23.11.2012 Views

The efficiency of contraction in rabbit skeletal muscle fibres ...

The efficiency of contraction in rabbit skeletal muscle fibres ...

The efficiency of contraction in rabbit skeletal muscle fibres ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

854<br />

Brune, M., Hunter, J. L., Corrie, J. E. T. & Webb, M. R. (1994).<br />

<strong>The</strong> direct, real-time measurement <strong>of</strong> rapid <strong>in</strong>organic phosphate<br />

release us<strong>in</strong>g a novel fluorescent probe and its application to<br />

actomyos<strong>in</strong> subfragment 1. Biochemistry 33, 8262—8271.<br />

Brune, M., Hunter, J. L., Howell, S. A., Mart<strong>in</strong>, S. R., Hazlett,<br />

T. L., Corrie, J. E. T. & Webb, M. R. (1998). Mechanism <strong>of</strong><br />

<strong>in</strong>organic phosphate <strong>in</strong>teraction with phosphate b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong><br />

from Escherichia coli. Biochemistry 37, 10370—10380.<br />

Chase, P. B. & Kushmerick, M. J. (1998). Effects <strong>of</strong> pH on<br />

<strong>contraction</strong> <strong>of</strong> <strong>rabbit</strong> fast and slow <strong>muscle</strong> fibers. Biophysical<br />

Journal 53, 935—946.<br />

Cooke, R., Franks, K., Luciani, G. & Pate, E. (1988). <strong>The</strong><br />

<strong>in</strong>hibition <strong>of</strong> <strong>rabbit</strong> <strong>skeletal</strong> <strong>muscle</strong> <strong>contraction</strong> by hydrogen ions and<br />

phosphate. Journal <strong>of</strong> Physiology 395, 77—97.<br />

Corrie, J. E. T., Katayama, Y., Reid, G. P., Anson, M. &<br />

Trentham, D. R. (1992). <strong>The</strong> development and application <strong>of</strong><br />

photosensitive caged compounds to aid time-resolved structure<br />

determ<strong>in</strong>ation <strong>of</strong> macromolecules. Philosophical Transactions <strong>of</strong> the<br />

Royal Society A 340, 233—244.<br />

Edman, K. A. P. (1979). <strong>The</strong> velocity <strong>of</strong> unloaded shorten<strong>in</strong>g and its<br />

relation to sarcomere length and isometric force <strong>in</strong> vertebrate <strong>muscle</strong><br />

<strong>fibres</strong>. Journal <strong>of</strong> Physiology 291, 143—159.<br />

Ferenczi, M. A., Homsher, E. & Trentham, D. R. (1984). <strong>The</strong><br />

k<strong>in</strong>etics <strong>of</strong> magnesium-adenos<strong>in</strong>e triphosphate cleavage <strong>in</strong> sk<strong>in</strong>ned<br />

<strong>muscle</strong> <strong>fibres</strong> <strong>of</strong> the <strong>rabbit</strong>. Journal <strong>of</strong> Physiology 352, 575—599.<br />

Ford, L. E., Huxley, A. F. & Simmons, R. M. (1985). Tension<br />

transients dur<strong>in</strong>g steady-state shorten<strong>in</strong>g <strong>of</strong> frog <strong>muscle</strong> <strong>fibres</strong>.<br />

Journal <strong>of</strong> Physiology 361, 131—150.<br />

Glyn, H. & Sleep, J. (1985). Dependence <strong>of</strong> adenos<strong>in</strong>e triphosphatase<br />

activity <strong>of</strong> <strong>rabbit</strong> psoas <strong>muscle</strong> <strong>fibres</strong> and my<strong>of</strong>ibrils on substrate<br />

concentration. Journal <strong>of</strong> Physiology 365, 259—276.<br />

Goldman, Y. E. & Huxley, A. F. (1994). Act<strong>in</strong> compliance: are you<br />

pull<strong>in</strong>g my cha<strong>in</strong>? Biophysical Journal 67, 2131—2136.<br />

He, Z.-H., Chill<strong>in</strong>gworth, R. K., Brune, M., Corrie, J. E. T.,<br />

Trentham, D. R., Webb, M. R. & Ferenczi, M. A. (1997). ATPase<br />

k<strong>in</strong>etics on activation <strong>of</strong> permeabilized isometric <strong>fibres</strong> from <strong>rabbit</strong><br />

and frog <strong>muscle</strong>: a real time phosphate assay. Journal <strong>of</strong> Physiology<br />

501, 125—148.<br />

He, Z.-H., Chill<strong>in</strong>gworth, R. K. & Ferenczi, M. A. (1998a). <strong>The</strong><br />

ATPase activity <strong>in</strong> isometric and shorten<strong>in</strong>g <strong>skeletal</strong> <strong>muscle</strong> <strong>fibres</strong>.<br />

Advances <strong>in</strong> Experimental Medic<strong>in</strong>e and Biology 453, 331—341.<br />

He, Z.-H., Stienen, G. J. M., Barends, J. P. F. & Ferenczi, M. A.<br />

(1998b). Rate <strong>of</strong> phosphate release after photoliberation <strong>of</strong> ATP <strong>in</strong><br />

slow and fast sk<strong>in</strong>ned <strong>skeletal</strong> <strong>muscle</strong> fibers. Biophysical Journal 75,<br />

2389—2401.<br />

Hill, A. V. (1938). <strong>The</strong> heat <strong>of</strong> shorten<strong>in</strong>g and the dynamic constants<br />

<strong>of</strong> <strong>muscle</strong>. Proceed<strong>in</strong>gs <strong>of</strong> the Royal Society B 126, 136—195.<br />

Homsher, E., Lacktis, J. & Regnier, M. (1997). Stra<strong>in</strong>-dependent<br />

modulation <strong>of</strong> phosphate transients <strong>in</strong> <strong>rabbit</strong> <strong>skeletal</strong> <strong>muscle</strong> fibers.<br />

Biophysical Journal 72, 1780—1791.<br />

Huxley, A. F. (1957). Muscle structure and theories <strong>of</strong> <strong>contraction</strong>.<br />

Progress <strong>in</strong> Biophysics and Biophysical Chemistry 7, 255—318.<br />

Kushmerick, M. J. & Davies, R. E. (1969). <strong>The</strong> chemical energetics<br />

<strong>of</strong> <strong>muscle</strong> <strong>contraction</strong>. II. <strong>The</strong> chemistry, <strong>efficiency</strong> and power <strong>of</strong><br />

maximally work<strong>in</strong>g sartorius <strong>muscle</strong>s. Proceed<strong>in</strong>gs <strong>of</strong> the Royal<br />

Society B 174, 315—353.<br />

Ma, Y.-Z. & Taylor, E. W. (1994). K<strong>in</strong>etic mechanism <strong>of</strong> my<strong>of</strong>ibril<br />

ATPase. Biophysical Journal 66, 1542—1553.<br />

Mart<strong>in</strong>, J. & Barsotti, R. J. (1994). Relaxation from rigor <strong>of</strong><br />

sk<strong>in</strong>ned trabeculae <strong>of</strong> the gu<strong>in</strong>ea pig <strong>in</strong>duced by laser photolysis <strong>of</strong><br />

caged ATP. Biophysical Journal 66, 1115—1128.<br />

Z.-H. He and others<br />

Downloaded from J Physiol (<br />

jp.physoc.org)<br />

by guest on March 5, 2013<br />

J. Physiol. 517.3<br />

Page, S. G. & Huxley, H. E. (1963). Filament length <strong>in</strong> striated<br />

<strong>muscle</strong>. Journal <strong>of</strong> Cell Biology 19, 369—390.<br />

Pate, E., Franks-Skiba, K. & Cooke, R. (1998). Depletion <strong>of</strong><br />

phosphate <strong>in</strong> active <strong>muscle</strong> fibers probes actomyos<strong>in</strong> states with<strong>in</strong><br />

the powerstroke. Biophysical Journal 74, 369—380.<br />

Potma, E. J. & Ste<strong>in</strong>en, G. J. M. (1996). Increase <strong>in</strong> ATP<br />

consumption dur<strong>in</strong>g shorten<strong>in</strong>g <strong>in</strong> sk<strong>in</strong>ned <strong>fibres</strong> from <strong>rabbit</strong> psoas<br />

<strong>muscle</strong>: effects <strong>of</strong> <strong>in</strong>organic phosphate. Journal <strong>of</strong> Physiology 496,<br />

1—12.<br />

Ranatunga, K. W. (1998). Temperature dependence <strong>of</strong> mechanical<br />

power output <strong>in</strong> mammalian (rat) <strong>skeletal</strong> <strong>muscle</strong>. Experimental<br />

Physiology 83, 371—376.<br />

Reggiani, C., Potma, E. J., Bott<strong>in</strong>elli, R., Canepari, M.,<br />

Pellegr<strong>in</strong>o, M. A. & Stienen, G. J. (1997). Chemo-mechanical<br />

energy transduction <strong>in</strong> relation to myos<strong>in</strong> is<strong>of</strong>orm composition <strong>in</strong><br />

<strong>skeletal</strong> <strong>muscle</strong> <strong>fibres</strong> <strong>of</strong> the rat. Journal <strong>of</strong> Physiology 502,<br />

449—460.<br />

Simmons, R. M. & Jewell, B. R. (1974). Mechanics and models <strong>of</strong><br />

muscular <strong>contraction</strong>. Recent Advances <strong>in</strong> Physiology 9, 87—147.<br />

Stephenson, D. G. & Williams D. A. (1982). Effects <strong>of</strong> sarcomere<br />

length on the force—pCa relation <strong>in</strong> fast- and slow-twitch sk<strong>in</strong>ned<br />

<strong>muscle</strong> <strong>fibres</strong> from the rat. Journal <strong>of</strong> Physiology 333, 637—653.<br />

Sweeney, H. L., Kushmerick, M. J., Mabuchi, K., Sreter, F. A. &<br />

Gergely, J. (1988). Myos<strong>in</strong> alkali light cha<strong>in</strong> and heavy cha<strong>in</strong><br />

variations correlate with altered shorten<strong>in</strong>g velocity <strong>of</strong> isolated<br />

<strong>skeletal</strong> <strong>muscle</strong> fibers. Journal <strong>of</strong> Biological Chemistry 263,<br />

9034—9039.<br />

Thirlwell, H., Corrie, J. E. T., Reid, G. P., Trentham, D. R. &<br />

Ferenczi, M. A. (1994). K<strong>in</strong>etics <strong>of</strong> relaxation from rigor <strong>of</strong><br />

permeabilized fast-twitch fibers from the <strong>rabbit</strong> us<strong>in</strong>g a novel caged<br />

ATP and apyrase. Biophysical Journal 67, 2436—2447.<br />

Thirlwell, H., Sleep, J. A. & Ferenczi, M. A. (1995). Inhibition <strong>of</strong><br />

unloaded shorten<strong>in</strong>g velocity <strong>in</strong> permeabilised <strong>muscle</strong> <strong>fibres</strong> by<br />

caged ATP compounds. Journal <strong>of</strong> Muscle Research and Cell<br />

Motility 16, 131—137.<br />

Woledge, R. C., Curt<strong>in</strong>, N. A. & Homsher, E. (1985). Energetic<br />

Aspects <strong>of</strong> Muscle Contraction. Monographs <strong>of</strong> the Physiological<br />

Society No 41, 167—275. Academic Press, London.<br />

Yagi, N. & Takemori, S. (1995). Structural changes <strong>in</strong> myos<strong>in</strong> crossbridges<br />

dur<strong>in</strong>g shorten<strong>in</strong>g <strong>of</strong> frog <strong>skeletal</strong> <strong>muscle</strong>.<br />

Acknowledgements<br />

We are grateful to Dr David R. Trentham, Pr<strong>of</strong>essor Carlo<br />

Reggiani and Pr<strong>of</strong>essor Sir Andrew F. Huxley for their help with<br />

the manuscript.<br />

Correspond<strong>in</strong>g author<br />

M. A. Ferenczi: National Institute for Medical Research, <strong>The</strong><br />

Ridgeway, Mill Hill, London NW7 1AA, UK.<br />

Email: m-ferenc@nimr.mrc.ac.uk

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!