10.07.2015 Views

Dyes, stains, and special probes in histology

Dyes, stains, and special probes in histology

Dyes, stains, and special probes in histology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Dyes</strong>, <strong>sta<strong>in</strong>s</strong>, <strong>and</strong> <strong>special</strong> <strong>probes</strong> <strong>in</strong> <strong>histology</strong>WOLF D. KUHLMANN, M.D.Division of Radiooncology, Deutsches Krebsforschungszentrum, 69120 Heidelberg, GermanyHistological <strong>sta<strong>in</strong>s</strong> are traditionally important <strong>in</strong> order to study cell structures <strong>and</strong> <strong>in</strong>tracellularor extracellular substances at the microscopical level; for historical views, <strong>sta<strong>in</strong>s</strong> <strong>and</strong> detaileddescriptions of histological sta<strong>in</strong><strong>in</strong>g methods see WEIGERT C (1871), EHRLICH P (1877, 1878),GIERKE H (1884), GIEMSA G (1904), LEWIS FT (1942), GOMORI G (1952), PEARSE AGE(1953), GRAUMANN W <strong>and</strong> NEUMANN K (1958), ROMEIS B (1968), GURR E (1971), LILLIE RD<strong>and</strong> FULLMER HM (1976), HOROBIN RW <strong>and</strong> WALTER KJ (1987), BURCK HC (1988), TITFORDM (1993), KIERNAN JA (1999), TITFORD M (2001), HOROBIN RW <strong>and</strong> KIERNAN JA (2002),TITFORD M (2005), BANCROFT JD <strong>and</strong> GAMBLE M (2007), EISNER A (2007), LLEWELLYN BD(2007), KIERNAN JA (2008), TITFORD M (2009).The sta<strong>in</strong><strong>in</strong>g of tissue sections was much <strong>in</strong>fluenced by the anil<strong>in</strong>e dye chemistry <strong>in</strong> thesecond half of the 19 th century (TITFORD M 1993 for review). P EHRLICH was among thefirst to study systematically synthetic dyes <strong>and</strong> to <strong>in</strong>troduce scientific methods <strong>in</strong>to the field ofhistological dye sta<strong>in</strong><strong>in</strong>g (EHRLICH P, 1877, 1878).Anil<strong>in</strong>e is an aromatic am<strong>in</strong>e consist<strong>in</strong>g of a benzene r<strong>in</strong>g <strong>and</strong> an am<strong>in</strong>o group. It waschemically prepared for the first time by distillation of <strong>in</strong>digo by O UNVERDORBEN (1826)who named it “Crystall<strong>in</strong>”. In 1834, it was also obta<strong>in</strong>ed from coal tar by FF RUNGE (1834)(“Kyanol”), a substance giv<strong>in</strong>g a blue color on treatment with chlor<strong>in</strong>ated lime (calciumhypochlorite). The term “anil<strong>in</strong>e” was given later by J FRITSCHE (1839, 1840, 1841) byexperimentation with <strong>in</strong>digo. The name “anil<strong>in</strong>e” of the obta<strong>in</strong>ed compound ought to reflectits relation to the <strong>in</strong>digo-yield<strong>in</strong>g plants (Indigofera anil). This compound had been isolatedquite earlier <strong>in</strong> much the same way (UNVERDORBEN O, 1826), then named “Crystall<strong>in</strong>”. Thevarious “anil<strong>in</strong>e” preparations from coal tar <strong>and</strong> the color<strong>in</strong>g matters derived from weresubsequently further <strong>in</strong>vestigated (HOFMANN AW, 1843; HOFMANN AW, 1845; HOFMANNAW, 1854; HOFMANN AW, 1859; HOFMANN AW, 1863; WITT OH, 1876), <strong>and</strong> all of themproved f<strong>in</strong>ally to be identical: phenylam<strong>in</strong>e, am<strong>in</strong>obenzene. Anil<strong>in</strong>e is still an importantprecursor substance <strong>in</strong> dye <strong>and</strong> organic chemistry (NIETZKI, R, 1881; KAHL T et al., 2002;JOHNSTON WT, 2008).A crucial po<strong>in</strong>t <strong>in</strong> the further development of dye chemistry was mak<strong>in</strong>g <strong>in</strong>dole from <strong>in</strong>digo(BAEYER A, 1868; BAEYER A <strong>and</strong> EMMERLING A, 1869) <strong>and</strong> synthetic <strong>in</strong>digo by chlor<strong>in</strong>ation<strong>and</strong> subsequent reduction of isat<strong>in</strong> (BAEYER A <strong>and</strong> EMMERLING A, 1870). Yet, the first truesynthesis of <strong>in</strong>digo did not come until isat<strong>in</strong> 1 was produced from phenylacetic acid (BAEYERA, 1878). With the <strong>in</strong>troduction of c<strong>in</strong>namic acid, a new synthetic way proved even moreuseful <strong>in</strong> the production of <strong>in</strong>digo; c<strong>in</strong>namic acid was equally suitable for the synthesis ofisat<strong>in</strong> <strong>and</strong> <strong>in</strong>dole (BAEYER A, 1880). F<strong>in</strong>ally, decod<strong>in</strong>g the <strong>in</strong>digo formula was achieved when<strong>in</strong>digo was synthesized by 2- nitrobenzaldehyde <strong>and</strong>, thus, the structure of <strong>in</strong>digo wasobta<strong>in</strong>ed def<strong>in</strong>itely (BAEYER A <strong>and</strong> DREWSEN V, 1882). Later on, other synthetic pathwayswere studied (HEUMANN K, 1890).1 Isat<strong>in</strong> is an <strong>in</strong>dole derivative. The compound was first obta<strong>in</strong>ed by OL ERDMANN (1840, 1841) <strong>and</strong> ALAURENT (1841) as a product from the oxidation of <strong>in</strong>digo by nitric <strong>and</strong> chromic acids.


The anil<strong>in</strong>e dye (synthetic dye) <strong>in</strong>dustry grew rapidly.The first <strong>in</strong>dustrial-scale use was <strong>in</strong> themanufacture of mauve<strong>in</strong>e, a dye of the phenaz<strong>in</strong>e group be<strong>in</strong>g patented <strong>in</strong> 1856 by WHPERKIN (Produc<strong>in</strong>g a new color<strong>in</strong>g matter for dye<strong>in</strong>g with lilac or purple color stuffs of silk,cotton, wool, or other materials, British patent No. 1984, 26 th August 1856); PERKIN WH,1879). Many other dyes created from coal tar (<strong>and</strong> with <strong>in</strong>gredients other than anil<strong>in</strong>e)followed.The first artificial production of a natural dye was alizar<strong>in</strong>, produced by C GRAEBE <strong>and</strong> CLIEBERMANN (1868, 1869). They realized that alizar<strong>in</strong> was a derivative of anthraceneoccurr<strong>in</strong>g <strong>in</strong> coal tar. Industrially, anthraqu<strong>in</strong>one (or alizar<strong>in</strong>) dyes are derived fromanthracene which is a compound of anthracene oil, a coal tar fraction. The synthesis of<strong>in</strong>danthrene dyes (anthraqu<strong>in</strong>one dyes, the name is derived from <strong>in</strong>digo <strong>and</strong> anthracene) isbased on the fusion of 2-am<strong>in</strong>oanthraqu<strong>in</strong>one molecules <strong>in</strong> alkali (BOHN R, 1901). BOHN’s<strong>in</strong>vention of the first anthroqu<strong>in</strong>one vat dye “Indanthrene Blue” was patented <strong>in</strong> 1901(Verfahren zur Darstellung e<strong>in</strong>es blauen Farbstoffs der Anthracenreihe, DRP Nr. 129845, 6 thFebruary 1901). Then, other dyes became synthesized <strong>and</strong> recorded <strong>in</strong> a number of patentspecifications.From the many different classes of dyes, azo dyes form the largest <strong>and</strong> most important groupof synthetic organic dyes. The structure of azo dyes is based on azobenzene <strong>and</strong> <strong>in</strong>cludes thediazo functional group (R-N=N-R’) where the N=N group is the azo group between twoaromatic r<strong>in</strong>gs. Dye synthesis follows reactions studied by P GRIESS (1858) which arediazotation <strong>and</strong> coupl<strong>in</strong>g. The reaction mechanism consists of two steps. In the first step,diazotation of primary/aromatic am<strong>in</strong>es is performed to form diazonium salts (diazoniumkations) <strong>and</strong> called diazo component. Because aliphatic diazonium salts are very unstable,aromatic diazonium compounds are preferred. In a second step, azo coupl<strong>in</strong>g is done with thecoupl<strong>in</strong>g component: the coupler carries an electron-rich carbon atom to which the diazocomponent will become attached (pr<strong>in</strong>ciple of electrophilic substitution) bridg<strong>in</strong>g the gapbetween the two molecules with a new azo group (-N=N-).Start<strong>in</strong>g substances are anil<strong>in</strong>e or appropriately substituted derivatives of benzene. The natureof the aromatic substituents on both sides of the azo group as well as the water-solubility ofthe dyes determ<strong>in</strong>e the colors of the azo compounds (BRUNNER; 1929; HUNGER K et al.,2002). Most azo dyes are red, orange or yellow. The development of azo <strong>and</strong> anthraqu<strong>in</strong>onedyes completed the spectrum of synthetic dyes (HUNGER K <strong>and</strong> HERBST W, 2002; HUNGER Ket al., 2002).Histological specimens are prepared as is usual <strong>in</strong> rout<strong>in</strong>e histopathology which <strong>in</strong>cludespreservation <strong>and</strong> embedd<strong>in</strong>g (i.e. fixation, dehydration <strong>and</strong> embedd<strong>in</strong>g <strong>in</strong> paraff<strong>in</strong> or res<strong>in</strong>).Prior to sta<strong>in</strong><strong>in</strong>g, sections are cut with a microtome. In certa<strong>in</strong> cases, cryostat sections orcelloid<strong>in</strong> preparations are needed. Furthermore, cell smears from suspensions may be used.Sta<strong>in</strong>s are applied to make cell structures more readly visualized than <strong>in</strong> unsta<strong>in</strong>ed specimens,<strong>and</strong>, under certa<strong>in</strong> conditions, they can reveal molecular compounds <strong>and</strong> differencesassociated with evolution or pathological conditions. Thus, <strong>sta<strong>in</strong>s</strong> <strong>in</strong> general are aimed as<strong>special</strong> <strong>probes</strong> which possess variable specificity depend<strong>in</strong>g on the selectivity with which theyreact. Comparable to molecular biology, the term probe may be used to def<strong>in</strong>e a reagentwhich is suitable to detect or to measure the presence of a particular molecule. The termprobe can be applied to all sta<strong>in</strong><strong>in</strong>gs, yet more specicifically <strong>in</strong> cases where reactions withhighly specific reagents are performed such as antibodies, nucleotide sequences or other highaff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g molecules.


Old <strong>and</strong> classical histological <strong>sta<strong>in</strong>s</strong> will still ma<strong>in</strong>ta<strong>in</strong> their importance <strong>in</strong> <strong>histology</strong>; some ofthem are even <strong>in</strong>dispensible, even if the majority of them lack strictly def<strong>in</strong>ed specificity.Together with the below described high specific molecular <strong>probes</strong>, they constitute a valuablerepertoire of the histologist for his microscopic studies. There exit hundreds of histologicalsta<strong>in</strong><strong>in</strong>gs from which some common methods are described <strong>in</strong> the follow<strong>in</strong>g. For acomprehensive list of histological dyes with their respective Color Indices we refer to thehomepages of BD LLEWELLYN (http://www.<strong>sta<strong>in</strong>s</strong>file.<strong>in</strong>fo/Sta<strong>in</strong>sFile/bdl.htm), CHROMAGesellschaft “Ausgewählte Färbemethoden für Botanik, Parasitologie und Zoologie”(http://www.chroma.de) <strong>and</strong> A EISNER (http://www.aeisner.de/daten/farb<strong>in</strong>h.html).Table: Characteristics of common histological sta<strong>in</strong><strong>in</strong>gsSta<strong>in</strong> type Reagent Color Cell structureAcid dyessyntheticAnil<strong>in</strong>e blueEos<strong>in</strong>Fast greenBlueP<strong>in</strong>k-redGreenSta<strong>in</strong><strong>in</strong>g of acidophilic cellstructures(anionic dye), f.e. cytoplasmaBasic dyessyntheticAzuresMethylene blueToluid<strong>in</strong>e blueBlueSta<strong>in</strong><strong>in</strong>g ob basophilic cell structures(cationic dye), f.e.nuclei <strong>and</strong> RER (RNA);demonstration of metachromasia:color shift from orthochromatic tometachromatic color <strong>in</strong> the presenceof polyanionic substances, f.e.granules <strong>in</strong> mast cellsNatural dyesbasic dyesHematoxyl<strong>in</strong>(must be oxidized<strong>and</strong> used togetherwith a mordant)Blue/blackSta<strong>in</strong><strong>in</strong>g of basophilic cell structuressuch as nuclei <strong>and</strong> some cytoplasmicsubstances (cationic)Chemical reactionFeulgen sta<strong>in</strong>Schiff reagent(basic fuchs<strong>in</strong>)MagentaSchiff reaction of aldehydes frompreviously hydrolyzed DNA withbasic fuchs<strong>in</strong> for the specificdemonstration of DNAChemical reactionPAS sta<strong>in</strong>Schiff reagent(basic fuchs<strong>in</strong>)MagentaPretreatment with periodic acid forthe conversion of 1-2 glycoll<strong>in</strong>kages<strong>in</strong>to aldehyde groups followed bytheSchiff reaction for the demonstrationof 1-2 glycol moietiesLipid <strong>sta<strong>in</strong>s</strong>SudanOil red(lipid soluble)BlackRedLipid droplets, unsaturated lipids,phospholipids: sta<strong>in</strong><strong>in</strong>g pr<strong>in</strong>ciple dueto differences <strong>in</strong> solubility of the dyewith<strong>in</strong> two media, i.e. diffusion fromlow concentrated alcoholic solution<strong>in</strong>to the specimenMetal <strong>sta<strong>in</strong>s</strong>impregnationSilver(Bodian, Gomori)BrownSilver impregnation of cellstructures, f.e. for the demonstrationof the Golgi apparatus, reticularfibres <strong>and</strong> neurofibrilsGoldBlackSilver impregnation followed bygold chloride for stable <strong>and</strong>enhanced contrastoxidationOsmium tetroxideBlackSeveral dist<strong>in</strong>ct application, f.e.demonstration of lipids (unsaturatedlipids, phospholipids) which reduce


osmium tetroxide to give a blackcompound; fixation <strong>and</strong> contrast<strong>in</strong>gof membranes; impregnationaccord<strong>in</strong>g to Golgi followed byAgNO 3 solutionSpecial <strong>sta<strong>in</strong>s</strong>:acid <strong>and</strong> basic dyes(Romanowsky type)GiemsaWrightBluePurpleP<strong>in</strong>k-redUsed for blood <strong>and</strong> bone marrowsmears to demonstrateorthochromatic, polychromatic <strong>and</strong>metachromatic propertiesSpecial <strong>sta<strong>in</strong>s</strong>:acid <strong>and</strong> basic dyes(def<strong>in</strong>ed pH)Methylene blue<strong>and</strong> eos<strong>in</strong>BlueP<strong>in</strong>k (light)Buffered solution of acid <strong>and</strong> basicdye mixture to demonstratecytoplasmic basophilia on tisuesectionsSpecial <strong>sta<strong>in</strong>s</strong>:acid <strong>and</strong> basic dyes(polychrome <strong>sta<strong>in</strong>s</strong>)Masson trichromeMallory tripleMovat pentachromeBlueGreenBlue-blackSelective sta<strong>in</strong><strong>in</strong>g of connectivetissue compounds, muscle, fibr<strong>in</strong>Special <strong>sta<strong>in</strong>s</strong>:elastica <strong>sta<strong>in</strong>s</strong>Taenzer-UnnaWeigertOrce<strong>in</strong>Resorc<strong>in</strong> fuchs<strong>in</strong>Verhoeff methodBrown (dark)Blue-blackPurpleBlackElastic tissue, elastic fibrilsSpecial <strong>sta<strong>in</strong>s</strong>:muc<strong>in</strong> <strong>sta<strong>in</strong>s</strong>Alcian blueat different pH valuesBlueBlue-greenMuc<strong>in</strong>s (glycoconjugates), acid <strong>and</strong>neutral muc<strong>in</strong>s <strong>in</strong> gastro<strong>in</strong>testialepitheliumComb<strong>in</strong>ation withother cytochemicalreactions (PAS etc.)MagentaSpecial <strong>sta<strong>in</strong>s</strong>:neuro<strong>histology</strong>Weigert hematoxyl<strong>in</strong>Methylene blueCresyl fast violetClassical Nissl orfast Nissl methodsLuxol fast blue(Klüver-Barrera)Violet (nuclei,Nissl bodies)Dark blue (myel<strong>in</strong>sheaths)Blue-black (myel<strong>in</strong>sheaths)Deep-blue (nuclei,Nissl bodies)Dist<strong>in</strong>ct applications for neuro<strong>histology</strong>,sta<strong>in</strong><strong>in</strong>g of basophilicstructures by basic dyes, f.e.perikaryon, nuclei, Nissl bodies,glial cells, fibers, myel<strong>in</strong> sheathsBright blue(myel<strong>in</strong> sheaths)Special <strong>sta<strong>in</strong>s</strong>:colloidal susp.Trypan blue(vital sta<strong>in</strong><strong>in</strong>g)BlueNontoxic colloidal particles whichdo not label liv<strong>in</strong>g cells (vitalitymarker of cells <strong>in</strong> vivo <strong>and</strong> <strong>in</strong> vitro,cell suspensions, cultured cells);useful marker of phagocytic cells(cleared by phagocytic system)HistochemistryenzymesSpecific enzymesubstrates forendogenous enzymesChromogendependentSelective cell structure(site of endogenous enzyme)HistochemistryenzymesSpecific probe<strong>and</strong> def<strong>in</strong>ed labels(immuno<strong>histology</strong>)ChromogendependentCell structure def<strong>in</strong>ed by theapplied molecular probe(antigens, antibodies)Fluorochromes:vital sta<strong>in</strong><strong>in</strong>g orsta<strong>in</strong><strong>in</strong>g of sectionsXanthenesAcrid<strong>in</strong>esTetracycl<strong>in</strong>e(cationic, anionic<strong>and</strong> electroneutralfluorochromes)Different colors(fluorescence)Fluorescence: <strong>in</strong> vivo label<strong>in</strong>gof cells <strong>and</strong> tissue structuresFluorescence: tissue sectionssta<strong>in</strong>ed with fluorochromes


Fluorochromes:immuno<strong>histology</strong>Specific probe<strong>and</strong> selected labels(fluorochromes)Different colors(fluorescence)Cell structure def<strong>in</strong>ed by theapplied molecular probe(antigens, antibodies etc.)Fluorochromes:<strong>in</strong> situ hybridizationSpecific probe<strong>and</strong> selected labels(fluorochromes)Different colors(fluorescence)Cell structure def<strong>in</strong>ed by theapplied molecular probe(DNA, RNA)Other labelse.g. enzymes:immuno<strong>histology</strong>,hybridization <strong>and</strong>other studiesSpecific probe<strong>and</strong> selected labels(multiple detectionpr<strong>in</strong>ciples)Different colors(chromogenic orfluorescent)Cell structure def<strong>in</strong>ed by theapplied molecular probe(antigens, nucleotides etc.)The <strong>in</strong>teraction of dyes with tissues<strong>Dyes</strong> are obta<strong>in</strong>ed either from natural sources or from synthetic production. With the<strong>in</strong>troduction of the anil<strong>in</strong>e dyes, start<strong>in</strong>g from the mid-19 th centrury, natural dyes have almostlost their role <strong>in</strong> <strong>histology</strong> with the exception of hematoxyl<strong>in</strong> from Logwood trees which stillrema<strong>in</strong>s its great importance <strong>in</strong> rout<strong>in</strong>e histopathology. P EHRLICH was one of the first tostudy systematically anil<strong>in</strong>e dyes <strong>and</strong> to <strong>in</strong>troduce scientific methods <strong>in</strong>to the field ofhistological dye sta<strong>in</strong><strong>in</strong>g (EHRLICH P, 1878). Then, GRÜBLER’S Verzeichnis der Farbstoffe(1880) <strong>and</strong> the Farbstofftabellen (SCHULTZ G <strong>and</strong> JULIUS P, 1914) gave the first overviews ofthe exist<strong>in</strong>g natural <strong>and</strong> synthetic dyes. Several years later, Colour Index was published as areference guide for manufacturers <strong>and</strong> consumers by the Society of Dyers <strong>and</strong> Colourits <strong>and</strong>the American Association of Textile Chemists <strong>and</strong> Colorists (1925). Colour Index is nowpublished as Colour Index International on the web (http://www.colour-<strong>in</strong>dex.org/). Colorantsare listed accord<strong>in</strong>g to Colour Index Generic Names <strong>and</strong> Colour Index Constitution Numbers.For each product name, Colour Index International lists the manufacturer, the physical form,<strong>and</strong> the pr<strong>in</strong>cipal uses.Histological sta<strong>in</strong><strong>in</strong>g are based on chemical <strong>and</strong> physical pr<strong>in</strong>ciples that <strong>in</strong>volve the follow<strong>in</strong>greactions:- electrostatic reactions: dy<strong>in</strong>g substances are composed of chromophores (f.e azogroups) <strong>and</strong> auxochrome groups (f.e. hydroxyl, carboxyl or nitro proups), <strong>and</strong> thelatter properties def<strong>in</strong>e the dye as an acid dye or a basic dye;- metal impregnation: the <strong>in</strong>herent ability of certa<strong>in</strong> cell structures (argyrophilicelements) to precipitate submicroscopic amounts metal ions (silver ions) which arefurther developed by a reduction process, or the metal impregnation of cellcomponents <strong>in</strong> a so-called argentaff<strong>in</strong>e reaction follow<strong>in</strong>g oxidative pretreatments;- selective sta<strong>in</strong><strong>in</strong>gs due to the solubility of the dyes: fat sta<strong>in</strong><strong>in</strong>g with Sudan, Oil red<strong>and</strong> other fat dyes which relies on differences <strong>in</strong> solubility of the dye with<strong>in</strong> twomedia, i.e. diffusion from alcoholic dye solution <strong>in</strong>to the fat of specimens;- cytochemical reactions: the application of def<strong>in</strong>ed chemical reactions, f.e. chemicalcomplex formation for Fe 3+ sta<strong>in</strong><strong>in</strong>g, enzyme substrate reactions for peroxidases,phosphatases etc., or selective sta<strong>in</strong><strong>in</strong>g of tissue molecules after their chemicalmodification (f.e. <strong>in</strong>troduc<strong>in</strong>g reactive groups such as aldehydes for the Feulgen <strong>and</strong>PAS reaction);- lig<strong>and</strong> specific <strong>probes</strong>: the selectivity of cellular sta<strong>in</strong><strong>in</strong>g is def<strong>in</strong>ed by the appliedmolecular probe <strong>and</strong> their specificity for cellular molecules with which they react, f.e.antibodies, lect<strong>in</strong>s, nucleotides.


Prote<strong>in</strong>s behave as amphoteric molecules, i.e. they possess both acidic <strong>and</strong> basic groupswhich contribute to acidophilia or basophilia. The dye-prote<strong>in</strong> <strong>in</strong>teraction is ma<strong>in</strong>ly due to thenet charge. At the isoelectric po<strong>in</strong>t (pI) the net charge is negligible <strong>and</strong> b<strong>in</strong>d<strong>in</strong>g of chargeddyes will be m<strong>in</strong>imal. Then, below pI, prote<strong>in</strong>s b<strong>in</strong>d acidic dyes (anionic dyes) <strong>and</strong> above pI,prote<strong>in</strong>s b<strong>in</strong>d basic dyes (cationic dyes). At physiological pH, prote<strong>in</strong>s may exhibit either net(+) or net (-) charges. Thus, their behaviour is either acidophilic with aff<strong>in</strong>ity for acid dyes orbasophilic with aff<strong>in</strong>ity for basic dyes.Many dye sta<strong>in</strong><strong>in</strong>gs are chemically due to the formation of salt l<strong>in</strong>kages between dye <strong>and</strong>cellular substance. The whole mechanism is certa<strong>in</strong>ly more complex <strong>and</strong> is often not fullyunderstood. The formation of salt l<strong>in</strong>kage means that an acid dye (anionic dye) such as eos<strong>in</strong>will b<strong>in</strong>d a basic group (positively charged) of the prote<strong>in</strong> (= acidophilic substance). On theother h<strong>and</strong>, a basic dye (cationic dye) such as methylene blue will b<strong>in</strong>d an acidic group(negatively charged) of the prote<strong>in</strong> (= basophilic substance).Special histological <strong>sta<strong>in</strong>s</strong>On the basis of basic <strong>and</strong> acid dyes, a number of <strong>sta<strong>in</strong>s</strong> with orthochromatic, polychromatic<strong>and</strong> metachromatic colors have been experienced with the purpose to dist<strong>in</strong>guish certa<strong>in</strong>elements <strong>in</strong> histological preparations. For example, one of the first successfully applied dyecomb<strong>in</strong>ation was a mixture of acid <strong>and</strong> basic dyes by D ROMANOWSKY (1891) to sta<strong>in</strong>parasites <strong>in</strong> blood smears. He used methylene blue <strong>and</strong> eos<strong>in</strong> simultaneously. The most<strong>in</strong>terest<strong>in</strong>g aspect of this mixture was the observation that the comb<strong>in</strong>ed sta<strong>in</strong> had propertieswhich were different from the <strong>sta<strong>in</strong>s</strong> used alone. Such dye mixtures have been further ref<strong>in</strong>ed<strong>and</strong> are now known as WRIGHT, GIEMSA or MAY-GRÜNWALD <strong>sta<strong>in</strong>s</strong>. They may becharacterized as eos<strong>in</strong>ates of methylene blue or azure derivatives of methylene blue. Today,the simultaneous application of such acid <strong>and</strong> basic dye mixtures are referred to as modifiedROMANOWSKY <strong>sta<strong>in</strong>s</strong> <strong>and</strong> yield very nice differential sta<strong>in</strong><strong>in</strong>g of white blood cells.The true sta<strong>in</strong><strong>in</strong>g mechanism of ROMANOWSKY <strong>sta<strong>in</strong>s</strong> is still unknown. At least threefundamental processes have been elucidated (HOROBIN RW <strong>and</strong> WALTER KJ, 1987), briefly- orthochromasia: p<strong>in</strong>k sta<strong>in</strong><strong>in</strong>g by eos<strong>in</strong> (acid dye component) <strong>and</strong> blue sta<strong>in</strong><strong>in</strong>g bymethylene blue (basic dye component),- polychromasia: layered sta<strong>in</strong><strong>in</strong>g with both dyes,- metachromasia: color shift of basic dye from blue to violet/purple due to highconcentration of polyanions (highly acidic substances) <strong>in</strong> the sta<strong>in</strong>ed specimen.Other <strong>special</strong> sta<strong>in</strong> formulations <strong>in</strong>clude polychrome sta<strong>in</strong><strong>in</strong>g with mixtures of several variousacid <strong>and</strong> basic dyes for the differential sta<strong>in</strong><strong>in</strong>g of connective tissue compounds (MALLORYFB, 1900; MASSON P, 1929; MALLORY FB, 1936; MALLORY FB, 1938; GOMORI G, 1950;MOVAT HZ, 1955; JONES ML, 2002). The sta<strong>in</strong><strong>in</strong>g aff<strong>in</strong>ity of tissue components is affected byseveral factors such as the molecular size of the used dyes, the density of the tissue, pH of thesolution <strong>and</strong> the use of colorless “dyes”. The latter are phosphotungstic acid orphosphomolybdic acid <strong>and</strong> have a complex role <strong>in</strong> the sta<strong>in</strong><strong>in</strong>g process. Even if the chemistryof these techniques cannot be expla<strong>in</strong>ed <strong>in</strong> detail, they are excellent <strong>sta<strong>in</strong>s</strong> <strong>and</strong> commonlyused to dist<strong>in</strong>guish collagen fibers, muscle <strong>and</strong> extracellular matrix from cellular cytoplasm.Under <strong>special</strong> conditions, orce<strong>in</strong>, resorc<strong>in</strong>, aldehyde-fuchs<strong>in</strong> methods or Verhoeff’shematoxyl<strong>in</strong> differential sta<strong>in</strong> are highly specific for elastic fibers (UNNA PG, 1890; WEIGERTC, 1898; VERHOEFF FH, 1908; GOMORI G, 1950; FULLMER HM <strong>and</strong> LILLIE RD, 1956) from


which orce<strong>in</strong> can be also applied <strong>in</strong> electron microscopy (NAKAMURA H et al., 1977). Thesta<strong>in</strong><strong>in</strong>g pr<strong>in</strong>ciple is not clear, but it is thougth that aldehyde residues are reponsible. Whenorce<strong>in</strong> is used as sta<strong>in</strong>, then dye-am<strong>in</strong>e reactions may be <strong>in</strong>volved.Alcian blue (a group of polyvalent, basic copper phthalocyan<strong>in</strong>e dyes with many positivecharges on their molecules) is a useful dye for the localization of ionisable moieties of muc<strong>in</strong>s(STEEDMAN HF, 1950) <strong>and</strong>, together with other chemical reactions, excellent to dist<strong>in</strong>guishacid <strong>and</strong> neutral mucosubstances (glycoconjugates). To this aim, histochemical proceduresus<strong>in</strong>g periodic acid-Schiff (PAS) <strong>and</strong> Alcian blue at pH 2.5, Alcian blue at pH 1.0 <strong>and</strong> highiron-diam<strong>in</strong>e/Alcian blue were <strong>in</strong>troduced. In further developments, def<strong>in</strong>ed chemical orenzymatic alterations were <strong>in</strong>duced <strong>in</strong> tissue sections to sta<strong>in</strong> selectively reactive groups <strong>in</strong>epithelial muc<strong>in</strong>s (MOWRY RW, 1963; LEV R <strong>and</strong> SPICER SS, 1964; SPICER SS, 1965; FILIPEMI, 1979; KUHLMANN WD, 1984).Long before the <strong>in</strong>troduction as fixative <strong>in</strong> electron microscopy, osmic acid (osmiumtetroxide) has been used as sta<strong>in</strong> for lipid substances (STARKE J, 1895; HOERR N, 1936).Osmium is chemically bound to fat <strong>and</strong> reduced to a black compound, <strong>and</strong> as such acts as afixative. The black substance is easily observed <strong>in</strong> the light microscope. Today, lipid sta<strong>in</strong><strong>in</strong>gis preferentially done with so-called lipid soluble reagents such as Oil red <strong>and</strong> Sudan dyes.The pr<strong>in</strong>ciple relies on differences <strong>in</strong> solubility of the dye with<strong>in</strong> two media wherebydiffusion occurs from a low concentrated alcoholic solution <strong>in</strong>to the specimen. Someimportant work on the underst<strong>and</strong><strong>in</strong>g of lipid sta<strong>in</strong><strong>in</strong>g have been performed by L MICHAELIS(1901) <strong>and</strong> H H ESCHER (1919).There exist a number of impregnation <strong>and</strong> metal methods which are applied to sta<strong>in</strong> structuraldetails with reasonable preference (GOLGI C, 1873). The sta<strong>in</strong><strong>in</strong>g of reticular fibres,neurofibrils <strong>and</strong> nerve cells or other structures is readily achieved by several silverimpregnation methods; the results depend on the particular method applied.Silver or silver/gold impregnation methods do not fall <strong>in</strong>to the category of classical dyesta<strong>in</strong><strong>in</strong>g (BIELSCHOWSKY M, 1902; BIELSCHOWSKY M, 1903; BODIAN D, 1936; GOMORI G,1946; ROMANES GJ, 1950; FERREIRA-MARQUES J, 1951; BREATHNACH AS, 1965). Forreasons not yet completely understood, certa<strong>in</strong> tissue elements react preferentially with silversalts. The metal (silver) becomes precipitated onto the structural components from therespective salt solution under def<strong>in</strong>ed reduc<strong>in</strong>g conditions (f.e. hydroqu<strong>in</strong>one); the silver saltsare made visible by conversion <strong>in</strong>to metallic silver by processes which are comparable toblack <strong>and</strong> white photography. Preferably, sections are subsequently toned with gold chloride.The whole impregnation procedure is a complex technique <strong>and</strong> needs careful h<strong>and</strong>l<strong>in</strong>g.There exist a number of <strong>special</strong> sta<strong>in</strong><strong>in</strong>gs which have been preferentially developed forneuro<strong>histology</strong> to reveal the essential parts of the nerve system: the nerve cells (perikaryon),the Nervenfortsätze with their myel<strong>in</strong> sheaths <strong>and</strong> the gial substance. Generally, methodsapplied to localize nuclei <strong>and</strong> tigroid bodies <strong>in</strong> nerve cells are called Nissl <strong>sta<strong>in</strong>s</strong> (NISSL F,1894). Excellent results are obta<strong>in</strong>ed with the basic dyes such as methylene blue, toluid<strong>in</strong>eblue <strong>and</strong> cresyl fast violet. For the detection of myel<strong>in</strong> sheaths, C WEIGERT (1882) <strong>in</strong>troduceda <strong>special</strong> procedure <strong>in</strong>volv<strong>in</strong>g a mordant step <strong>and</strong> an alcoholic hematoxyl<strong>in</strong> solution. Thismethod became subsequently ref<strong>in</strong>ed. Instead of an alcoholic hematoxyl<strong>in</strong> solution, acomb<strong>in</strong>ed cell <strong>and</strong> myel<strong>in</strong> sta<strong>in</strong><strong>in</strong>g technique was developed by KLÜVER <strong>and</strong> BARRERA (1953)us<strong>in</strong>g Luxol Fast Blue (sulfonated copper phthalocyan<strong>in</strong>e) <strong>and</strong> cresyl fast violet with highcolor contrast of the cyto- <strong>and</strong> myeloarchitecture <strong>in</strong> neural tissue sections.


Histochemistry, def<strong>in</strong>ed microchemical reactionsThe Feulgen reaction <strong>and</strong> the PAS (periodic-acid-Schiff) technique are typical example forchemically well def<strong>in</strong>ed sta<strong>in</strong><strong>in</strong>gs to reveal certa<strong>in</strong> cell structures. Both methods use theSCHIFF reagent (SCHIFF H, 1866; basic fuchs<strong>in</strong>) for the detection of aldehyde groups whichhave been selectively produced <strong>in</strong> tissue specimens by def<strong>in</strong>ed chemical pretreatments. Thisreaction has found numerous applications <strong>in</strong> cytochemistry (BAUER H, 1933; FEULGEN R,1914; FEULGEN R <strong>and</strong> ROSSENBECK H, 1924; MCMANUS JFA, 1946; LILLIE RD, 1947;HOTCHKISS RD, 1948; MCMANUS JFA, 1948). Due to its high specificity, the Feulgen nuclealreaction has become one of the most prom<strong>in</strong>ent <strong>sta<strong>in</strong>s</strong> for nuclear DNA. In a first step, DNAis hydrolyzed with HCl to yield aldehydes which <strong>in</strong> turn react <strong>in</strong> the second step with Schiffreagent to form a stable magenta reaction product. The Feulgen reaction is very specific <strong>and</strong>widely used for sta<strong>in</strong><strong>in</strong>g <strong>and</strong> densitometric quantification of nuclear DNA (HARDIE DC et al.,2002).An important progress <strong>in</strong> specific microscopical sta<strong>in</strong><strong>in</strong>gs was the <strong>in</strong>troduction of enzymehistochemistry. The first histochemical procedures were reported for the detection of theperoxidase reaction <strong>in</strong> leukocyte granules (FISCHEL R, 1910) <strong>and</strong> for hemoglob<strong>in</strong> <strong>in</strong> red bloodcells (LEPEHNE G, 1919) by the use of benzid<strong>in</strong>e. Several systematic studies followed later(GOMORI G, 1952; GOMORI G, 1953). In the meantime, many peroxidase substrates have beenproposed for a great spectrum of applications <strong>in</strong>clud<strong>in</strong>g colorimetric, fluorescent <strong>and</strong>chemilum<strong>in</strong>escent measurements as well as histochemical sta<strong>in</strong><strong>in</strong>gs (KRIEG R <strong>and</strong> HALHUBERKJ, 2004; KRIEG R et al., 2007; KRIEG R et al., 2008; PETERSEN KH, 2009).The early descriptions of cytochemical peroxidase reactions were followed by studies onalkal<strong>in</strong>e phosphatases <strong>in</strong> various tissues (GOMORI G, 1939; TAKAMATSU H, 1939). Then, newcytochemical approaches for many other enzymes (<strong>in</strong>clud<strong>in</strong>g methods for electronmicroscopic cytochemistry) were published: oxidases, dehydrogenases, oxidoreductases,lyases, ligases (f.e. GOMORI G, 1952; PEARSE AGE, 1953; SHELDON H et al., 1955; BRANDESD et al., 1956; BARRNETT RJ <strong>and</strong> PALADE GE, 1958; ESSNER E et al., 1958; GRAUMANN W<strong>and</strong> NEUMANN K, 1958; NACHLAS MM et al., 1958; MITSUI T, 1960; KUHLMANN WD, 1970;KUHLMANN WD <strong>and</strong> AVRAMEAS S, 1971; PEARSE AGE, 1980; KUHLMANN WD <strong>and</strong> PESCHKEP, 1986; KIERNAN JA, 2007). Even if a large number of specific cytochemical substrates existnow, appropriate cytochemical substrates for many other enzymes are still lack<strong>in</strong>g. Thecommon names of all enzymes, enzyme subclasses, along with their EC numbers, <strong>and</strong> furtherdetails on enzymes <strong>in</strong>clud<strong>in</strong>g pathways <strong>in</strong> which they act are given by the NomenclatureCommittee of the International Union of Biochemistry <strong>and</strong> Molecular Biology (NC-IUBMBhttp://www.chem.qmul.ac.uk/iubmb/enzyme/); for common names of enzymes, see- subclass EC 1 - Oxidoreductases- subclass EC 2 - Transferases- subclass EC 3 - Hydrolases- subclass EC 4 - Lyases- subclass EC 5 - Isomerases- subclass EC 6 - LigasesEnzyme histochemistry has several limitations which are primarily related to tissue fixation<strong>and</strong> tissue preparation <strong>in</strong> general. With these <strong>in</strong>herent problems <strong>in</strong> m<strong>in</strong>d <strong>and</strong> due to thegrow<strong>in</strong>g dem<strong>and</strong> for more <strong>and</strong> other specific detection methods, the development ofalternative techniques was pushed.


Label<strong>in</strong>g by use of <strong>special</strong> <strong>probes</strong>With the dem<strong>and</strong> for specific histological sta<strong>in</strong><strong>in</strong>gs (apart from enzyme histochemistry) <strong>in</strong> cellresearch, histopathology <strong>and</strong> molecular biology, a great number of specific methods havebeen developed dur<strong>in</strong>g the last 20 years enabl<strong>in</strong>g selective detection of dedicated molecules.For example, antibodies, lect<strong>in</strong>s <strong>and</strong> nucleotides can be applied as <strong>special</strong> <strong>probes</strong> withimportant significance <strong>in</strong> studies of phylogeny, embryogenesis <strong>and</strong> organ disease.Immunohistological techniques were <strong>in</strong>vented by AH COONS <strong>and</strong> co-workers (COONS AH etal. 1941; COONS AH, 1958). These techniques makes use of the pr<strong>in</strong>ciples of immunology toidentify <strong>and</strong> (<strong>in</strong> the sense of <strong>histology</strong>) to locate cellular antigens by antibodies. To this aim,so-called direct or <strong>in</strong>direct methods <strong>and</strong> a great variety of marker molecules as labels areapplied (see chapter Cell sta<strong>in</strong><strong>in</strong>g with direct <strong>and</strong> <strong>in</strong>direct assay formats). Fluorochromes <strong>and</strong>enzymes are the most widely empoyed labels <strong>in</strong> light microscopy. In the case of electronmicroscopy, ferrit<strong>in</strong>, enzymes <strong>and</strong> colloidal gold particles are very popular.There exist many variants of the immunohistological pr<strong>in</strong>ciple. Basically, the follow<strong>in</strong>g stepsare <strong>in</strong>volved:- preparation of specific antibodies;- use of these antibodies to localize the correspond<strong>in</strong>g antigen <strong>in</strong> cells <strong>and</strong> tissues;- selection of appropriate marker for direct or <strong>in</strong>direct label<strong>in</strong>g technique;- detection system: coupl<strong>in</strong>g the antigen-antibody complexes with chromogen (markermolecules);- visualiz<strong>in</strong>g <strong>and</strong> detect<strong>in</strong>g the chromogen (enzyme substrate, UV light, others) <strong>in</strong> orderto locate the antigen.The sensitivity of immuno<strong>histology</strong> can be greatly enhanced by a variety of amplificationmethods, f.e. antibody bridge techniques (with secondary <strong>and</strong> tertiary antibodies) or otherhigh aff<strong>in</strong>ity bridge techniques such as avid<strong>in</strong>-biot<strong>in</strong> are <strong>in</strong> use. Then, <strong>in</strong> the case of enzymesas labels, the cytochemical reaction product may be further <strong>in</strong>tensified by chemicalprocedures.Radioautography is of considerable <strong>in</strong>terest <strong>in</strong> trac<strong>in</strong>g radio-elements <strong>in</strong> the body <strong>and</strong> <strong>in</strong>study<strong>in</strong>g dynamic events such as secretion pathways <strong>and</strong> nucleic acid synthesis. Firstdeveloped for light microscopy, this techniques proved also very useful <strong>in</strong> electronmicroscopy (BELANGER LF <strong>and</strong> LEBLOND CP, 1946; PELC SR, 1947; TAYLOR JH et al., 1957;BACHMANN L <strong>and</strong> SALPETER MM, 1967; SALPETER MM, 1967, LEBLOND CP, 1981). Severalradioactive tracers may be used for label<strong>in</strong>g purposes: (a) radiolabeled precursor moleculessuch as sugars, am<strong>in</strong>o acids or nucleotides <strong>in</strong> synthesiz<strong>in</strong>g studies; <strong>and</strong> (b) certa<strong>in</strong> f<strong>in</strong>ished“products” such as hormones <strong>in</strong> receptor b<strong>in</strong>d<strong>in</strong>g studies. It must be kept <strong>in</strong> m<strong>in</strong>d, however,that one of the ma<strong>in</strong> problems of autoradiography is its resolution <strong>in</strong> microscopy. Tritium aslabel is a good choice. It could be shown that tritium provided the highest resolution availables<strong>in</strong>ce the beta particles have a maximum energy of only 18 keV which corresponds to a rangeof about one micron <strong>in</strong> photographic emulsions.Radioautography has significantly contributed to the underst<strong>and</strong><strong>in</strong>g of many fundamentalprocesses <strong>in</strong> cell research such as prote<strong>in</strong> or carbohydrate synthesis, secretory processes,exocytosis, endocytosis, receptor b<strong>in</strong>d<strong>in</strong>gs <strong>and</strong> cell division. Also, the comb<strong>in</strong>ation ofradioautography <strong>and</strong> immuno<strong>histology</strong> (double label<strong>in</strong>g experiments) enabled substantialstudies on cell division/differentiation <strong>and</strong> antigen/antibody synthesis <strong>in</strong> the course ofimmune response or <strong>in</strong> the course of carc<strong>in</strong>ogenesis (KUHLMANN WD et al., 1975;KUHLMANN WD, 1978); KUHLMANN WD <strong>and</strong> PESCHKE P, 2006).


Cell proliferations have been performed for a long time follow<strong>in</strong>g [ 3 H] thymid<strong>in</strong>e <strong>in</strong>corpation<strong>in</strong>to DNA. The use of [ 3 H] thymid<strong>in</strong>e label<strong>in</strong>g has decl<strong>in</strong>ed meanwhile due to thedevelopment of an alternative method for the detection of DNA replication us<strong>in</strong>g thethymid<strong>in</strong>e analog 5-bromo-deoxyurid<strong>in</strong>e (BrdU) <strong>in</strong> an immunohistochemical procedure(GRATZNER HG, 1982). The <strong>in</strong>corporation of BrdU <strong>in</strong>to nuclear DNA dur<strong>in</strong>g S-phase islocalized <strong>in</strong> tissue preparations us<strong>in</strong>g monoclonal antibodies aga<strong>in</strong>st BrdU <strong>and</strong> a chromogendetection method. Comparable to immuno<strong>histology</strong>, a variety of detection pr<strong>in</strong>ciples <strong>and</strong>marker molecules (e.g. fluorochromes, enzymes) can be applied.The technique of <strong>in</strong> situ hybridization is another example of “<strong>special</strong> probe” <strong>in</strong> histologicalsta<strong>in</strong><strong>in</strong>g. Double str<strong>and</strong>ed DNA <strong>in</strong> solution can be “melted” <strong>in</strong>to s<strong>in</strong>gle str<strong>and</strong>s (by heat orelevation of pH), <strong>and</strong> this manipulation is reversible so that the s<strong>in</strong>gle str<strong>and</strong>s can berecomb<strong>in</strong>ed (“annealed”). This hybridization process is specific <strong>and</strong> only complementarystr<strong>and</strong>s will comb<strong>in</strong>e: hybrids between DNA-DNA, DNA-RNA <strong>and</strong> RNA-RNA are possible.The formation <strong>and</strong> detection of DNA-DNA <strong>and</strong> RNA-DNA hybrid molecules <strong>in</strong> cytologicalpreparations were first described <strong>in</strong> 1969 (GALL JG <strong>and</strong> PARDUE ML, 1969; JOHN HA et al.,1969; PARDUE ML <strong>and</strong> GALL JG, 1969). Although the anneal<strong>in</strong>g of DNA or RNA moleculesto their complementary sequences has been applied earlier for several purposes <strong>and</strong> by severaltechniques (e.g. <strong>in</strong> solution for sc<strong>in</strong>tillation count<strong>in</strong>g or on nitrocellulose membranes forradioautography), <strong>in</strong> situ hybridisation needed <strong>special</strong> histological preparation. S<strong>in</strong>ce then, thetechnique has become established for the identification of DNA <strong>and</strong> RNA with<strong>in</strong> cells <strong>and</strong>tissues (GUITTENY AF et al., 1988; WARFORD A, 1988; HANKIN RC <strong>and</strong> LLOYD RV, 1989;PRINGLE JH et al., 1989; LARSSON LI <strong>and</strong> HOUGAARD DM, 1990; SHORROCK K et al., 1991).E<strong>special</strong>ly the availability of synthetic oligonucleotide <strong>probes</strong> <strong>and</strong> the <strong>in</strong>troduction of nonradioactivedetection methods have made <strong>in</strong> situ hybridization techniques accessible for manylaboratories. Marker molecules <strong>in</strong>clud<strong>in</strong>g detection pr<strong>in</strong>ciples known from immuno<strong>histology</strong>play a major role <strong>in</strong> cellular hybridization techniques <strong>in</strong> a variety of fields such as geneexpression, genetic diseases, location of genes on chromosomes <strong>and</strong> chromosomeabnormalities.Selected publications for further read<strong>in</strong>gsUnverdorben O (1826)Runge FF (1834a, 1834b, 1834c)Fritsche J (1839)Erdmann OL (1840)Fritsche J (1840)Erdmann OL (1841)Fritsche J (1841)Laurent A (1841)Hofmann AW (1843a, 1843b, 1843c)Hofmann AW (1845)Hofmann AW (1854)Perk<strong>in</strong> WH (1856)Griess P (1858)Hofmann AW (1859)Hofmann AW (1863a, 1863b, 1863c, 1863d)


Schiff H (1866)Baeyer A (1868)Graebe C <strong>and</strong> Liebermann C (1868)Baeyer A <strong>and</strong> Emmerl<strong>in</strong>g A (1869)Baeyer A <strong>and</strong> Emmerl<strong>in</strong>g A (1870)Weigert C (1871)Golgi C (1873)Witt ON (1876)Ehrlich P (1877)Baeyer A (1878)Ehrlich P (1878)Perk<strong>in</strong> WH (1879)Baeyer A (1880)Grübler G (1880)Baeyer A <strong>and</strong> Drewsen V (1882)Weigert C (1882a, 1882b)Gierke H (1884a, 1884b, 1884c)Nietzki R (1886)Heumann K (1890)Unna PG (1890)Romanowsky DL (1891)Nissl F (1894)Starke J (1895)Weigert C (1898)Mallory FB (1900)Bohn R (1901)Michaelis M (1901)Bielschowsky M (1902)Bielschowsky M (1903)Giemsa G (1904)Verhoeff FH (1908)Fischel R (1910)Feulgen R (1914)Schultz G <strong>and</strong> Julius P (1914)Escher HH (1919)Lepehne G (1919)Feulgen R <strong>and</strong> Rossenbeck H (1924)Colour Index (1925-2009)Brunner A (1929)Masson P (1929)Bauer H (1933)Hoerr NL (1936)Bodian D (1936)Mallory FB (1936)Mallory FB (1938)Gomori G (1939)Takamatsu H (1939)Coons AH et al. (1941)Lewis FT (1942)Belanger LF <strong>and</strong> Leblond CP (1946)Gomori G (1946)McManus JFA (1946)Lillie RD (1947)


Pelc SR (1947)Hotchkiss RD (1948)McManus JFA (1948)Gomori G (1950a, 1950b)Romanes GJ (1950)Steedman HF (1950)Ferreira-Marques J (1951)Gomori G (1952)Gomori G (1953)Klüver H <strong>and</strong> Barrera E (1953)Pearse AGE (1953)Movat HZ (1955)Sheldon H et al. (1955)Br<strong>and</strong>es D et al. (1956)Fullmer HM <strong>and</strong> Lillie RD (1956a, 1956b)Taylor JH et al. (1957)Barrnett RJ <strong>and</strong> Palade GE (1958)Coons AH (1958)Essner E et al. (1958)Graumann W <strong>and</strong> Neumann K (1958)Nachlas MM et al. (1958)Mitsui T (1960)Mowry RW (1963)Lev R <strong>and</strong> Spicer SS (1964)Breathnach AS (1965)Spicer SS (1965)Bachmann L <strong>and</strong> Salpeter MM (1967)Salpeter MM (1967)Romeis B (1968)Gall JG <strong>and</strong> Pardue ML (1969)John HA et al. (1969)Pardue ML <strong>and</strong> Gall JG (1969)Kuhlmann WD (1970)Gurr E (1971)Kuhlmann WD <strong>and</strong> Avrameas S (1971)Kuhlmann WD et al. (1975)Lillie RD <strong>and</strong> Fullmer HM (1976)Nakamura H et al. (1977)Kuhlmann WD (1978)Filipe MI (1979)Pearse AGE (1980)Leblond CP (1981)Gratzner HG (1982)Kuhlmann WD (1984)Kuhlmann WD <strong>and</strong> Peschke P (1986)Horob<strong>in</strong> RW <strong>and</strong> Walter KJ (1987)Burck HC (1988)Guitteny AF et al., (1988)Warford A (1988)Hank<strong>in</strong> RC <strong>and</strong> Lloyd RV (1989)Pr<strong>in</strong>gle JH et al. (1989)Larsson LI <strong>and</strong> Hougaard DM (1990)Shorrock K et al. (1991)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!