23.11.2012 Views

Microfabrication of biomedical lab-on-chip devices. A review

Microfabrication of biomedical lab-on-chip devices. A review

Microfabrication of biomedical lab-on-chip devices. A review

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Est<strong>on</strong>ian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering, 2011, 17, 2, 109–139 doi: 10.3176/eng.2011.2.03<br />

<str<strong>on</strong>g>Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>abricati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>biomedical</str<strong>on</strong>g> <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong>.<br />

A <strong>review</strong><br />

Athanasios T. Giannitsis<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>ics, Tallinn University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Ehitajate tee 5, 19086 Tallinn,<br />

Est<strong>on</strong>ia; thanasis@elin.ttu.ee<br />

Received 1 February 2011, in revised form 8 April 2011<br />

Abstract. Lab-<strong>on</strong>-<strong>chip</strong> systems are a class <str<strong>on</strong>g>of</str<strong>on</strong>g> miniaturized analytical <strong>devices</strong> that integrate fluidics,<br />

electr<strong>on</strong>ics and various sensorics. They are capable <str<strong>on</strong>g>of</str<strong>on</strong>g> analysing biochemical liquid samples, like<br />

soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolites, macromolecules, proteins, nucleic acids, or cells and viruses. Supplementary<br />

to their measuring capabilities, the <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> facilitate fluidic transportati<strong>on</strong>,<br />

sorting, mixing, or separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid samples. A type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong>, named bio<strong>chip</strong>, is<br />

devoted specifically to genomic, proteomic and pharmaceutical tests. The significance <str<strong>on</strong>g>of</str<strong>on</strong>g> such<br />

miniaturized <strong>devices</strong> lies in their potentiality <str<strong>on</strong>g>of</str<strong>on</strong>g> automating <str<strong>on</strong>g>lab</str<strong>on</strong>g>oratory procedures, which highly<br />

reduces the time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>biomedical</str<strong>on</strong>g> tests and <str<strong>on</strong>g>lab</str<strong>on</strong>g>oratory work. This <strong>review</strong> summarizes numerous<br />

fabricati<strong>on</strong> methods and procedures for producing <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> and also envisages future<br />

evoluti<strong>on</strong>.<br />

Key words: <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong>, biosensors, bio<strong>chip</strong>s, micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidics, micr<str<strong>on</strong>g>of</str<strong>on</strong>g>abricati<strong>on</strong>.<br />

1. INTRODUCTION<br />

Lab-<strong>on</strong>-<strong>chip</strong> technology focuses <strong>on</strong> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid <strong>devices</strong>, which<br />

integrate fluidic and electr<strong>on</strong>ic comp<strong>on</strong>ents <strong>on</strong>to the same <strong>chip</strong> [ 1–5 ]. They are<br />

devoted primarily to liquid sample testing and handling. Such <strong>devices</strong> reduce<br />

<str<strong>on</strong>g>lab</str<strong>on</strong>g>oratory processes in a manner competitive to bench-top instruments. Lab-<strong>on</strong><strong>chip</strong><br />

technology emphasizes integrati<strong>on</strong>, <strong>chip</strong> programmability, increased<br />

sensitivity, minimal reagent c<strong>on</strong>sumpti<strong>on</strong>, sterilizati<strong>on</strong> and efficient sample<br />

detecti<strong>on</strong> and separati<strong>on</strong>. Lab-<strong>on</strong>-<strong>chip</strong> functi<strong>on</strong>ality includes sample handling,<br />

mixing, filtering, analysis and m<strong>on</strong>itoring. A typical <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> device c<strong>on</strong>tains<br />

microchannels, which allow liquid samples to flow inside the <strong>chip</strong>, but also<br />

integrates measuring, sensing and actuating comp<strong>on</strong>ents such as microvalves,<br />

micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic mixers, microelectrodes, thermal elements, or optical apparatuses.<br />

109


Some commercial <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> incorporate electr<strong>on</strong>ics that operate their<br />

apparatuses (Fig. 1). The <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> are c<strong>on</strong>sidered analogous to the<br />

systems-<strong>on</strong>-<strong>chip</strong> in electr<strong>on</strong>ics.<br />

Biochemists, synthetic chemists and medical doctors currently evaluate the<br />

potentiality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> in the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> biochemical synthesis,<br />

analysis and screening. Specific areas <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s have emerged, from the<br />

detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases and diagnostics to the assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> food quality.<br />

Several <strong>on</strong>-<strong>chip</strong> clinical assessments include cell analysis, cytometry, blood<br />

analysis, nucleic acids amplificati<strong>on</strong>, genetic mapping, enzymatic assays, peptide<br />

analysis, protein separati<strong>on</strong>, toxicity analysis and bioassays. Lab-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong><br />

find growing applicati<strong>on</strong>s in drug discovery. In pharmacy, the <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong><br />

<strong>devices</strong> gradually become valuable in the area <str<strong>on</strong>g>of</str<strong>on</strong>g> drug research with the emphasis<br />

<strong>on</strong> cell targeting, clinical trials, drug synthesis, pharmaceutical formulati<strong>on</strong>s and<br />

product management process. The <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> are found promising in the<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs and determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> optimal dosages. This is especially useful<br />

for testing the synergistic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> combined drugs. Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic networks-<strong>on</strong><strong>chip</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fer unique opportunities to imitate natural veins for testing nanoparticles<br />

as drug carriers for targeting cells or, moreover, they <str<strong>on</strong>g>of</str<strong>on</strong>g>fer opportunities for<br />

examining in vitro the metabolisms <str<strong>on</strong>g>of</str<strong>on</strong>g> biological cultures. Technical limitati<strong>on</strong>s<br />

such as size reducti<strong>on</strong>, sample input rates, power c<strong>on</strong>sumpti<strong>on</strong>, but also <strong>chip</strong><br />

reliability and biocompatibility shall all be accounted in the design <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong><br />

<strong>devices</strong>.<br />

Lab-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> have become very attractive nowadays as they force the<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> pers<strong>on</strong>alized <strong>devices</strong> for point-<str<strong>on</strong>g>of</str<strong>on</strong>g>-care treatments [ 6 ]. The <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong><strong>chip</strong><br />

technology enables the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the next generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> portable and<br />

implantable bioelectr<strong>on</strong>ic <strong>devices</strong>. Due to their biosensing capability and embedding<br />

c<strong>on</strong>cept, the <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> systems are attractive platforms for developing<br />

implantable bio-inspired sensors.<br />

Fig. 1. Essential dataflow functi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong>. It can be realized with electr<strong>on</strong>ics,<br />

incorporated either in the micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic <strong>chip</strong> or <strong>on</strong> separate circuit boards, attachable to the <strong>chip</strong>. The<br />

sensor is followed by an analogue fr<strong>on</strong>t-end, which c<strong>on</strong>diti<strong>on</strong>s the measuring signal, analogue-todigital<br />

c<strong>on</strong>verters (ADC), and a digital signal processor that analyses the signal. Depending <strong>on</strong> the<br />

measuring method the signals can be electrical, optical, etc. The analysed data can be further sent<br />

via a bus to external computer for post-processing, or even visualized <strong>on</strong> integrated displays or<br />

external screen. Additi<strong>on</strong>ally to processing measurement data, the processor may adjust the state <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the measurand sample via mechanical, electrical, or optical actuati<strong>on</strong>.<br />

110


Lab-<strong>on</strong>-<strong>chip</strong> technology has adopted most analytical chemistry methods, such<br />

as electrochemical sensing [ 7,8 ], mass spectrometry [ 9,10 ], thermal detecti<strong>on</strong>, ultrasound<br />

waves [ 11 ], capillary electrophoresis [ 12–17 ], electrochromatography [ 18–24 ],<br />

and moreover optical methods like absorbance [ 25,26 ], infrared and Raman spectroscopy<br />

[ 27 ], scattering [ 28 ], refractive index [ 29 ], surface plasm<strong>on</strong> res<strong>on</strong>ance [ 30 ],<br />

plasma emissi<strong>on</strong> and fluorescence [ 31 ].<br />

2. ADVANTAGES OF LAB-ON-CHIP DEVICES<br />

Built to automate <str<strong>on</strong>g>lab</str<strong>on</strong>g>oratory processes, some notable technical advantages <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> are compactness, portability, modularity, rec<strong>on</strong>figurability,<br />

embedded computing, automated sample handling, low electr<strong>on</strong>ic noise, limited<br />

power c<strong>on</strong>sumpti<strong>on</strong> and straightforward integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> their comp<strong>on</strong>ents. In<br />

additi<strong>on</strong> to minimal quantity request for samples, analytes, or reagents, the <str<strong>on</strong>g>lab</str<strong>on</strong>g><strong>on</strong>-<strong>chip</strong><br />

<strong>devices</strong> are fully enclosed and this reduces c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the carried<br />

samples. Furthermore, <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> are capable <str<strong>on</strong>g>of</str<strong>on</strong>g> supporting a wide<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> processes such as sampling, routing, transport, dispensing and mixing,<br />

mostly with reduced moving or spinning comp<strong>on</strong>ents, therefore the usability and<br />

lifespan <str<strong>on</strong>g>of</str<strong>on</strong>g> the device is increased. Due to their small size, the <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong><br />

<strong>devices</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fer precise fluidic transportati<strong>on</strong> via the use <str<strong>on</strong>g>of</str<strong>on</strong>g> electrokinetics or micropumping,<br />

efficient separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the liquid samples and precisi<strong>on</strong> in the measurement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> samples.<br />

Although usually the fluidic transportati<strong>on</strong> pertains c<strong>on</strong>tinuous flows, dropletbased<br />

segmented flows are also favoured [ 32–34 ]. The droplets usually find<br />

applicati<strong>on</strong>s as small bioreactors for cellular and molecular assays for advanced<br />

therapeutics [ 35–37 ]. Supplementary, and depending <strong>on</strong> the particularity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

applicati<strong>on</strong>, tiny droplets can be employed as electrical [ 38 ], optical [ 39,40 ] or<br />

thermal agents. The benefit for biomedicine is the possibility for c<strong>on</strong>tinuous and<br />

automated m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> biochemical samples and the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> adjusting<br />

procedures by <strong>on</strong>line feedbacks. Due to the small fluidic volumes that they<br />

handle, the <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> can reduce the time <str<strong>on</strong>g>of</str<strong>on</strong>g> synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> a product and<br />

the time <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample. They can measure samples with greater precisi<strong>on</strong>,<br />

but most essential is their capability <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trolling the chemical reacti<strong>on</strong>s<br />

through efficient c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> the reactants c<strong>on</strong>centrati<strong>on</strong>. The <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong><br />

can either provide cascade or parallel sample processing. The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parallel processing allows simultaneous tests <str<strong>on</strong>g>of</str<strong>on</strong>g> different samples with different<br />

reagents, so that the product’s effectiveness can be characterized efficiently.<br />

Lab-<strong>on</strong>-<strong>chip</strong> technology <str<strong>on</strong>g>of</str<strong>on</strong>g>fers affordable and simple maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

fluidic <strong>chip</strong>s. They can be easily cleaned and sterilized with cleaning soluti<strong>on</strong>s<br />

like sodium hydroxide, nitric acid, decanol, ethanol, bleach and ethylene<br />

oxide [ 1 ]. Alternatively, ultraviolet radiati<strong>on</strong>, autoclaving and heat can sterilize<br />

the <strong>devices</strong>. Furthermore, capillary plasma can remove organic remains from<br />

inside the fluidic <strong>chip</strong>s.<br />

111


Key manufacturing advantages that make <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> affordable are:<br />

achievable mass producti<strong>on</strong>, affordable replacement cost, short time manufacture,<br />

simple quality tests, and broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> supporting computer aided<br />

design and simulati<strong>on</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware tools. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluidic <str<strong>on</strong>g>lab</str<strong>on</strong>g><strong>on</strong>-<strong>chip</strong><br />

<strong>devices</strong> are analogous to those <str<strong>on</strong>g>of</str<strong>on</strong>g> the integrated electr<strong>on</strong>ic <strong>chip</strong>s.<br />

112<br />

3. APPLICATIONS OF LAB-ON-CHIP DEVICES<br />

Clinical medicine greatly benefits from <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> technology as it suites for<br />

drug tests, tests for observing pandemics, glucose m<strong>on</strong>itoring, diabetic c<strong>on</strong>trol,<br />

diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> diseases and numerous other tests. Lab-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> enhance<br />

numerous <str<strong>on</strong>g>biomedical</str<strong>on</strong>g> tests that entail mixing, analysis and separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> samples,<br />

which usually c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> cell suspensi<strong>on</strong>s, nucleic acids, proteins, etc. Analytical,<br />

electrical, or optical detecti<strong>on</strong> methods are possible. The electrical detecti<strong>on</strong><br />

methods depend exclusively <strong>on</strong> the polar properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the molecules <str<strong>on</strong>g>of</str<strong>on</strong>g> the liquid<br />

samples. For example, carb<strong>on</strong> dioxide levels, oxygen levels, or pH values can be<br />

measured electrochemically. On the c<strong>on</strong>trary, most analytical or optical<br />

techniques require <str<strong>on</strong>g>lab</str<strong>on</strong>g>elling, which entails chemoluminescence, fluorescence, or<br />

radioactive markers. Most separati<strong>on</strong> methods <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> systems are<br />

miniaturized approaches <str<strong>on</strong>g>of</str<strong>on</strong>g> larger <strong>on</strong>es. There are diverse screening methods,<br />

which <str<strong>on</strong>g>of</str<strong>on</strong>g>fer high sample throughput, whereas other methods <str<strong>on</strong>g>of</str<strong>on</strong>g>fer reliability and<br />

precisi<strong>on</strong>. The separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biomolecules, cells, or nanoparticles can be managed<br />

by transportati<strong>on</strong> methods, which are based <strong>on</strong> the charge and size <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

substances. These transportati<strong>on</strong> methods can be the following <strong>on</strong>es:<br />

(a) hydrodynamic manipulati<strong>on</strong>, which employs hydrodynamic pressure [ 41–44 ];<br />

(b) electrical manipulati<strong>on</strong> which transports electrolytes, suspensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particles<br />

or cells, or entire aqueous volumes like droplets, via the use <str<strong>on</strong>g>of</str<strong>on</strong>g> electrokinetic<br />

mechanisms such as electrophoresis [ 45 ], dielectrophoresis [ 46,47 ] and electrowetting<br />

[ 48–51 ];<br />

(c) magnetophoresis that employs magnetic fields in c<strong>on</strong>juncti<strong>on</strong> with magnetic<br />

nanoparticles suspended in the samples [ 52 ];<br />

(d) optical manipulati<strong>on</strong> that employs laser-light pressure which moves nanoparticles<br />

or tinny droplets [ 29,33 ]; alternatively, light actuati<strong>on</strong> can alter locally<br />

the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrophobicity <str<strong>on</strong>g>of</str<strong>on</strong>g> a surface and c<strong>on</strong>sequently direct aqueous<br />

volumes via hydrophilic routes.<br />

Electrical and mechanical micropumps are largely employed in micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic<br />

manipulati<strong>on</strong> [ 53 ]. Electric micropumps utilize electrokinetics [ 54 ], piezoelectrics<br />

[ 55,56 ], or magnetohydrodynamics [ 57 ], while mechanical micropumps<br />

utilize hydrodynamic pressure [ 58 ], thermal expansi<strong>on</strong> [ 59 ], osmotic pressure [ 60 ],<br />

or other transducer or induced forces. Electrocapillary, an important electrokinetic<br />

pumping mechanism, boosted the development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong><br />

[ 13,61,62 ]. This achievement caused the realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> miniaturized analytical<br />

instruments, namely <strong>on</strong>-<strong>chip</strong> chromatographic systems [ 63 ]. Other pumping


mechanisms employ thermal gradients, or magnetophoresis. Fluidic <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong><br />

<strong>devices</strong> can facilitate cell screening [ 64–66 ]. This works <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> forcing<br />

cells into specific streamlines, separates them by size, and drives them into<br />

specific outlets [ 67 ]. This finds applicati<strong>on</strong>s in blood cell separati<strong>on</strong>, where<br />

erythrocytes flow right in the centre <str<strong>on</strong>g>of</str<strong>on</strong>g> a microcapillary and the leukocytes, due<br />

to their differing mass, pursue streamlines al<strong>on</strong>g the capillary wall [ 43,68 ]. Besides<br />

hydrodynamic separati<strong>on</strong>, microvalves can sort suspensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cells or nanoparticles,<br />

usually in c<strong>on</strong>juncti<strong>on</strong> with electrokinetic actuati<strong>on</strong> methods [ 69–71 ].<br />

Electrically actuated microvalves are made <str<strong>on</strong>g>of</str<strong>on</strong>g> electroactive elastomers or piezoelectrics,<br />

which can be embedded easily in fluidic <strong>chip</strong>s. Piezoelectric micropumps<br />

are activated when voltage applies <strong>on</strong> a piezoelectric material causing<br />

expansi<strong>on</strong>. The expansi<strong>on</strong> can be several micrometres, but in the microscale this<br />

causes significant pressure, which pushes the fluid adequately. Magnetically<br />

actuated microvalves also exist, made <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetically inductive materials. The<br />

magnetic actuati<strong>on</strong> field can be produced <strong>on</strong>-<strong>chip</strong> by means <str<strong>on</strong>g>of</str<strong>on</strong>g> current patterns,<br />

integrated <strong>on</strong> the <strong>chip</strong>. Lab-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> are efficient in mixing samples in a<br />

c<strong>on</strong>trol<str<strong>on</strong>g>lab</str<strong>on</strong>g>le and precise manner due to the use <str<strong>on</strong>g>of</str<strong>on</strong>g> tiny liquid volumes. Examples<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mixers include distributive mixers, static mixers, T-juncti<strong>on</strong> mixers and vortex<br />

mixers. Active mixers c<strong>on</strong>sume power in order to increase the interfacial area<br />

between the mixing fluids. Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> active mixers include electrokinetic<br />

mixers, chaotic advecti<strong>on</strong> mixers and magnetically driven mixers. Passive mixing<br />

can be achieved in microchannels with structures called twists that cause<br />

turbulence. Some mixers are more efficient at faster flow rates, whereas others<br />

work more efficiently at slower flow rates [ 32 ].<br />

Temperature c<strong>on</strong>trol is important in micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic <strong>devices</strong>. Temperature<br />

gradients can be generated inside micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic channels by means <str<strong>on</strong>g>of</str<strong>on</strong>g> miniaturized<br />

heating elements, such as heat exchangers, heaters or coolers [ 72 ]. The efficiency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> micro-heat exchangers depends <strong>on</strong> their ability to regulate the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the transported fluid, in c<strong>on</strong>juncti<strong>on</strong> with reservoirs that buffer rapid changes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

temperature. The micro-heaters are assembled in the form <str<strong>on</strong>g>of</str<strong>on</strong>g> coils. Due to the<br />

inherently small dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic <strong>devices</strong>, the thermal coupling<br />

between a micro-heater and a reservoir is very efficient. Coolers can be made out<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heatsinks that induct the heat to the envir<strong>on</strong>ment. The combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small<br />

fluidic volumes and the precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the heatsinks allow cooling to ambient<br />

temperature with ease. Repeatable temperature cycles are essential in the process<br />

for nucleic acid amplificati<strong>on</strong> and find applicati<strong>on</strong> in the polymerase chain<br />

reacti<strong>on</strong> (PCR) arrays-<strong>on</strong>-<strong>chip</strong>s [ 72–77 ]. PCR replicates small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleic<br />

acids into large amounts. PCR involves a three-step thermal cycle that promotes<br />

the replicati<strong>on</strong>: heating (90–95 °C), cooling (50 °C), and slight warming (60–<br />

70 °C). PCR <strong>chip</strong>s include various temperature z<strong>on</strong>es whose benefit is that the<br />

cycle time no l<strong>on</strong>ger relies <strong>on</strong> the time required to heat or cool the sample. The<br />

benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> performing PCR in micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic <strong>chip</strong>s is due to the very small liquid<br />

volumes used, for which temperature homogeneity and diffusi<strong>on</strong> efficiency are<br />

higher in comparis<strong>on</strong> with ordinary <str<strong>on</strong>g>lab</str<strong>on</strong>g>oratory vessels. However, thermal cycles<br />

113


may induce undesirable effects, especially regarding evaporati<strong>on</strong> and bubble<br />

formati<strong>on</strong>. The droplet-based bio<strong>chip</strong>s eliminate most <str<strong>on</strong>g>of</str<strong>on</strong>g> these defects during<br />

PCR processes due to the isolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the droplets by a sec<strong>on</strong>d phase oleic<br />

fluid [ 78,79 ]. Fully automated PCR bio<strong>chip</strong>s that c<strong>on</strong>tain mixers, heaters, and<br />

microarray sensors are capable <str<strong>on</strong>g>of</str<strong>on</strong>g> performing sequential functi<strong>on</strong>s like hybridizati<strong>on</strong>,<br />

prec<strong>on</strong>centrati<strong>on</strong>, purificati<strong>on</strong>, lysis, and electrochemical assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

complex biological soluti<strong>on</strong>s [ 80 ]. In bio-analysis, biosensors, integrated in micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic<br />

<strong>devices</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g>fer possibilities for electrochemical or optical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

samples. Enzyme-based electrochemical biosensors can measure oxygen c<strong>on</strong>sumpti<strong>on</strong><br />

or pH producti<strong>on</strong> by means <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymatic reacti<strong>on</strong>s. The enzymes<br />

catalyse the reacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the analytes and the sensor measures the products [ 81 ]. In<br />

the field <str<strong>on</strong>g>of</str<strong>on</strong>g> bioanalytical separati<strong>on</strong>, the capillary chromatographic <strong>chip</strong>s adopt<br />

fluorescent polystyrene nanoparticles or <str<strong>on</strong>g>lab</str<strong>on</strong>g>elled macromolecules to enhance cell<br />

or protein separati<strong>on</strong> by image recogniti<strong>on</strong> [ 18,82,83 ]. In analogy, the i<strong>on</strong> exchange<br />

chromatographic <strong>chip</strong>s separate electrokinetically analytes such as polar<br />

molecules, proteins, nucleotides and amino acids according to their i<strong>on</strong>ic charge.<br />

Genomic research requires analysis, which can be utilized by means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

specialized fluidic <strong>chip</strong>s called microarrays, which are arrangements <str<strong>on</strong>g>of</str<strong>on</strong>g> open<br />

planar arrays that each c<strong>on</strong>tains thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> specific olig<strong>on</strong>ucleotides, covalently<br />

b<strong>on</strong>ded <strong>on</strong> glass or silic<strong>on</strong> substrate [ 84–87 ]. These olig<strong>on</strong>ucleotides functi<strong>on</strong> as<br />

probes, which hybridize the DNA fragments that c<strong>on</strong>tact the microarray, by<br />

forming hydrogen b<strong>on</strong>ds between the DNA fragments and the complementary<br />

nucleotide base pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> each probe. A microarray can accomplish many<br />

genotype tests in parallel. The detecti<strong>on</strong> method in microarray <strong>chip</strong>s is based <strong>on</strong><br />

microscopy analysis via the use <str<strong>on</strong>g>of</str<strong>on</strong>g> fluorophore or chemoluminescence <str<strong>on</strong>g>lab</str<strong>on</strong>g>els that<br />

determine abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleic acid sequences. The <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> microarrays can<br />

be distinguished between cDNA-microarrays and olig<strong>on</strong>ucleotide-microarrays.<br />

The latter can perform genotyping and resequencing [ 88 ]. The microarray <strong>chip</strong>s<br />

can be employed in nucleic acid analysis, which includes DNA extracti<strong>on</strong> and<br />

purificati<strong>on</strong>, amplificati<strong>on</strong>, hybridizati<strong>on</strong>, sequencing, gene expressi<strong>on</strong> analysis,<br />

genotyping and DNA separati<strong>on</strong>. Moreover, microarrays can recombine<br />

nucleotide fragments by employing end<strong>on</strong>ucleases to cleave and rebind the fragments<br />

with DNA ligase enzymes. Fluorescence microscopy is mainly employed<br />

in microarrays because <str<strong>on</strong>g>of</str<strong>on</strong>g> its challenging limits <str<strong>on</strong>g>of</str<strong>on</strong>g> detecti<strong>on</strong>, due to its sensitivity,<br />

which approaches c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> picomoles. Detecti<strong>on</strong> sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> picomoles<br />

is appropriate in most applicati<strong>on</strong>s that require high sensitivity, such as<br />

DNA sequencing and many immunoassays [ 89 ]. There are great potential applicati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> microarray <strong>chip</strong>s in biotechnology as well as <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA-inspired <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong><strong>chip</strong>s<br />

in nanotechnology [ 90 ]. The oxidative type <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA-mediated charge transport<br />

has significant results in mutagenesis, apoptosis, or cancer studies. On the<br />

other hand, excess electr<strong>on</strong> transport plays a growing role in the development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electrochemical DNA <strong>chip</strong>s for the detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA base mutati<strong>on</strong>s [ 91 ].<br />

Knowledge about excess electr<strong>on</strong> transport in DNA has potentials for nanotechnological<br />

applicati<strong>on</strong>s, such as supramolecular electr<strong>on</strong>ics. In this field, the<br />

114


esearch focuses <strong>on</strong> the role <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA as supramolecule that features important<br />

properties for nanowires [ 92 ].<br />

Lab-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> support cell detecti<strong>on</strong> by means <str<strong>on</strong>g>of</str<strong>on</strong>g> capillary electrophoresis,<br />

electroporati<strong>on</strong>, cytometry or electrical impedance. The cells can be<br />

cultivated within aqueous microreactors inside the <strong>chip</strong>s [ 35,69,70,93 ]. With <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong><strong>chip</strong><br />

<strong>devices</strong> <strong>on</strong>e can measure accurately chemical stimuli <strong>on</strong> cells, as cellular<br />

signals are weak and not easily detected with c<strong>on</strong>venti<strong>on</strong>al analytical methods.<br />

Cytometers allows cell counting and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular parameters like size<br />

distributi<strong>on</strong> or growth rate. Cytometry comm<strong>on</strong>ly employs electrical impedance<br />

methods [ 94–96 ], but also employs fluorescence microscopy; however, fluorescence<br />

microscopy requires cell <str<strong>on</strong>g>lab</str<strong>on</strong>g>elling with dyes or fluorescent nanoparticles<br />

and external optical apparatuses, such as optical fibres and illuminators [ 97 ].<br />

Other electrokinetic methods rely <strong>on</strong> c<strong>on</strong>tactless c<strong>on</strong>ductivity detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic i<strong>on</strong>s or electrolytes where typically two <strong>on</strong>-<strong>chip</strong> embedded tubular<br />

electrodes, away from each other, measure changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the ohmic resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

soluti<strong>on</strong> that flows inside the micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic channel [ 8,15,17,98–101 ]. Capillary electrophoresis<br />

performs electroseparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the i<strong>on</strong>ic compounds, based <strong>on</strong> the size-tocharge<br />

ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the i<strong>on</strong>s, which are transported electrokinetically in the carrier<br />

liquid. The electrocapillary forces drag the i<strong>on</strong>s into the capillary channel while<br />

the fluidic sample approaches the inlet <str<strong>on</strong>g>of</str<strong>on</strong>g> the microchannel [ 102–104 ]. Capillary<br />

electrophoresis is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> separating particulate substances like cells, amino<br />

acids, proteins, peptides, mitoch<strong>on</strong>dria, or bacteria [ 105 ]. In micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic channels<br />

the surface-to-volume increases significantly due to reduced dimensi<strong>on</strong>s, and<br />

electrophoresis force becomes more efficient due to the shortening <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

distance. In capillary electrophoresis <strong>devices</strong> the electric fields range to some<br />

hundreds V/cm with pulse durati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> millisec<strong>on</strong>ds. Capillary electrophoresis<br />

separati<strong>on</strong> is fast and robust and high throughput can be obtained. Electroporati<strong>on</strong><br />

is an electrical method that accesses the interior <str<strong>on</strong>g>of</str<strong>on</strong>g> cells. Applying short<br />

and intense electric pulses increases the c<strong>on</strong>ductivity and transiently permeabilizes<br />

the lipid membrane <str<strong>on</strong>g>of</str<strong>on</strong>g> a cell and introduces substances into the cytoplasm.<br />

Electroporati<strong>on</strong> is used for inserting drugs or genes into cells and is highly<br />

efficient when performed in vitro in <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> [ 106 ]. Electrokinetic<br />

manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended particles by means <str<strong>on</strong>g>of</str<strong>on</strong>g> electric fields is widely used in<br />

<str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> for in vitro separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particles or cells [ 107,108 ]. Dielectrophoresis<br />

manipulates and separates cells, beads or nanoparticles by means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

inhomogeneous electric fields that can be produced with electrodes <str<strong>on</strong>g>of</str<strong>on</strong>g> specific<br />

shapes [ 46,47 ]. The cells can be collected or directed away from the electrodes<br />

under the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the dielectrophoresis force, which is directed towards the<br />

field gradient, and originates from the permittivity difference between the carrier<br />

fluid and cells [ 109 ]. The possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> using dielectrophoresis for in vitro separati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> blood cells, based <strong>on</strong> their c<strong>on</strong>ductivity characteristics, can automate<br />

partiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> white blood cells from erythrocytes. Several human cancer cells have<br />

been successfully studied and dielectrophoretically sorted [ 110–113 ]. Dielectrophoresis<br />

can further measure dielectric differences <str<strong>on</strong>g>of</str<strong>on</strong>g> cells or particles by means<br />

115


<str<strong>on</strong>g>of</str<strong>on</strong>g> electrorotati<strong>on</strong>al spectra [ 114 ]. Cancerous cells are different from healthy<br />

erythrocytes and lymphocytes. Their dielectric diversificati<strong>on</strong> can be exploited<br />

for removing metastatic cancer cells from healthy blood cells. Other electrokinetic<br />

means with growing applicati<strong>on</strong>s in <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong>s technology is electroosmotic<br />

flow, a coulomb effect that results in transportati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> an electric<br />

double layer [ 115,116 ], and its reverse effect, streaming potential, that is induced<br />

voltage <strong>on</strong> an electrode due to the flowing moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> counteri<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> an electric<br />

double layer [ 117,118 ].<br />

Today, magnetic separati<strong>on</strong> <strong>devices</strong> are avai<str<strong>on</strong>g>lab</str<strong>on</strong>g>le and magnetic cell separati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fers diagnostic and therapeutic values [ 119 ]. Magnetophoretic sorters can<br />

capture cells that are b<strong>on</strong>ded with magnetic beads, or nanoparticle aggregates,<br />

and force them flow into the carrier fluid with increased selectivity [ 52,120 ]. Moreover,<br />

magnetic nanoparticles can be used to destruct targeted cells by penetrati<strong>on</strong>,<br />

or to release carried drug into the cell’s cytoplasm [ 121 ]. The magnetic field can<br />

be generated by current patterns <strong>on</strong> the <strong>chip</strong>. An important advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic<br />

actuators in comparis<strong>on</strong> with the electric <strong>on</strong>es is due to the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

magnetic driving force that is significantly larger in comparis<strong>on</strong> to electrokinetic<br />

forces. This highly improves the c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> the liquid flow. The possibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

incorporating magnetic nanoparticles into cells as inert tracers for cell m<strong>on</strong>itoring,<br />

allows measuring cytoskelet<strong>on</strong> associated cell functi<strong>on</strong>s [ 122,123 ]. Within<br />

cytoplasm the magnetic nanoparticles may equilibrate, but intracellular transports<br />

disorient the magnetic nanoparticles resulting in the decay <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetizati<strong>on</strong><br />

which can be recorded by magneto-impedimetric sensor, embedded in the <strong>chip</strong>.<br />

Magnetic actuators can transport aqueous droplets that enclose magnetic nanoparticles<br />

[ 124 ]. Under the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field the magnetic nanoparticles<br />

can drag the droplet and execute all the usual micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic operati<strong>on</strong>s<br />

such as displacement, merging, mixing and separati<strong>on</strong> [ 125 ].<br />

116<br />

4. DESIGNING AND MANUFACTURING PROCESS<br />

The manufacturing process for producing a <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> device is described in<br />

Fig. 2. A numerical simulati<strong>on</strong> that models the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong><br />

device is essential before manufacturing the device. Simulati<strong>on</strong>s are important,<br />

Fig. 2. Flow diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the manufacturing steps required for producing a commercial <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong><br />

device.


ecause they imitate the functi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> the comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the device and then<br />

use the simulati<strong>on</strong> data to infer the real-world functi<strong>on</strong>ality and performance.<br />

Numerical simulati<strong>on</strong>s usually rely <strong>on</strong> finite element algorithms that can be<br />

actualized by specialized finite element s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware. Fully dynamic simulati<strong>on</strong>s are<br />

computati<strong>on</strong>ally not efficient, because they require huge computati<strong>on</strong>al<br />

resources. Alternatively, the numerical simulati<strong>on</strong>s can be performed quasistatically,<br />

but this does not provide informati<strong>on</strong> about the dynamic behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

comp<strong>on</strong>ent. In order to study the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a comp<strong>on</strong>ent in a computati<strong>on</strong>ally<br />

efficient way, it is essential to reduce the number <str<strong>on</strong>g>of</str<strong>on</strong>g> degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, from a<br />

three-dimensi<strong>on</strong>al model to a two-dimensi<strong>on</strong>al model. Due to the hierarchical<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong>, a numerical simulati<strong>on</strong> requires studies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sca<str<strong>on</strong>g>lab</str<strong>on</strong>g>ility [ 2 ]. A <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> maker must handle heterogeneous and multiple<br />

comp<strong>on</strong>ents and should deal with complex fluidic flows and multiple comp<strong>on</strong>ent<br />

simulati<strong>on</strong>. It is important for the <strong>chip</strong>maker to investigate how the performance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic device scales with increasingly complicated sample analysis. In<br />

additi<strong>on</strong>, it is necessary to investigate how the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong><br />

system balances with advances in the present technology. Although a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

computer-aided design tools, dedicated for <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> designs, exist, any usual<br />

computer-aided design tool that supports multilayer drawing and vector graphics<br />

can be used.<br />

Lab-<strong>on</strong>-<strong>chip</strong>s <strong>devices</strong> should be modular to allow, to the most possible extent,<br />

expansi<strong>on</strong> to varied functi<strong>on</strong>s. The goal is to leverage system-level and comp<strong>on</strong>ent-level<br />

technology, including fluidics and sensorics, to be expanded, rec<strong>on</strong>figured<br />

and reused for varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s <strong>on</strong> the same <strong>chip</strong>. Usually data<br />

analysis s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware can be rec<strong>on</strong>figured. For example, a <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> microarray<br />

device should be capable <str<strong>on</strong>g>of</str<strong>on</strong>g> processing genotyping and gene expressi<strong>on</strong> applicati<strong>on</strong>s.<br />

A chromatographic fluidic biosensor or a temperature-based actuator<br />

should be capable <str<strong>on</strong>g>of</str<strong>on</strong>g> processing liquids and gases. An electrokinetic actuator<br />

should be capable <str<strong>on</strong>g>of</str<strong>on</strong>g> processing both c<strong>on</strong>tinuous or segmented fluidic samples<br />

and the same device be competent <str<strong>on</strong>g>of</str<strong>on</strong>g> separating nanometer-size macromolecules<br />

by means <str<strong>on</strong>g>of</str<strong>on</strong>g> electrophoresis, or separating micrometer-size cells by means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dielectrophoresis, or separating millimetre-scaled droplets that enclose cells, by<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> electrowetting. Segmented flows that c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> droplet microreactors<br />

allow dynamic rec<strong>on</strong>figurability, because the cells, cultured inside each droplet,<br />

can be rec<strong>on</strong>figured to different functi<strong>on</strong>ality within each individual droplet.<br />

The system architecture <str<strong>on</strong>g>of</str<strong>on</strong>g> a micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic <strong>chip</strong> should assort the elementary<br />

fluidic comp<strong>on</strong>ents like micropumps, microvalves, reservoirs, microchannels,<br />

nozzles and juncti<strong>on</strong>s in a manner that allows a functi<strong>on</strong>al and straightforward<br />

process. It is c<strong>on</strong>venient to c<strong>on</strong>sider circuit analogies when analysing micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic<br />

<str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong>s: the reservoirs are comparable to registers as they are storage<br />

comp<strong>on</strong>ents. Microchannels are equivalent to wires as they carry flows. Microvalves<br />

are analogous to gates as they provide selectivity. Micropumps are<br />

analogous to voltage sources as they actuate the flow.<br />

117


Electromagnetic compatibility issues should be carefully c<strong>on</strong>sidered in <str<strong>on</strong>g>lab</str<strong>on</strong>g><strong>on</strong>-<strong>chip</strong><br />

design because measuring and c<strong>on</strong>trol signals usually interfere. To<br />

eliminate electromagnetic interferences, usually timeslot sharing is required.<br />

Furthermore, the metal holder <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> should be designed in a way that<br />

shields the device. The electr<strong>on</strong>ics and embedded circuits that integrate <strong>on</strong>to a<br />

<str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> device should comply with the electromagnetic compatibility<br />

standards <str<strong>on</strong>g>of</str<strong>on</strong>g> radio frequency electr<strong>on</strong>ics. Any circuit board, attached <strong>on</strong> the <strong>chip</strong><br />

holder, should be designed in a way that minimizes electrical c<strong>on</strong>necti<strong>on</strong>s. This is<br />

particularly important in the impedimetric <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong>, which operate at<br />

radio frequencies, where the electric length <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>necti<strong>on</strong>s influences the<br />

measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the impedance values.<br />

The <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> should be designed in a manner to be easily<br />

maintained. A device should <str<strong>on</strong>g>of</str<strong>on</strong>g>fer easy channel washing and sample filling. The<br />

<strong>chip</strong> holders and the other c<strong>on</strong>necting comp<strong>on</strong>ents should be easily handled,<br />

assembled and used by the <str<strong>on</strong>g>lab</str<strong>on</strong>g>oratory staff. Many <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> might be<br />

requested to fulfil specific customized tasks, but still the manufacturer should<br />

design the device in a manner that provides the user the fundamentals for handy<br />

maintenance, calibrati<strong>on</strong> and operati<strong>on</strong>.<br />

The manufacturing procedure for producing <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> is comparable<br />

to the microelectr<strong>on</strong>ic <strong>chip</strong> fabricati<strong>on</strong> procedure. It involves photolithography,<br />

where patterns that represent micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic and electric features are<br />

transferred <strong>on</strong>to a photosensitive substrate by means <str<strong>on</strong>g>of</str<strong>on</strong>g> ultraviolet illuminati<strong>on</strong><br />

via a chromium photomask. Then chemical etching reveals the elements.<br />

Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photolithography via successive photomasks produces multilayered<br />

structures. Photolithography has c<strong>on</strong>tinuous improvements in the ability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> resolving ever-smaller features, but also in producing high-aspect-ratio<br />

features. This is especially important in the fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic channels.<br />

Each implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the photolithographic process has its own specific<br />

requirements, but there is comm<strong>on</strong> sequence, which involves the following, as<br />

shown in Fig. 3.<br />

(a) Metallizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate by sputtering gold or platinum film <strong>on</strong> it.<br />

Electrodes and other c<strong>on</strong>ductive elements can be shaped <strong>on</strong> this metallized<br />

surface.<br />

(b) Spin-coating <str<strong>on</strong>g>of</str<strong>on</strong>g> photoresist <strong>on</strong>to the metallized surface, at typical speeds<br />

(depending <strong>on</strong> the resist’s viscosity) <str<strong>on</strong>g>of</str<strong>on</strong>g> 1500–8000 rpm, and heat at 100 °C to<br />

dry the resist. The photoresist serves as an intermediate layer via which the<br />

patterns can be transferred <strong>on</strong>to the metallized substrate.<br />

(c) Exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoresist layer to ultraviolet light that results in the<br />

transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> the patterns <strong>on</strong>to the photoresist film via photomasks. The resist’s<br />

solubility alters <strong>on</strong> the exposed areas.<br />

(d) Dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the exposed areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoresist with amm<strong>on</strong>ium<br />

hydroxide.<br />

(e) Chemical etching that removes the metal that extends under the exposed<br />

photoresist. Dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the unexposed areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoresist in order to<br />

118


eveal the metal patterns, which extend underneath. It follows plasma<br />

treatment that removes the organic remains and cleans up the substrate.<br />

(Alternative to chemical etching is the lift-<str<strong>on</strong>g>of</str<strong>on</strong>g>f process, where metal sputters<br />

the top <str<strong>on</strong>g>of</str<strong>on</strong>g> a photoresist film and covers <strong>on</strong>ly the uncoated areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

substrate. It follows detachment <str<strong>on</strong>g>of</str<strong>on</strong>g> the unexposed areas from the substrate.)<br />

(f) Spin-coat SU8 photoresist, at typical speed <str<strong>on</strong>g>of</str<strong>on</strong>g> 1500 rpm for 30 s, and<br />

hardening at 90 °C for 2 min. The SU8 layer may develop up to thicknesses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> some hundred micrometers. This SU8 layer is used as a material for<br />

producing microchannels.<br />

(g) Transferral <str<strong>on</strong>g>of</str<strong>on</strong>g> patterns <strong>on</strong>to the SU8 layer by ultraviolet exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> the SU8<br />

via chromium photomask. The SU8 resist is then developed with methoxypropyl-acetate<br />

that removes the unexposed SU8 areas and reveals the<br />

microchannels. (Alternative to SU8, microchannels might be directly etched<br />

<strong>on</strong> glass substrate by means <str<strong>on</strong>g>of</str<strong>on</strong>g> hydr<str<strong>on</strong>g>of</str<strong>on</strong>g>luoric acid etcher.)<br />

(h) Dishing <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate in order to separate the individual <strong>chip</strong>s and drill <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

inlets.<br />

(i) Enclosure <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>chip</strong> by aligning and crosslinking two opposite plates at the<br />

temperature 150 °C for 30 min.<br />

S<str<strong>on</strong>g>of</str<strong>on</strong>g>t lithography is an alternative fabricati<strong>on</strong> technique, based <strong>on</strong> direct<br />

printing or molding <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers [ 126,127 ]. In s<str<strong>on</strong>g>of</str<strong>on</strong>g>t lithography, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> stiff<br />

photomasks, elastomers are used as stamps, molds, or masks, in order to replicate<br />

patterns (Fig. 4). In s<str<strong>on</strong>g>of</str<strong>on</strong>g>t lithography the silic<strong>on</strong>e elastomer PDMS (polydimethyl-<br />

Fig. 3. Photolithographic development <str<strong>on</strong>g>of</str<strong>on</strong>g> microelectrodes and microchannels <strong>on</strong> a wafer substrate:<br />

(a) metallizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate by sputtering a metal film <str<strong>on</strong>g>of</str<strong>on</strong>g> Au, Pt, or ITO; (b) spin coating <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

photosensitive resist film <strong>on</strong>to the metal film; (c) exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> the photosensitive film via a<br />

photomask that results in the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> the desired electrode patterns <strong>on</strong>to the photosensitive film;<br />

(d) after photo-development, chemical etching removes the bare metallized areas, which results in<br />

the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electrodes; (e) spin coating <str<strong>on</strong>g>of</str<strong>on</strong>g> an SU8 photoresist layer; (f) exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

SU8 photoresist film via photomasks and development; (g) chemical etching and removal <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

unwanted SU8 resist. The revealed half microchannel has sidewalls made <str<strong>on</strong>g>of</str<strong>on</strong>g> the SU8 material.<br />

119


Fig. 4. Sequential steps <str<strong>on</strong>g>of</str<strong>on</strong>g> the s<str<strong>on</strong>g>of</str<strong>on</strong>g>t fabricati<strong>on</strong> process, which can produce features <str<strong>on</strong>g>of</str<strong>on</strong>g> a few<br />

hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> micr<strong>on</strong>s: (a) a hard master substrate made <str<strong>on</strong>g>of</str<strong>on</strong>g> metal, glass or plastic, casts <strong>on</strong> a mold<br />

material which can be polymer, thermoplastic, PDMS or PMMA; (b) up<strong>on</strong> heating and<br />

pressurizati<strong>on</strong> the mold deforms to the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the master; (c) lifting <str<strong>on</strong>g>of</str<strong>on</strong>g>f the master reveals the<br />

microchannels.<br />

siloxane) is widely preferred because <str<strong>on</strong>g>of</str<strong>on</strong>g> its easiness to cast, its biocompatibility,<br />

hydrophobicity, and sealing properties. S<str<strong>on</strong>g>of</str<strong>on</strong>g>t lithography is recommended <strong>on</strong>ly for<br />

rapid prototyping in research. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the s<str<strong>on</strong>g>of</str<strong>on</strong>g>t materials used in s<str<strong>on</strong>g>of</str<strong>on</strong>g>t lithography,<br />

distorti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stamps and molds are problems that prevent s<str<strong>on</strong>g>of</str<strong>on</strong>g>t lithography<br />

from becoming a viable manufacturing technique. For example, the widespread<br />

PDMS swells when it comes in c<strong>on</strong>tact with oleic solvents.<br />

120<br />

5. MATERIALS AND METHODS<br />

5.1. Fabricati<strong>on</strong> materials<br />

Lab-<strong>on</strong>-<strong>chip</strong> fabricati<strong>on</strong> techniques are analogous to those <str<strong>on</strong>g>of</str<strong>on</strong>g> microelectr<strong>on</strong>ics,<br />

since closely related micr<str<strong>on</strong>g>of</str<strong>on</strong>g>abricati<strong>on</strong> and integrati<strong>on</strong> methodologies<br />

are shared by both. The very first fluidic <strong>devices</strong> were fabricated <strong>on</strong> silic<strong>on</strong> (Si)<br />

substrates by means <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong> integrati<strong>on</strong> technology and afterwards a more<br />

advantageous material, glass (SiO2), was introduced that dem<strong>on</strong>strates robustness<br />

and better electrical insulati<strong>on</strong> [ 128–132 ]. Modern <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> are hybrids<br />

that combine glass, silic<strong>on</strong> and various polymers like acrylic, polyester, polycarb<strong>on</strong>ate,<br />

resists, thermoplastics or molds like the polydimethylsiloxane<br />

(PDMS). Precisi<strong>on</strong>, miniaturizati<strong>on</strong>, cost effectiveness, large-scale producti<strong>on</strong><br />

and ability <str<strong>on</strong>g>of</str<strong>on</strong>g> incorporating electr<strong>on</strong>ics make these materials very attractive.<br />

They are proven very reliable since they dem<strong>on</strong>strate str<strong>on</strong>g crystalline structures<br />

and can survive l<strong>on</strong>g-term use.


Silic<strong>on</strong>, glass or polymers are suitable for making the micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>chip</strong>s; metals like gold, platinum or titanium are used for the c<strong>on</strong>ductive<br />

parts; silic<strong>on</strong> dioxide, silic<strong>on</strong> nitride and titanium nitride are for insulati<strong>on</strong><br />

and passivati<strong>on</strong>; electroactive polymers or other elastomers are for the<br />

moving comp<strong>on</strong>ents. The standard procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> producing fluidic <strong>chip</strong>s <strong>on</strong><br />

silic<strong>on</strong> or glass substrates involves:<br />

(a) depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metallic and dielectric layers <strong>on</strong> silic<strong>on</strong> or glass wafer;<br />

(b) patterning these layers by means <str<strong>on</strong>g>of</str<strong>on</strong>g> photolithography in order to transfer<br />

<strong>on</strong>to them the outlines <str<strong>on</strong>g>of</str<strong>on</strong>g> the microchannels, c<strong>on</strong>ductive or insulated areas,<br />

or other features;<br />

(c) chemical etching that removes the unwanted material and reveals the desired<br />

structures.<br />

Specifically for capillary electrophoresis <strong>devices</strong>, the use <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong> substrates<br />

is limited by their semic<strong>on</strong>ducting property; due to the high electric fields<br />

required for performing capillary electrophoresis, electric shorting very likely<br />

occurs. For this reas<strong>on</strong>, glass substrates are mostly preferred for making capillary<br />

electrophoresis <strong>devices</strong>.<br />

Polymers, like polycarb<strong>on</strong>ates, have varied interfacial and structural characteristics.<br />

Polymers have disadvantageous optical properties in comparis<strong>on</strong> to<br />

glass, like lower light transmittance and higher self-fluorescence emissi<strong>on</strong>, but<br />

better thermal c<strong>on</strong>ductance. Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic channels can be made <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers by<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> molding or micromachining [ 133,134 ]. Particularly fluoropolymers, such<br />

as polytetrafluoroethylene (PTFE (C2F4)n) are handy materials for structuring<br />

micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic channels as they are s<str<strong>on</strong>g>of</str<strong>on</strong>g>t and can be easily milled, and are also<br />

hydrophobic, which highly eases liquids to flow within the microchannels. For<br />

rapid prototyping, casting <str<strong>on</strong>g>of</str<strong>on</strong>g> polydimethylsiloxane (PDMS (C2H6OSi)n), by<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong> or smoothed metallic masters, can produce PDMS micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic<br />

channels [ 135 ]. PDMS provides flexibility, hydrophobicity and very tight sealing<br />

under applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uniform mechanical pressure. PDMS is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> sealing<br />

various smooth surfaces, including glass, silic<strong>on</strong>, silic<strong>on</strong> nitride, polyethylene,<br />

glassy carb<strong>on</strong>, oxidized polystyrene, fluorocarb<strong>on</strong>s and metals. Since s<str<strong>on</strong>g>of</str<strong>on</strong>g>t lithography<br />

is usable for fast prototyping, PDMS is preferred in s<str<strong>on</strong>g>of</str<strong>on</strong>g>t lithography as an<br />

easy-to-cast material for outlining microchannels <strong>on</strong> smoothed substrates.<br />

Compared to glass, PDMS has lower thermal c<strong>on</strong>ductivity, much higher hydrophobicity,<br />

and both these properties qualify PDMS as a suitable material for<br />

making micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic channels. On the other hand, PDMS is swollen by many<br />

organic solvents like oils, but remains unaffected by water, nitromethane, ethylene<br />

glycol, acet<strong>on</strong>itrile, perfluorotributylamine, perfluorodecalin and propylene<br />

carb<strong>on</strong>ate. Furthermore, PDMS is known to absorb small lipophilic molecules [ 136 ].<br />

The compatibility <str<strong>on</strong>g>of</str<strong>on</strong>g> PDMS against organic solvents can be enhanced by means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> coating the PDMS surface with sodium silicate. Yet, due to the pliability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

PDMS, electrodes cannot be patterned <strong>on</strong> it [ 1 ].<br />

Metal films like gold (Au), platinum (Pt) and titanium (Ti), or metalloid films<br />

like Indium Tin Oxide (ITO), are appropriate for making microelectrodes for <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<br />

121


<strong>on</strong>-<strong>chip</strong> <strong>devices</strong>. Gold and platinum are highly biocompatible, chemically inert<br />

and thus are suitable metals for c<strong>on</strong>tacting biochemical soluti<strong>on</strong>s. Thin gold,<br />

platinum, titanium, or ITO films may be sputtered, or deposited by means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evaporati<strong>on</strong>, <strong>on</strong> wafer substrates. The electrode patterns subsequently can be<br />

revealed by chemical etching or lift-<str<strong>on</strong>g>of</str<strong>on</strong>g>f process, which allows resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> few<br />

micrometers. The chemical etching method is analysed below in Secti<strong>on</strong> 5.4.<br />

Alternative to chemicals, it is possible to reveal electrodes by means <str<strong>on</strong>g>of</str<strong>on</strong>g> precise<br />

milling <str<strong>on</strong>g>of</str<strong>on</strong>g> the metallized substrate at resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> few tens to hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

micrometers. The electrodes <str<strong>on</strong>g>of</str<strong>on</strong>g> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic <strong>devices</strong> are usually coated with a<br />

dielectric film because the dielectric coating prevents electrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tacting<br />

fluids. But in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> very low voltage applicati<strong>on</strong>s, such as bioimpedance,<br />

the electrodes can remain bare. Other usages <str<strong>on</strong>g>of</str<strong>on</strong>g> metal films in <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong><strong>chip</strong>s<br />

technology entail producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> masks, overlayers, or adhesi<strong>on</strong> layers. Yet,<br />

micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic heaters or heat elements <str<strong>on</strong>g>of</str<strong>on</strong>g> Pt / Ti can be structured with 200 nm Pt,<br />

electrodeposited <strong>on</strong>to 20 nm Ti film. Pt thin films <strong>on</strong> glass substrate are capable<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> withstanding thermal b<strong>on</strong>ding and thus Pt is preferred for wiring c<strong>on</strong>tacts [ 1 ].<br />

For c<strong>on</strong>trolling liquid flows, movable micro-apparatuses might be integrated<br />

within <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong>. The electroactive polymers are an important class <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elastomers for fabricating microvalves or micropumps, as they can be precisely<br />

c<strong>on</strong>trolled electrically.<br />

122<br />

5.2. Coating materials<br />

The metallizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong>, glass or polymer substrates is a process which<br />

precedes the patterning <str<strong>on</strong>g>of</str<strong>on</strong>g> the electrodes. Metal films can be sputtered or<br />

chemically deposited <strong>on</strong> silic<strong>on</strong>, glass or polymer substrates. Gold and platinum<br />

are two metals widely adopted by the <strong>chip</strong>makers in the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microelectrodes,<br />

due to two significant properties:<br />

(a) excellent c<strong>on</strong>ductivity, which allows transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical signals without<br />

distorti<strong>on</strong>s;<br />

(b) biocompatibility, which allows direct c<strong>on</strong>tact with biochemical soluti<strong>on</strong>s<br />

without adhesi<strong>on</strong>s and adsorpti<strong>on</strong>s.<br />

The density <str<strong>on</strong>g>of</str<strong>on</strong>g> a metal film that is developed by means <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical depositi<strong>on</strong><br />

is a bit lower than that <str<strong>on</strong>g>of</str<strong>on</strong>g> bulk metals. The deposited metal film might c<strong>on</strong>tain<br />

defects such as pores and inclusi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> foreign matter <str<strong>on</strong>g>of</str<strong>on</strong>g> 2–30 nm in diameter.<br />

Further, its mechanical strength depends <strong>on</strong> its chemical compositi<strong>on</strong>, depositi<strong>on</strong><br />

rate and temperature and pressure c<strong>on</strong>diti<strong>on</strong>s. For instance, mechanical strengths<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 40–50 kg/mm 2 might be obtained at 50–70 °C [ 137 ]. The electrical c<strong>on</strong>ductivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chemically deposited metal films is usually lower than that <str<strong>on</strong>g>of</str<strong>on</strong>g> pure metals. The<br />

optical properties, however, are less varied and do not differ much <str<strong>on</strong>g>of</str<strong>on</strong>g> those <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pure metals. The optical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> a fabricati<strong>on</strong> material should be c<strong>on</strong>sidered<br />

in those <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> that work with optical sensing apparatuses.<br />

In the case when a micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic device integrates optical sensors, the micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic<br />

channels <str<strong>on</strong>g>of</str<strong>on</strong>g> this device should be made transparent in order not to disrupt the


light beam. Transparent electrodes like indium-tin-oxide might be required in the<br />

case when electrodes and optical mechanisms are combined <strong>on</strong> the same micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic<br />

channel.<br />

Yet, it is possible to develop gold electrode patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> micrometer thickness<br />

<strong>on</strong> polymer substrates by means <str<strong>on</strong>g>of</str<strong>on</strong>g> aerosol spraying metallizati<strong>on</strong>, where gold<br />

and amines, combined together with hydrazine as reducer, produce gold films <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 400 nm/min [ 137 ]. Similarly, platinum can be deposited adjustably at<br />

rates <str<strong>on</strong>g>of</str<strong>on</strong>g> 500–2000 nm/h with borohydride or hydrazine as reducing agents.<br />

Oxide films <str<strong>on</strong>g>of</str<strong>on</strong>g> nanometer thickness are usable as electrode insulators, because<br />

they prevent hydrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> fluids. It is possible to accurately grow oxide layers <strong>on</strong><br />

electrodes by means <str<strong>on</strong>g>of</str<strong>on</strong>g> depositi<strong>on</strong>, sputtering, or anodic or thermal oxidati<strong>on</strong>.<br />

The oxide films further protect the electrodes from chemical aggressi<strong>on</strong>s,<br />

especially those electrodes that come to direct c<strong>on</strong>tact with electrolytes,<br />

biological soluti<strong>on</strong>s or acids. An oxide protective film prevents electrolysis<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> high resist against leakage currents, produced by high-voltage electrokinetic<br />

phenomena in fluids (e.g. electrophoresis, dielectrophoresis, electrowetting).<br />

However, for low voltage impedimetric applicati<strong>on</strong>s, mV or below, it is<br />

feasible to directly c<strong>on</strong>tact the liquid sample with bare electrodes. Thermally<br />

grown oxide films, like silic<strong>on</strong> dioxide (SiO2) and the self-healing tantalum<br />

pentoxide (Ta2O5), are appropriate opti<strong>on</strong>s for robust electric insulati<strong>on</strong> due to<br />

their high breakdown resistance [ 51,138,139 ]. Thermally grown SiO2 layers may<br />

form thicknesses <str<strong>on</strong>g>of</str<strong>on</strong>g> some nanometers. SiO2 and Ta2O5 can, alternatively, be<br />

deposited by plasma, or be sputtered <strong>on</strong> metal electrodes. However, compared to<br />

the deposited <strong>on</strong>es, the anodically or thermally grown oxide nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms are more<br />

effectual in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> adhesi<strong>on</strong> and electric insulati<strong>on</strong>, due to their layer’s<br />

c<strong>on</strong>tinuity with the crystalline structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the metal electrode and their low<br />

pinhole density.<br />

Ceramic coating films, like silic<strong>on</strong> nitride (Si3N4), can be deposited by means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chemical vapor depositi<strong>on</strong>, or plasma-enhanced chemical vapor depositi<strong>on</strong>.<br />

Si3N4 films are used as electric insulators and are superior to SiO2, but weaker<br />

than Ta2O5. Str<strong>on</strong>tium titanate (SrTiO3) has very large permittivity and thus it is<br />

suitable for high voltage electric insulati<strong>on</strong>.<br />

Transparent electrodes, like Indium Tin Oxide, are favoured in <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong><br />

manufacturing, because their transparency allows microscopy. Indium Tin Oxide<br />

films are mostly deposited <strong>on</strong> substrates by means <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> beam evaporati<strong>on</strong>,<br />

physical vapor depositi<strong>on</strong> or sputtering.<br />

The hydrophobizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic channels enables repulsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous<br />

fluids and improves their flow, especially the droplet-based segmented flows.<br />

Hydrophobic films are very suitable as coatings for microchannels. Different<br />

hydrophobizati<strong>on</strong> methods have been introduced, ranging from sp<strong>on</strong>taneous<br />

covalent b<strong>on</strong>ding <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrophobic self-assembles <str<strong>on</strong>g>of</str<strong>on</strong>g> organometallic octadecyltriclorosilanes,<br />

a process called silanizati<strong>on</strong>, to chemical and plasma depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fluoropolymers [ 140–146 ]. Alternatively, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrophobizing a microchannel,<br />

it is possible by introducing hydrophobic surfactant into aqueous droplets to<br />

123


encapsulate them into surfactant membranes. Supreme surfactants are the fluorosurfactants<br />

(CnF2n+1)n [ 147 ].<br />

Prior to coating processes, some chemical treatment in the interior <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

microchannel can enhance the adhesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a coating material <strong>on</strong>to the microchannel.<br />

For example, a glass microchannel can be cleaned with ethanol, acet<strong>on</strong>e,<br />

or a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g acids. Likewise, in polymeric microchannels the adhesi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a film develops faster <strong>on</strong> prepared and cleaned surfaces and this results in<br />

lasting coatings. Some molded thermoplastics, processed in high melt temperature,<br />

followed by rapid cooling, are easier to coat because their surface activity<br />

increases adhesi<strong>on</strong>. Plasma treatment also cleans organic matter from the interior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic <strong>chip</strong>. Plasma cleaning can either be performed before assembling<br />

the <strong>chip</strong> or afterwards. In the latter case capillary plasma can be produced<br />

within the fluidic channels by following the steps:<br />

(a) seal the microchannel inlets with needle electrodes,<br />

(b) pump out the air from the microchannel in order to generate vacuum,<br />

(c) apply high voltage pulses, <str<strong>on</strong>g>of</str<strong>on</strong>g> few thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> volts, to initiate electric<br />

sparks, which rapidly evolve into plasma arc, which can become visible<br />

through the transparent microchannel <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>chip</strong>. The plasma can be<br />

produced with reacti<strong>on</strong> gases such as ne<strong>on</strong>, helium and arg<strong>on</strong>.<br />

Treatment using str<strong>on</strong>g acids can functi<strong>on</strong>alize the inner surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic<br />

channel. For example, introducing nitric acid into a glass microchannel it<br />

can functi<strong>on</strong>alize the hydroxyl groups <str<strong>on</strong>g>of</str<strong>on</strong>g> the glass to strengthen the b<strong>on</strong>d between<br />

octadecylitroclorosilanes and the glass and c<strong>on</strong>sequently produce a uniform<br />

hydrophobic thin layer inside the microchannel.<br />

124<br />

5.3. Depositi<strong>on</strong> methods<br />

Chemical vapour depositi<strong>on</strong> is a process that produces thin metal, ceramic, or<br />

compound films, through thermal oxidati<strong>on</strong> in a gas chamber at an elevated<br />

temperature. Within the chamber the substrate interacts, at temperatures between<br />

800–2000 °C and pressures between millitorrs to torrs, with volatile precursors<br />

that react and decompose <strong>on</strong> the substrate a film <str<strong>on</strong>g>of</str<strong>on</strong>g> a metal (e.g. Al, Ta, Ti, Pt),<br />

ceramic (e.g. Si3N4, B2O3, BN) or compound. The gas mixture typically c<strong>on</strong>sists<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reducing gas, like hydrogen (H2), inert gases like nitrogen (N2) or arg<strong>on</strong> (Ar),<br />

and reactive gases such as metal halides and hydrocarb<strong>on</strong>s. A typical chemical<br />

reacti<strong>on</strong> sequence includes pyrolysis, reducti<strong>on</strong>, oxidati<strong>on</strong>, hydrolysis and<br />

coreducti<strong>on</strong>. For example, silic<strong>on</strong> nitride (Si3N4) can be deposited by means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dichlorosilane gas (SiCl2H2) with amm<strong>on</strong>ia gas (NH4) at temperatures<br />

between 700–800 °C [ 72 ]. The volatile byproducts can be blown away from the<br />

reacti<strong>on</strong> chamber and neutralized before exposure to the envir<strong>on</strong>ment. The<br />

chemical vapour depositi<strong>on</strong> can also be plasma enhanced, a method that functi<strong>on</strong>alizes<br />

surfaces and is effective in depositing hydrophobic films <strong>on</strong> wafers.<br />

For example, a fluorocarb<strong>on</strong> hydrophobic film can be developed <strong>on</strong> an interface<br />

by means <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma-enhanced chemical vapour depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CHF3. The plasma-


enhanced technique can also be used in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> depositing insulating films<br />

such as silic<strong>on</strong> nitride (Si3N4) or plasma coated silic<strong>on</strong> dioxide (SiO2). A similar<br />

method, capillary plasma, produces gas plasma within a microchannel, by sealing<br />

its inlets with electrode needles, pumping out the air from an outlet, inserting the<br />

reacti<strong>on</strong> gases and applying high voltage pulses across the needles. In this way a<br />

plasma arc is produced that can be clearly visible if the channel is transparent.<br />

Capillary plasma depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> platinum bisacetylacet<strong>on</strong>ate precursor is performed<br />

for depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> platinum inside channels. The closely related technique<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> plasma electrolytic oxidati<strong>on</strong>, or microarc oxidati<strong>on</strong>, can electrochemically<br />

produce <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> an electrode an oxide coating <str<strong>on</strong>g>of</str<strong>on</strong>g> micrometer thickness, which<br />

provides electric insulati<strong>on</strong> with excellent adhesi<strong>on</strong>.<br />

Adsorpti<strong>on</strong> is a chemical depositi<strong>on</strong> method that exploits hydrophilic head<br />

groups <str<strong>on</strong>g>of</str<strong>on</strong>g> self-assembled m<strong>on</strong>olayers <str<strong>on</strong>g>of</str<strong>on</strong>g>, for example, hydrophobic trichlorosilanes<br />

(Cl3SiCnH2n+1), or thiols (HSCnH2n+1), which <str<strong>on</strong>g>of</str<strong>on</strong>g>fer sp<strong>on</strong>taneous binding <strong>on</strong><br />

glass or metal surfaces [ 148 ]. A glass substrate can be functi<strong>on</strong>alized by acidic<br />

treatment with a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfuric acid (H2SO4) and hydrogen peroxide (H2O2),<br />

which is well known for producing silanol groups <strong>on</strong> glass. Silanes bind<br />

covalently to the hydroxyls <str<strong>on</strong>g>of</str<strong>on</strong>g> silanols, with glass being the most obvious surface<br />

with silanol groups.<br />

Physical vapour depositi<strong>on</strong>, such as sputtering or evaporati<strong>on</strong>, is used to<br />

deposit thin films, layer by layer, <strong>on</strong>to substrates. This method employs mechanical<br />

or thermodynamic means for producing thin films and requires low-pressure<br />

vaporized envir<strong>on</strong>ment to functi<strong>on</strong>.<br />

I<strong>on</strong> beam enhanced depositi<strong>on</strong> influences the energy and charge states <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

gas in the vapour phase and allows c<strong>on</strong>trol over the energy state and crystallographic<br />

and stoichiometric form <str<strong>on</strong>g>of</str<strong>on</strong>g> the deposited films.<br />

5.4. Etching procedures<br />

In <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> fabricati<strong>on</strong> technology, patterning is the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> outlines <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

features (which define microchannels, microelectrodes, or other comp<strong>on</strong>ents) <strong>on</strong><br />

the top <str<strong>on</strong>g>of</str<strong>on</strong>g> a substrate by means <str<strong>on</strong>g>of</str<strong>on</strong>g> ultraviolet illuminati<strong>on</strong> via a photomask. The<br />

photomask c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a chromium layer where <strong>on</strong>ly part <str<strong>on</strong>g>of</str<strong>on</strong>g> it is transparent to the<br />

light. Photolithography is the method for producing structures by exposing<br />

photosensitive resists to ultraviolet light via successive photomasks and then<br />

removing the exposed areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoresist in a development process. The<br />

photosensitive resist is a polymer, usually epoxy, that is sensitive to ultraviolet<br />

light. When the ultraviolet exposes specific areas, the photoresist polymerizes<br />

and resists to etchers. This replicates the patterns <strong>on</strong>to the photoresist film. The<br />

exposed areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the resist film are being attacked by the developer and<br />

c<strong>on</strong>sequently removed. The unexposed areas remain resistant to the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

etchant. The structure can be revealed after etching the exposed areas. Every<br />

wafer substrate may undergo many sequential etching cycles before completes.<br />

125


The resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the features that can be structured with photolithography can be<br />

some micrometers. The major steps <str<strong>on</strong>g>of</str<strong>on</strong>g> the etching process are shown in Fig. 5.<br />

We distinguish between two etching processes, wet etching and dry etching.<br />

Wet chemical etching is widely used for producing microelectrodes and<br />

micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic channels <strong>on</strong> substrates. The wet etching requires acids, bases or<br />

mixtures to dissolve metals, silic<strong>on</strong> or glass, by immersing the substrate into the<br />

etching soluti<strong>on</strong>. For instance, gold can be etched using iodine soluti<strong>on</strong>. The<br />

etching can be isotropic or anisotropic. As an example, silic<strong>on</strong> can be<br />

etched isotropically with HF-HNO3, which produces rectangular curved grooves<br />

by means <str<strong>on</strong>g>of</str<strong>on</strong>g> thermally grown SiO2 mask. KOH can etch Si or Si <br />

anisotropically, with the etching rate depending <strong>on</strong> the crystallographic orientati<strong>on</strong>,<br />

and produces grooves with 55° or 90° walls, respectively. It is important to<br />

menti<strong>on</strong>, however, that with anisotropic etching the exact defined shape is<br />

difficult to be obtained because <str<strong>on</strong>g>of</str<strong>on</strong>g> the directi<strong>on</strong>al dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the etching rate,<br />

and so this method is limited to small dimensi<strong>on</strong>s <strong>on</strong>ly. Glass can be etched<br />

isotropically using buffered hydr<str<strong>on</strong>g>of</str<strong>on</strong>g>luoric acid (HF) in HCl or ultras<strong>on</strong>ic bath that<br />

improves smoothness <str<strong>on</strong>g>of</str<strong>on</strong>g> the etched surface. Removal rates <str<strong>on</strong>g>of</str<strong>on</strong>g> glass are typically<br />

between 0.1–1.0 µm/min. The etchant should be selected carefully in order to<br />

have the etching rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the masks c<strong>on</strong>siderably lower than that <str<strong>on</strong>g>of</str<strong>on</strong>g> the removable<br />

material. The final step in a wet etching process is to remove the resist by<br />

washing it away with an organic solvent.<br />

Dry etching involves reactive i<strong>on</strong> etching with plasma, where the substrate is<br />

placed into a plasma chamber where a gas mixture is introduced and is i<strong>on</strong>ized.<br />

The i<strong>on</strong>ized gas mixture reacts with the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate to be etched. As<br />

the i<strong>on</strong>ized gas is highly energized, it removes the matter from the substrate.<br />

Xen<strong>on</strong> difluoride (XeF2) is a dry vapour phase isotropic etcher for silic<strong>on</strong>.<br />

Fig. 5. Sequential steps <str<strong>on</strong>g>of</str<strong>on</strong>g> a chemical etching process, which can produce microchannels with<br />

width <str<strong>on</strong>g>of</str<strong>on</strong>g> some tens to hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> micr<strong>on</strong>s: (a) exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> a photoresist-coated substrate to<br />

ultraviolet light; (b) dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the exposed areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoresist with chemical developer;<br />

(c) chemical etching <str<strong>on</strong>g>of</str<strong>on</strong>g> the bare areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate; (d) revelati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the microchannel after total<br />

removal <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoresist from the substrate.<br />

126


Its etching selectivity to silic<strong>on</strong> is very high and does not affect masks made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

photoresists, silic<strong>on</strong> dioxide, silic<strong>on</strong> nitride or metals. For example, the<br />

selectivity to silic<strong>on</strong> nitride is better than 100 : 1 and reported to be as high as<br />

(5000–10 000) : 1 for silic<strong>on</strong> dioxide [ 149 ]. SF6 in high-density plasma provides<br />

anisotropic high-aspect-ratio etching for silic<strong>on</strong>. Typical dry etching rates for<br />

silic<strong>on</strong> are around 2 µm/min.<br />

A suitable photoresist for structuring fluidic microchannels <strong>on</strong> wafer<br />

substrates is the biocompatible and chemically inert epoxy SU8, which develops<br />

vertical sidewalls <str<strong>on</strong>g>of</str<strong>on</strong>g> micrometer height <strong>on</strong> glass or silic<strong>on</strong> wafers [ 150,151 ]. The<br />

SU8 photoresist can be spun <strong>on</strong>to the wafer substrate using spin-coater at a speed<br />

that achieves specific thickness, under certain viscosity value and specific<br />

hydrophobic surface. For example, with usual viscosity and hydrophobicity, to<br />

obtain 100 µm thick layer <str<strong>on</strong>g>of</str<strong>on</strong>g> SU8, the wafer substrate should be spun at 500 rpm<br />

for 5 s, to spread out the photoresist, then at 3000 rpm for 30 s, to achieve the<br />

final thickness. The substrate should then be heated for 10 min at 65 °C, and for<br />

30 min at 95 °C. The two-step bake is required in order to reduce internal stresses<br />

owing to thermal effects. The photoresist is then exposed in ultraviolet via a<br />

photomask. Solidifying <strong>on</strong>e SU8 formati<strong>on</strong> against another by crosslinking the<br />

opposing SU8 layers and baking at 65–95 °C, it is viable to produce microchannels.<br />

The low surface roughness <str<strong>on</strong>g>of</str<strong>on</strong>g> SU8 enables the use <str<strong>on</strong>g>of</str<strong>on</strong>g> optical analytical<br />

techniques such as fluorescence or optical spectrometry. The possibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

integrating microelectrodes <strong>on</strong> SU8, the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrophobizing the SU8<br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>ding it at low temperature, makes SU8 a particularly suitable resist for<br />

assembling <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong>. Furthermore, SU8 is suitable <str<strong>on</strong>g>of</str<strong>on</strong>g> serving as mask<br />

<strong>on</strong> the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the silic<strong>on</strong> wafer in wet etching processes [ 1 ].<br />

6. BONDING<br />

After patterning all features <strong>on</strong> substrates (microchannels, elements, inlets,<br />

etc), the base plate and the cover plate must be b<strong>on</strong>ded in order to seal the <strong>chip</strong>. It<br />

is possible to b<strong>on</strong>d silic<strong>on</strong>, glass, or rigid polymer plates, by three different<br />

means.<br />

Anodic b<strong>on</strong>ding can fuse silic<strong>on</strong> or glass plates. The two opposing plates must<br />

come in c<strong>on</strong>tact with each other, in heat, with a high voltage applied across a<br />

c<strong>on</strong>ductive layer (200 nm silic<strong>on</strong> nitride (Si3N4) or 120 nm Ni/Cr) developed<br />

intermediately, that causes diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>s, which eventually fuses the two<br />

plates electrostatically. Anodic b<strong>on</strong>ding c<strong>on</strong>diti<strong>on</strong>s vary between 200–1500 V, at<br />

200–450 °C.<br />

Thermal b<strong>on</strong>ding can fuse glass or polymer plates. Thermal b<strong>on</strong>ding is<br />

performed <strong>on</strong> coated with methylsilses-quioxane, or polysiloxane, surfaces at<br />

temperatures 150–210 °C. Annealing for some hours in low vacuum produces<br />

b<strong>on</strong>ds that withstand hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> N/cm 2 . Rapid glass b<strong>on</strong>ding requires hot<br />

pressure at 570 °C for 10 min under 4.7 N/mm 2 .<br />

127


Photopolymer adhesives can b<strong>on</strong>d any type <str<strong>on</strong>g>of</str<strong>on</strong>g> rigid substrates. This method is<br />

more tolerant for uneven surfaces since it provides a compressible cushi<strong>on</strong>ing<br />

layer that seals the <strong>chip</strong>. The adhesive layer can be benzocyclobutene (C8H8) or<br />

UV-curable resins <str<strong>on</strong>g>of</str<strong>on</strong>g> micrometer thickness. It is possible to heat and separate the<br />

plates apart and reb<strong>on</strong>d.<br />

To sandwich elastomers, such as PDMS, between plates, mechanical pressure<br />

must be applied uniformly. Uniform pressure is usually obtained by squeezing<br />

with a metal holder the plates against the elastomer by means <str<strong>on</strong>g>of</str<strong>on</strong>g> screws. The<br />

advantage is the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> reopening the <strong>chip</strong>.<br />

128<br />

7. FLUIDIC AND ELECTRIC CONNECTIONS<br />

Customized <strong>chip</strong> holders can support fluidic tube c<strong>on</strong>necti<strong>on</strong>s and wired<br />

electrical c<strong>on</strong>necti<strong>on</strong>s. Flanged plastic fittings having standard threads can be<br />

used for c<strong>on</strong>necting the tube. This c<strong>on</strong>nector type uses a metal O-ring, which<br />

presses the flanged tip <str<strong>on</strong>g>of</str<strong>on</strong>g> the tube against the inlet <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>chip</strong> and seals the inlet<br />

tightly after screwing into the respective threads <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>chip</strong> holder. Another<br />

c<strong>on</strong>necti<strong>on</strong> method uses injecti<strong>on</strong>-molded c<strong>on</strong>nectors with internal threads that<br />

can withstand pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 MPa. Furthermore, adhesive or solder-based <strong>chip</strong>-totube<br />

c<strong>on</strong>necti<strong>on</strong>s can tolerate elevated pressures and solvents.<br />

8. BIOCOMPATIBILITY AND DEFECTS<br />

Biocompatibility c<strong>on</strong>cerns the safety <str<strong>on</strong>g>of</str<strong>on</strong>g> the material and its performance to<br />

meet some standards in order to avoid harming the biological substances that<br />

come in c<strong>on</strong>tact with the material <str<strong>on</strong>g>of</str<strong>on</strong>g> a device. The biocompatibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong><strong>chip</strong><br />

<strong>devices</strong> came forth with the advent <str<strong>on</strong>g>of</str<strong>on</strong>g> implantable bio<strong>chip</strong>s. Biocompatibility<br />

attempts to avoid materials that cause cytotoxicity, sentitizati<strong>on</strong>,<br />

irritati<strong>on</strong>, genotoxicity, carcinogenicity or other abnormalities [ 88 ]. The biocompatibility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a device c<strong>on</strong>cerns <strong>on</strong>ly the materials that come into c<strong>on</strong>tact with<br />

biological substances.<br />

There are numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> possible defects, which should be c<strong>on</strong>sidered when<br />

designing <str<strong>on</strong>g>biomedical</str<strong>on</strong>g> <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong>. Since most <str<strong>on</strong>g>of</str<strong>on</strong>g> the micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic<br />

channels are made hydrophobic, most enzymes, proteins and cells adsorb <strong>on</strong><br />

hydrophobic areas, an effect called bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ouling. Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ouling disorders the micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic<br />

<strong>chip</strong>s, because it alters their microchannels into hydrophilic, which affects<br />

the laminar flow. Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ouling affects sensing elements, such as microelectrodes,<br />

which c<strong>on</strong>sequently affects the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurements. Silic<strong>on</strong>, silic<strong>on</strong><br />

nitride, silic<strong>on</strong> dioxide, gold, platinum, titanium, SU8 and photoresists are<br />

biocompatible and all <str<strong>on</strong>g>of</str<strong>on</strong>g> them have reduced bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ouling and cytoxicity [ 152–154 ].<br />

Particularly, silic<strong>on</strong> nitride is used for l<strong>on</strong>g-term implantati<strong>on</strong>s.


The proteins bovine-serum-albumin (BSA) and casein (phosphoprotein)<br />

reduce the adhesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes and proteins <strong>on</strong> the interfaces. Important<br />

advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine-serum-albumin and casein is their biocompatibility with<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> the proteins.<br />

To prevent adhesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells in micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic channels, surfactants like<br />

poloxamer copolymers can be added inside the channels [ 155 ]. However,<br />

poloxamers have shown to incorporate into the cellular membranes, particularly<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the cancerous cells, affecting so the microviscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> the cell membrane.<br />

9. FUTURE DIRECTIONS<br />

New <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> must emerge that dem<strong>on</strong>strate a positive impact <strong>on</strong><br />

clinical diagnostics. The trend is to improve sterility, multiple analysis and<br />

parallel processing with increased efficiency and speed. Future <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong><br />

<strong>devices</strong> will c<strong>on</strong>sume ultralow power, will be smaller and lighter with more<br />

emphasis <strong>on</strong> the user comfort. Improvements in portability should emphasize<br />

easy sample introducti<strong>on</strong> and fluidic c<strong>on</strong>nectivity. Communicati<strong>on</strong> technologies<br />

like wireless networking, informati<strong>on</strong> management and advanced user interface,<br />

visualizati<strong>on</strong> and navigati<strong>on</strong> technologies through adapted screens will be<br />

embedded. Standardizati<strong>on</strong> will c<strong>on</strong>diti<strong>on</strong> device reliability, interoperability,<br />

biocompatibility, electromagnetic compatibility, interc<strong>on</strong>nectivity, readouts,<br />

weight and size [ 156 ].<br />

The functi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> future <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> is foreseen to improve clinical<br />

tests and will be shifted from general-purpose <str<strong>on</strong>g>lab</str<strong>on</strong>g>oratory instruments to strictly<br />

pers<strong>on</strong>alized <strong>devices</strong>. To date the <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> are determined by applicati<strong>on</strong>s<br />

in bioanalysis. Additi<strong>on</strong>ally to mixing, measuring, sorting or separati<strong>on</strong>,<br />

micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong>s are foreseen to facilitate <strong>on</strong>-<strong>chip</strong> supramolecular<br />

chemistry, <str<strong>on</strong>g>biomedical</str<strong>on</strong>g> implants, biomimetics, and hybrid systems incorporated<br />

with blood vessels [ 157 ]. Future applicati<strong>on</strong>s will certainly include nanobiotechnologies.<br />

Envisi<strong>on</strong>s c<strong>on</strong>sider nanoscaled channels, where surface effects,<br />

rather than volume, dominate liquid behaviour. Chemical synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> macromolecules<br />

will be actualized molecule-by-molecule, ensuing fully c<strong>on</strong>trol<str<strong>on</strong>g>lab</str<strong>on</strong>g>le<br />

and accurate synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> bioproducts, independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>straints <str<strong>on</strong>g>of</str<strong>on</strong>g> statistics<br />

and diffusi<strong>on</strong>s parameters that rule present chemistry in vessels.<br />

Experts claim that the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> is increasing at rates<br />

comparable to Moore’s law. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the present <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> operate with<br />

external computing units. The future trend is to develop fully standal<strong>on</strong>e <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong><strong>chip</strong><br />

<strong>devices</strong> with embedded computing and calibrating capabilities. Further<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic biocomputers will take place that will use biological<br />

macromolecules, such as nucleic acids or proteins, to perform computati<strong>on</strong>s<br />

including storing, retrieving, and biological data processing through applicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> biochemical principles [ 158 ]. DNA computati<strong>on</strong> employs massive parallelism<br />

inherent in the small scale <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules to speed up decisi<strong>on</strong>s. The hybridizati<strong>on</strong><br />

129


<str<strong>on</strong>g>of</str<strong>on</strong>g> nucleic acids can be either exploited to encode strands <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleotides to cl<strong>on</strong>e<br />

nucleic acids, or to self-assembly olig<strong>on</strong>ucleotides. Emphasis is given to improving<br />

methods for hybridizati<strong>on</strong> by surpassing various physicochemical c<strong>on</strong>straints<br />

and use DNA to compute in envir<strong>on</strong>ments where it is uniquely capable <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

operating, such as smart drug delivery to individual cells [ 159,160 ]. Further variati<strong>on</strong>s<br />

in biocomputing use proteins instead <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleic acids [ 161 ], or DNA hairpin<br />

formati<strong>on</strong> [ 162 ], self-assemblies and cellular computati<strong>on</strong>, in which cells are<br />

c<strong>on</strong>sidered computati<strong>on</strong>al elements.<br />

Networking individual <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> is foreseen to boost <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong><br />

functi<strong>on</strong>alities, as informati<strong>on</strong> can be exchanged between individual <strong>devices</strong> via<br />

computer servers in hospitals. Experts speak about interc<strong>on</strong>necting <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong>s<br />

to the patients’ databases for <strong>on</strong>line updating their medical records and to perform<br />

classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the diseases. Networking bio<strong>chip</strong>s can benefit telemedicine,<br />

where <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> testers will be capable <str<strong>on</strong>g>of</str<strong>on</strong>g> transferring test results to<br />

doctors entirely remotely. The upcoming generati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> will<br />

be cabled or wirelessly interc<strong>on</strong>nected in network-centric data links, being<br />

synchr<strong>on</strong>ized as terminal testers for the same or different patients, located at a<br />

distance. In rural and urban areas <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> technology can c<strong>on</strong>tribute to<br />

ubiquitous m<strong>on</strong>itoring the diseases, pathogens, or toxic substances in the envir<strong>on</strong>ment.<br />

For example, miniaturized biochemical marine sensors, submerged in seawaters,<br />

can sample c<strong>on</strong>taminants in the oceans. The functi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> such<br />

envir<strong>on</strong>mental bio<strong>chip</strong>s is based <strong>on</strong> various principles including m<strong>on</strong>itoring<br />

oxygen levels, cell analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong>, observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> methane, nitrate and<br />

phosphates in seawaters [ 163–166 ]. Moreover, aut<strong>on</strong>omous integrated bio<strong>chip</strong>s may<br />

be distributed in public areas, in buildings, airports, subways, parks, stadiums,<br />

schools, and stores, to collect biochemical informati<strong>on</strong> and detect the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

major infectious pathogens or record signs <str<strong>on</strong>g>of</str<strong>on</strong>g> polluti<strong>on</strong>s, either <strong>on</strong> air, sea or<br />

land.<br />

The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> in everyday life is expected to be<br />

analogous and as revoluti<strong>on</strong>ary as integrated circuits and microelectr<strong>on</strong>ics. Lab<strong>on</strong>-<strong>chip</strong><br />

<strong>devices</strong> will irrevocably influence medicine, chemistry, biology, biotechnology<br />

and bioelectr<strong>on</strong>ics.<br />

130<br />

10. CONCLUSIONS<br />

The most appropriate materials, fabricati<strong>on</strong> techniques and assembling<br />

methods for manufacturing <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> were <strong>review</strong>ed in this article.<br />

Lab-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> must be made <str<strong>on</strong>g>of</str<strong>on</strong>g> materials that are biocompatible,<br />

chemically inert, reliable and reusable for lifetime. Presently, gold or platinum<br />

are most suitable for structuring c<strong>on</strong>ductive elements. Fluoropolymers and<br />

silanes are the most suitable for hydrophobizing fluid-solid interfaces. Oxidegrown<br />

films or plasma-deposited films, particularly the thermally or anodically<br />

grown SiO2 and Ta2O5, are the most efficient for insulating the c<strong>on</strong>ductive<br />

elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong>.


Highly reliable <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> <strong>devices</strong> are still a l<strong>on</strong>g way ahead. The complexity<br />

and technological problems to be solved are enormous. Major obstacle is the<br />

technological limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the present mic<str<strong>on</strong>g>of</str<strong>on</strong>g>abricati<strong>on</strong> materials. Until new revoluti<strong>on</strong>ary<br />

materials are introduced, any tremendous development in comparis<strong>on</strong> to<br />

the present state should not be expected. The to date development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong><br />

<strong>devices</strong> is analogous to the state <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>ics before the discovery <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

semic<strong>on</strong>ductors. However, <strong>on</strong>ce new synthetic materials become avai<str<strong>on</strong>g>lab</str<strong>on</strong>g>le,<br />

especially new nanomaterials, an enormous boost, analogous to this <str<strong>on</strong>g>of</str<strong>on</strong>g> microelectr<strong>on</strong>ics<br />

in the semic<strong>on</strong>ductors era, is anticipated. It means that <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong><br />

designers are awaiting innovati<strong>on</strong>s from material science and chemistry to solve<br />

reliability, biocompatibility and integrati<strong>on</strong> problems. Furthermore, <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong><br />

technology acquires improvements in the device producti<strong>on</strong> methods, and is<br />

forecasted to acquire specific technologies from physical sciences and other<br />

disciplines <str<strong>on</strong>g>of</str<strong>on</strong>g> engineering, as well as from biology [ 167 ].<br />

C<strong>on</strong>ditio sine qua n<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> future <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-<strong>chip</strong> device design are the following<br />

very specific requirements and standards:<br />

(a) biocompatibility, robustness, sensitivity, and reliability;<br />

(b) low power c<strong>on</strong>sumpti<strong>on</strong>, high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> automati<strong>on</strong> and integrati<strong>on</strong>, and<br />

high sample throughput;<br />

(c) coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> biological samples and measurement parameters.<br />

ACKNOWLEDGEMENTS<br />

Acknowledgements are due to Dr Uwe Pliquett and Dr Brian Cahill for<br />

technical discussi<strong>on</strong>s. Financial support comes from a European Commissi<strong>on</strong><br />

Marie Curie ERG (project PERG06-GA-2009-256305) and an Est<strong>on</strong>ian Science<br />

Foundati<strong>on</strong> Mobilitas Grant (project MOJD05).<br />

REFERENCES<br />

1. Li, P. C. H. Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic Lab-<strong>on</strong>-a-<strong>chip</strong> for Chemical and Biological Analysis and Discovery.<br />

CRC Press, 2006.<br />

2. Zhang, T., Chakrabarty, K. and Fair, R. B. Microelectr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic Systems. CRC Press, 2002.<br />

3. Reyes, D. R., Iossifidis, D., Auroux, P. A. and Manz, P. A. Micro total analysis systems:<br />

1. Introducti<strong>on</strong>, theory, and technology. Anal. Chem., 2002, 74, 2623–2636.<br />

4. Auroux, A., Reyes, D. R., Iossifidis, D. and Manz, P. A. Micro total analysis systems:<br />

2. Analytical standard operati<strong>on</strong>s and applicati<strong>on</strong>s. Anal. Chem., 2002, 74, 2637–2652.<br />

5. West, J., Becker, M., Tombrink, S. and Manz, A. Micro total analysis systems: latest achievements.<br />

Anal. Chem., 2008, 80, 4403–4419.<br />

6. Kost, G. J. Principles and Practice <str<strong>on</strong>g>of</str<strong>on</strong>g> Point-<str<strong>on</strong>g>of</str<strong>on</strong>g>-care Testing. Lippincott Williams and Wilkins,<br />

2002.<br />

7. Rossier, J. S., Roberts, M. A., Ferrigno, R. and Girault, H. H. Electrochemical detecti<strong>on</strong> in<br />

polymer microchannels. Anal. Chem., 1999, 71, 4294–4299.<br />

131


8. Wang, J. and Pumera, M. Dual c<strong>on</strong>ductivity/amperometric detecti<strong>on</strong> system for micro<strong>chip</strong><br />

capillary electrophoresis. Anal. Chem., 2002, 74, 5919–5923.<br />

9. Chan, J., Timperman, A. T., Qin, T. and Aebersold, R. Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>abricated polymer <strong>devices</strong> for<br />

automated sample delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> peptides for analysis by electrospray i<strong>on</strong>izati<strong>on</strong> tandem mass<br />

spectrometry. Anal. Chem., 1999, 71, 4437–4444.<br />

10. Kameoka, J., Craighead, H. G., Zhang, H. and Heni<strong>on</strong>, J. A polymeric micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic <strong>chip</strong> for<br />

CE/MS determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small molecules. Anal. Chem., 2001, 73, 1935–1941.<br />

11. Hawkes, J. J. and Coakley, W. T. Force field particle filter, combining ultrasound standing<br />

waves and laminar flow. Sens. Actuators B: Chemical, 2001, 75, 213–222.<br />

12. Becker, H., Lowack, K. and Manz, A. Planar quartz <strong>chip</strong>s with submicr<strong>on</strong> channels for twodimensi<strong>on</strong>al<br />

capillary electrophoresis applicati<strong>on</strong>s. J. Micromech. Microeng., 1998, 8, 24–<br />

28.<br />

13. Harris<strong>on</strong>, D. J., Manz, A., Fan, Z., Luedi, H. and Widmer, H. M. Capillary electrophoresis and<br />

sample injecti<strong>on</strong> systems integrated <strong>on</strong> a planar glass <strong>chip</strong>. Anal. Chem., 1992, 64, 1926–<br />

1932.<br />

14. Wang, J., Chen, G. and Muck, A. Movable c<strong>on</strong>tactless-c<strong>on</strong>ductivity detector for micro<strong>chip</strong><br />

capillary electrophoresis. Anal. Chem., 2003, 75, 4475–4479.<br />

15. Wang, J., Pumera, M., Collins, G. E. and Mulchandani, A. Measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical warfare<br />

agent degradati<strong>on</strong> products using an electrophoresis micro<strong>chip</strong> with c<strong>on</strong>tactless c<strong>on</strong>ductivity<br />

detector. Anal. Chem., 2002, 74, 6121–6125.<br />

16. Zalewski, D. R., Schlautmann, S., Schasfoort, R. B. M. and Gardeniers, H. J. G. E. Electrokinetic<br />

sorting and collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>s for preparative capillary electrophoresis <strong>on</strong> a<br />

<strong>chip</strong>. Lab Chip, 2008, 8, 801–809.<br />

17. Laugere, F., Guijt, R. M., Bastemeijer, J., van der Steen, G., Berthold, A., Baltussen, E.,<br />

Sarro, P., van Dedem, G. W. K., Vellekoop, M. and Bossche, A. On-<strong>chip</strong> c<strong>on</strong>tactless fourelectrode<br />

c<strong>on</strong>ductivity detecti<strong>on</strong> for capillary electrophoresis <strong>devices</strong>. Anal. Chem., 2003,<br />

75, 306–312.<br />

18. Kutter, J. P. Current developments in electrophoretic and chromatographic separati<strong>on</strong> methods<br />

<strong>on</strong> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>abricated <strong>devices</strong>. Trends Analyt. Chem., 2000, 19, 352–363.<br />

19. Jindal, R. and Cramer, S. M. On-<strong>chip</strong> electrochromatography using sol-gel immobilized<br />

stati<strong>on</strong>ary phase with UV absorbance detecti<strong>on</strong>. J. Chromatogr. A, 2004, 1044, 277–285.<br />

20. Pumera, M. Micro<strong>chip</strong>-based electrochromatography: Designs and applicati<strong>on</strong>s. Talanta, 2005,<br />

66, 1048–1062.<br />

21. Végvári, Á. and Hjertén, S. A hybrid microdevice for electrophoresis and electrochromatography<br />

using UV detecti<strong>on</strong>. Electrophoresis, 2002, 23, 3479–3486.<br />

22. Ceriotti, L., de Rooij, N. F. and Verpoorte, E. An integrated fritless column for <strong>on</strong>-<strong>chip</strong><br />

capillary electrochromatography with c<strong>on</strong>venti<strong>on</strong>al stati<strong>on</strong>ary phases. Anal. Chem., 2002,<br />

74, 639–647.<br />

23. Throckmort<strong>on</strong>, D. J., Shepodd, T. J. and Singh, A. K. Electrochromatography in micro<strong>chip</strong>s:<br />

Reversed-phase separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> peptides and amino acids using photopatterned rigid polymer<br />

m<strong>on</strong>oliths. Anal. Chem., 2002, 74, 784–789.<br />

24. Ro, K. W., Chang, W.-J., Kim, Ho, Koo, Y.-M. and Hahn, J. H. Capillary electrochromatography<br />

and prec<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neutral compounds <strong>on</strong> poly(dimethylsiloxane) micro<strong>chip</strong>s.<br />

Electrophoresis, 2003, 24, 3253–3259.<br />

25. Liang, Z., Chiem, N., Ocvirk, G., Tang, T., Fluri, K. and Harris<strong>on</strong>, D. J. <str<strong>on</strong>g>Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>abricati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

planar absorbance and fluorescence cell for integrated capillary electrophoresis <strong>devices</strong>.<br />

Anal. Chem., 1996, 68, 1040–1046.<br />

26. Zhu, L., Lee, C. S. and DeVoe, D. L. Integrated micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic UV absorbance detector with<br />

attomol-level sensitivity for BSA. Lab Chip, 2006, 6, 115–120.<br />

27. Cristobal, G., Arbouet, L., Sarrazin, F., Talaga, D., Bruneel, J. L., Joanicot, M. and Servant, L.<br />

On-line laser Raman spectroscopic probing <str<strong>on</strong>g>of</str<strong>on</strong>g> droplets engineered in micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic <strong>devices</strong>.<br />

Lab Chip, 2006, 6, 1140–1146.<br />

132


28. Chen, C. H., Tsai, F., Lien, V., Justis, N. and Lo, Y. H. Scattering-based cytometric detecti<strong>on</strong><br />

using integrated arrayed waveguides with micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidics. IEEE Phot<strong>on</strong>ics Technol. Lett.,<br />

2007, 19, 441–443.<br />

29. MacD<strong>on</strong>ald, M. P., Spalding, G. C. and Dholakia, K. Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic sorting in an optical lattice.<br />

Nature, 2003, 426, 421–424.<br />

30. Krishnamoorthy, G., Carlen, E. T., Kohlheyer, D., Schasfoort, R. B. M. and van den Berg, A.<br />

Integrated electrokinetic sample focusing and surface plasm<strong>on</strong> res<strong>on</strong>ance imaging system<br />

for measuring biomolecular interacti<strong>on</strong>s. Anal. Chem., 2009, 81, 1957–1963.<br />

31. Haab, B. B. and Mathies, R. A. Single-molecule detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA separati<strong>on</strong>s in micr<str<strong>on</strong>g>of</str<strong>on</strong>g>abricated<br />

capillary electrophoresis <strong>chip</strong>s employing focused molecular streams. Anal.<br />

Chem., 1999, 71, 5137–5145.<br />

32. Squires, T. M. and Quake, S. R. Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidics: Fluid physics at the nanoliter scale. Rev. Mod.<br />

Phys., 2005, 77, 977–1026.<br />

33. Pamme, N. C<strong>on</strong>tinuous flow separati<strong>on</strong>s in micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic <strong>devices</strong>. Lab Chip, 2007, 7, 1644–<br />

1659.<br />

34. Teh, S. Y., Lin, R., Hung, L. H. and Lee, A. P. Droplet micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidics. Lab Chip, 2008, 8, 198–<br />

220.<br />

35. Martin, K., Henkel, T., Baier, V., Grodrian, A., Sch<strong>on</strong>, T., Roth, M., Kohler, J. M. and Metze, J.<br />

Generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> separated microbial populati<strong>on</strong>s by cultivati<strong>on</strong> in<br />

segmented-flow micro<strong>devices</strong>. Lab Chip, 2003, 3, 202–207.<br />

36. Gastrock, G., Lemke, K., Römer, R., Howitz, S., Bertram, J., Hottenrott, M. and Metze, J.<br />

Protein-processing platform (3P) – A new c<strong>on</strong>cept for the characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell cultures<br />

in the mL-scale using micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic comp<strong>on</strong>ents. Eng. Life Sci., 2008, 8, 73–80.<br />

37. Tchavtchavadze, M. B., Perrier, M. and Jolicoeur, M. Small scale bioreactor platform for<br />

bioprocess optimisati<strong>on</strong>. Pharmaceut. Eng., 2007, 27, 1–10.<br />

38. Sim<strong>on</strong>, J., Saffer, S. and Kim, C.-J. A liquid-filled microrelay with a moving mercury<br />

microdrop. J. Microelectromech. Syst. 1997, 6, 208–216.<br />

39. Hayes, R. A. and Feenstra, B. J. Video-speed electric paper based <strong>on</strong> electrowetting. Nature,<br />

2003, 425, 383–385.<br />

40. Kuiper, S. and Hendriks, B. H. W. Variable-focus liquid lens for miniature cameras. Appl.<br />

Phys. Lett., 2004, 85, 1128–1130.<br />

41. Takagi, J., Yamada, M., Yasuda, M. and Seki, M. C<strong>on</strong>tinuous particle separati<strong>on</strong> in a microchannel<br />

having asymmetrically arranged multiple branches. Lab Chip, 2005, 5, 778–784.<br />

42. Yamada, M. and Seki, M. Hydrodynamic filtrati<strong>on</strong> for <strong>on</strong>-<strong>chip</strong> particle c<strong>on</strong>centrati<strong>on</strong> and<br />

classificati<strong>on</strong> utilizing micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidics. Lab Chip, 2005, 5, 1233–1239.<br />

43. Jäggi, R. D., Sandoz, R. and Effenhauser, C. S. Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> red blood cells from<br />

whole blood in high-aspect-ratio microchannels. Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luid. Nan<str<strong>on</strong>g>of</str<strong>on</strong>g>luid., 2007, 3, 47–53.<br />

44. Choi, S. and Park, J. K. C<strong>on</strong>tinuous hydrophoretic separati<strong>on</strong> and sizing <str<strong>on</strong>g>of</str<strong>on</strong>g> microparticles using<br />

slanted obstacles in a microchannel. Lab Chip, 2007, 7, 890–897.<br />

45. Zhang, C. X. and Manz, A. High-speed free-flow electrophoresis <strong>on</strong> <strong>chip</strong>. Anal. Chem., 2003,<br />

75, 5759–5766.<br />

46. J<strong>on</strong>es, T. B., Fowler, J. D., Chang, Y. S and Kim, C. J. Frequency-based relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> electrowetting<br />

and dielectrophoretic liquid microactuati<strong>on</strong>. Langmuir, 2003, 19, 7646–7651.<br />

47. J<strong>on</strong>es, T. B. On the relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> dielectrophoresis and electrowetting. Langmuir, 2002, 18,<br />

4437–4443.<br />

48. Pollack, M. G., Fair, R. B. and Shenderov, A. D. Electrowetting-based actuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid<br />

droplets for micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic applicati<strong>on</strong>s. Appl. Phys. Lett., 2000, 77, 1725–1726.<br />

49. Pollack, M. G., Shenderov, A. D. and Fair, R. B. Electrowetting-based actuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> droplets for<br />

integrated micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidics. Lab Chip, 2002, 2, 96–101.<br />

50. Washizu, M. Electrostatic actuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid droplets for micro-reactor applicati<strong>on</strong>s. IEEE<br />

Trans. Ind. Appl., 1998, 34, 732–737.<br />

51. Mo<strong>on</strong>, H., Cho, S. K., Garell, R. L. and Kim, C. J. Low voltage electrowetting-<strong>on</strong>-dielectric. J.<br />

Appl. Phys., 2002, 92, 4080–4087.<br />

133


52. Pamme, N. and Wilhelm, C. C<strong>on</strong>tinuous sorting <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic cells via <strong>on</strong>-<strong>chip</strong> free-flow<br />

magnetophoresis. Lab Chip, 2006, 6, 974–980.<br />

53. Laser, D. J. and Santiago, J. G. A <strong>review</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> micropumps. J. Micromech. Microeng., 2004, 14,<br />

R35–R64.<br />

54. Gascoyne, P. R. and Vykoukal, J. Particle separati<strong>on</strong> by dielectrophoresis. Electrophoresis,<br />

2002, 23, 1973–1983.<br />

55. van Lintel, H. T. G., van de Pol, F. C. M. and Bouwstra, S. A piezoelectric micropump based<br />

<strong>on</strong> micromachining <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong>. Sensors Actuators, 1988, 15, 153–167.<br />

56. Nisar, A., Afzulpurkar, N., Mahaisavariya, B. and Tuantran<strong>on</strong>t, A. MEMS-based micropumps<br />

in drug delivery and <str<strong>on</strong>g>biomedical</str<strong>on</strong>g> applicati<strong>on</strong>s. Sensors Actuators B, 2008, 130, 917–942.<br />

57. Zh<strong>on</strong>g, J., Yi, M. and Bau, H. H. Magneto hydrodynamic (MHD) pump fabricated with ceramic<br />

tapes. Sensors Actuators A: Physical, 2002, 96, 59–66.<br />

58. Xu, D., Wang, L., Ding, G., Zhou, Y., Yu, A. and Cai, B. Characteristics and fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

NiTi/Si diaphragm micropump. Sensors Actuators A: Physical, 2001, 93, 87–92.<br />

59. Yokoyama, Y., Takeda, M., Umemoto, T. and Ogushi, T. Thermal micro pumps for a loop-type<br />

micro channel. Sensors Actuators A: Physical. 2004, 111, 123–128.<br />

60. Salimi-Moosavi, H., Tang, T. and Harris<strong>on</strong>, D. Electroosmotic pumping <str<strong>on</strong>g>of</str<strong>on</strong>g> organic solvents and<br />

reagents in micr<str<strong>on</strong>g>of</str<strong>on</strong>g>abricated reactor <strong>chip</strong>s. J. Am. Chem. Soc., 1997, 119, 8716–8717.<br />

61. Li, P. C. and Harris<strong>on</strong>, D. J. Transport, manipulati<strong>on</strong> and reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological cells <strong>on</strong>-<strong>chip</strong><br />

using electrokinetic effects. Anal. Chem., 1997, 69, 1564–1568.<br />

62. Manz, A., Fettinger, J. C., Verpoorte, E., Lude, H., Widmer, H. M. and Harris<strong>on</strong>, D. J. Micromachining<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ocrystalline silic<strong>on</strong> and glass for chemical analysis systems. A look into<br />

next century’s technology or just a fashi<strong>on</strong>able craze? Trends Anal. Chem., 1991, 10, 144–<br />

149.<br />

63. Terry, S. C., Jerman, J. H. and Angell, J. B. A gas chromatographic air analyzer fabricated <strong>on</strong> a<br />

silic<strong>on</strong> wafer. IEEE Trans. Electr<strong>on</strong>. Devices, 1979, ED-26, 1880–1886.<br />

64. Oh, H. J., Kim, S. H., Baek, J. Y., Se<strong>on</strong>g, G. H. and Lee, S. H. Hydrodynamic microencapsulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous fluids and cells via ‘<strong>on</strong> the fly’ photopolymerizati<strong>on</strong>. J. Micromech.<br />

Microeng., 2006, 16, 285–291.<br />

65. Choi, C. H., Jung, J. H., Rhee, Y., Kim, D. P., Shim, S. E. and Lee, C. S. Generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>on</strong>odisperse alginate microbeads and in situ encapsulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell in micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic device.<br />

Biomed. Micro<strong>devices</strong>, 2007, 9, 855–862.<br />

66. Tan, Y. C., Hettiarachchi, K., Siu, M., Pan, Y. P. and Lee, A. P. C<strong>on</strong>trolled micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic<br />

encapsulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells, proteins, and microbeads in lipid vesicles. J. Am. Chem. Soc., 2006,<br />

128, 5656–5658.<br />

67. Yamada, M., Nakashima, M. and Seki, M. Pinched flow fracti<strong>on</strong>ati<strong>on</strong>: C<strong>on</strong>tinuous size separati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particles utilizing a laminar flow pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile in a pinched microchannel. Anal. Chem.,<br />

2004, 76, 5465–5471.<br />

68. Shevkoplyas, S. S., Yoshida, T., Munn, L. L. and Bitensky, M. W. Biomimetic design <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic device for auto-separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> leukocytes from whole blood. Anal. Chem.,<br />

2005, 77, 933.<br />

69. Gomez-Sjoberg, R., Leyrat, A. A., Pir<strong>on</strong>e, D. M., Chen, C. S. and Quake, S. R. Versatile, fully<br />

automated, micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic cell culture system. Anal. Chem., 2007, 79, 8557–8563.<br />

70. Nevill, J. T., Cooper, R., Dueck, M., Breslauer, D. N. and Lee, L. P. Integrated micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic cell<br />

culture and lysis <strong>on</strong> a <strong>chip</strong>. Lab Chip, 2007, 7, 1689–1695.<br />

71. Melin, J. and Quake, S. R. Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic large-scale integrati<strong>on</strong>: The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> design rules<br />

for biological automati<strong>on</strong>. Ann. Rev. Biophys. Biomolecular Structure, 2007, 36, 213–231.<br />

72. Talary, M. S., Burt, J. P. H. and Pethig, R. Future trends in diagnosis using <str<strong>on</strong>g>lab</str<strong>on</strong>g>oratory-<strong>on</strong>-a-<strong>chip</strong><br />

technologies. Parasitology, 1998, 117, S191–S203.<br />

73. Kopp, M. U., De Mello, A. and Manz, J. A. Chemical amplificati<strong>on</strong>: C<strong>on</strong>tinuous-flow PCR <strong>on</strong><br />

a <strong>chip</strong>. Science, 1998, 280, 1046–1048.<br />

74. Wildinga, P., Kricka, L. J., Cheng, J., Hvichia, G., Sh<str<strong>on</strong>g>of</str<strong>on</strong>g>fner, M. A. and Fortina, P. Integrated<br />

cell isolati<strong>on</strong> and polymerase chain reacti<strong>on</strong> analysis using silic<strong>on</strong> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilter chambers.<br />

Analyt. Biochem., 1998, 257, 95–100.<br />

134


75. Sh<str<strong>on</strong>g>of</str<strong>on</strong>g>fner, M. A., Cheng, J., Hvichia, G. E., Kricka, L. J. and Wilding, P. Chip PCR. I: Surface<br />

passivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>abricated silic<strong>on</strong>-glass <strong>chip</strong>s for PCR. Nucleic Acids Res., 1996, 24,<br />

375–379.<br />

76. Cheng, J., Sh<str<strong>on</strong>g>of</str<strong>on</strong>g>fner, M. A., Hvichia, G. E., Kricka, L. J. and Wilding, P. Chip PCR.<br />

II: Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different PCR amplificati<strong>on</strong> systems in microbabricated silic<strong>on</strong>-glass<br />

<strong>chip</strong>s. Nucleic Acids Res., 1996, 24, 380–385.<br />

77. Auroux, P. A., Koc, Y., DeMello, A., Manz, A. and Day, P. J. R. Miniaturised nucleic acid<br />

analysis. Lab Chip, 2004, 4, 534–546.<br />

78. Wang, W., Li, Z. X., Luo, R., Lu, S. H., Xu, A. D. and Yang, Y. J. Droplet-based micro<br />

oscillating-flow PCR <strong>chip</strong>. J. Micromech. Microeng., 2005, 15, 1369–1377.<br />

79. Beer, N. R., Hinds<strong>on</strong>, B. J., Wheeler, E. K., Hall, S. B., Rose, K. A., Kennedy, I. M. and<br />

Colst<strong>on</strong>, B. W. On-<strong>chip</strong>, real-time, single-copy polymerase chain reacti<strong>on</strong> in picoliter<br />

droplets. Anal. Chem., 2007, 79, 8471–8475.<br />

80. Liu, R. H., Yang, J. N., Lenigk, R., B<strong>on</strong>anno, J. and Grodzinski, P. Self-c<strong>on</strong>tained, fully<br />

integrated bio<strong>chip</strong> for sample preparati<strong>on</strong>, polymerase chain reacti<strong>on</strong> amplificati<strong>on</strong>, and<br />

DNA microarray detecti<strong>on</strong>. Analyt. Chem., 2004, 76, 1824–1831.<br />

81. Urban, G. A. Micro- and nanobiosensors – State <str<strong>on</strong>g>of</str<strong>on</strong>g> the art and trends. Meas. Sci. Technol.,<br />

2009, 20, 012001.<br />

82. Chmela, E. and Tijssen, R. A <strong>chip</strong> system for size separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macromolecules and particles<br />

by hydrodynamic chromatography. Analyt. Chem., 2002, 74, 3470–3475.<br />

83. Blom, M. T., Chmela, E., Gardeniers, J. G. E., Tijssen, R., Elwenspoek, M. and van den<br />

Berg, A. Design and fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a hydrodynamic chromatography <strong>chip</strong>. Sensors<br />

Actuators B: Chemical, 2002, 82, 111–116.<br />

84. Niemeyer, C. M. and Blohm, D. DNA microarray. Angew. Chemie Int. Ed., 1999, 38, 2865–<br />

2869.<br />

85. Blohm, D. H. and Guiseppi-Elie, A. New developments in microarray technology. Curr. Opin.<br />

Biotechnol., 2001, 12, 41–47.<br />

86. Pirrung, M. C. How to make a DNA <strong>chip</strong>. Angew. Chemie Int. Ed., 2002, 41, 1276–1289.<br />

87. Jung, A. DNA <strong>chip</strong> technology. Anal. Bioanal. Chem., 2002, 372, 41–42.<br />

88. Saliterman, S. S. Educati<strong>on</strong>, bioMEMS and the medical microdevice revoluti<strong>on</strong>. Expert. Rev.<br />

Med. Devices, 2005, 2, 515–519.<br />

89. Fan, Z. H. and Ricco, A. J. Plastic micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic <strong>devices</strong> for DNA and protein analyses. In<br />

BioMEMS and Biomedical Nanotechnology: Micro/Nano Technology for Genomics and<br />

Proteomics (Ozkan, M., Heller, M. J. and Ferrari, M., eds). Vol. II, Springer, 2006, 311–<br />

328.<br />

90. Wagenknecht, H. A. Photoinduced electr<strong>on</strong> transport in DNA. In Nanobiotechnology: Bioinspired<br />

Devices and Materials <str<strong>on</strong>g>of</str<strong>on</strong>g> the Future (Shoseyov, O. and Levy, I., eds). Hamana<br />

Press, Totowa, New Jersey, 2008, 89–106.<br />

91. Drumm<strong>on</strong>d, T. G., Hill, M. G. and Bart<strong>on</strong>, J. K. Electrochemical DNA sensors. Nat. Biotechnol.,<br />

2003, 21, 1192–1199.<br />

92. Porath, D., Cuniberti, G. and Di Felice, R. Charge transport in DNA-based <strong>devices</strong>. Top Curr.<br />

Chem., 2004, 237, 183–227.<br />

93. Köster, S., Angile, F. E., Duan, H., Agresti, J. J., Wintner, A., Schmitz, C., Rowat, A. C.,<br />

Merten, C. A., Pisignano, D., Griffiths, A. D. and Weitz, D. A. Drop-based micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic<br />

<strong>devices</strong> for encapsulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> single cells. Lab Chip, 2008, 8, 1110–1115.<br />

94. Sun, T., Holmes, D., Gawad, S., Green, N. G. and Morgan, H. High speed multi-frequency<br />

impedance analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> single particles in a micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic cytometer using maximum length<br />

sequences. Lab Chip, 2007, 7, 1034–1040.<br />

95. Gawad, S., Sun, T., Green, N. G. and Morgan, H. Impedance spectroscopy using maximum<br />

length sequences: Applicati<strong>on</strong> to single cell analysis. Rev. Sci. Instruments, 2007, 78,<br />

054301-1.<br />

96. Morgan, H., Sun, T., Holmes, D., Gawad, S. and Green, N. G. Single cell dielectric spectroscopy.<br />

J. Phys. D: Appl. Phys., 2007, 40, 61–70.<br />

135


97. Fu, A. Y., Spence, C., Scherer, A., Arnold, F. H. and Quake, S. R. A micr<str<strong>on</strong>g>of</str<strong>on</strong>g>abricated<br />

fluorescence-activated cell sorter. Nature Biotechnol., 1999, 17, 1109–1111.<br />

98. Zemann, A. J., Schnell, E., Volgger, D. and B<strong>on</strong>n, G. K. C<strong>on</strong>tactless c<strong>on</strong>ductivity detecti<strong>on</strong> for<br />

capillary electrophoresis. Analyt. Chem., 1998, 70, 563–567.<br />

99. Pumera, M., Wang, J., Opekar, F., Jelínek, I., Feldman, J., Löwe, H. and Hardt, S. C<strong>on</strong>tactless<br />

c<strong>on</strong>ductivity detector for micro<strong>chip</strong> capillary electrophoresis. Analyt. Chem., 2002, 74,<br />

1968–1971.<br />

100. Lichtenberg, J., de Rooij, N. F. and Verpoorte, E. A micro<strong>chip</strong> electrophoresis system with<br />

integrated in-plane electrodes for c<strong>on</strong>tactless c<strong>on</strong>ductivity detecti<strong>on</strong>. Electrophoresis, 2002,<br />

23, 3769–3780.<br />

101. Lee, C.-Y., Chen, C. M., Chang, G.-L., Lin, C.-H. and Fu, L.-M. Fabricati<strong>on</strong> and characterizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> semicircular detecti<strong>on</strong> electrodes for c<strong>on</strong>tactless c<strong>on</strong>ductivity detector – CE<br />

micro<strong>chip</strong>s. Electrophoresis, 2006, 27, 5043–5050.<br />

102. Gorbatsova, J., Jaanus, M. and Kaljurand, M. Digital micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic sampler for a portable<br />

capillary electropherograph. Analyt. Chem., 2009, 81, 8590–8595.<br />

103. da Silva, J. A. F. and do Lago, C. L. An oscillometric detector for capillary electrophoresis.<br />

Analyt. Chem., 1998, 70, 4339–4343.<br />

104. Abad-Villar, E. M., Kubáň, P. and Hauser, P. C. Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biochemical species <strong>on</strong><br />

electrophoresis <strong>chip</strong>s with an external c<strong>on</strong>tactless c<strong>on</strong>ductivity detector. Electrophoresis,<br />

2005, 26, 3609–3614.<br />

105. Cabrera, C. R. and Yager, P. C<strong>on</strong>tinuous c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria in a micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic flow cell<br />

using electrokinetic techniques. Electrophoresis, 2001, 22, 355–362.<br />

106. Lu, H., Schmidt, M. A. and Jensen, K. F. A micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic electroporati<strong>on</strong> device for cell lysis.<br />

Lab Chip, 2005, 5, 23–29.<br />

107. Li, Y. L., Dalt<strong>on</strong>, C., Crabtree, H. J., Nilss<strong>on</strong>, G. and Kaler, K. C<strong>on</strong>tinuous dielectrophoretic<br />

cell separati<strong>on</strong> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic device. Lab Chip, 2007, 7, 239–248.<br />

108. Doh, I. and Cho, Y. H. A c<strong>on</strong>tinuous cell separati<strong>on</strong> <strong>chip</strong> using hydrodynamic dielectrophoresis<br />

(DEP) process. Sens. Actuators A: Physical, 2005, 121, 59–65.<br />

109. Huang, Y. and Pethig, R. Electrode design for negative dielectrophoresis. Meas. Sci. Technol.,<br />

1991, 2, 1142–1146.<br />

110. Gascoyne, P. R. C., Wang, X.-B., Huang, Y. and Becker, F. F. Dielectrophoretic separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cancer cells from blood. IEEE Trans. Industry Applicati<strong>on</strong>s, 1997, 33, 670–678.<br />

111. Wang, X.-B., Huang, Y., Wang, X., Becker, F. F. and Gascoyne, P. R. C. Dielectrophoretic<br />

manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells with spiral electrodes. Biophys. J., 1997, 72, 1887–1899.<br />

112. Broche, L. M., Bhadal, N., Lewis, M. P., Porter, S., Hughes, M. P. and Labeed, F. H. Early<br />

detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oral cancer – Is dielectrophoresis the answer? Oral Oncology, 2007, 43, 199–<br />

203.<br />

113. Cen, E. G., Dalt<strong>on</strong>, C., Li, Y., Adamia, S., Pilarski, L. M. and Kaler, K. V. I. S. A combined<br />

dielectrophoresis, traveling wave dielectrophoresis and electrorotati<strong>on</strong> micro<strong>chip</strong> for the<br />

manipulati<strong>on</strong> and characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> human malignant cells. J. Microbiol. Methods, 2004,<br />

58, 387–401.<br />

114. J<strong>on</strong>es, T. B. Electromechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> Particles. Cambridge University Press, 1995.<br />

115. Kirby, B. J. Micro- and Nanoscale Fluid Mechanics: Transport in Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic Devices.<br />

Cambridge University Press, 2010.<br />

116. Cahill, B. P., Heyderman, L. J., Gobrecht, J. and Stemmer, A. Electro-osmotic streaming <strong>on</strong><br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> traveling-wave electric fields. Phys. Rev., 2004, 70, 036305.<br />

117. Kirby, B. J., Wheeler, A. R., Zare, R. N., Fruetela, J. A. and Shepodd, T. J. Programmable<br />

modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell adhesi<strong>on</strong> and zeta potential in silica micro<strong>chip</strong>s. Lab Chip, 2003, 3, 5–<br />

10.<br />

118. Chun, M.-S., Shim, M. S. and Choi, N. W. Fabricati<strong>on</strong> and validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a multi-channel type<br />

micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic <strong>chip</strong> for electrokinetic streaming potential <strong>devices</strong>. Lab Chip, 2006, 6, 302–<br />

309.<br />

119. Estes, M. D., Do, J. and Ahn, C. H. On <strong>chip</strong> cell separator using magnetic bead-based<br />

enrichment and depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various surface markers. Biomed. Devices, 2009, 11, 509–515.<br />

136


120. Gijs, M. Magnetic bead handling <strong>on</strong>-<strong>chip</strong>: New opportunities for analytical applicati<strong>on</strong>s.<br />

Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luid. Nan<str<strong>on</strong>g>of</str<strong>on</strong>g>luid., 2004, 1, 22–40.<br />

121. Ogiue-Ikeda, M., Sato, Y. and Ueno, S. A new method to destruct targeted cells using<br />

magnetizable beads and pulsed magnetic force. IEEE Trans. Nanobiosci., 2003, 2, 262–<br />

265.<br />

122. Valberg, P. A. and Butler, J. P. Magnetic particle moti<strong>on</strong>s within living cells – Physical theory<br />

and techniques. Biophys. J., 1987, 52, 537–550.<br />

123. Wang, N., Butler, J. P. and Ingber, D. E. Mechanotransducti<strong>on</strong> across the cell surface and<br />

through the cytoskelet<strong>on</strong>. Science, 1993, 260, 1124–1127.<br />

124. Egatz-Gómez, A., Melle, S., García, A. A., Lindsay, S. A., Márquez, M., Picraux, S. T.,<br />

Taraci, J. L., Clement, T., Yang, D., Hayes, M. A. and Gust, D. Discrete magnetic micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidics,<br />

Appl. Phys. Lett., 2006, 89, 034106.<br />

125. Lehmann, U., Hadjidj, S., Parashar, V. K., Vandevyver, C., Rida, A. and Gijs, M. A. M. Twodimensi<strong>on</strong>al<br />

magnetic manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microdroplets <strong>on</strong> a <strong>chip</strong> as a platform for<br />

bioanalytical applicati<strong>on</strong>s. Sensors Actuators B: Chemical, 2006, 117, 457–463.<br />

126. Xia, Y. and Whitesides, G. M. S<str<strong>on</strong>g>of</str<strong>on</strong>g>t lithography. Ann. Rev. Mater. Sci., 1998, 28, 153–184.<br />

127. Kumar, A. and Whitesides, G. M. Features <str<strong>on</strong>g>of</str<strong>on</strong>g> gold having micrometer to centimeter<br />

dimensi<strong>on</strong>s can be formed through a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stamping with an elastomeric stamp<br />

and an alkanethiol ‘ink’ followed by chemical etching. Appl. Phys. Lett., 1993, 63, 2002–<br />

2004.<br />

128. Harris<strong>on</strong>, D. J., Glavina, P. G. and Manz, A. Towards miniaturized electrophoresis and<br />

chemical analysis systems <strong>on</strong> silic<strong>on</strong>: An alternative to chemical sensors. Sensors<br />

Actuators B: Chemical, 1993, 10, 107–116.<br />

129. Wilding, P., Sh<str<strong>on</strong>g>of</str<strong>on</strong>g>fner, M. A. and Kricka, L. PCR in a silic<strong>on</strong> microstructure. J. Clin. Chem.,<br />

1994, 40, 1815–1818.<br />

130. Raym<strong>on</strong>d, D. E., Manz, A. and Widmer, H. M. C<strong>on</strong>tinuous separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high molecular<br />

weight compounds using a microliter volume free-flow electrophoresis microstructure.<br />

Anal. Chem., 1996, 68, 2515–2522.<br />

131. Fan, Z. H. and Harris<strong>on</strong>, D. J. Micromachining <str<strong>on</strong>g>of</str<strong>on</strong>g> capillary electrophoresis injectors and<br />

separators <str<strong>on</strong>g>of</str<strong>on</strong>g> glass <strong>chip</strong>s and evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flow at capillary intersecti<strong>on</strong>s. Analyt. Chem.,<br />

1994, 66, 177–184.<br />

132. Jacobs<strong>on</strong>, S. C., Hergenroder, R., Koutny, L. B., Warmack, R. J. and Ramsey, J. M. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

injecti<strong>on</strong> schemes and column geometry <strong>on</strong> the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> micro<strong>chip</strong> electrophoresis<br />

<strong>devices</strong>. Analyt. Chem., 1994, 66, 1107–1113.<br />

133. Roberts, M. A., Rossier, J. S., Bercier, P. and Girault, H. H. UV laser machined polymer<br />

substrates for the development <str<strong>on</strong>g>of</str<strong>on</strong>g> microdiagnostic systems. Analyt. Chem., 1997, 69, 2035–<br />

2042.<br />

134. Soper, S. A., Ford, S. M., Qi, S., McCarley, R. L., Kelly, K. and Murphy, M. C. Peer<br />

<strong>review</strong>ed: Polymeric microelectromechanical systems. Analyt. Chem., 2000, 72, 643A–<br />

651A.<br />

135. Friend, J. and Yeo, L. Fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic <strong>devices</strong> using polydimethylsiloxane. Biomicr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidics,<br />

2010, 4, 026502.<br />

136. Toepke, M. W. and Beebe, D. J. PDMs absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small molecules and c<strong>on</strong>sequences in<br />

micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic applicati<strong>on</strong>s. Lab Chip, 2006, 6, 1484–1486.<br />

137. Satas, D. Coatings Technology Handbook. Marcel Dekker Inc., 1991.<br />

138. Christensen, C., de Reus, R. and Bouwstra, S. Tantalum oxide thin films as protective coatings<br />

for sensors. J. Micromech. Microeng., 1999, 9, 113–118.<br />

139. Joshi, P. C. and Cole, M. W. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> postdepositi<strong>on</strong> annealing <strong>on</strong> the enhanced structural<br />

and electrical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> amorphous and crystalline Ta2O 5 thin films for dynamic random<br />

access memory applicati<strong>on</strong>s. J. Appl. Phys., 1999, 86, 15.<br />

140. Cahill, B. P., Giannitsis, A. T., Land, R., Gastrock, G., Pliquett, U., Frense, D., Min, M. and<br />

Beckmann, D. Reversible electrowetting <strong>on</strong> silanized silic<strong>on</strong> nitride. Sensors Actuators B,<br />

2010, 144, 380–386.<br />

137


141. Li, J., Fu, J., C<strong>on</strong>g, Y., Wu, Y., Xue, L. and Han, Y. Macroporous fluoropolymeric films<br />

templated by silica colloidal assembly: A possible route to super-hydrophobic surfaces.<br />

Appl. Surface Sci., 2006, 252, 2229–2234.<br />

142. Hoque, E., DeRose, J. A., H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann, P., Bhushan, B. and Mathieu, H. J. Alkylperfluorosilane<br />

self-assembled m<strong>on</strong>olayers <strong>on</strong> aluminum: A comparis<strong>on</strong> with alkylphosph<strong>on</strong>ate selfassembled<br />

m<strong>on</strong>olayers. J. Phys. Chem. C, 2007, 111, 3956–3962.<br />

143. Hoque, E., DeRose, J. A., H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann, P. and Mathieu, H. J. Robust perfluorosilanized copper<br />

surfaces. Surf. Interface Anal., 2006, 38, 62–68.<br />

144. Bayiati, P., Tserepi, A., Petrou, P. S., Kakabakos, S. E., Misiakos, K. and Gogolides, E.<br />

Electrowetting <strong>on</strong> plasma-deposited fluorocarb<strong>on</strong> hydrophobic films for bi<str<strong>on</strong>g>of</str<strong>on</strong>g>luid transport<br />

in micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidics. J. Appl. Phys., 2007, 101, 103306.<br />

145. Bayiati, P., Tserepi, A., Petrou, P. S., Misiakos, K., Kakabakos, S. E., Gogolides, E. and<br />

Cardinaud, C. Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>luid transport <strong>on</strong> hydrophobic plasma-deposited fluorocarb<strong>on</strong> films.<br />

Microelectr<strong>on</strong>ic Eng., 2007, 84, 1677–1680.<br />

146. Seyrat, E. and Hayes, R. A. Amorphous fluoropolymers as insulators for reversible lowvoltage<br />

electrowetting. J. Appl. Phys., 2001, 90, 1383–1386.<br />

147. Kedzierski, J. and Berry, S. Engineering the electrocapillary behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> electrolyte droplets<br />

<strong>on</strong> thin fluoropolymer films. Langmuir, 2006, 22, 5690–5696.<br />

148. Schreiber, F. Structure and growth <str<strong>on</strong>g>of</str<strong>on</strong>g> self-assembling m<strong>on</strong>olayers. Progress in Surface<br />

Science, 2000, 65, 151–256.<br />

149. Carlen, E. T., Heng, K. H., Bakshi, S., Pareek, A. and Mastrangelo, C. H. High-aspect ratio<br />

vertical comb-drive actuator with small self-aligned finger gaps. J. Microelectromech.,<br />

2005, 14, 1144–1154.<br />

150. Christensen, T. B., Pedersen, C. M., Gr<strong>on</strong>dahl, K. G., Jensen, T. G., Sekulovic, A., Bang, D. D.<br />

and Wolff, A. J. PCR biocompatibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>lab</str<strong>on</strong>g>-<strong>on</strong>-a-<strong>chip</strong> and MEMS materials. J. Micromech.<br />

Microeng., 2007, 17, 1527–1532.<br />

151. Schumacher, J. T., Grodrian, A., Kremin, C., H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann, M. and Metze, J. Hydrophobic<br />

coating <str<strong>on</strong>g>of</str<strong>on</strong>g> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic <strong>chip</strong>s structured by SU-8 polymer for segmented flow operati<strong>on</strong>. J.<br />

Micromech. Microeng., 2008, 18, 055019.<br />

152. Kotzar, G., Freas, M., Abel, P., Fleischman, A., Roy, S., Zorman, C., Moran, J. M. and<br />

Melzak, J. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> MEMS materials <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> for implantable medical <strong>devices</strong>.<br />

Biomaterials, 2002, 23, 2737–2750.<br />

153. Voskerician, G., Shive, M. S., Shawgo, R. S., v<strong>on</strong> Recum, H., Anders<strong>on</strong>, J. M., Cima, M. J.<br />

and Langer, R. Biocompatibility and bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ouling <str<strong>on</strong>g>of</str<strong>on</strong>g> MEMS drug delivery device.<br />

Biomaterials, 2003, 24, 1959–1967.<br />

154. Hernandez, P. R., Taboada, C., Leija, L., Tsutsumi, V., Vazquez, B., Valdes-Perezgasga, F.<br />

and Reyes, J. L. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biocompatibility <str<strong>on</strong>g>of</str<strong>on</strong>g> pH-ISFET materials during l<strong>on</strong>g-term<br />

subcutaneous implantati<strong>on</strong>. Sensors Actuators B, 1998, 46, 133–138.<br />

155. Je<strong>on</strong>g, J. H., Mo<strong>on</strong>, Y. M., Kim, S. O., Yun, S. S. and Shin, H. I. Human cartilage tissue<br />

engineering with plur<strong>on</strong>ic and cultured ch<strong>on</strong>docyte sheet. Key Eng. Mater., 2007, 342–343,<br />

89–92.<br />

156. Klapperich, C. M. Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic diagnostics: Time for industry standards. Expert Rev. Medical<br />

Devices, 2009, 6, 211–213.<br />

157. Pfohl, T., Mugele, F., Seemann, R. and Herminghaus, S. Trends in micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidics with complex<br />

fluids. Chemphyschem, 2003, 4, 1291–1298.<br />

158. Thies, W., Urbanski, J. P., Thorsen, T. and Amarasinghe, S. Abstracti<strong>on</strong> layers for sca<str<strong>on</strong>g>lab</str<strong>on</strong>g>le<br />

micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic biocomputers. In Proc. Internati<strong>on</strong>al Meeting <strong>on</strong> DNA Computing (Mao, C.<br />

and Yokomori, T., eds). Seoul, Korea, 2006, 308–323.<br />

159. Cox, J. C. and Ellingt<strong>on</strong>, A. D. DNA computati<strong>on</strong> functi<strong>on</strong>. Curr. Biol., 2001, 11, R336.<br />

160. Yurke, B., Mills, A. P. Jr and Cheng, S. L. DNA implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong> in which the<br />

input strands are separate from the operator strands. BioSystems, 1999, 52, 165–174.<br />

161. Hug, H. and Schuler, R. Strategies for the development <str<strong>on</strong>g>of</str<strong>on</strong>g> a peptide computer. Bioinformatics,<br />

2001, 17, 364–368.<br />

138


162. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T. and Hagiya, M.<br />

Molecular computati<strong>on</strong> by DNA hairpin formati<strong>on</strong>. Science, 2000, 288, 1223–1226.<br />

163. Boulart, C., Mowlem, M. C., C<strong>on</strong>nelly, D. P., Dutasta, J.-P. and German, C. R. A novel, lowcost,<br />

high performance dissolved methane sensor for aqueous envir<strong>on</strong>ments. Optics<br />

Express, 2008, 16, 12607–12617.<br />

164. Sosna, M., Denuault, G., Pascal, R. W., Prien, R. D. and Mowlem, M. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

reliable microelectrode dissolved oxygen sensor. Sensors Actuators B, 2007, 123, 344–351.<br />

165. Benazzi, G., Holmes, D., Sun, T., Mowlem, M. C. and Morgan, H. Discriminati<strong>on</strong> and<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> using a micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic cytometer. IET Nanobiotechnology, 2007, 1,<br />

94–101.<br />

166. Patey, M. D., Rijkenberg, M. J. A., Statham, P. J., Mowlem, M., Stinchcombe, M. C. and<br />

Achterberg, E. P. Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrate and phosphate in seawater at nanomolar<br />

c<strong>on</strong>centrati<strong>on</strong>s. Trends Analyt. Chem., 2008, 27, 169–182.<br />

167. Burns, M. A., Johns<strong>on</strong>, B. N., Brahmasandra, S. N., Handique, K., Webster, J. R.,<br />

Krishnan, M. T., Sammarco, S., Man, P. M., J<strong>on</strong>es, D., Heldsinger, D., Mastrangelo, C. H.<br />

and Burke, D. T. An integrated nanoliter DNA analysis device. Science, 1998, 282, 484–<br />

487.<br />

Biomeditsiiniliste kiip<str<strong>on</strong>g>lab</str<strong>on</strong>g>orite valmistamine<br />

Athanasios T. Giannitsis<br />

Kiip<str<strong>on</strong>g>lab</str<strong>on</strong>g>orid <strong>on</strong> miniatuursete analüütiliste seadmete klassi kuuluvad seadmed,<br />

mis ühendavad endas voolise, elektro<strong>on</strong>ika ja sensoorika ning <strong>on</strong> ette nähtud biokeemiliste<br />

vedelike analüüsimiseks. Täiendavate abivahenditena kergendavad<br />

kiip<str<strong>on</strong>g>lab</str<strong>on</strong>g>orid vedelike transporti, sorteerimist, segustamist või lahutamist. Nende<br />

miniatuursete seadmete tähtsus ilmneb <str<strong>on</strong>g>lab</str<strong>on</strong>g>oratoorsete protseduuride automatiseerimises,<br />

mis vähendab tunduvalt biomeditsiiniliste katsete ja <str<strong>on</strong>g>lab</str<strong>on</strong>g>oratoorsete toimingute<br />

aega. Antud ülevaateartiklis <strong>on</strong> kirjeldatud arvukaid kiip<str<strong>on</strong>g>lab</str<strong>on</strong>g>orite valmistamise<br />

meetodeid ja protseduure, samuti <strong>on</strong> vaadeldud võimalikke tulevikuarenguid.<br />

139

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!