20.11.2012 Views

A New Synthesis of Pyrrole-2-Carboxylic Acids

A New Synthesis of Pyrrole-2-Carboxylic Acids

A New Synthesis of Pyrrole-2-Carboxylic Acids

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

LETTER 1271<br />

A <strong>New</strong> <strong>Synthesis</strong> <strong>of</strong> <strong>Pyrrole</strong>-2-<strong>Carboxylic</strong> <strong>Acids</strong><br />

Chwang Siek Pak *a , Miklós Nyerges *b<br />

a Korea Research Institute <strong>of</strong> Chemical Technology, P.O.Box 107, Yusung, Taejon 305-606, Korea<br />

b Research Group <strong>of</strong> the Hungarian Academy <strong>of</strong> Sciences, Department <strong>of</strong> Organic Chemical Technology, Technical University <strong>of</strong> Budapest,<br />

H-1521 Budapest P.O.B. 91, Hungary<br />

Fax (+361) 46 33 648; E-mail: nyerges.oct@chem.bme.hu<br />

Received 3 May 1999<br />

Abstract: A new two-step synthesis <strong>of</strong> pyrrole-2-carboxylic acids<br />

is described, steps via 1,3 dipolar cycloaddition <strong>of</strong> azomethine<br />

ylides to nitro-styrenes and oxidation <strong>of</strong> the resulting pyrrolidines<br />

with alkaline hydrogen peroxide.<br />

Key words: pyrroles, 1,3-dipolar cycloaddition, azomethine ylids<br />

The biological importance <strong>of</strong> pyrrole-containing natural<br />

products, such as heme, chlorophyll and vitamin B12 has<br />

stimulated extensive research on the synthesis and reactivity<br />

<strong>of</strong> pyrrole derivatives. 1 There are many methods for<br />

the synthesis <strong>of</strong> these important heterocycles, 2 including<br />

the 1,3-dipolar cycloaddition <strong>of</strong> azomethine ylides to<br />

alkynes, followed by aromatization <strong>of</strong> the intermediate<br />

pyrrolines. 3 However, the preparation <strong>of</strong> pyrroles by dehydrogenation<br />

<strong>of</strong> pyrrolidines has found little application<br />

due to the lack <strong>of</strong> general methods, and to the forcing conditions<br />

required in most cases. 4 We now report that a variety<br />

<strong>of</strong> substituted nitro-pyrrolidines can be converted<br />

into pyrroles using alkaline hydrogen peroxide to promote<br />

a cascade oxidation-elimination process.<br />

The highly substituted pyrrolidines were prepared in high<br />

yield by the stereoselective 1,3-dipolar cycloaddition <strong>of</strong><br />

azomethine ylides (generated from the imines 1) with 2aryl-nitroethylenes<br />

2 in the presence <strong>of</strong> silver acetate<br />

(Scheme 1). 5 The stereochemistry <strong>of</strong> the exclusive synendo<br />

cycloadducts was deduced by comparison with the<br />

1 5,6<br />

H-NMR data <strong>of</strong> similar compounds.<br />

Scheme 1 Reagents and conditions: i. AgOAc, Et 3N, toluene, r.t.<br />

We originally attempted to find a feasible method for the<br />

Nef-type conversion <strong>of</strong> highly substituted nitro-pyrrolidines,<br />

in connection with our studies on the synthesis <strong>of</strong><br />

biologically active pyrrolidine alkaloids. After several<br />

standard methods failed in our hands we turned our attention<br />

to the oxidation <strong>of</strong> the corresponding nitronate anion<br />

by hydrogen peroxide, which was first described by Olah<br />

and co-workers. 7<br />

To our surprise we found that after several hours stirring<br />

at room temperature a light brown material began to precipitate<br />

from the solution which was shown to be the pyrrole<br />

derivative. 8 In all cases the reactions, using two<br />

equivalents <strong>of</strong> base, were complete after stirring for 1 day,<br />

giving the diarylpyrrole-2-carboxylic acids 4 in virtually<br />

quantitative yield. The results are summarised in Table 1.<br />

In the absence <strong>of</strong> base no reaction occurred (Entry 4),<br />

while in the absence <strong>of</strong> hydrogen peroxide, after the workup,<br />

a 1:1 mixture <strong>of</strong> pyrrolidine isomers <strong>of</strong> 3i and 5i respectively,<br />

was isolated. (Scheme 2).<br />

Scheme 2 Reagents and conditions: i. NaOMe, MeOH, H 2O 2; ii. (a)<br />

NaOMe, MeOH (b) H + ; iii. ClCOOMe, pyridine, CH 2Cl 2, r.t;<br />

Table 1 Conversion <strong>of</strong> 2-carboethoxy-4-nitropyrrolidines 3 into pyrrole-2-carboxylic<br />

acids using H 2O 2<br />

No aromatization occurred in the case <strong>of</strong> the N-protected<br />

derivatives 5. It is also interesting to note that when the solution<br />

<strong>of</strong> the nitronate derived from 5 was treated directly<br />

with acid a 1:1 isomeric mixture <strong>of</strong> 5i was obtained, while<br />

Synlett 1999, No. 8, 1271–1273 ISSN 0936-5214 © Thieme Stuttgart · <strong>New</strong> York


1272 C. S. Pak, M. Nyerges LETTER<br />

after work-up <strong>of</strong> the reaction treated with hydrogen peroxide<br />

only a single isomer 6 was obtained. The stereochemistry<br />

<strong>of</strong> these pyrrolidines was confirmed by HH-COSY<br />

and NOE experiments. This epimerization also takes<br />

place as the first step in the reduction <strong>of</strong> the nitro-group<br />

using carbon disulfide and an excess <strong>of</strong> triethylamine at<br />

room temperature. 9 After 4 hours reaction time only pyrrolidine<br />

6 was isolated, while after 72 hours the oxime 8<br />

was formed in good yield (Scheme 3).<br />

Scheme 3 Reagents and conditions: i. CS 2, Et 3N, CH 3CN, r.t.;<br />

The nitro group <strong>of</strong> any nitro-alkene generally fails to serve<br />

as a leaving group in ionic base-catalysed elimination reactions<br />

since the reaction <strong>of</strong> primary and secondary nitro<br />

alkanes with base results in the formation <strong>of</strong> stable nitronate<br />

anions. However, with electron-withdrawing<br />

groups at the β-position to the nitro group the base-induced<br />

elimination <strong>of</strong> nitrous acid takes place smoothly to<br />

give alkenes in good yield. 10<br />

Our results suggest that the first step in this aromatization<br />

is a dehydrogenation leading to the formation <strong>of</strong> the pyrroline<br />

derivative 9. This intermediate can then eliminate a<br />

nitronate ion through a vinylogous E1CB mechanism to<br />

give pyrrole-2-carboxylic acids, after aromatization<br />

through a [1,5] sigmatropic shift <strong>of</strong> hydrogen and the alkaline<br />

hydrolysis <strong>of</strong> the ester group (Scheme 4). The elimination<br />

step is similar to that proposed by Barton and coworkers11<br />

in their pyrrole synthesis. In the reaction <strong>of</strong> similar<br />

cycloadducts, lacking the carboethoxy functionality,<br />

with alkaline potassium permanganate only nitro-pyrroline<br />

formation was observed, 12 which further supports our<br />

observations.<br />

Scheme 4<br />

Synlett 1999, No. 8, 1271–1273 ISSN 0936-5214 © Thieme Stuttgart · <strong>New</strong> York<br />

Acknowledgement<br />

Financial support from the Ministry <strong>of</strong> Science <strong>of</strong> Technology as a<br />

Programme for Hungarian Visiting Scientist is gratefully acknowledged.<br />

References and Notes<br />

(1) Jones, R.A.; Bean, G.P.; The Chemistry <strong>of</strong> <strong>Pyrrole</strong>s -<br />

Academic Press, London, 1977.<br />

(2) (a) Sundberg, R.J. In Comprehensive Heterocyclic Chemistry;<br />

Katritzky, A.; Rees, C.W.; Eds.; Pergamon: Oxford, 1984,<br />

Vol. 4, 313. (b) For two recent examples on the synthesis <strong>of</strong><br />

pyrrole-2-carboxylates: Uno, H.; Tanaka, M.; Inoue, T.; Ono,<br />

N. <strong>Synthesis</strong> 1999, 471.; Selic, L.; Stanovnik, B. <strong>Synthesis</strong><br />

1999, 479.<br />

(3) (a) La Porta, P.; Capuzzi, L.; Bettarini, F.; <strong>Synthesis</strong> 1994,<br />

287. (b) DeShong, P.; Kell, D. A.; Sidler, D. R. J. Org. Chem.<br />

1985, 50, 2309. (c) Padwa, A.; Norman, B. H. J. Org. Chem.<br />

1990, 55, 4801.<br />

(4) (a) Southwick, P. L.; Sapper, D. I.; Pursglove, L. A. J. Am.<br />

Chem. Soc. 1950, 72, 4940. (b) Cossy, J.; Pete, J.-P.;<br />

Tetrahedron Lett. 1978, 4941. (c) Cervinka, O. Chem. Ind.<br />

(London) 1959, 1129. (d) Oussaid, B.; Garrigues, B.;<br />

Soufiaoui, M. Can. J. Chem. 1994, 72, 2483. (e) Bonnaud, B.;<br />

Bigg, D. C. H.; <strong>Synthesis</strong> 1994, 465. (d) Gupta, P.; Bhaduri,<br />

A.P. Synth. Commun. 1998, 28, 3151.<br />

(5) (a) Nyerges, M.; Bitter, I.; Kádas, I.; Tóth, G.; Tõke, L.<br />

Tetrahedron Lett. 1994. 34, 4413. (b) Nyerges, M.; Bitter, I.;<br />

Kádas, I.; Tóth, G.; Tõke, L. Tetrahedron 1995, 51, 11489. (c)<br />

For typical procedure see: Nyerges, M.; Rudas, M.; Tóth, G.;<br />

Herényi, B. Bitter, I.; Tõke, L. Tetrahedron 1995, 51, 13321.<br />

(6) Ayerbe, M.; Arrieta, M.; Cossio, F. P.; Linden, A. J. Org.<br />

Chem. 1998, 63, 1795.<br />

(7) (a) Olah, G. A.; Arvanaghi, M.; Vankar, Y. D.; Prakash,<br />

G.K.S.; <strong>Synthesis</strong> 1980, 662. (b) Lui, K. H.; Sammes, M. P.<br />

J. Chem. Soc. Perkin Trans. 1 1990, 457.<br />

(8) General procedure for the preparation <strong>of</strong> pyrroles: The nitropyrrolidine<br />

derivative (1.0 mmol) was suspended in CH 3OH<br />

(10 mL) and sodium methylate was added (0.108 g, 2.0<br />

mmol). When the reaction mixture became homogeneous it<br />

was cooled down to 0 o C and 30 % hydrogen peroxide solution<br />

(2 mL) was added dropwise. The reaction mixture was stirred<br />

at room temperature overnight. Then the solution was<br />

acidified with diluted HCl, and the precipitated pyrrole was<br />

filtered <strong>of</strong>f. The residue was evaporated, dissolved in CH 2Cl 2,<br />

washed with water, dried over MgSO 4 and evaporated to yield<br />

a further quantities <strong>of</strong> the product.<br />

(9) Barton, D.H.R.; Fernandez, I.; Richard, C. S.; Zard, S.Z.<br />

Tetrahedron, 1987, 43, 551.<br />

(10) Excellent review on the nitro function as a leaving group by<br />

Ono, N.; In Nitro Compounds, Recent Advences in <strong>Synthesis</strong><br />

and Chemistry Feuer, H.; Nielsen, A.T. Eds.; VCH <strong>New</strong> York,<br />

1990.<br />

(11) Barton, D. H. R.; Kervagoret, J.; Zard, S. Z. Tetrahedron<br />

1990, 46, 7587.<br />

(12) Bajpai, K. L.; Bhaduri, A. P. Synth. Commun. 1998, 28, 181.<br />

(13) Selected spectroscopical data for representative compounds:<br />

Compound 3c: 1 H-NMR (CDCl 3, 200 MHz): 7.35 (s, 5H),<br />

7.22 (d, 2H, J 8.8 Hz), 6.92 (d, 2H, J 8.8 Hz), 5.25 (dd, 1H, J<br />

3.4 and 6.4 Hz), 4.90 (d, 1H, J 6.6 Hz), 4.39-4.04 (m, 4H) 3.82<br />

(s, 3H), 1.26 (t, 3H, J 7.0 Hz); 13 C-NMR (CDCl 3, 75 MHz):<br />

171.3 (q), 159.2 (q), 134.5 (q), 130.5 (q), 128.7 (2xCH),<br />

128.65 (CH), 128.6 (2xCH), 126.4 (2xCH), 114.5 (2xCH),<br />

97.1 (CH), 67.6 (CH), 67.5 (CH), 61.6 (CH 2), 55.3 (OMe),<br />

54.9 (CH), 14.1 (CH 3); m/z (rel. intensity, %): 371 (M +1 , 1.2),<br />

324 (1.8), 250 (24), 223 (base peak), 145 (11), 117 (24); IR


LETTER A <strong>New</strong> <strong>Synthesis</strong> <strong>of</strong> <strong>Pyrrole</strong>-2-<strong>Carboxylic</strong> <strong>Acids</strong> 1273<br />

(KBr, cm -1 ): 3451, 3031, 2838, 1747, 1610, 1550, 1368, 1303,<br />

1185, 1033; Compound 4c: 1 H-NMR (DMSO-d 6, 300 MHz):<br />

8.07 (dd, 2H, J 1.7 and 8.4 Hz), 7.85 (t, 1H, J 8.4 Hz), 7.44 (m,<br />

4H), 7.27 (d, 2H, J 8.5 Hz), 6.96 (s, 1H), 6.83 (d, 2H, J 8.5<br />

Hz), 3.77 (s, 3H, OMe); 13 C-NMR (CDCl 3, 125 MHz): 160.9<br />

(q), 158.2 (q), 133.3 (q), 131.0 (q), 130.2 (CH), 129.9 (2xCH),<br />

129.5 (2xCH), 129.4 (q), 128.6 (q), 128.5 (2xCH), 113.9 (q),<br />

113.2 (2xCH), 112.6 (CH), 55.4 (OMe); m/z (rel. intensity,<br />

%): 294 (M + , 7), 278 (52), 261 (27), 249 (11), 235 (16), 217<br />

(20), 204 (64), 176 (53), 151 (36), 102 (54), 89 (78), 77 (base<br />

peak), 63 (70), 51 (80); IR (KBr, cm -1 ): 2511, 1610, 1427,<br />

1311, 1250, 1221, 1032; Compound 5: 1 H-NMR (CDCl 3, 200<br />

MHz): 7.66 (dd, 2H, J 1.4 and 8.1 Hz), 7.35 (m, 3H), 7.19 (d,<br />

2H, J 8.8 Hz), 6.87 (d, 2H, J 8.7 Hz), 5.60 (broad s, 1H), 5.43<br />

(t, 1H, J 10.6 Hz), 4.47 (d, 1H, J 10 Hz), 4.25 (m, 3H), 3.78 (s,<br />

3H), 3.64 (br s, 3H), 1.21 (t, 3H); 13 C-NMR (CDCl 3, 75 MHz):<br />

170.4 (q), 159.7 (q), 155.1 (br, q), 135.0 (br, q), 128.8 (3xCH),<br />

128.7 (2xCH), 128.6 (q), 126.9 (2xCH), 114.5 (2xCH), 90.8<br />

(br, CH), 64.2 (CH), 62.6 (br CH), 61.6 (CH 2), 55.2 (OMe),<br />

53.2 (OMe), 47.8 (CH), 14.0 (Me); m/z (rel. intensity, %): 428<br />

(M + , 3), 381 (17), 322 (11), 308 (base peak), 276 (10), 248 (8),<br />

115 (6); IR (KBr, cm -1 ): 3019, 2960, 1790, 1741, 1613, 1556,<br />

1451, 1367, 1254, 1186, 1131, 1031, 774; Compound 6: 1 H-<br />

NMR (DMSO-d 6, 300 MHz): 7.69 (d, 2H, J 6.4 Hz), 7.42 (t,<br />

2H, J 6.4 Hz), 7.35 (t, 1H, J 6.4 Hz), 7.22 (d, 2H, J 8.6 Hz),<br />

6.83 (d, 2H, J 8.6 Hz), 5.72 (s, 1H), 5.82 (d, 1H, J 6 Hz), 4.85<br />

(d, 1H, J 10 Hz), 4.12 (m, 3H), 3.72 (s, 3H), 3.67 (s, 3H), 3.55<br />

(s, 3H), 1.06 (t, 3H); 13 C-NMR (75 MHz, DMSO d6): 171.0 (q),<br />

159.2 (q), 155.1 (q), 138.7 (q), 129.2 (2xCH), 128.6 (2xCH),<br />

127.9 (CH), 125.6 (2xCH), 122.9 (q), 114.0 (2xCH), 95.5<br />

(CH), 64.5 (CH), 62.4 (CH), 61.2 (CH 2), 55.1 (Me), 53.1<br />

(Me), 49.6 (CH), 13.9 (Me); MS m/z (rel. intensity, %): 428<br />

(M + , 2), 382 (45), 355 (13), 336 (50), 308 (base peak), 294<br />

(32), 276 (18), 249 (18), 232 (17), 115 (31), 59 (48); IR (KBr,<br />

cm -1 ): 2980, 2911, 1738, 1712, 1612, 1554, 1515, 1447, 1350,<br />

1252, 1133, 1028.<br />

Article Identifier:<br />

1437-2096,E;1999,0,08,1271,1273,ftx,en;G13299ST.pdf<br />

Synlett 1999, No. 8, 1271–1273 ISSN 0936-5214 © Thieme Stuttgart · <strong>New</strong> York

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!