>on</strong>g>of</str<strong>on</strong>g> the oyster Crassostrea gigas.Aquat Biol 1:91–98Lindinger MI, Lauren DJ, McD<strong>on</strong>ald DG (1984) Acid–base balance inthe sea mussel, Mytilus edulis. III. EVects <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mentalhypercapnia <strong>on</strong> intra- and extracellular acid–base balance. MarBiol Lett 5:371–381Lorenti M, Scipi<strong>on</strong>e MB (1990) Relati<strong>on</strong>ships between trophic structureand diel migrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Isopods and Amphipods in a Posid<strong>on</strong>ia<str<strong>on</strong>g>ocean</str<strong>on</strong>g>ica bed <str<strong>on</strong>g>of</str<strong>on</strong>g> the island <str<strong>on</strong>g>of</str<strong>on</strong>g> Ischia (Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Naples, Italy). RappComm int Expl Mer Médit 32(1):17Martin S, Rodolfo-Metalpa R, Ransome E, Rowley S, Buia MC, GattusoJP, Hall-Spencer JM (2008) EVects <str<strong>on</strong>g>of</str<strong>on</strong>g> naturally acidiWed seawater<strong>on</strong> seagrass calcareous epibi<strong>on</strong>ts. Biol Lett 4(6):689–692Menge BA (1992) Community regulati<strong>on</strong>: under what c<strong>on</strong>diti<strong>on</strong>s arebottom-up factors important <strong>on</strong> rocky shores? Ecology 73:755–765Michaelidis B, Ouzounis C, Paleras A, Portner HO (2005) EVects <str<strong>on</strong>g>of</str<strong>on</strong>g>l<strong>on</strong>g-term moderate hypercapnia <strong>on</strong> acid–base balance andgrowth rate in marine mussels Mytilus galloprovincialis. MarEcol Progr Ser 293:109–118Porri F, McQuaid CD, RadloV S (2006) Spatio-temporal variability <str<strong>on</strong>g>of</str<strong>on</strong>g>larval abundances and settlement <str<strong>on</strong>g>of</str<strong>on</strong>g> Perna perna: diVerentialdelivery <str<strong>on</strong>g>of</str<strong>on</strong>g> mussels. Mar Ecol Progr Ser 315:141–150Porzio L, Hall-Spencer J, Buia MC (2008) Macroalgal communityresp<strong>on</strong>se to increasing CO 2 . II Internati<strong>on</strong>al Symposium <strong>on</strong> the<str<strong>on</strong>g>ocean</str<strong>on</strong>g> in a high-CO2 world. M<strong>on</strong>aco, p 75 (abstract)Pulitzer Finali G (1970) Report <strong>on</strong> a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>ges from theBay <str<strong>on</strong>g>of</str<strong>on</strong>g> Naples. I. Sclerosp<strong>on</strong>giae, Lithistida, Tetractinellida,Epipolasida. Pubbl St Zool Napoli 38:328–354Pulitzer Finali G, Pr<strong>on</strong>zato R (1976) Report <strong>on</strong> a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>gesfrom the Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Naples. II. Keratosa. Pubbl St Zool Napoli 40:83–104Raven J, Caldeira K, ElderWeld H, Hoegh-Guldberg O, Liss P, RiebesellU, Shepherd J, Turley C, Wats<strong>on</strong> A (2005) Ocean acidiWcati<strong>on</strong>due to increasing atmospheric carb<strong>on</strong> dioxide. The RoyalSociety policy document 12/05. The Clyved<strong>on</strong> Press Ltd, CardiVRiebesell U (2008) Acid test for marine biodiversity. Nature 454:46–47Riebesell U, Wolf-Gladrow DA, Smetacek V (1993) Carb<strong>on</strong> dioxide limitati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> marine phytoplankt<strong>on</strong> growth rates. Nature 361:249–251Riebesell U, Z<strong>on</strong>dervan I, Rost B, Tortell PD, Richard EZ, MorelFMM (2000) Reduced calciWcati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marine plankt<strong>on</strong> inresp<strong>on</strong>se to increased atmospheric CO 2 . Nature 407:364–367Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P, MeyerhöferM, Neill C, N<strong>on</strong>dal G, Oschlies A, Wohlers J, Zöllner E(2007) Enhanced biological carb<strong>on</strong> c<strong>on</strong>sumpti<strong>on</strong> in a high CO 2<str<strong>on</strong>g>ocean</str<strong>on</strong>g>. Nature 450:545–554Ries JB, Cohen AL, McCorkle DC (2009) Marine calciWers exhibitmixed resp<strong>on</strong>ses to CO 2 -induced <str<strong>on</strong>g>ocean</str<strong>on</strong>g> acidiWcati<strong>on</strong>. Geology37:1131–1134Rittmann A, Gottini V (1981) L’Isola d’Ischia. Geologia. Boll ServizioGeol It 101:131–274Rodolfo-Metalpa R, Martin S, Ferrier-Pages C, Gattuso JP (2010a)Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> Mediterranean corals to <str<strong>on</strong>g>ocean</str<strong>on</strong>g> acidiWcati<strong>on</strong>. BiogeosciDiscuss 6:7103–7131Rodolfo-Metalpa R, Lombardi C, Cocito S, Hall-Spencer JM, GambiMC (2010b) EVects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ocean</str<strong>on</strong>g> acidiWcati<strong>on</strong> and high temperatures<strong>on</strong> the bryozoan Myriapora truncata at natural CO 2 vents. MarEcol Evol Persp 31(3). doi:10.1111/j.1439-0485.2009.00354.xRouse GW, Gambi MC (1997) Cladistic relati<strong>on</strong>ships within AmphiglenaClaparède (Polychaeta: Sabellidae) with a new species and aredescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A. mediterranea (Leydig). J Nat Hist 31:999–1018Russo GF, Fresi E, Vinci D, Chessa LA (1984a) Malac<str<strong>on</strong>g>of</str<strong>on</strong>g>auna di strat<str<strong>on</strong>g>of</str<strong>on</strong>g>oliare delle praterie di Posid<strong>on</strong>ia <str<strong>on</strong>g>ocean</str<strong>on</strong>g>ica (L.) Delile intornoall’isola d’Ischia (Golfo di Napoli): analisi strutturale del popolamentoestivo in rapporto alla pr<str<strong>on</strong>g>of</str<strong>on</strong>g><strong>on</strong>dità ed alla esposizi<strong>on</strong>e. NovaThalassia 6:655–661Russo GF, Fresi E, Vinci D, Chessa LA (1984b) Mollusk syntax<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>foliar stratum al<strong>on</strong>g a depth gradient in a Posid<strong>on</strong>ia <str<strong>on</strong>g>ocean</str<strong>on</strong>g>ica (L.)Delile meadow: diel variability. In: Boudouresque C-F, Jeudy deGrissac A, Olivier J (Eds) GIS Posid<strong>on</strong>ie publ Fr 1:303–310Sarà M (1959) Poriferi del litorale dell’isola d’Ischia e loro ripartizi<strong>on</strong>eper ambienti. Pubbl St Zool Napoli 31:421–472Scipi<strong>on</strong>e MB (1999) Amphipod biodiversity in the foliar stratum <str<strong>on</strong>g>of</str<strong>on</strong>g>shallow-water Posid<strong>on</strong>ia <str<strong>on</strong>g>ocean</str<strong>on</strong>g>ica beds in the Mediterranean Sea.In: Schram FR, van Vaupel Kelin JC (eds) Crustacean and theBiodiversity Crisis. Brill, Leiden, pp 649–662Seibel BA, Fabry VJ (2003) Marine biotic resp<strong>on</strong>se to elevated carb<strong>on</strong>dioxide. Adv Appl Biodiv Sci 4:59–67Tedesco D (1996) Chemical and isotopic investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fumarolicgases from Ischia Island (Southern Italy): evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> magmaticand crustal c<strong>on</strong>tributi<strong>on</strong>. J Vulcanol Geother Res 74:233–242Thornt<strong>on</strong> H, Shirayama Y (2001) III-1 EVects <strong>on</strong> benthic organisms.In: CO 2 <str<strong>on</strong>g>ocean</str<strong>on</strong>g> sequestrati<strong>on</strong> and its biological impacts. Bull JpnSoc Sci Fish 67(4):756–757Vezina AF, Hoegh-Guldberg O (Coordinators) (2008) EVects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ocean</str<strong>on</strong>g>acidiWcati<strong>on</strong> <strong>on</strong> marine ecosystems. Mar Ecol Prog Ser 373:199–309Widdicombe S, Needham HR (2007) Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 -induced seawateracidiWcati<strong>on</strong> <strong>on</strong> the burrowing activity <str<strong>on</strong>g>of</str<strong>on</strong>g> Nereis virens and sedimentnutrient Xux. Mar Ecol Prog Ser 341:111–122Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidiWcati<strong>on</strong> mayincrease calciWcati<strong>on</strong> rates, but at a cost. Proc R Soc L<strong>on</strong>d275B:1767–1773Zeebe RE, Wolf-Gladrow D (2001) CO 2 in seawater: equilibrium,kinetics, isotopes. In: Halpern D (ed) Elsevier <str<strong>on</strong>g>ocean</str<strong>on</strong>g>ographyseries, Series 65. Elsevier, Amsterdam123

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!