10.07.2015 Views

Inferring the genetic basis of inbreeding depression in plants

Inferring the genetic basis of inbreeding depression in plants

Inferring the genetic basis of inbreeding depression in plants

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Inferr<strong>in</strong>g</strong> <strong>the</strong> <strong>genetic</strong> <strong>basis</strong> <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong><strong>depression</strong> <strong>in</strong> <strong>plants</strong>Kermit RitlandAbstract: Recent progress <strong>in</strong> <strong>the</strong> <strong>genetic</strong> analysis <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> <strong>in</strong> <strong>plants</strong> is reviewed. While <strong>the</strong>debate over <strong>the</strong> importance <strong>of</strong> genes <strong>of</strong> dom<strong>in</strong>ance versus overdom<strong>in</strong>ance effect cont<strong>in</strong>ues, <strong>the</strong> scope <strong>of</strong> <strong>in</strong>ferenceshas widened and now <strong>in</strong>cludes such facets as <strong>the</strong> <strong>in</strong>teractions between genes, <strong>the</strong> relative abundance <strong>of</strong> majorversus m<strong>in</strong>or genes, life cycle stage expression, and mutation rates. The types <strong>of</strong> <strong>in</strong>ferences are classified <strong>in</strong>to<strong>the</strong> genomic, where many genes are characterized as an average, and <strong>the</strong> genic, where <strong>in</strong>dividual genes arecharacterized. Genomic <strong>in</strong>ferences can be based upon natural levels <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>, purg<strong>in</strong>gexperiments, <strong>the</strong> comparison <strong>of</strong> <strong>in</strong>dividuals <strong>of</strong> differ<strong>in</strong>g F (e.g., prior <strong><strong>in</strong>breed<strong>in</strong>g</strong>), and various cross<strong>in</strong>g designs.Genic <strong>in</strong>ferences ma<strong>in</strong>ly <strong>in</strong>volve mapp<strong>in</strong>g and characteriz<strong>in</strong>g loci with <strong>genetic</strong> markers, <strong>in</strong>volv<strong>in</strong>g ei<strong>the</strong>r a s<strong>in</strong>glecross or, ideally, several crosses. Alternative statistical models for analyz<strong>in</strong>g polymorphic loci caus<strong>in</strong>g <strong><strong>in</strong>breed<strong>in</strong>g</strong><strong>depression</strong> should be a fruitful problem for <strong>genetic</strong>ists to pursue.Key words: <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>, <strong>genetic</strong> load, self-fertilization, QTL mapp<strong>in</strong>g.RCsumC : Les rkcents progrks en matikre d'analyse gknetique de la dkpression consangu<strong>in</strong>e chez les plantes sontpassks en revue. Bien que le dkbat se poursuive au sujet de I'importance relative de la dom<strong>in</strong>ance et de lasurdom<strong>in</strong>ance, la gamme des <strong>in</strong>fkrences s'est klargie et <strong>in</strong>clut ma<strong>in</strong>tenant des aspects tels les <strong>in</strong>teractions entregknes, l'abondance relative de gknes majeurs et de gknes m<strong>in</strong>eurs, I'expression des gknes au cours du cycle vitalet les taux de mutation. Deux types d'<strong>in</strong>fkrences sont dist<strong>in</strong>gukes : les <strong>in</strong>fkrences gknomiques oh l'effet moyende plusieurs gknes est caractkrise et les <strong>in</strong>fkrences gkniques oh des gknes <strong>in</strong>dividuels sont exam<strong>in</strong>ks. Les<strong>in</strong>fkrences gknomiques peuvent s'appuyer sur des niveaux naturels de dkpression consangu<strong>in</strong>e, sur desexpkriences de purgation, sur des comparaisons entre <strong>in</strong>dividus prksentant des niveaux diffkrents deconsangu<strong>in</strong>itk F et sur divers types de croisement. Les <strong>in</strong>ferences gkniques impliquent surtout la cartographie etla caractkrisation de loci a l'aide de marqueurs dans le cadre de un ou, idkalement, plusieurs croisements. L'ktudede diffkrents modkles statistiques permettant d'analyser les loci polymorphes causant la dkpression consangu<strong>in</strong>edevrait s'avkrer une voie prometteuse pour les <strong>genetic</strong>iens.Mots cle's : dkpression consangu<strong>in</strong>e, charge gknetique, aut<strong>of</strong>kcondation, cartographie QTL.[Traduit par la Rkdaction]In many plant species, a major <strong>genetic</strong> factor responsible fordifferences <strong>in</strong> survival and reproduction between <strong>in</strong>dividualsis <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>. Inbreed<strong>in</strong>g <strong>depression</strong>, first studiedby Charles Darw<strong>in</strong> <strong>in</strong> his 1876 book, The EfSects <strong>of</strong> Crossand Self Fertilization <strong>in</strong> <strong>the</strong> Vegetable K<strong>in</strong>gdom, is <strong>the</strong>reduced fitness shown by progeny <strong>of</strong> self-fertilization ormat<strong>in</strong>g between close relatives. It is a biological character<strong>of</strong> no little importance, particularly <strong>in</strong> <strong>plants</strong>: <strong><strong>in</strong>breed<strong>in</strong>g</strong><strong>depression</strong> has implications for <strong>the</strong> evolution <strong>of</strong> mat<strong>in</strong>gsystems (Barrett and Harder 1995), levels <strong>of</strong> <strong>genetic</strong> variation(Charlesworth and Charlesworth 1987), agriculturalproductivity (Gowen 1952), and species conservation(Simberl<strong>of</strong>f 1988).ICorrespond<strong>in</strong>g Editor: R.S. S<strong>in</strong>gh.Received July 27, 1995. Accepted September 6, 1995.K. Ritland. Department <strong>of</strong> Botany, University <strong>of</strong> Toronto,Toronto, ON M5S 3B2, Canada.IGenome, 39: 1-8 (1996). Pr<strong>in</strong>ted <strong>in</strong> Canada / ImprimC au CanadaIn <strong>the</strong> past decade, research <strong>in</strong> plant population biologyand evolution has <strong>in</strong>tensively focused on levels <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong><strong>depression</strong>. This is due <strong>in</strong> large part to <strong>the</strong> sem<strong>in</strong>al butcontroversial work <strong>of</strong> Lande and Schemske (1985) andSchemske and Lande ( 1985). They postulated a direct l<strong>in</strong>kbetween levels <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> and <strong>the</strong> evolution<strong>of</strong> self-fertilization, provid<strong>in</strong>g a rationale for measur<strong>in</strong>glevels <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> <strong>in</strong> <strong>plants</strong>. To <strong>the</strong> plantdemographer, <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> has many ideal attributesas a character <strong>of</strong> study. It can be precisely def<strong>in</strong>ed as6 = 1 - w,IwI, where w, is <strong>the</strong> fitness <strong>of</strong> self-fertilizedprogeny and w, <strong>the</strong> fitness <strong>of</strong> outcrossed progeny. It canbe easily manipulated through artificial mat<strong>in</strong>gs. Its effectsupon fitness are clear and easily measured ow<strong>in</strong>g to <strong>the</strong>sedentary nature <strong>of</strong> <strong>plants</strong>. In addition, with <strong>genetic</strong> markers,one can <strong>in</strong>fer natural levels <strong>of</strong> self<strong>in</strong>g and <strong><strong>in</strong>breed<strong>in</strong>g</strong><strong>depression</strong> (Ritland 1983, 1990).However, if one is to predict <strong>the</strong> longer-term evolutionaryimplications <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>, we need <strong>in</strong>formation


Review / Syn'<strong>the</strong>sethan <strong>in</strong> diploids <strong>of</strong> <strong>the</strong> same species, support<strong>in</strong>g <strong>the</strong>recessive model (B. Husband and D. Schemske, personalcommunication).Charlesworth et al. (1990) showed that data on <strong><strong>in</strong>breed<strong>in</strong>g</strong><strong>depression</strong> <strong>in</strong> highly self-fertiliz<strong>in</strong>g species can, <strong>in</strong>fact, be used to estimate <strong>the</strong> rate <strong>of</strong> mutation to mildlydeleterious alleles. They showed that <strong>in</strong> a highly self<strong>in</strong>gpopulation, <strong>the</strong> genomic mutation rate can be estimatedas U = -2 ln(1 - 6)1(1 - 2h), where h is <strong>the</strong> dom<strong>in</strong>ancecoefficient (h = 0 corresponds to recessive, h = 112 correspondsto additive, h > 112 corresponds to overdom<strong>in</strong>ant).This formula applies regardless <strong>of</strong> <strong>the</strong> <strong>in</strong>tensity <strong>of</strong> selection(thus mutations <strong>of</strong> mild as well as strong effects enter thisestimate) but requires <strong>in</strong>dependent estimates <strong>of</strong> <strong>the</strong> degree<strong>of</strong> dom<strong>in</strong>ance h.Johnston and Schoen (1995) used this method to estimatemutation rates <strong>in</strong> two species <strong>of</strong> <strong>the</strong> California annualAms<strong>in</strong>ckia. They first determ<strong>in</strong>ed <strong>the</strong> dom<strong>in</strong>ance level as <strong>the</strong>slope <strong>of</strong> <strong>the</strong> regression <strong>of</strong> outcrossed-progeny fitness on <strong>the</strong>sum <strong>of</strong> <strong>the</strong> selfed-progeny fitnesses <strong>of</strong> <strong>the</strong> two parents constitut<strong>in</strong>g<strong>the</strong> outcross<strong>in</strong>g mat<strong>in</strong>g (Fig. I). They found levels<strong>of</strong> dom<strong>in</strong>ance near zero <strong>in</strong> one species but moderate levels(0.25-0.35) <strong>in</strong> ano<strong>the</strong>r. This gave estimates <strong>of</strong> m<strong>in</strong>imal mutationrates <strong>of</strong> U <strong>of</strong> 0.25-0.87 per diploid genome per generation.These mutation rates are high and, toge<strong>the</strong>r with <strong>the</strong> estimates<strong>of</strong> dom<strong>in</strong>ance, suggested that partial recessive mutations,ra<strong>the</strong>r than overdom<strong>in</strong>ance, are responsible for <strong><strong>in</strong>breed<strong>in</strong>g</strong><strong>depression</strong> <strong>in</strong> Ams<strong>in</strong>kia. Charlesworth et al. (1994) also<strong>in</strong>ferred U based upon <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> <strong>of</strong> two <strong><strong>in</strong>breed<strong>in</strong>g</strong>Leavenworthia species but had to assume values <strong>of</strong> h to<strong>in</strong>fer U. For reasonable values <strong>of</strong> h, <strong>the</strong>y <strong>in</strong>ferred <strong>the</strong> genomicmutation rate to be 0.7-0.9 for L. uniflora and 1.3- 1.7 forL. crassa. These values are higher than those <strong>in</strong>ferred forseveral <strong><strong>in</strong>breed<strong>in</strong>g</strong> species by Charlesworth et al. (1990),who regarded U = 1 and h = 0.2 as a rough estimate for<strong>plants</strong>, a value that gives <strong>the</strong> <strong>the</strong>oretical reduction <strong>of</strong> fitness<strong>of</strong> selfed progeny as a reasonable 6 = 0.26.Drosophila studies have also <strong>in</strong>dicated high mutationrates. The classic studies <strong>of</strong> Mukai (1964) found a mutationrate for <strong>the</strong> second chromosome <strong>of</strong> 0.15 per generation.Overall, <strong>the</strong> total deleterious mutation rate <strong>in</strong> Drosophila isat least U = 1 .O per zygote (Crow 1993). Interest<strong>in</strong>gly,this is an order <strong>of</strong> magnitude higher than was orig<strong>in</strong>allythought back when overdom<strong>in</strong>ance was thought to be predom<strong>in</strong>ant(Crow 1948; p. 479, U = 0.1). However, oneshould note that estimates <strong>of</strong> U critically depend on h.Sved and Wilton (1989) <strong>in</strong>ferred that, <strong>in</strong> Drosophila, hcould be as low as 11128 or as high as 118, <strong>in</strong>terest<strong>in</strong>gly,values that are somewhat lower than for <strong>plants</strong>.The importance <strong>of</strong> mutation <strong>in</strong> evolution has onlyrecently been realized. As James Crow (1993) writes, "Theproblem <strong>of</strong> how a population tolerates a larger number <strong>of</strong>overdom<strong>in</strong>ant loci has been replaced by <strong>the</strong> problem <strong>of</strong>how <strong>the</strong> population tolerates a high mutation rate." In<strong>plants</strong>, one relevant issue is whe<strong>the</strong>r mutation rates evolve<strong>in</strong> response to changes <strong>in</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong>: for example, dospecies that practice greater self<strong>in</strong>g show lower mutationrates than <strong>the</strong>ir outcross<strong>in</strong>g relatives. Interest has alsorecently focused on <strong>the</strong> role <strong>of</strong> mutations <strong>of</strong> large effect<strong>in</strong> caus<strong>in</strong>g measurable <strong>genetic</strong> variation among families for<strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> (J.H. Willis, personal communication).Fig. 1. The cross<strong>in</strong>g design <strong>of</strong> Johnston and Schoen usedto estimate mutation rates <strong>in</strong> Ams<strong>in</strong>ckia. (A) Selfed andoutcrossed progeny are generated and <strong>the</strong>ir fitness wmeasured. (B) Across several pairs <strong>of</strong> parents, <strong>the</strong> slope<strong>of</strong> <strong>the</strong> regression <strong>of</strong> outcrossed fitness on. <strong>the</strong> sum <strong>of</strong> <strong>the</strong>selfed fitness gives h (adapted from Johnston and Schoen1995).Inferences about gene action from purg<strong>in</strong>gIf <strong>the</strong> rate <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> is <strong>in</strong>creased above that normallyexperienced by a population, <strong>the</strong> amount <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong><strong>depression</strong> should be reduced ow<strong>in</strong>g to <strong>in</strong>creased purg<strong>in</strong>g<strong>of</strong> deleterious genes. In <strong>the</strong> extreme, one can employenforced self<strong>in</strong>g to cause strong purg<strong>in</strong>g. The effectiveness<strong>of</strong> enforced <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>in</strong>creases with <strong>the</strong> degree <strong>of</strong> recessivity<strong>of</strong> genes caus<strong>in</strong>g <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> (Charlesworthand Charlesworth 1990), so that <strong>the</strong> degree <strong>of</strong> recessivitycan be <strong>in</strong>directly <strong>in</strong>ferred by <strong>the</strong> change <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong><strong>depression</strong> under enforced <strong><strong>in</strong>breed<strong>in</strong>g</strong>.As an example <strong>of</strong> this <strong>in</strong>ference, Barrett and Charlesworth(1991) selfed water hyac<strong>in</strong>th <strong>plants</strong> (Eichornia paniculata)for five successive generations. Two populations were studied,one a predom<strong>in</strong>ant outcrosser from Brazil, <strong>the</strong> o<strong>the</strong>r aselfer from Jamaica. As expected, <strong>in</strong> <strong>the</strong> outcrosser, fivegenerations <strong>of</strong> self<strong>in</strong>g substantially reduced <strong><strong>in</strong>breed<strong>in</strong>g</strong><strong>depression</strong>, while <strong>in</strong> <strong>the</strong> selfer, no reduction occurred. Theycompared <strong>the</strong>se results with those generated by <strong>the</strong>oreticalmodels and found that, <strong>in</strong> <strong>the</strong> outcrosser, <strong>the</strong> model <strong>of</strong> mutationto mildly detrimental partially recessive alleles mostclosely fit <strong>the</strong> observed purg<strong>in</strong>g <strong>in</strong> <strong>the</strong> outcrosser (Fig. 2).Ano<strong>the</strong>r approach is to compare levels <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong><strong>depression</strong> among species differ<strong>in</strong>g for natural levels <strong>of</strong> self<strong>in</strong>g.If mutation rates do not evolve, <strong>the</strong>n under recessive<strong>in</strong>heritance, purg<strong>in</strong>g would reduce <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> <strong>in</strong>species with higher self<strong>in</strong>g rates. When mak<strong>in</strong>g such comparisons,closely related species should be used to elim<strong>in</strong>ate


Genome, Vol. 39, 1996Fig. 2. (A) Changes <strong>in</strong> <strong>the</strong> fitness <strong>of</strong> a habitual outcross<strong>in</strong>gpopulation <strong>of</strong> Eichornia paniculata over five generations<strong>of</strong> self<strong>in</strong>g (shaded bars), follow<strong>in</strong>g by outcross<strong>in</strong>g (hatchedbar). The <strong>in</strong>itial outbred population is given by <strong>the</strong> blackbar. (B) Theoretical expectations under <strong>the</strong> best fitt<strong>in</strong>gmodel <strong>of</strong> deleterious recessives (adapted from Barrett andCharlesworth 199 1).Successive generationsconfound<strong>in</strong>g adaptive changes <strong>of</strong> life-history characters(which are closely tied to fitness). For this, <strong>the</strong> Mimulusguttatus (monkeyflower) species complex is ideal, as it hasseveral closely related <strong>in</strong>breeders and outbreeders (Ritland andRitland 1989). Latta and Ritland ( 1994) compared 15 populationsamong four <strong>of</strong> <strong>the</strong>se taxa. They found associationsbetween <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> and prior <strong><strong>in</strong>breed<strong>in</strong>g</strong> (measuredby Wright's F) to be weakly consistent with a recessivemodel <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>. However, <strong>the</strong> complexity<strong>of</strong> <strong>the</strong> relationship also suggested genotype-by-environment<strong>in</strong>teractions and complex modes <strong>of</strong> <strong>in</strong>heritance.Inferences about gene <strong>in</strong>teraction us<strong>in</strong>g <strong>in</strong>dividuals <strong>of</strong>differ<strong>in</strong>g FIn <strong>the</strong> 1950s and 1960s, <strong>the</strong> "<strong>genetic</strong> load" due to deleteriousmutations was characterized <strong>in</strong> a number <strong>of</strong> organisms, primarilyhumans and Drosophila. This load was <strong>of</strong>ten described<strong>in</strong> terms <strong>of</strong> lethal equivalents, which accord<strong>in</strong>g to Mortonet al. (1956; p. 857) are "a group <strong>of</strong> genes <strong>of</strong> such numberthat, if dispersed <strong>in</strong> different <strong>in</strong>dividuals and made homozygous,would cause an average <strong>of</strong> one death." On a per zygote<strong>basis</strong>, this number equals 2 ln(R)I(F, - F,), where R is <strong>the</strong>ratio <strong>of</strong> <strong>the</strong> fitnesses <strong>of</strong> <strong>in</strong>dividuals with <strong><strong>in</strong>breed<strong>in</strong>g</strong> coefficientF, to those <strong>of</strong> <strong>in</strong>dividuals <strong>in</strong>bred to degree F, (<strong>the</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong>coefficient F is <strong>the</strong> probability that <strong>the</strong> two alleles at a diploidlocus are identical by descent or are copies <strong>of</strong> <strong>the</strong> same allelefrom a recent ancestor). Normally, outcrossed <strong>in</strong>dividualsare used for <strong>the</strong> latter case (F, = 0).Estimates <strong>of</strong> lethal equivalents for <strong>plants</strong> did not appearuntil Sorenson's (1969) classic study with Douglas-fir.Compar<strong>in</strong>g <strong>the</strong> seed set <strong>of</strong> selfed cones (F, = 0.5) withthat <strong>of</strong> outcrossed cones (F, = 0), he found a median <strong>of</strong>10 lethal equivalents with a range <strong>of</strong> 3-27 per tree. Lev<strong>in</strong>and Klekowski have also applied this method to Phlox(Lev<strong>in</strong> 1989) and ferns (Klekowski 1988). However, thisapproach cannot dist<strong>in</strong>guish between deaths attributableto few loci <strong>of</strong> large effect and those due to deleteriousalleles at many loci with a net lethal effect. Althoughlethals or semilethals may be responsible for most <strong>of</strong> <strong>the</strong><strong>genetic</strong> load <strong>in</strong> <strong>the</strong> outbreed<strong>in</strong>g Drosophila (Crow andSimmons 1983), <strong>the</strong>y do not expla<strong>in</strong> heterosis <strong>in</strong> highlyself<strong>in</strong>g species, where one expects major deleterious allelesto be elim<strong>in</strong>ated ow<strong>in</strong>g to strong purg<strong>in</strong>g. In addition,polyembryony <strong>in</strong> conifers may confound estimates <strong>of</strong> lethalequivalents (T. Mitchell-Olds, personal communication).With two levels <strong>of</strong> F, one must assume no fitness <strong>in</strong>teractionsbetween loci. If more than two levels <strong>of</strong> F arecompared, one can <strong>in</strong>fer <strong>the</strong> presence <strong>of</strong> <strong>in</strong>teractions or"synergism" between fitness loci. The usual expectationis that if mutations at different loci <strong>in</strong>teract synergistically,<strong>the</strong>n fitness decl<strong>in</strong>es at a rate greater than expected undermultiplicative effects. However, it should be noted thatsuch nonl<strong>in</strong>earity arises only from dom<strong>in</strong>ance by dom<strong>in</strong>ance<strong>in</strong>teractions and not from o<strong>the</strong>r forms <strong>of</strong> epistasis <strong>in</strong>volv<strong>in</strong>gadditive effects (Crow and Kimura 1970; page 80).To test for synergism <strong>in</strong> this way, Willis (1 993) generatedl<strong>in</strong>es <strong>of</strong> monkeyflowers with expected <strong><strong>in</strong>breed<strong>in</strong>g</strong> coefficients<strong>of</strong> 0, 0.25, 0.5, and 0.75 (correspond<strong>in</strong>g to progeny<strong>of</strong> outcrosses, full-sib mat<strong>in</strong>gs, selfs, and second generationselfs, respectively). Although most fitness traits decl<strong>in</strong>edsubstantially with <strong><strong>in</strong>breed<strong>in</strong>g</strong>, little evidence <strong>of</strong> synergismwas found. Willis makes <strong>the</strong> po<strong>in</strong>t that fitness traits shouldbe logarithmically transformed and, when do<strong>in</strong>g so withseveral published datasets, he f<strong>in</strong>ds strong evidence forsynergism, particularly <strong>in</strong> forest trees. The usual trend wasthat mildly <strong>in</strong>bred progeny (F I 0.25) showed little <strong><strong>in</strong>breed<strong>in</strong>g</strong><strong>depression</strong>, while strongly <strong>in</strong>bred progeny (F 2 0.5)showed rapid deterioration <strong>of</strong> fitness.However, one significant problem with any experimentthat uses l<strong>in</strong>es derived from <strong><strong>in</strong>breed<strong>in</strong>g</strong> is that <strong>the</strong> very object<strong>of</strong> study, <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>, can be purged dur<strong>in</strong>g <strong>the</strong>creation <strong>of</strong> <strong>the</strong>se l<strong>in</strong>es. In particular, negative synergism maybe masked by <strong>the</strong> ext<strong>in</strong>ction <strong>of</strong> l<strong>in</strong>es possess<strong>in</strong>g those allelesthat <strong>in</strong> comb<strong>in</strong>ation are lethal. For example, regressions <strong>of</strong> fitnesson F may be l<strong>in</strong>ear when ext<strong>in</strong>ct l<strong>in</strong>es are ignored butcurvil<strong>in</strong>ear downwards when ext<strong>in</strong>ct l<strong>in</strong>es are <strong>in</strong>cluded.Diallele crosses and o<strong>the</strong>r classical approachesIn <strong>the</strong> 1950s, quantitative <strong>genetic</strong>ists devised several experimentaldesigns for characteriz<strong>in</strong>g <strong>the</strong> dom<strong>in</strong>ance <strong>of</strong> genesfor a quantitative trait. Comstock and Robertson (1952)summarized three experimental procedures (North Carol<strong>in</strong>adesigns I, 11, and 111), <strong>in</strong>volv<strong>in</strong>g <strong>in</strong>termat<strong>in</strong>g (designs I and11) or backcross<strong>in</strong>g (design 111) F,s. All were aimed at <strong>in</strong>ferr<strong>in</strong>gaverage degree <strong>of</strong> dom<strong>in</strong>ance. Hayman (1960) revieweddiallele cross methods, which <strong>in</strong>volve cross<strong>in</strong>g <strong>in</strong>bred stra<strong>in</strong>s<strong>in</strong> all possible comb<strong>in</strong>ations (<strong>in</strong>clud<strong>in</strong>g selfs). These methodsare generally concerned with <strong>in</strong>ferr<strong>in</strong>g general comb<strong>in</strong><strong>in</strong>gability or <strong>the</strong> dom<strong>in</strong>ance variance due to heterosis. Henoted <strong>the</strong> dist<strong>in</strong>ction between measur<strong>in</strong>g <strong>the</strong> properties <strong>of</strong> <strong>the</strong><strong>in</strong>bred l<strong>in</strong>es <strong>the</strong>mselves, as opposed to <strong>the</strong> properties <strong>of</strong><strong>the</strong> population from which <strong>the</strong> l<strong>in</strong>es are sampled.This raises a related issue: <strong>the</strong> method should dist<strong>in</strong>guishbetween measur<strong>in</strong>g properties <strong>of</strong> genes expressed <strong>in</strong> <strong>in</strong>bred


Review I Syn<strong>the</strong>se<strong>in</strong>dividuals, as opposed to <strong>the</strong> properties <strong>of</strong> genes <strong>in</strong> outbred<strong>in</strong>dividuals. Most designs measure <strong>the</strong> latter, <strong>in</strong> that <strong>the</strong>ycharacterize genes underly<strong>in</strong>g heterosis. Although <strong><strong>in</strong>breed<strong>in</strong>g</strong><strong>depression</strong> may be termed <strong>the</strong> "converse" <strong>of</strong> heterosis, itdoes not follow that gene effects are <strong>the</strong> same for both.The quantitative <strong>basis</strong> for this expectation lies <strong>in</strong> <strong>the</strong> work<strong>of</strong> Jacquard, whose formulae allow for differences betweendom<strong>in</strong>ance deviations <strong>of</strong> alleles <strong>in</strong> <strong>the</strong> outbred referencepopulation versus dom<strong>in</strong>ance deviations <strong>of</strong> alleles <strong>in</strong> <strong>the</strong>derived homozygous population. Jacquard (1 974;pp. 13 1-1 35) and Cockerham and Weir (1984) discuss <strong>the</strong>relationship between <strong>the</strong>se two components <strong>of</strong> dom<strong>in</strong>ance.It seems <strong>the</strong> proper quantitative <strong>genetic</strong> characterization<strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> would <strong>in</strong>volve <strong>the</strong>se quantities.Genic <strong>in</strong>ferencesWe now focus on approaches that identify specific locicaus<strong>in</strong>g <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>. This approach may ultimatelyresolve <strong>the</strong> so-called "<strong>genetic</strong> architecture" <strong>of</strong><strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>, which <strong>in</strong>cludes all facets <strong>of</strong> its<strong>genetic</strong> control, such as <strong>the</strong> type <strong>of</strong> action (dom<strong>in</strong>ance vs.overdom<strong>in</strong>ance), <strong>the</strong> numbers <strong>of</strong> genes (few vs. many),<strong>the</strong> strength <strong>of</strong> action (lethal, sublethal, mild), and <strong>the</strong><strong>in</strong>teractions and l<strong>in</strong>kages <strong>of</strong> genes.In pr<strong>in</strong>ciple, such <strong>in</strong>ferences could be made by extensions<strong>of</strong> classical quantitative <strong>genetic</strong> approaches. For example,<strong>the</strong> cross<strong>in</strong>g <strong>of</strong> <strong>in</strong>bred l<strong>in</strong>es can reveal segregation <strong>of</strong> <strong>in</strong>dividualloci and, over all l<strong>in</strong>es and crosses, one should beable to recover <strong>in</strong>formation about gene number, gene frequency,and <strong>the</strong> distribution <strong>of</strong> gene effects. With <strong>the</strong> advent<strong>of</strong> cheap comput<strong>in</strong>g, it should be possible to <strong>in</strong>vent experimentaldesigns with complex <strong>genetic</strong> <strong>in</strong>ferences, solvedby numerical methods such as <strong>the</strong> Markov-Cha<strong>in</strong> Monte-Carlo algorithm (Thompson 1994).A different route would be to employ <strong>the</strong> "reverse" <strong>genetic</strong>sapproach, where one first identifies <strong>in</strong>dividual genes,<strong>the</strong>n <strong>in</strong>fers <strong>the</strong>ir mode <strong>of</strong> action and <strong>in</strong>teraction by measur<strong>in</strong>gfitness <strong>of</strong> known genotypes. While it is a common andpowerful mode <strong>of</strong> <strong>in</strong>ference <strong>in</strong> human <strong>genetic</strong>s wheresequences <strong>of</strong> disease genes are rout<strong>in</strong>ely assayed, we are along way from such modes <strong>of</strong> <strong>in</strong>ference with wild plant populations.One compromise is to f<strong>in</strong>d simply <strong>in</strong>herited fitnesstraits and <strong>the</strong>n to elucidate <strong>the</strong>ir <strong>genetic</strong> <strong>basis</strong> by cross<strong>in</strong>gand test<strong>in</strong>g for Mendelian segregation ratios. Such traits arerare, but an excellent example <strong>in</strong> <strong>plants</strong> is chlorophyll deficiency.Willis ( 1992) found synergistic epistatis between twoloci controll<strong>in</strong>g chlorophyll deficiency <strong>in</strong> Mimulus guttatus,<strong>in</strong> <strong>the</strong> form <strong>of</strong> duplicate gene expression (recessives at bothloci needed for <strong>the</strong> lethal condition <strong>of</strong> no chlorophyll).Quantitative trait locus mapp<strong>in</strong>g with s<strong>in</strong>gle crosses:heterosisTo study <strong>in</strong>dividual loci and <strong>the</strong> "<strong>genetic</strong> architecture" <strong>of</strong><strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>, one can employ <strong>genetic</strong> markers tomap <strong>in</strong>dividual "quantitative trait loci" (QTLs) by follow<strong>in</strong>g<strong>the</strong> cosegregation <strong>of</strong> fitness with <strong>genetic</strong> markers undercontrolled selfs or crosses. Although <strong>genetic</strong> markers havebeen used to study quantitative traits for over 70 years,<strong>the</strong> advent <strong>of</strong> molecular markers has made such detaileddissections <strong>of</strong> architecture possible. One disadvantage <strong>of</strong>marker methods is that <strong>the</strong> experimental effort needed forf<strong>in</strong>e scale resolution may be prohibitive because <strong>of</strong> <strong>the</strong>sample sizes needed to detect rare recomb<strong>in</strong>ation events.One major advantage is that purg<strong>in</strong>g can be m<strong>in</strong>imized byus<strong>in</strong>g experimental designs based upon one generation <strong>of</strong>segregation.In an exemplary study only possible with a model organism,Stuber et al. (1992) utilized 76 markers to map QTLsaffect<strong>in</strong>g seven agricultural traits <strong>in</strong> a cross between twowidely used maize <strong>in</strong>bred l<strong>in</strong>es. N<strong>in</strong>e regions affect<strong>in</strong>gyield were mapped and eight <strong>of</strong> <strong>the</strong>se showed significantoverdom<strong>in</strong>ance. This could reflect apparent overdom<strong>in</strong>ance(l<strong>in</strong>ked recessives <strong>in</strong> repulsion), although <strong>the</strong>y did try tom<strong>in</strong>imize this effect by us<strong>in</strong>g F,s to <strong>in</strong>crease recomb<strong>in</strong>ationbetween QTLs. They also compared two QTL mapp<strong>in</strong>gmethods, <strong>the</strong> "s<strong>in</strong>gle marker method" (Soller and Brody1976) and <strong>the</strong> <strong>in</strong>terval mapp<strong>in</strong>g method (Lander andBotste<strong>in</strong> 1989), and found that <strong>the</strong> two methods yieldedalmost identical results. However, <strong>the</strong>y po<strong>in</strong>t out that <strong>in</strong>tervalmapp<strong>in</strong>g is still preferable, particularly when markersare closely l<strong>in</strong>ked and <strong>the</strong> map location <strong>of</strong> <strong>the</strong> QTL isdesired, and when <strong>the</strong>re is a substantial portion <strong>of</strong> miss<strong>in</strong>gdata. In addition, <strong>in</strong> conflict with <strong>the</strong>se marker-derivedconclusions, <strong>the</strong> experiences <strong>of</strong> corn breeders <strong>in</strong>dicate thatoverdom<strong>in</strong>ance is usually not responsible for heterosis <strong>in</strong>corn. High yield<strong>in</strong>g maize <strong>in</strong>breds have been developedthat are not as good as <strong>the</strong> best hybrids, but are better thanwould be expected if <strong>the</strong>re were large contributions byoverdom<strong>in</strong>ant loci (Crow 1993).In a rigorous statistical exam<strong>in</strong>ation <strong>of</strong> <strong>the</strong> evidence fordom<strong>in</strong>ance versus overdom<strong>in</strong>ance <strong>of</strong> QTLs, Mitchell-Olds(1995) mapped viability loci contribut<strong>in</strong>g to heterosis <strong>in</strong>Arabidopsis. He found a 50% reduction <strong>of</strong> viability <strong>of</strong>homozygotes relative to heterozygotes <strong>in</strong> a short <strong>in</strong>terval <strong>of</strong>chromosome 1 and found this apparent heterosis to bebetter expla<strong>in</strong>ed by functional overdom<strong>in</strong>ance than bypseudo-overdom<strong>in</strong>ance (associative overdom<strong>in</strong>ance or overdom<strong>in</strong>ance<strong>of</strong> a l<strong>in</strong>ked locus). He also noted that <strong>in</strong>tervalmapp<strong>in</strong>g may give spurious "LOD humps" ow<strong>in</strong>g to violations<strong>of</strong> <strong>the</strong> assumptions <strong>of</strong> <strong>the</strong> estimation procedure.One assumption possibly violated is <strong>the</strong> normal distribution<strong>of</strong> error residuals. Also, he states that an <strong>in</strong>terval that doesnot conta<strong>in</strong> an actual QTL may show a LOD maximumnear <strong>the</strong> center <strong>of</strong> <strong>the</strong> <strong>in</strong>terval, s<strong>in</strong>ce this position is far<strong>the</strong>stfrom any potentially conflict<strong>in</strong>g data at <strong>the</strong> observed markers.Many statistical problems rema<strong>in</strong> with complex analysesposed by such data.QTL mapp<strong>in</strong>g with s<strong>in</strong>gle crosses: <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>Heterosis occurs <strong>in</strong> hybrids between dist<strong>in</strong>ct stra<strong>in</strong>s, l<strong>in</strong>es,or populations and <strong>the</strong> alleles caus<strong>in</strong>g such differenceshave relatively large effects and hence are easy to map. Bycontrast, <strong>the</strong> proper <strong>in</strong>ferential procedure for <strong><strong>in</strong>breed<strong>in</strong>g</strong><strong>depression</strong> would <strong>in</strong>volve selfs and outcrosses us<strong>in</strong>g <strong>in</strong>dividualsfrom a s<strong>in</strong>gle <strong>in</strong>terbreed<strong>in</strong>g population. However,<strong>the</strong> alleles segregat<strong>in</strong>g with<strong>in</strong> populations are usually <strong>of</strong>small effect, result<strong>in</strong>g <strong>in</strong> lower power for detection <strong>of</strong>QTLs compared with hybrid mapp<strong>in</strong>g. This necessitatesmuch larger sample sizes, mak<strong>in</strong>g <strong>the</strong> <strong>in</strong>terval mapp<strong>in</strong>gapproach, with its requirements <strong>of</strong> a saturated marker l<strong>in</strong>kagemap, difficult for studies <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>.


Genome, Vol. 39, 1996Fig. 3. The observed segregation ratios illustrat<strong>in</strong>g geneaction <strong>in</strong> Mimulus (<strong>the</strong> level <strong>of</strong> statistical significance is<strong>in</strong>dicated). Adapted from Fu and Ritland (1994a).underdomlnantV00.5Homozygote marker frequency(less frequent homozygote)eutralAn alternative is to use only a handful <strong>of</strong> unl<strong>in</strong>ked markersto obta<strong>in</strong> a "random sample" <strong>of</strong> l<strong>in</strong>ked QTLs <strong>in</strong> <strong>the</strong>genome. Such a random sample <strong>of</strong> <strong>the</strong> genome is particularlyappropriate for <strong>the</strong> character <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>because its mutant alleles are probably <strong>in</strong>frequent at <strong>in</strong>dividualloci and widely distributed throughout <strong>the</strong> genome.The number <strong>of</strong> markers adequate for such a random sampleis quite low, about <strong>the</strong> number <strong>of</strong> isozyme markers typicallypolymorphic <strong>in</strong> an outbreed<strong>in</strong>g species, thus allow<strong>in</strong>g studies<strong>of</strong> wild populations by workers with limited resources.In <strong>the</strong> first attempt to provide such a practicable approachfor mapp<strong>in</strong>g QTLs controll<strong>in</strong>g <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>,Hedrick and Muona (1990) showed that, assum<strong>in</strong>g a s<strong>in</strong>glerecessive QTL l<strong>in</strong>ked to a marker locus, one can estimate<strong>the</strong> recomb<strong>in</strong>ation fraction and strength <strong>of</strong> selection at <strong>the</strong>QTL. In <strong>the</strong>ir approach, a plant heterozygous for <strong>the</strong> markeris selfed and <strong>the</strong> segregation ratio <strong>of</strong> progeny is analyzed.They found a near-lethal gene at a locus closely l<strong>in</strong>ked toan esterase marker <strong>in</strong> Scots p<strong>in</strong>e.Because <strong>the</strong>re are only two degrees <strong>of</strong> freedom <strong>in</strong> suchdata, one cannot <strong>in</strong>fer <strong>the</strong> degree <strong>of</strong> dom<strong>in</strong>ance at <strong>the</strong>selected locus, as any dom<strong>in</strong>ance will bias estimates. Inan extension <strong>of</strong> <strong>the</strong> method <strong>of</strong> Hedrick and Muona, Fu andRitland (1 994a) presented a graphical method for analyz<strong>in</strong>g<strong>the</strong> "space" <strong>of</strong> s<strong>in</strong>gle-locus segregation ratios, with<strong>in</strong> whichall modes <strong>of</strong> gene action can at least be partially dist<strong>in</strong>guished.Us<strong>in</strong>g this method, we found partial dom<strong>in</strong>ance tobe <strong>the</strong> primary mode <strong>of</strong> gene action <strong>in</strong> selfed progenies<strong>of</strong> monkeyflowers assayed for 5-8 segregat<strong>in</strong>g isozymemarkers (Fig. 3). However, this method is <strong>of</strong> limited value,because some segregation ratios can be attributed to morethan one alternative mode <strong>of</strong> gene action (see Fig. 3) andit cannot disentangle <strong>the</strong> strength <strong>of</strong> gene effect from itsl<strong>in</strong>kage. To <strong>in</strong>crease <strong>the</strong> resolution <strong>of</strong> gene effect, one canuse l<strong>in</strong>ked markers or a comb<strong>in</strong>ed self-testcross design.The method <strong>of</strong> assayed selfed progeny for markers canalso be extended to a multilocus analysis (Fu and Ritland1996) to make <strong>in</strong>ferences about synergistic <strong>in</strong>teractionsbetween QTLs. This method <strong>in</strong>volves regress<strong>in</strong>g <strong>the</strong> number<strong>of</strong> apparently deleterious homozygous loci (ADH loci) <strong>in</strong>selfed progeny aga<strong>in</strong>st <strong>the</strong> fitness <strong>of</strong> progeny. O<strong>the</strong>r modes<strong>of</strong> selection can be <strong>in</strong>corporated by a bivariate regression<strong>in</strong>volv<strong>in</strong>g both homozygote and heterozygote markers <strong>in</strong>selfed progenies. Note that self-fertile organisms arerequired: related experimental designs could be used for<strong>in</strong>ferences about genes caus<strong>in</strong>g <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> undermilder forms <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong>.QTL mapp<strong>in</strong>g with multiple crossesLike most human diseases, <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> undoubtedlyhas a complex <strong>genetic</strong> <strong>basis</strong>: most QTLs controll<strong>in</strong>g<strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> are homozygous <strong>in</strong> any s<strong>in</strong>gle <strong>in</strong>dividualand different <strong>in</strong>dividuals are heterozygous for differentQTLs. Ideally, several crosses should be performed andall crosses jo<strong>in</strong>tly analyzed for parameters such as genefrequency <strong>of</strong> <strong>in</strong>dividual QTLs and <strong>the</strong> distribution <strong>of</strong> alleleeffects. To this end, Fu and Ritland (1 9946) presented astatistical model for <strong>the</strong> jo<strong>in</strong>t analysis <strong>of</strong> several selfedprogeny arrays. We found that under our model, <strong>the</strong>re is anoptimal number <strong>of</strong> arrays (assum<strong>in</strong>g a fixed total number<strong>of</strong> progeny); <strong>the</strong> precise optimum depended on <strong>the</strong> l<strong>in</strong>kagedistance between <strong>the</strong> marker and <strong>the</strong> QTL, as well as <strong>the</strong>gene frequencies and strength <strong>of</strong> selection act<strong>in</strong>g on <strong>the</strong>QTL. Alternative statistical models for analyz<strong>in</strong>g polymorphicQTLs should be a fruitful problem for statistical<strong>genetic</strong>ists to pursue.ConclusionThe extension <strong>of</strong> marker-based <strong>in</strong>ferences to <strong>the</strong> populationlevel completes <strong>the</strong> circle <strong>of</strong> methods and poses <strong>the</strong> question,where do we go from here? Significant advances willbe made by new experimental protocols, <strong>in</strong>volv<strong>in</strong>g bothmolecular methods and statistical <strong>in</strong>ferences, comb<strong>in</strong>edwith a wise choice <strong>of</strong> species, particularly "model" speciessuch as Drosophila, Arabidopsis, or Mimulus. However,<strong>the</strong> question rema<strong>in</strong>s as to how well <strong>the</strong>se model speciesrepresent <strong>the</strong> rest <strong>of</strong> <strong>the</strong> biological world. In particular, doannual <strong>plants</strong> represent long-lived perennials, such as trees,and do <strong>in</strong>breeders represent what is found <strong>in</strong> outbreeders?Ano<strong>the</strong>r question rema<strong>in</strong>s as to how well laboratorystudies, with <strong>the</strong>ir high resolution, represent what is actuallyoccurr<strong>in</strong>g <strong>in</strong> nature. A major problem <strong>in</strong> study<strong>in</strong>g any fitnesscharacter is <strong>the</strong> evaluation <strong>of</strong> fitness under realisticconditions, <strong>the</strong> native environment <strong>of</strong> <strong>the</strong> species. Estimates<strong>of</strong> fitness are <strong>of</strong>ten conducted <strong>in</strong> noncompetitive conditions,<strong>in</strong> gardens, greenhouses, or growth chambers. Under <strong>the</strong>seconditions, <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> is usually less than thatfound under natural conditions. In fact, <strong>the</strong> major focus<strong>of</strong> a recent book, The Natural History <strong>of</strong> Inbreed<strong>in</strong>g andCrossbreed<strong>in</strong>g, edited by Nancy Thornhill, is upon fieldstudies <strong>in</strong>volv<strong>in</strong>g nonmodel species. However, this is when<strong>the</strong> <strong>genetic</strong> <strong>basis</strong> <strong>of</strong> characters is most difficult to determ<strong>in</strong>e.Unless significant methodological advances are made


Review / Syn<strong>the</strong>se<strong>in</strong>volv<strong>in</strong>g simple <strong>genetic</strong> analysis <strong>of</strong> nonmodel speciesunder field conditions, most <strong>of</strong> our advances about <strong>the</strong><strong>genetic</strong>s <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> will cont<strong>in</strong>ue to be madewith model species under controlled conditions.AcknowledgmentsI thank Bill Cole, Yong-Bi Fu, Brian Husband, TomMitchell-Olds, and Carol Ritland for <strong>the</strong>ir comments andB.H. and T.M.-0. for copies <strong>of</strong> <strong>the</strong>ir manuscripts.ReferencesAllard, R.W., Ja<strong>in</strong>, S.K., and Workman, P.L. 1968. The <strong>genetic</strong>s<strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> populations. Adv. Genet. 14: 55-1 3 1.Barrett, S.C.H., and Charlesworth, D. 1991. Effects <strong>of</strong> a change<strong>in</strong> <strong>the</strong> level <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> on <strong>the</strong> <strong>genetic</strong> load. Nature(London), 352: 522-524.Barrett, S.C.H., and Harder, L. 1995. Ecology and evolution<strong>of</strong> plant mat<strong>in</strong>g. Trends Ecol. Evol. In press.Charlesworth, B., Charlesworth, D., and Morgan, M.T. 1990.Genetic loads and estimates <strong>of</strong> mutation rates <strong>in</strong> highly<strong>in</strong>bred plant populations. Nature (London), 347: 380-382.Charlesworth, D., and Charlesworth, B. 1987. Inbreed<strong>in</strong>g <strong>depression</strong>and its evolutionary consequences. Annu. Rev. Ecol.Syst. 18: 237-268.Charlesworth, D., and Charlesworth, B. 1990. Inbreed<strong>in</strong>g <strong>depression</strong>with heterozygote advantage and its effect on selectionfor modifiers chang<strong>in</strong>g <strong>the</strong> outcross<strong>in</strong>g rate. Evolution, 44:870-888.Charlesworth, D., Morgan, M.T., and Charlesworth, B. 1991.Multilocus models <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> with synergisticselection and partial self fertilization. Genet. Res. (Camb.),57: 177-194.Charlesworth, D., Lyons, E.E., and Litchfield, L.B. 1994.Inbreed<strong>in</strong>g <strong>depression</strong> <strong>in</strong> two highly <strong><strong>in</strong>breed<strong>in</strong>g</strong> populations<strong>of</strong> Leavenworthia. Proc. R. Soc. Lond. B Biol. Sci. 258:209-2 14.Cockerham, C.C., and Weir, B.S. 1984. Covariances <strong>of</strong> relativesstemm<strong>in</strong>g from a population undergo<strong>in</strong>g mixed self andrandom mat<strong>in</strong>g. Biometries, 40: 157-1 64.Comstock, R.E., and Rob<strong>in</strong>son, H.F. 1952. Estimation <strong>of</strong> averagedom<strong>in</strong>ance <strong>of</strong> genes. In Heterosis; a record <strong>of</strong> researchesdirected toward expla<strong>in</strong><strong>in</strong>g and utiliz<strong>in</strong>g <strong>the</strong> vigor <strong>of</strong> hybrids.Iowa State College Press, Ames, Iowa. pp. 494-516.Crow, J.F. 1948. Alternative hypo<strong>the</strong>ses <strong>of</strong> hybrid vigor.Genetics, 33: 477-487.Crow, J.F. 1993. Mutation, mean fitness, and <strong>genetic</strong> load.In Oxford surveys <strong>in</strong> evolutionary biology, vol. 9. pp. 3-42.Crow, J.F., and Kimura, M. 1970. An <strong>in</strong>troduction to population<strong>genetic</strong>s <strong>the</strong>ory. Burgess, M<strong>in</strong>neapolis, M<strong>in</strong>n., U.S.A.Crow, J.F., and Simmons, M.J. 1983. The mutation load <strong>in</strong>Drosophila. In The <strong>genetic</strong>s and biology <strong>of</strong> Drosophila.Edited by M. Ashburner, H.L. Carson, and J.N. Thompson.Academic Press, New York.Fu, Y.B., and Ritland, K. 1994a. Evidence for <strong>the</strong> partialdom<strong>in</strong>ance <strong>of</strong> viability genes contribut<strong>in</strong>g to <strong><strong>in</strong>breed<strong>in</strong>g</strong><strong>depression</strong> <strong>in</strong> Mimulus guttatus. Genetics, 136: 323-33 1.Fu, Y.B., and Ritland, K. 1994b. On estimat<strong>in</strong>g l<strong>in</strong>kage <strong>of</strong>marker genes to viability genes controll<strong>in</strong>g <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>.Theor. Appl. Genet. 88: 925-932.Fu, Y.B., and Ritland, K. 1996. Marker based <strong>in</strong>ferences aboutepistasis for genes <strong>in</strong>fluenc<strong>in</strong>g <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>. Genetics.In press.Gowen, J. 1952. Heterosis: a record <strong>of</strong> researches directedtoward expla<strong>in</strong><strong>in</strong>g and utiliz<strong>in</strong>g <strong>the</strong> vigor <strong>of</strong> hybrids. IowaState College press, Ames, Iowa, U.S.A.Hayman, B.I. 1960. The <strong>the</strong>ory and analysis <strong>of</strong> diallel crosses:111. Genetics, 45: 155-172.Hedrick, P.W., and Muona, 0 . 1990. L<strong>in</strong>kage <strong>of</strong> viability genesto marker loci <strong>in</strong> self<strong>in</strong>g organisms. Heredity, 64: 67-72.Husband, B., and Schemske, D. 1995. Evolution <strong>of</strong> <strong>the</strong> magnitudeand tim<strong>in</strong>g <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> <strong>in</strong> <strong>plants</strong>.Evolution. In press.Jacquard, A. 1974. The <strong>genetic</strong> structure <strong>of</strong> populations.Spr<strong>in</strong>ger, Berl<strong>in</strong>.Johnston, M.O., and Schoen, D.J. 1995. Mutation rates anddom<strong>in</strong>ance levels <strong>of</strong> genes affect<strong>in</strong>g total fitness <strong>in</strong> twoangiosperm species. Science (Wash<strong>in</strong>gton, D.C.), 267:226-229.Klekowski, E.J. 1988. Mutation, developmental selection, andplant evolution. Columbia University Press, New York, N.Y.,U.S.A.Kondrashov, A.S. 1985. Deleterious mutations as an evolutionaryfactor. 11. Facultative apomixis and self<strong>in</strong>g. Genetics, 111:635-653.Lande, R., and Schemske, D.W. 1985. The evolution <strong>of</strong> selffertilizationand <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> <strong>in</strong> <strong>plants</strong>. I. Geneticmodels. Evolution, 39: 24-40.Lande, R., Schemske, W.W., and Schultz, S.T. 1994. High<strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>, selective <strong>in</strong>terference among loci,and <strong>the</strong> threshold self<strong>in</strong>g rate for purg<strong>in</strong>g recessive lethalmutations. Evolution, 48: 965-978.Lander, E.S., and Botste<strong>in</strong>, D. 1989. Mapp<strong>in</strong>g Mendelian factorsunderly<strong>in</strong>g quantitative traits us<strong>in</strong>g RFLP l<strong>in</strong>kage maps.Genetics, 121: 185-199.Latta, R., and Ritland, K. 1994. The relationship between<strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> and prior <strong><strong>in</strong>breed<strong>in</strong>g</strong> among populations<strong>of</strong> four Mimulus taxa. Evolution, 48: 806-817.Lev<strong>in</strong>, D.A. 1989. Inbreed<strong>in</strong>g <strong>depression</strong> <strong>in</strong> partially selffertiliz<strong>in</strong>gPhlox. Evolution, 43: 14 17-1423.Mitchell-Olds, T.M.O. 1995. Interval mapp<strong>in</strong>g <strong>of</strong> viability locicaus<strong>in</strong>g heterosis <strong>in</strong> Arabidopsis. Genetics. In press.Morton, N.E., Crow, J.F., and Muller, H.J. 1956. An estimate <strong>of</strong>mutational damage <strong>in</strong> man from data on consangu<strong>in</strong>ousmarriages. Proc. Natl. Acad. Sci. U.S.A. 60: 5 17-524.Mukai, T. 1964. Spontaneous mutation rate <strong>of</strong> polygenes controll<strong>in</strong>gviability. Genetics, 50: 1-19.Ritland, C., and Ritland, K. 1989. Variation <strong>of</strong> sex allocationamong eight species <strong>of</strong> <strong>the</strong> Mimulus guttatus complex. Am.J. Bot. 76: 1731-1739.Ritland, K. 1983. Estimation <strong>of</strong> mat<strong>in</strong>g systems. In Isozymes <strong>in</strong>plant <strong>genetic</strong>s and breed<strong>in</strong>g. Edited by S. Tanksley andT. Orton. Elsevier Scientific Publications, Amsterdam.pps. 289-302.Ritland, K. 1990. Inferences about <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> basedupon changes <strong>of</strong> <strong>the</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> coefficient. Evolution, 44:1230-1241.Schemske, D.W., and Lande, R. 1985. The evolution <strong>of</strong> selffertilizationand <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong> <strong>in</strong> <strong>plants</strong>. 11. Empiricalobservations. Evolution, 39: 41-52.Simberl<strong>of</strong>f, D. 1988. The contribution <strong>of</strong> population andcommunity biology to conservation science. Annu. Rev.Ecol. Syst. 19: 473-5 11.Soller, M., and Brody, T. 1976. On <strong>the</strong> power <strong>of</strong> experimentaldesigns for <strong>the</strong> detection <strong>of</strong> l<strong>in</strong>kage between marker lociand quantitative loci <strong>in</strong> crosses between <strong>in</strong>bred l<strong>in</strong>es. Theor.Appl. Genet. 47: 35-39.Sorenson, F. 1969. Embryonic <strong>genetic</strong> load <strong>in</strong> coastal Douglasfir,Pseudotsuga menziesii var. menziesii. Am. Nat. 103:389-398.


8Genome, Vol. 39, 1996Stuber, C.W., L<strong>in</strong>coln, S.E., Wolff, D.W., Helentjaris, T., andLander, E.S. 1992. Identification <strong>of</strong> <strong>genetic</strong> factors contribut<strong>in</strong>gto heterosis <strong>in</strong> a hybrid from two elite maize <strong>in</strong>bredl<strong>in</strong>es us<strong>in</strong>g molecular markers. Genetics, 132: 823-839.Sved, J.A., and Wilton, A.N. 1989. Inbreed<strong>in</strong>g <strong>depression</strong> and<strong>the</strong> ma<strong>in</strong>tenance <strong>of</strong> deleterious genes by mutation: model<strong>of</strong> a Drosophila chromosome. Genet. Res. 54: 119-128.Thompson, E.A. 1994. Monte-Carlo likelihood <strong>in</strong> <strong>the</strong> <strong>genetic</strong>mapp<strong>in</strong>g <strong>of</strong> complex traits. Philos. Trans. R. Soc. Lond.B Biol. Sci. 344: 345-350.Uyenoyama, M.K., Hols<strong>in</strong>ger, K.E., and Waller, D.M. 1993.Ecological and <strong>genetic</strong> factors direct<strong>in</strong>g <strong>the</strong> evolution <strong>of</strong>self-fertilization. In Oxford surveys <strong>in</strong> evolutionary biology,VO~. 9. pp. 327-38 1.Willis, J.H. 1992. Genetic analysis <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> <strong>depression</strong>caused by chlorophyll-deficient lethals <strong>in</strong> Mimulus guttatus.Heredity, 69: 562-572.Willis, J.H. 1993. Effects <strong>of</strong> different levels <strong>of</strong> <strong><strong>in</strong>breed<strong>in</strong>g</strong> onfitness components <strong>in</strong> Mimulus guttatus. Evolution. 47:864-876.Ziehe, M., and Roberds, J.H. 1989. Inbreed<strong>in</strong>g <strong>depression</strong> dueto overdom<strong>in</strong>ance <strong>in</strong> partially self-fertiliz<strong>in</strong>g plant populations.Genetics, 121: 86 1-868.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!