10.07.2015 Views

LUT-Vision-and-initial-feasibility-of-a-recarbonised-Finnish-energy-system-for-2050

LUT-Vision-and-initial-feasibility-of-a-recarbonised-Finnish-energy-system-for-2050

LUT-Vision-and-initial-feasibility-of-a-recarbonised-Finnish-energy-system-for-2050

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

VISION AND INITIAL FEASIBILITYANALYSIS OF A RECARBONISEDFINNISH ENERGY SYSTEMResults <strong>for</strong> EnergyPLAN simulations <strong>of</strong> <strong>2050</strong> Finl<strong>and</strong>Michael Child & Christian BreyerLappeenranta, 07.06.2015


Agenda• Introduction to study• Methods• Main results• Interpretation <strong>of</strong> results• Questions <strong>and</strong> discussion3Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Primary aims:‣ To examine the components <strong>of</strong> a fully-integrated (power, heating/cooling <strong>and</strong> mobility)fully-functional, reliable <strong>and</strong> recarbonized <strong>energy</strong> <strong>system</strong> <strong>for</strong> Finl<strong>and</strong> in <strong>2050</strong>‣ To determine the extent to which differing levels <strong>of</strong> nuclear power <strong>and</strong> <strong>for</strong>est-basedbiomass affect the cost <strong>of</strong> such an <strong>energy</strong> <strong>system</strong>‣ To explore the roles <strong>of</strong> <strong>energy</strong> storage solutions in facilitating high shares <strong>of</strong> variablerenewable <strong>energy</strong> generation, with a particular focus on Power-to-Gas (PtG), Powerto-Liquid(PtL) <strong>and</strong> <strong>energy</strong> storage technologies‣ To develop more accurate future <strong>energy</strong> scenario modelling methodology in Finl<strong>and</strong>that includes complete transparency <strong>of</strong> modelling assumptions‣ To encourage discourse on <strong>energy</strong>-related issues that will contribute to thetrans<strong>for</strong>mation <strong>of</strong> the <strong>Finnish</strong> <strong>energy</strong> <strong>system</strong> towards long-term sustainability4Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


The uniqueness <strong>of</strong> our work‣ Only research to consider 100% RE scenarios <strong>for</strong> Finl<strong>and</strong>‣ Only research to seek a virtually carbon-free <strong>energy</strong> <strong>system</strong> by <strong>2050</strong>‣ Full integration <strong>of</strong> power, heating/cooling <strong>and</strong> mobility sectors‣ Greatly exp<strong>and</strong>ed roles <strong>for</strong> wind <strong>and</strong> solar <strong>energy</strong>‣ First study to explore large-scale <strong>energy</strong> storage solutions <strong>and</strong> Power-to-Gas (PtG)‣ System modelled on an hourly resolution using historical data <strong>for</strong> a calendar year‣ Full transparency <strong>of</strong> technical <strong>and</strong> economic assumptions‣ Results suggest that a 100% RE scenario is a highly competitive cost solutioncompared to other test scenarios with increasing shares <strong>of</strong> nuclear power <strong>and</strong> aBusiness As Usual (BAU) scenario5Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Agenda• Introduction to study• Methods• Main results• Interpretation <strong>of</strong> results• Questions <strong>and</strong> discussion6Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


EnergyPLAN• Developed in 1999 atAalborg University inDenmark• Widely used <strong>and</strong> respected• Energy <strong>system</strong> analysiscarried out in hourly steps<strong>for</strong> one year• Model includes analysis <strong>of</strong>electricity, heating <strong>and</strong>transport sectors• Results <strong>for</strong>m basis <strong>of</strong>technical regulation <strong>and</strong>market optimizationstrategies• Main aim is to assist in thedesign <strong>of</strong> national <strong>energy</strong>planning strategies• Model can also be applied onlarger <strong>and</strong> smaller scales• Free download fromhttp://www.<strong>energy</strong>plan.eu/7Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Introduction to scenarios−−−−−2012 Reference2020 Reference<strong>2050</strong> Basic (Maximum 145 TWhth biomass)− 100 % RE− Low Nuclear (1.6 GWe)− Medium Nuclear (2.8 GWe)− New Nuclear (4 GWe)<strong>2050</strong> Low Biomass (Maximum 113 TWhth biomass)− 100 % RE− Low Nuclear (1.6 GWe)− Medium Nuclear (2.8 GWe)− New Nuclear (4 GWe)<strong>2050</strong> Reference Business As Usual (BAU)Test scenarios• Target <strong>of</strong> essentiallyzero carbonemissions from<strong>energy</strong> sector• Target <strong>of</strong> complete<strong>energy</strong>independence –Finl<strong>and</strong> as an isl<strong>and</strong>8Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Introduction to scenariosTechnology2012 2020<strong>2050</strong>Basic100%RE<strong>2050</strong>BasicLowNuclear<strong>2050</strong>BasicMediumNuclearInstalled Capacity GWe<strong>2050</strong>BasicNewNuclear<strong>2050</strong> LowBiomass100% RE<strong>2050</strong>LowBiomassLowNuclear<strong>2050</strong>LowBiomassMediumNuclear<strong>2050</strong> LowBiomassNewNuclearWind onshore 0.175 1.6 30 22.5 16 10.5 38 32 34.9 21 3Wind <strong>of</strong>fshore 0 0.9 5 5 5 5 6 6 6 6 1.5Solar PV 0.01 0.1 30 30 30 30 35 35 35 35 1Hydro - Run <strong>of</strong> river 2.595 3.111 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5CHP - DH 3.49 3.5 9 8 7.5 7 8.5 7.5 7 6 4Condensing 2.045 1.5 0 0 0 0 0 0 0 0 3Nuclear 2.75 4.3 0 1.6 2.8 4 0 1.6 2.8 4 6PtG - CH₄ 0 0 23.5 19.6 17.6 17.6 29.4 27.4 25.4 23.5 1.0PtG - H₂ 0 0.142 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57Key insights:• Getting the least cost mix <strong>of</strong> technologies is a manual balancing act using EnergyPLAN• EnergyPLAN separates electrolysers <strong>for</strong> different end products – in reality integrated<strong>2050</strong>BAU9Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Agenda• Introduction to study• Methods• Main results• Interpretation <strong>of</strong> results• Questions <strong>and</strong> discussion10Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Primary <strong>energy</strong>450400Primary Energy (TWhth/a)35030025020015010050NuclearHydrogenHydroSolar PVWind <strong>of</strong>fshoreWind onshoreBiomassNatural GasOilCoal <strong>and</strong> Peat02012 2020 <strong>2050</strong> Basic100% RE<strong>2050</strong> BasicLow Nuclear<strong>2050</strong> BasicMediumNuclear<strong>2050</strong> BasicNew Nuclear<strong>2050</strong> LowBiomass100% RE<strong>2050</strong> LowBiomassLow NuclearKey insights:• Strong roles <strong>for</strong> renewables in test scenarios• Domestic hydrogen becomes major element <strong>of</strong> TPED<strong>2050</strong> LowBiomassMediumNuclear<strong>2050</strong> LowBiomassNew Nuclear<strong>2050</strong> BAU11Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Electricity Production (TWhe/a)Electricity production240NuclearCondensing190CHP-Industry140CHP-District HeatingHydro - Run <strong>of</strong> river90Solar PVWind onshore40Wind <strong>of</strong>fshore-102012 2020 <strong>2050</strong> Basic100% RE<strong>2050</strong> BasicLowNuclear<strong>2050</strong> BasicMediumNuclear<strong>2050</strong> BasicNewNuclear<strong>2050</strong> LowBiomass100% RE<strong>2050</strong> LowBiomassLowNuclear<strong>2050</strong> LowBiomassMediumNuclear<strong>2050</strong> LowBiomassNewNuclearKey insights:• Electricity has increased role in <strong>energy</strong> <strong>system</strong> due to its flexibility• Electricity from wind <strong>and</strong> solar PV become backbone <strong>of</strong> <strong>system</strong><strong>2050</strong> BAUNet import/export orcurtailment12Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Electricity Consumption (TWhe/a)Electricity consumption240V2G lossesPtG (H₂)190PtG (CH₄)140TransportDistrict cooling90Individual heatingHeat pumps - CHP40Total consumption(households <strong>and</strong> industry)-102012 2020 <strong>2050</strong> Basic100% RE<strong>2050</strong> BasicLowNuclear<strong>2050</strong> BasicMediumNuclear<strong>2050</strong> BasicNewNuclear<strong>2050</strong> LowBiomass100% RE<strong>2050</strong> LowBiomassLowNuclear<strong>2050</strong> LowBiomassMediumNuclear<strong>2050</strong> LowBiomassNewNuclear<strong>2050</strong> BAUFlexible dem<strong>and</strong>Key insights:• Closer relation <strong>of</strong> end user consumption to total production in reference scenarios• Large dem<strong>and</strong> <strong>for</strong> electricity in PtG processes13Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Total annual costs (M€/a)Total annual costs300002500020000* WACC 7% ► 15%BAU: + 3 b€New Nuclear: + 2 b€15000100005000Variable costs - otherVariable costs - CO₂Variable costs - fuelFixed operation costsAnnualized investment costs1402012 2020 <strong>2050</strong>Basic100% RE<strong>2050</strong>BasicLowNuclearKey insights:• Str<strong>and</strong>ed investments in nuclear/ coal power stations not accounted (higher WACC?*)• Test scenarios have high level <strong>of</strong> investment• Reference scenarios have high level <strong>of</strong> fuel <strong>and</strong> CO₂ costs (risk <strong>of</strong> high CO 2 price**)Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi<strong>2050</strong>BasicMediumNuclear<strong>2050</strong>BasicNewNuclear<strong>2050</strong> LowBiomass100% RE<strong>2050</strong> LowBiomassLowNuclear<strong>2050</strong> LowBiomassMediumNuclear<strong>2050</strong> Low <strong>2050</strong> BAUBiomassNewNuclear** CO 2 price 75 ► 150 €/tBAU: + 1.9 b€rather likely according to Luderer G. et al.,Environ.Res.Lett., 8, 034033, 2013


Levelized cost <strong>of</strong> electricityFor <strong>2050</strong>BasicMediumNuclearScenarioUnitsWind -onshoreWind -<strong>of</strong>fshoreSolar PVSolar PV -- groundro<strong>of</strong>topmountedHydropower- Run <strong>of</strong> theriverCHPplantsNuclearplantsPtGMethaneCapex €/kWe 900 1800 300 400 3060 820 6500 870Opex_fixed % <strong>of</strong> capex 4.51 % 4.55 % 2.00 % 1.00 % 4.00 % 3.66 % 3.50 % 3.30 %15Opex-var €/MWhe 0 0 0 0 0 2.7 0 0Fuel €/MWhe 0 0 0 0 0 27.288 5.4 40Efficiency % - - - - - 90 %* 37 % 51 %Lifetime Years 30 30 40 40 50 25 40 30Full loadhoursHours 2816 4280 982 982 6123 1124 7963 2667WACC % 7 % 7 % 7 % 7 % 7 % 7 % 7 % 7 %crf %year¯¹ 8.06 % 8.06 % 7.50 % 7.50 % 7.25 % 8.58 % 7.50 % 8.06 %LCOE € cents/kWhe 4.0 5.3 2.9 3.5 5.6 12.2** 10.4 11.5*** Includes 40% electrical efficiency + 50% thermal efficiency; ** final value is levelized cost <strong>of</strong> <strong>energy</strong> (incl. heat)Key insights:• Despite higher LCOE, <strong>of</strong>fshore wind distribution favourable to <strong>energy</strong> <strong>system</strong> <strong>and</strong> may lead to overall costreduction in new simulations• Low full load hours in thermal plants lead to high LCOERecarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Carbon emissionsScenario parameter 2012 2020<strong>2050</strong>Basic100%RE<strong>2050</strong>BasicLowNuclear<strong>2050</strong>BasicMediumNuclear<strong>2050</strong>BasicNewNuclear<strong>2050</strong>LowBiomass100% RE<strong>2050</strong> LowBiomassLowNuclear<strong>2050</strong> <strong>2050</strong>Low LowBiomass BiomassMedium NewNuclear Nuclear<strong>2050</strong>BAUCO₂ -equivalentemissions MtCost <strong>of</strong> CO₂ -equivalentemissions (MEUR)Renewables share <strong>of</strong>primary <strong>energy</strong> (%)48.15 48.97 0.20 0.21 0.22 0.26 0.17 0.25 0.24 0.27 25.10289 1224 15 16 17 19 13 19 18 20 188233 34 100 89 81 74 100 89 82 75 4316Key insight:• Future aim should be virtually zero emissions from <strong>energy</strong> sector• Denmark has goal <strong>of</strong> zero emissions from power sector by 2035 <strong>and</strong> zero emissions from all<strong>energy</strong> sectors by <strong>2050</strong>• Small amounts shown in table from non-biogenic component <strong>of</strong> wasteRecarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Agenda• Introduction to study• Methods• Main results• Interpretation <strong>of</strong> results• Questions <strong>and</strong> discussion17Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Interpretation <strong>of</strong> results‣ A 100% renewable <strong>energy</strong> <strong>system</strong> seems possible <strong>for</strong> Finl<strong>and</strong>, given the assumptions made inthis study‣ The 100% RE scenarios are highly cost competitive‣ High level <strong>of</strong> <strong>energy</strong> independence seems achievable‣ Prominent roles <strong>of</strong> renewable <strong>energy</strong> <strong>and</strong> <strong>energy</strong> storage solutions should be considered in allfuture modelling‣ Opportunities exist <strong>for</strong> increased domestic investment <strong>and</strong> RE-based employment‣ Flexibility should be a defining feature <strong>of</strong> future <strong>energy</strong> <strong>system</strong>s‣ 100% RE should be an equal partner in all future discourse regarding the <strong>Finnish</strong> <strong>energy</strong> <strong>system</strong>‣ Further study is needed related to how people will choose to live, how they will perceive risk <strong>and</strong>the role <strong>of</strong> <strong>energy</strong> in their lives (Futures Research) in order to hone the technical requirements <strong>of</strong>the <strong>energy</strong> <strong>system</strong> used in modelling18Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Agenda• Introduction to study• Methods• Main results• Interpretation <strong>of</strong> results• Questions <strong>and</strong> discussion19Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Questions <strong>of</strong> comments?20Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Thank youNEO-CARBON Energy project is one <strong>of</strong> the Tekes strategy research openings<strong>and</strong> the project is carried out in cooperation with Technical Research Centre <strong>of</strong>Finl<strong>and</strong> VTT Ltd, Lappeenranta University <strong>of</strong> Technology (<strong>LUT</strong>) <strong>and</strong> University<strong>of</strong> Turku, Finl<strong>and</strong> Futures Research Centre.


FURTHERINFORMATION


Inputs + Strategy = Outputs• Developed in 1999 atAalborg University inDenmark• Widely used <strong>and</strong> respected• Energy <strong>system</strong> analysiscarried out in hourly steps<strong>for</strong> one year• Model includes analysis <strong>of</strong>electricity, heating <strong>and</strong>transport sectors• Results <strong>for</strong>m basis <strong>of</strong>technical regulation <strong>and</strong>market optimizationstrategies• Main aim is to assist in thedesign <strong>of</strong> national <strong>energy</strong>planning strategies• Model can also be applied onlarger <strong>and</strong> smaller scales• Free download fromhttp://www.<strong>energy</strong>plan.eu/23Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Flows <strong>of</strong> <strong>energy</strong> - 201224Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Flows <strong>of</strong> <strong>energy</strong> – Basic 100% RE scenario25Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Flows <strong>of</strong> <strong>energy</strong> – Low Biomass 100% RE scenario26Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Flows <strong>of</strong> <strong>energy</strong> – BAU scenario27Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Breakdown <strong>of</strong> annualized investment costs1800016000140001200010000800060004000200002012 2020 <strong>2050</strong> Basic100% RE<strong>2050</strong> Basic LowNuclear<strong>2050</strong> BasicMediumNuclear<strong>2050</strong> Basic NewNuclear<strong>2050</strong> LowBiomass 100%RE<strong>2050</strong> LowBiomass LowNuclear<strong>2050</strong> LowBiomassMediumNuclearSmall CHP units Large CHP units Large Power Plants Wind Wind <strong>of</strong>fshore Photovoltaic<strong>2050</strong> LowBiomass NewNuclearRiver <strong>of</strong> hydro Nuclear BioJPPlant CO2Hydrogenation Chemical Sythesis Electricity gridDistrict heating grid District heating substations EV batteries EV charging station Individual oil boilers Individual NG boilersIndividual biomass boilers Inidividual heat pumps Individual electric heat Gas grid Other<strong>2050</strong> BAU28Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Introduction to scenariosCategory2012 2020<strong>2050</strong>Basic100%RE<strong>2050</strong>BasicLowNuclear<strong>2050</strong> BasicMediumNuclearFull load hours<strong>2050</strong>BasicNewNuclear<strong>2050</strong> LowBiomass100% RE<strong>2050</strong>LowBiomassLowNuclear<strong>2050</strong> LowBiomassMediumNuclear<strong>2050</strong> LowBiomassNewNuclear<strong>2050</strong> BAUWind onshore 2800 2819 2816 2816 2816 2816 2816 2816 2259 3031 2817Wind <strong>of</strong>fshore - 4278 4280 4280 4280 4280 4280 4280 4280 4280 4280Solar PV 1000 1000 982 982 982 982 981 981 981 981 980Hydro - Run <strong>of</strong> river 6424 6403 6123 6123 6123 6123 6123 6123 6123 6123 6123CHP - District Heating 4106 3834 1641 1516 1124 916 812 876 891 718 2773Condensing 2900 6020 - - - - - - - - 2687Nuclear 8025 7749 - 7963 7964 7963 - 7963 7964 7963 7963PtG (CH₄) - - 2583 2500 2667 2222 2333 2500 2692 2083 6000PtG (H₂) - 3521 3509 3509 3509 3509 3509 3509 3509 3509 3509Key insight:• Low full load hours <strong>for</strong> thermal plants <strong>and</strong> PtG are problematic in some scenarios• Synthetic gas production may also be needed <strong>for</strong> non-<strong>energy</strong> purposes29Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Introduction to scenarios−Cost <strong>of</strong> bio<strong>energy</strong> is dependent on the <strong>for</strong>m− Waste is assumed to be free− Agricultural residues have little market value currently <strong>and</strong> will likely remain halfthe price <strong>of</strong> <strong>energy</strong> wood− Estimated biomass price is 22 €/MWh in <strong>2050</strong> (plus 5-11 €/MWh h<strong>and</strong>ling)− Stumpage price currently 2 €/MWh− Price to customer currently 9-23 €/MWh*− Stricter sustainability criteria could raise this to about 50 €/MWh*− Energy wood price highly unlikely to exceed 50 €/MWh in <strong>2050</strong>− Likely to be convergence between the price <strong>of</strong> <strong>energy</strong> wood <strong>and</strong> the price <strong>of</strong>pulpwood (stumpage price currently about 12 €/MWh)*Sikkema et al. Mobilization <strong>of</strong> biomass <strong>for</strong> <strong>energy</strong> from boreal <strong>for</strong>ests in Finl<strong>and</strong> & Russia under present sustainable <strong>for</strong>estmanagement certification <strong>and</strong> new sustainability requirements <strong>for</strong> solid bi<strong>of</strong>uels. Biomass <strong>and</strong> Bio<strong>energy</strong> 71 (2014) 23-2630Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Introduction to scenarios1 Mm³ = 2 TWh = 7.2 PJ2012(TWhth)<strong>2050</strong>(TWhth)Biomass <strong>for</strong> heat <strong>and</strong> power 36 68Biomass <strong>for</strong> small-scale housing 18 18Industrial liquors <strong>for</strong> <strong>energy</strong>generationAgricultural residues <strong>for</strong> <strong>energy</strong>generation38 38n.a. 21Total biomass 92 145• <strong>2050</strong> assumptions based on 88 Mm³ annualharvesting –i.e., less than current annualincrement• Low biomass scenarios developed which utilizeless than current amount <strong>of</strong> <strong>for</strong>est biomass31Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Fuel use - Industry (TWhth)Fuel use - Industry140Key insights:• Some shift from manufacturing to services• Increased efficiency in industrial processes• Industrial dem<strong>and</strong> may be most rigid• Opportunities also <strong>for</strong> Power-to-Chemicals120100806040BiomassNatural gas/Grid gasOilCoal/Peat2002012 2020 <strong>2050</strong> Basic100% RE<strong>2050</strong> BasicLowNuclear<strong>2050</strong> BasicMediumNuclear<strong>2050</strong> BasicNewNuclear<strong>2050</strong> LowBiomass100% RE<strong>2050</strong> LowBiomassLowNuclear<strong>2050</strong> LowBiomassMediumNuclear<strong>2050</strong> LowBiomassNewNuclear<strong>2050</strong> BAU32Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Fuel use - Transport (TWhth)Fuel use - Transport706050Key insights:• Electrification <strong>of</strong> transport leads tosignificant gains in efficiency• Domestic bi<strong>of</strong>uel production <strong>of</strong>fers hugebusiness potentialBi<strong>of</strong>uels40Electricity30HydrogenNatural gas20Petrol10DieselJet fuel02012 2020 <strong>2050</strong> Basic100% RE<strong>2050</strong> BasicLow Nuclear<strong>2050</strong> BasicMediumNuclear<strong>2050</strong> BasicNew Nuclear<strong>2050</strong> LowBiomass100% RE<strong>2050</strong> LowBiomass LowNuclear<strong>2050</strong> LowBiomassMediumNuclear<strong>2050</strong> LowBiomass NewNuclear<strong>2050</strong> BAU33Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Main cost assumptionsCost assumptions Cost category UnitFinl<strong>and</strong> 2020 Finl<strong>and</strong> 2030 Finl<strong>and</strong> <strong>2050</strong>Value Value ValueWind - onshore Capex €/kWe 1100 1000 900Lifetime Years 20 25 30Opex fixed % <strong>of</strong> capex 4.26 % 4.37 % 4.51 %Wind - <strong>of</strong>fshore Capex €/kWe 2500 2100 1800Lifetime Years 20 25 30Opex fixed % <strong>of</strong> capex 4.23 % 4.37 % 4.55 %Solar PV - ground-mounted Capex €/kWe 900 550 300Lifetime Years 30 35 40Opex fixed % <strong>of</strong> capex 2.00 % 2.00 % 2.00 %Solar PV – ro<strong>of</strong>top Capex €/kWe 1200 700 400Lifetime Years 30 35 40Opex fixed % <strong>of</strong> capex 1.00 % 1.00 % 1.00 %Hydropower - Run <strong>of</strong> the river Capex €/kWe 2750 2860 3060Lifetime Years 50 50 50Opex fixed % <strong>of</strong> capex 4.00 % 4.00 % 4.00 %Economic calculations based on 7% Weighted Average Cost <strong>of</strong> Capital (WACC)35Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Main cost assumptionsCost assumptions Cost category UnitFinl<strong>and</strong> 2020 Finl<strong>and</strong> 2030 Finl<strong>and</strong> <strong>2050</strong>Value Value ValueRenewable EnergyBiomass gasification plant Capex €/kWth 420 420 300Lifetime Years 25 25 25Opex fixed % <strong>of</strong> capex 5.30 % 5.30 % 4.00 %Biodiesel plant Capex €/kWth 3420 3080 2770Lifetime Years 20 25 30Opex fixed % <strong>of</strong> capex 3.00 % 3.00 % 3.00 %Biopetrol plant Capex €/kWth 790 710 640Lifetime Years 20 25 30Opex fixed % <strong>of</strong> capex 7.70 % 7.70 % 7.70 %CO₂ Hydrogenation plant (P2G) Capex €/kWth 1750 970 870Lifetime Years 30 30 30Opex fixed % <strong>of</strong> capex 4.00 % 3.30 % 3.30 %Biogas plant Capex €/kWth input 240 216 194Lifetime Years 20 25 30Opex fixed % <strong>of</strong> capex 7.00 % 7.00 % 7.00 %Biogas upgrading Capex €/kWth 300 270 240Lifetime Years 15 20 25Opex fixed % <strong>of</strong> capex 15.80 % 15.80 % 15.80 %Gasification gas upgrading Capex €/kWth 300 270 240Lifetime Years 15 20 25Opex fixed % <strong>of</strong> capex 15.80 % 15.80 % 15.80 %36Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Main cost assumptionsCost assumptions Cost category UnitThermal PlantsFinl<strong>and</strong> 2020 Finl<strong>and</strong> 2030 Finl<strong>and</strong> <strong>2050</strong>Value Value ValueHeat pump <strong>for</strong> DH <strong>and</strong> CHP Capex €/kW_e 3430 2970 2220Lifetime Years 20 20 20Opex fixed % <strong>of</strong> capex 2.00 % 2.00 % 2.00 %Large CHP plant Capex €/kW_e 820 820 820Lifetime Years 25 25 25Opex fixed % <strong>of</strong> capex 3.66 % 3.66 % 3.66 %DH/CHP boiler Capex €/kWth 100 100 100Lifetime Years 35 35 35Opex fixed % <strong>of</strong> capex 3.70 % 3.70 % 3.70 %Condensing plant (average) Capex €/kW_e 1000 1000 1000Lifetime Years 30 30 30Opex fixed % <strong>of</strong> capex 3.00 % 2.00 % 2.00 %Waste CHP plant Capex €/kWth input 0.216 0.216 0.216Lifetime Years 20 20 20Opex fixed % <strong>of</strong> capex 7.40 % 7.40 % 7.40 %Nuclear Capex €/kW_e 5500 6000 6500Lifetime Years 40 40 40Opex fixed % <strong>of</strong> capex 3.50 % 3.50 % 3.50 %37Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Main cost assumptionsCost assumptions Cost category UnitFinl<strong>and</strong> 2020 Finl<strong>and</strong> 2030 Finl<strong>and</strong> <strong>2050</strong>Value Value ValueStorage <strong>system</strong>sHeat storage DH Capex €/kWth 3 3 3Lifetime Years 20 25 30Opex fixed % <strong>of</strong> capex 0.70 % 0.70 % 0.70 %Grid gas storage Capex €/kWth 0.05 0.05 0.05Lifetime Years 50 50 50Opex fixed % <strong>of</strong> capex 2.00 % 2.00 % 2.00 %Lithium ion stationary Capex €/kWh_e 300 150 75Lifetime Years 10 15 20Opex fixed % <strong>of</strong> capex 3.30 % 3.30 % 3.30 %Lithium ion BEV Capex €/kWh_e 200 150 100Lifetime Years 8 10 12Opex fixed % <strong>of</strong> capex 5.00 % 5.00 % 5.00 %38Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Main cost assumptionsCost assumptions Cost category UnitFinl<strong>and</strong> 2020 Finl<strong>and</strong> 2030 Finl<strong>and</strong> <strong>2050</strong>Value Value ValueInfrastructureDistrict heating grid Capex €/MWhth 72 72 72Lifetime Years 40 40 40Opex fixed % <strong>of</strong> capex 1.25 % 1.25 % 1.25 %District heating substation - Residential Capex €/connection 6200 5600 5000Lifetime Years 20 20 20Opex fixed % <strong>of</strong> capex 2.42 % 2.68 % 3.00 %District heating substation- Commercial Capex €/connection 21500 21500 21500Lifetime Years 20 20 20Opex fixed % <strong>of</strong> capex 0.70 % 0.70 % 0.70 %District cooling network Capex €/MWth 600000 600000 600000Lifetime Years 25 25 25Opex fixed % <strong>of</strong> capex 2.00 % 2.00 % 2.00 %Key comment:• The importance <strong>of</strong> transparency <strong>of</strong> all assumptions is critical• Disagreement over assumptions can provide the basis <strong>of</strong> progressive discussion• This must be the new st<strong>and</strong>ard in Finl<strong>and</strong>• Too many reports <strong>and</strong> documents lack this transparency39Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Further cost assumptionsCost assumptionsUnitFinl<strong>and</strong> 2020 Finl<strong>and</strong> 2030 Finl<strong>and</strong> <strong>2050</strong>Value Value ValueFuelCoal/Peat €/MWh 11.16 11.52 12.24Oil €/MWh 42.84 47.88 57.96Oil USD/bbl 107.40 118.90 142.00Diesel €/MWh 54.00 59.76 70.56Petrol €/MWh 54.72 60.12 70.92Jet fuel €/MWh 57.96 63.36 74.16NG €/MWh 32.76 36.72 43.92Liquid bi<strong>of</strong>uels €/MWh 84.78 73.48 65.02Biomass (weighted average) €/MWh 18.00 19.80 21.60Straw €/MWh 14.04 15.48 18.36Wood chips €/MWh 18.36 21.60 27.36Wood pellets €/MWh 36.72 39.24 43.92Energy crops €/MWh 16.92 18.72 22.68Uranium (Including h<strong>and</strong>ling) €/MWh 5.40 6.48 7.5640Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Further cost assumptionsCost assumptions Unit Finl<strong>and</strong> 2020 Finl<strong>and</strong> 2030 Finl<strong>and</strong> <strong>2050</strong>Value Value ValueFuel h<strong>and</strong>ling (storage, distribution <strong>and</strong> refining)Fuel oil to central CHP <strong>and</strong> PPs €/MWh 0.943 0.943 0.943Fuel oil to industry <strong>and</strong> DH €/MWh 6.858 6.858 6.858Diesel <strong>for</strong> transportation €/MWh 9.767 9.767 9.767Petrol / Jet fuel <strong>for</strong> transportation €/MWh 7.502 7.502 7.502NG to central CHP <strong>and</strong> PPs €/MWh 1.483 1.483 1.483NG to industry <strong>and</strong> DH €/MWh 7.380 7.380 7.380NG <strong>for</strong> transportation €/MWh 11.326 11.326 11.326Biomass to conversion plants €/MWh 5.688 5.688 5.688Biomass to central CHP <strong>and</strong> PPs €/MWh 5.688 5.688 5.688Biomass to industry <strong>and</strong> DH €/MWh 4.270 4.270 4.270Biomass to individual households €/MWh 10.746 10.746 10.746Biomass <strong>for</strong> transportation (biogas) €/MWh 4.270 4.270 4.27041Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi


Further cost assumptionsCarbon content in the fuelsCoal / Peat kg CO₂ eq/MWh 363.60 363.60-381.24* 381.24Oil kg CO₂ eq/MWh 283.68 283.68 283.68NG kg CO₂ eq/MWh 198.14 198.14 198.14Waste(related to inorganic portion)kg CO₂ eq/MWh 114.48 114.48 114.48Solid biomass kg CO₂ eq/MWh 396.0 396.0 396.0* Emission factor will depend on share <strong>of</strong> each fuel.42Recarbonised <strong>Finnish</strong> Energy SystemChristian Breyer► Christian.Breyer@lut.fiMichael Child► Michael.Child@lut.fi

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!