23.11.2012 Views

Process Reliability Modeling for Clean Fuels ... - Maros and Taro

Process Reliability Modeling for Clean Fuels ... - Maros and Taro

Process Reliability Modeling for Clean Fuels ... - Maros and Taro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Process</strong> <strong>Reliability</strong> <strong>Modeling</strong><br />

<strong>for</strong><br />

<strong>Clean</strong> <strong>Fuels</strong> Projects<br />

By<br />

Chuck Treleaven<br />

Jardine <strong>and</strong> Associates, Inc.<br />

August 13, 2003<br />

www.jardinesolutions.com<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


<strong>Process</strong> <strong>Reliability</strong> <strong>Modeling</strong><br />

<strong>for</strong><br />

All Capital Projects<br />

By<br />

Chuck Treleaven<br />

Jardine <strong>and</strong> Associates, Inc.<br />

August 13, 2003<br />

www.jardinesolutions.com<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Agenda<br />

• Definitions<br />

• Approach<br />

• Applications/Case Studies<br />

• Typical Findings/conclusions<br />

• Wrap up <strong>and</strong> discussion<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Jardine <strong>and</strong> Associates<br />

• Engineering Services <strong>and</strong> Technology<br />

• <strong>Process</strong> <strong>Reliability</strong> <strong>Modeling</strong><br />

• Since 1984 services both upstream <strong>and</strong> downstream<br />

• Utilize ACE, MAROS <strong>and</strong> TARO technology in studies<br />

• Offices in Houston, London, Glasgow, Kuala Lumpur<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


What it’s not<br />

<strong>Process</strong> <strong>Reliability</strong> <strong>Modeling</strong><br />

– Not Maintenance Centered<br />

Predictive Analysis<br />

– Not <strong>Process</strong> Simulation<br />

– Not Plant Linear Program<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


<strong>Process</strong> <strong>Reliability</strong> <strong>Modeling</strong><br />

• Strategic Unit-Level view of operations<br />

• Operations Strategy, <strong>Process</strong> Flows, Maintenance<br />

Issues<br />

• Develops operating efficiency <strong>for</strong> each unit<br />

• Calculates overall efficiency based on interactions<br />

between units<br />

• Uses sensitivity analysis to optimize overall<br />

operating efficiency<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Why <strong>Process</strong> <strong>Reliability</strong><br />

<strong>Modeling</strong><br />

• Business Planning Tool<br />

• Evaluates impact of future changes to current<br />

operation<br />

• One of IPA’s Value Improving Practices<br />

• Ranks competing projects<br />

Per<strong>for</strong>mance <strong>Modeling</strong><br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


eliability<br />

quipment per<strong>for</strong>mance<br />

ata (failure frequencies)<br />

ystem configuration<br />

Maintainability<br />

Maintenance resources<br />

Shift constraints<br />

Mob delays<br />

Spares constraints<br />

Relationships in the Modelling<br />

Availability<br />

Operability<br />

�Human factors<br />

�Start-Up Issues<br />

<strong>Process</strong><br />

�Equipment/System<br />

uptime<br />

Productivity<br />

Unit Costs/Revenue<br />

�Production Efficiency<br />

�Production losses<br />

�Equipment Criticality<br />

$$$$<br />

�Venture<br />

Econom<br />

�Product price<br />

�Manhour/spares costs<br />

�Discount rates<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


FDs/P&IDs<br />

esign Basis<br />

Field Z Basecase Model<br />

Gas Production Field Z <strong>and</strong> Basecase Production Model Efficiency<br />

Gas Production <strong>and</strong> Production Efficiency<br />

Summary - Per<strong>for</strong>mance<br />

F6 Vent System<br />

Atmos F6 Vent System Stack<br />

Atmos Vent Stack<br />

VS430 Vent<br />

VS430 Vent<br />

TT430 Tempx<br />

TT430 Tempx<br />

LP Vent System<br />

LP Vent System<br />

VS-425 Vent<br />

VS-425 Vent<br />

TT425 Tempx V415 scrubb<br />

TT425 Tempx V415 scrubb<br />

Atmos Vent Stack<br />

Atmos Vent Stack<br />

F6 Vent System<br />

Atmos F6 Vent System Stack<br />

LP Vent System<br />

Atmos Vent Stack<br />

LP Vent System<br />

P420A Vent<br />

Level control<br />

100.0<br />

P420A Vent<br />

VS430 Vent<br />

TT430 Tempx<br />

VS-425 Vent<br />

TT425 Tempx V415 scrubb<br />

Level control<br />

100.0<br />

VS430 Vent<br />

TT430 Tempx<br />

VS-425 Vent<br />

TT425 Tempx V415 scrubb<br />

Cond Pumps 420A/B<br />

V415 level<br />

V415 Lvlxdc V415 Lvlwrn<br />

Cond Pumps 420A/B<br />

Atmos Vent Stack V415 level<br />

V415 Lvlxdc V415 Lvlwrn<br />

Atmos Vent Stack<br />

P420B Vent Start Prob<br />

Level control<br />

100.0<br />

P420B Vent Start Prob<br />

Level control<br />

100.0<br />

P420A Vent<br />

Level control<br />

100.0<br />

P420A Vent<br />

Level control<br />

100.0<br />

Cond Pumps 420A/B<br />

VS Fan A<br />

Cond Pumps 420A/B<br />

100.0<br />

VS Fan A<br />

100.0 P420B Vent Start Prob<br />

VS Cndsr<br />

100.0<br />

VS Fans P420B A&B Vent Start Prob<br />

VS Cndsr<br />

100.0<br />

VS Fans A&B<br />

3<br />

20032004<br />

20042005<br />

20052006<br />

20062007<br />

20072008<br />

20082009<br />

20092010<br />

20102011<br />

20112012<br />

20122013<br />

20132014<br />

20142015<br />

20152016<br />

20162017<br />

20172018<br />

20182019<br />

20192020<br />

20202021<br />

20212022<br />

20222023<br />

2023<br />

Year<br />

Year<br />

Total production (mmbbl)<br />

Production Total production Efficiency (mmbbl) (%)<br />

Production Efficiency (%)<br />

VS Fan B<br />

100.0<br />

VS Fan B<br />

100.0<br />

VS Fan A<br />

LP Vent 100.0 System<br />

VS Fan A<br />

Plat A LP Vent Vent System 100.0 System<br />

VS Cndsr Plat A Vent System<br />

VS Fans A&B<br />

VS Cndsr<br />

VS Fans A&B<br />

VS Fan B<br />

100.0<br />

VS Fan B<br />

100.0<br />

LP Vent System<br />

Plat A LP Vent Vent System<br />

System<br />

Plat A Vent System<br />

V415 level<br />

V415 level<br />

V415 Lvlxdc V415 Lvlwrn<br />

V415 Lvlxdc V415 Lvlwrn<br />

Plat<strong>for</strong>m A<br />

<strong>Reliability</strong> Block Diagram Plat<strong>for</strong>m A 67 of 155<br />

<strong>Reliability</strong> Block Diagram 67 of 155<br />

Vent System<br />

Vent System<br />

Level control<br />

Level control<br />

Rev 16.03.00 By: DPCHK: FK<br />

Rev 16.03.00 By: DPCHK: FK<br />

Plat<strong>for</strong>m A<br />

<strong>Reliability</strong> Block Diagram Plat<strong>for</strong>m A 67 of 155<br />

<strong>Reliability</strong> Block Diagram 67 of 155<br />

Vent System<br />

Vent System<br />

Rev 16.03.00 By: DPCHK: FK<br />

Rev 16.03.00 By: DPCHK: FK<br />

Modelling<br />

RBDs <strong>Reliability</strong> Data<br />

100<br />

100<br />

90<br />

90<br />

80<br />

80<br />

Gas Production Efficiency (%)<br />

Gas Production Efficiency (%)<br />

70<br />

70<br />

60<br />

60<br />

50<br />

50<br />

40<br />

40<br />

30<br />

30<br />

20<br />

20<br />

10<br />

10<br />

0<br />

0<br />

Production<br />

Efficiency<br />

Lifecycle<br />

Simulation<br />

Model<br />

OPEX<br />

NPV<br />

Tank/Storage<br />

Strategy<br />

Equipment<br />

Criticality<br />

Maintenance<br />

Strategy<br />

Others<br />

Others<br />

19%<br />

19%<br />

Field<br />

Field<br />

Z<br />

Z<br />

Basecase<br />

Basecase<br />

Model<br />

Model<br />

Subsystem Criticality<br />

Subsystem Criticality<br />

LP Separation<br />

LP Separation<br />

4%<br />

4%<br />

Relief Valve<br />

Relief Valve<br />

Inspection<br />

Inspection<br />

6%<br />

6%<br />

Oil Treating<br />

Oil Treating<br />

7%<br />

7%<br />

Facilities Inspection<br />

Facilities Inspection<br />

7%<br />

7% Field Gas<br />

Field Gas<br />

Compression<br />

Compression<br />

9%<br />

9%<br />

Absolute production losses = 7.22%<br />

Absolute production losses = 7.22%<br />

Power Generation<br />

Power Generation<br />

26%<br />

26%<br />

LP Gas Sweetening<br />

LP Gas Sweetening<br />

22%<br />

22%<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


‘Traditional’ Refinery Unit<br />

Analysis<br />

• Models defined at equipment level<br />

• Detailed definition of maintenance /operations<br />

• Focus on equipment reliability/configuration<br />

• Key output is expected unit uptime/availability<br />

• Typically considering average annual<br />

per<strong>for</strong>mance<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Plant-wide<br />

<strong>Reliability</strong><br />

MTTR<br />

Unit<br />

Unit<br />

Configuration<br />

Configuration<br />

Traditional<br />

RAM Modelling<br />

Unit Interdependency<br />

Equipment Availability<br />

Component <strong>Reliability</strong><br />

•MTTF<br />

•RCA<br />

•FMEA<br />

Sales Strategy<br />

Unit Availability<br />

Maintenance<br />

Strategy<br />

• Overall Gasoline Production Efficiency<br />

• Individual Product Efficiency<br />

• Individual Product Volumes<br />

Plant-Wide <strong>Reliability</strong><br />

Unit Utilisation<br />

Storage<br />

Multi-stream<br />

(feed, intermediate & product)<br />

Operational Operational Flexibility<br />

Flexibility<br />

e.g. e.g. • Revised Slate<br />

• Slowdowns<br />

• Back-up Routes<br />

JARDINE<br />

TARO Modelling<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Refinery Wide Analysis<br />

• Strategic view of operations<br />

• Unit, not equipment level<br />

• 10 years, not 6 months<br />

• Relationships with surrounding units<br />

• Tankage <strong>and</strong> shipment<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Agenda<br />

• Definitions<br />

• Approach<br />

• Applications/Case Studies<br />

• Typical Findings/conclusions<br />

• Wrap up <strong>and</strong> discussion<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Refinery Unit Analysis<br />

• Model in detail reliability / availability per<strong>for</strong>mance:<br />

– Indenture level – equipment items<br />

– Failure <strong>and</strong> Repair Data (MTTF etc.)<br />

– Maintenance response times<br />

– Restart times<br />

• Equipment based reliability software-(Jardine’s ACE)<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


• What is objective of analysis?<br />

– Uptime/availability<br />

– Identify system modifications to improve per<strong>for</strong>mance<br />

(redundancy)<br />

– Maintenance workload<br />

– Spares optimization<br />

• Input data:<br />

– Equipment per<strong>for</strong>mance data<br />

– Level of analysis (equipment level, component level) – is<br />

determined by availability of data/in<strong>for</strong>mation<br />

– Scheduled Maintenance (Renewals)<br />

– Resource constraints<br />

Unit Analysis<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


• Objectives?<br />

Refinery Wide Analysis<br />

– Predict utilization factors<br />

– Identify refinery bottlenecks<br />

– Identify system modifications<br />

– Optimize reliability spending<br />

• Input data:<br />

– Unit per<strong>for</strong>mance data<br />

– Block flow diagrams<br />

– Stream routing<br />

– Utility system<br />

– Turnaround schedules<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


• Data collection<br />

Refinery Wide Analysis<br />

Methodology<br />

• On-site engineering assistance<br />

• Study basis document<br />

• Run TARO model<br />

• Assess per<strong>for</strong>mance of preliminary design<br />

• Run Sensitivities<br />

• Present findings to project team<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Agenda<br />

• Definitions<br />

• Approach<br />

• Applications/Case Studies<br />

• Typical Findings/conclusions<br />

• Wrap up <strong>and</strong> discussion<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Key Downstream Projects<br />

• Shell Global Solutions<br />

– ULSD/LSG project,<br />

– Steam distribution,<br />

– Hydrogen distribution,<br />

– Petrochemical networks<br />

• Shell Canada LSG/ULSD<br />

• ExxonMobil Joliet Refinery<br />

• CNRL – upgrading facility<br />

• SASOL GTL plants worldwide<br />

• ChevronTexaco gasifier plant<br />

• Petrola/ChevronTexaco Elefsis<br />

• Syncrude – Fort McMurray<br />

Upgrader<br />

• Sunoco LSG projects (3)<br />

• BP Whiting environmental units<br />

• BP Chemicals (PTA, PX, Styrene,<br />

TMA petrochemical plants<br />

worldwide)<br />

• OMV Schwechat refinery, Austria<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


• Modifications<br />

(US$10-200Million)<br />

– Hydrotreater<br />

upgrades/revamps<br />

– Debottlenecking<br />

– Utility upgrades<br />

Project Types<br />

• New built units/plants<br />

(US$100-1000 Million)<br />

– New PTA/PX plants<br />

– New plasticizer plant<br />

– Elefsis refinery upgrade<br />

– New hydrotreaters<br />

(LSG/ULSD)<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Two Case Studies<br />

• Shell Canada Montreal<br />

• USA Refiner<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Case Study 1 – Montreal Refinery<br />

LSG Upgrade<br />

• Shell Canada was implementing a gasoline sulphurreduction<br />

program<br />

• Employing Institut Francais du Petrole (IFP) Prime<br />

G+ technology<br />

• To be implemented at Montreal (MER) <strong>and</strong> Sarnia<br />

(SMC) refineries with gasoline sulphur levels of<br />

30ppm with minimal octane loss<br />

• Each project capital expenditure was approx.<br />

US$50 Million<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Case Study 1 – Analysis objectives<br />

• Validate the technology availability<br />

• Assist in design decision making process regarding :<br />

– Unit sizing<br />

– Equipment sparing<br />

– Equipment design<br />

• Generate equipment criticality listing<br />

• Integrate the impact of outside battery limit events<br />

• Assist into developing maintenance strategies<br />

(maintainability: spare parts decisions, equipment design)<br />

Noted that study was instigated too late to effect design changes<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Shell Montreal Refinery Configuration<br />

CCU Unit<br />

(Cat Naphtha)<br />

Des. Cap: 18,000 BPSB<br />

TK-74<br />

Volume: 90,000 bbls<br />

TK-105<br />

Volume: 50,000 bbls<br />

Refinery Off-spec Storage:<br />

Product in TK-105 needs to be recycled<br />

through the Crude Distillation Unit<br />

GHT<br />

Des. Cap: 20,000 BPSB<br />

Norm Cap.: 18,000 BPSD<br />

Min. Cap.: 8,000 BPSD<br />

Over Capacity: 10%<br />

Normal Route<br />

LCN<br />

HCN<br />

1st 1 Backup Route to Off-spec Tank<br />

st Backup Route to Off-spec Tank<br />

TK-61<br />

Volume: 47,500 bbls<br />

TK-60<br />

Volume: 47,500 bbls<br />

2nd 2 Backup Route in case of storage tank top-out<br />

nd Backup Route in case of storage tank top-out<br />

Recycle Route<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Case Study 1 – Key configuration<br />

parameters<br />

• Design feed rate to GHT is 18 Mbbls/d<br />

• GHT unit has 10% overcapacity<br />

• 90 Mbbls dedicated GHT storage<br />

• + additional 50 Mbbls offspec storage – requires rerun<br />

through crude unit<br />

• No downstream export constraints<br />

• GHT modelled at equipment level<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Case Study 1 Results –<br />

GHT Unit Criticality<br />

Overall GHT Availability 97%<br />

Other Critical Equipment<br />

2.8%<br />

Hydro/Splitter Section<br />

12.1%<br />

Hydrogen Supply<br />

13.4%<br />

HCN/HDS Section<br />

33.0%<br />

Power Trips - GHT only<br />

0.7%<br />

Instrument Trips - GHT<br />

only<br />

0.0%<br />

GHT Turn Around<br />

38.0%<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Case Study 1 – Results<br />

Unit Utilization<br />

• Predicted onstream factor <strong>for</strong> CCU unit is 96.4%<br />

• Large available storage + 10% GHT overcapacity<br />

effectively decouples CCU per<strong>for</strong>mance from GHT<br />

• GHT onstream factor is mainly determined by<br />

available feed from CCU – not by its own<br />

availability/uptime<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Case Study 1 – Sensitivity Analysis<br />

Overcapacity negates the use <strong>for</strong> redundant pumps<br />

Reduction of GHT overcapacity from 10% to 5% does not<br />

noticeably impact on achieved GHT per<strong>for</strong>mance:<br />

CN Production Efficiency %<br />

0.963<br />

0.962<br />

0.961<br />

0.96<br />

0.959<br />

0.958<br />

0.957<br />

0.956<br />

Montreal Refinery: CN Production Efficiency (%)<br />

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%<br />

GHT Overcapacity %<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Case Study 1 – Conclusions<br />

• HCN/LCN production efficiency is driven by<br />

feed availability from the CCU<br />

• The intermediate storage negates any impact<br />

from GHT unavailability<br />

• Potential <strong>for</strong> decreasing CAPEX or OPEX<br />

through accepting lower GHT availability <strong>and</strong> /<br />

or lower overcapacity margin without significant<br />

impact production<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


How Useful Was the Work?<br />

• Highlighted the need <strong>for</strong> intermediate tank planning<br />

• Unit size could have been reduced<br />

• Developed alternate scenarios to assess impact <strong>and</strong><br />

assist decision-making: metallurgical problems; spare<br />

pumps; unit capacity<br />

• Impact of H2 availability quantified <strong>and</strong> found worse<br />

than expected<br />

• Changed design of feed exchanger<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Case Study 2 – Overall Refinery Analysis<br />

• Major refinery upgrade to meet LSG spec<br />

• Key changes to refinery configuration:<br />

– Addition of FCC Splitter unit <strong>and</strong> Merox unit<br />

– PRTR/HDF/CCR units revamped to increase capacity<br />

– Increased steam dem<strong>and</strong> resulting in increased loading of<br />

boilers (reduction in spare capacity)<br />

• Assess the ability of the refinery to deliver the<br />

desired quantities of gasoline subsequent to the<br />

revamp<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Case Study 2 – Block Flow Diagram<br />

CDU<br />

COK<br />

ASP<br />

CHD<br />

FCC<br />

Sales<br />

Sales<br />

PRTR<br />

FCC<br />

Splitter<br />

Sales<br />

HDF<br />

ALK<br />

CCR<br />

MEROX<br />

Sales<br />

Sales<br />

Sales<br />

Sales<br />

Direct Link<br />

between<br />

FCC/PRTR<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Case Study 2 – Results<br />

Impact of upgrade project on bottom line per<strong>for</strong>mance:<br />

2.1% reduction in achieved gasoline production efficiency<br />

Why?<br />

• FCC on-stream factor reduces by 1.4%,<br />

• CHD on-stream factor reduces by 1.3%<br />

• CDU on-stream factor reduced by 2.7%<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Case Study 2 – Improvement Options<br />

• Independent steam supply <strong>for</strong> CCR =0.4%<br />

increase in gasoline production efficiency<br />

• Fresh feed capacity increase <strong>for</strong> FCC =0.2%<br />

increase in gasoline production efficiency<br />

• More time between catalyst change-out<br />

shutdowns =increase in production efficiency by<br />

0.2%<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Agenda<br />

• Definitions<br />

• Approach<br />

• Applications/Case Studies<br />

• Typical Findings/Added Value<br />

• Wrap up <strong>and</strong> discussion<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Specific TARO Analysis Conclusions<br />

examples<br />

• Overcapacity allows reduction in redundancy/availability<br />

• Additional steam source improves key product efficiency by 0.4%<br />

• Available storage tanks could be taken out of service without reducing<br />

unit on stream factor<br />

• Analysis shows unit loading will be significantly lower than design<br />

capacity<br />

• Removal of the spare feed charge pump will not reduce the on stream<br />

factor<br />

• Potential <strong>for</strong> 0.6% efficiency improvement if cross-over line is installed<br />

between two units increasing operational flexibility during outages<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


General Findings of <strong>Clean</strong> Fuel<br />

Projects TARO analysis<br />

• Projects focus on unit availability only<br />

– Missing opportunity to save CAPEX by balancing<br />

availability/overcapacity/storage.<br />

• Projects increase loading on key utility systems<br />

– Reduces available redundancy<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Deliverables – Value Added<br />

(System ‘Knowledge’)<br />

• Quantifying impact of unit reliability on product yield<br />

• Develop underst<strong>and</strong>ing of refinery ‘bottle-necks’<br />

• Assessing impact of different sparing philosophies<br />

• Assessing impact from storage capacities, <strong>and</strong> additional capacity to<br />

enable re-cycling without impact on normal throughputs<br />

• Quantifying potential sales under-deliveries<br />

• Impact of scheduled turnarounds - optimization<br />

• Establishing unit reliability targets <strong>and</strong> benchmarking norms<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Agenda<br />

• Definitions<br />

• Approach<br />

• Applications - Case Studies<br />

• Typical Findings<br />

• Wrap up <strong>and</strong> discussion<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Per<strong>for</strong>mance <strong>Modeling</strong><br />

• Uses <strong>Reliability</strong> <strong>and</strong> Unit interaction<br />

• Asset evaluation/Asset modification<br />

• <strong>Clean</strong> <strong>Fuels</strong> Projects<br />

• Equipment vs. unit models<br />

• Ongoing planning tool<br />

• How are your projects evaluated?<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge


Questions<br />

<strong>and</strong><br />

Discussion<br />

2003 <strong>Clean</strong> <strong>Fuels</strong> Challenge

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!