11.07.2015 Views

Phenomenological aspects of the dark matter stability origin

Phenomenological aspects of the dark matter stability origin

Phenomenological aspects of the dark matter stability origin

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Phenomenological</strong> <strong>aspects</strong> <strong>of</strong> <strong>the</strong><strong>dark</strong> <strong>matter</strong> <strong>stability</strong> <strong>origin</strong>Thomas HambyeUniv. <strong>of</strong> Brussels (ULB), BelgiumUniv. Autonoma Madrid & IFT, SpainThe Dark Universe Conference, Heidelberg, 07/10/2011


DM is astonishingly stable!τ DM > τ U ∼ 10 18 secτ DM 10 26 secin most models not to producee + , ¯p, γ, ... fluxes larger than observedin many models: <strong>stability</strong> assumed by hande.g. ad hoc symmetry ...Z 2<strong>origin</strong> <strong>of</strong> <strong>the</strong> exceptional DM <strong>stability</strong>????determines <strong>the</strong> basic DM model structure with specific phenomenologygood criteria to classify <strong>the</strong> DM models


Types <strong>of</strong> stabilization mechanisms• Gauge symmetry stabilization:• Pseudo-Goldstone setup (suppressed by heavy scale)••••• .....- extra unbroken gauge group- lightest fermion <strong>of</strong> a secluded gauge sector- remnant global symmetry <strong>of</strong> a GUT symmetry- accidental symmetry from broken gauge symmetry- ...- axion- pseudo-majoron, ...- ...Just tiny couplings: KeV right-handed neutrino, gravitino, ...KK parity in Universal Extra Dimension models (assuming orbifold,...)Servant, Tait 06’, ...U(1) B ′ in technicolor modelsGudnason, Kouvaris, Sannino 06’, ...DM <strong>stability</strong> from a flavour symmetry Hirsch, Morisi, Peinado, Valle 10’


Remnant global subgroup <strong>of</strong> GUT: R-symmetryMohapatra 86’, Martin 92’R m =(−1) 3(B−L) R-symmetry is a Z 2 subgroup <strong>of</strong>U(1) B−La subgroup <strong>of</strong> SO(10)if U(1) B−L (or SO(10) ) is a gauge symmetry and is brokenonly by vev <strong>of</strong> fields with even B-L: R-symmetry remains as an exact symmetry10, 45, 54, 120, 126, 210, ...conserved byUV physics toohigh energy explanation <strong>of</strong> R-symmetrynot experimentally testable (directly)but severely constrains <strong>the</strong> GUT modelAulakh, Melfo, Rasin, Senjanovic 98’Aulakh, Bajc, Melfo, Rasin, Senjanovic 01’.....


DM <strong>stability</strong> in non-susy SO(10) setupsnon-susy U(1) B−L (or SO(10) ) gauge <strong>the</strong>ories brokenby only even B-L field vev also leaves a symmetrySM fermions are in <strong>the</strong> 16 <strong>of</strong> SO(10) which is B-L oddSM Higgs doublet is in <strong>the</strong> 10 <strong>of</strong> SO(10) which is B-L evenZ 2<strong>the</strong> lightest component <strong>of</strong> an extra B-Lodd scalar SO(10) representation is stable16, 144, ...<strong>the</strong> lightest component <strong>of</strong> an extra B-Leven fermion SO(10) representation is stable10, 45, 54, 120, 126, 210, ...Kadastik, Kannike, Raidal 09’ Frigerio, TH 09’45 or 54 fermion representation: DM is <strong>the</strong>neutral component <strong>of</strong> a fermion triplet Σ + , Σ 0 , Σ −relic density requires m DM ≃ 2.7 TeVCirelli, Fornengo, Strumia 06’stabilization mechanism “fixes” <strong>the</strong> DM mass


DM <strong>stability</strong> in non-susy SO(10) setupsnon-susy U(1) B−L (or SO(10) ) gauge <strong>the</strong>ories brokenby only even B-L field vev also leaves a symmetrySM fermions are in <strong>the</strong> 16 <strong>of</strong> SO(10) which is B-L oddSM Higgs doublet is in <strong>the</strong> 10 <strong>of</strong> SO(10) which is B-L evenZ 2<strong>the</strong> lightest component <strong>of</strong> an extra B-L <strong>the</strong> lightest component <strong>of</strong> an extra B-Lodd scalar SO(10) representation is stable even fermion SO(10) representation is stable16, 144, ...10, 45, 54, 120, 126, 210, ...Kadastik, Kannike, Raidal 09’ Frigerio, TH 09’can drive electroweak GUT unification45 or 54 fermion representation: DM is <strong>the</strong>neutral component <strong>of</strong> a fermion triplet Σ + , Σ 0 , Σ −relic density requires m DM ≃ 2.7 TeVCirelli, Fornengo, Strumia 06’stabilization mechanism “fixes” <strong>the</strong> DM mass


DM <strong>stability</strong> from accidental symmetry: DM decayif DM stable from accidental low energy symmetry we expect itto decay from new physics UV interactions in same way as protonintriguing coincidence: a GUT scale induced dim 6 operatorcosmic ray fluxes from DM decay<strong>of</strong> order <strong>the</strong> observed onesprobe GUT scale physics??Eichler; Nardi, Sannino, Strumia; Chen, Takahashi,Yanagida; Arvanitaki, Dimopoulos et al.; Bae, Kyae;Hamagushi, Shirai, Yanagida; Arina, TH, Ibarra, Weniger; ...


0.20 ∘ ∘ 0.10 ∘ ∘ •• • • • • ∘ • ∘ • • •0.05• ∘ • • ∘e e e e E e 2 dJdE e cm 2 str s 1 GeV0.02Hidden vector: no reason 0.050 that <strong>the</strong> custodial sym.0.050not violated• PAMELA 08∘ HEAT 949500 AMS01 CAPRICE 94••∘1 5 10 50 100 500 1000Energy GeV••m ••••DM = 300 GeV Λ =2.9 · ∘10 15∘GeV•10 5 ∘• HESS e e Γ∘ ••∘• HESS e e Γ∘ Prel. Fermi EGBG∘ Prel. Fermi b10 °∘10 6 ∘ ∘0.20 10 7 •∘ ∘ •0.10 ∘ •∘ 10 8•• • • • • ∘ • ∘ ∘ ∘∘• • •0.05• • •10 0.0290.1 1 10 100 1000 10 4Energy GeV•E 3 e cm 2 str s 1 GeV 2 E 2 dJdE cm 2 str s 1 GeVe e e E 3 e cm 2 str s 1 GeV p2 p 1 5 10 50 100 500 10001 10 100 1000operator C Energy GeV ••∘Energy GeV•m •••Figure 1: Predictions DM =1.5 TeV Λ =1.2 · 10for case A, 16 ∘ GeVbenchmark Figure 2: 1, Like withFig. τ DM 1, =1.7 but for × 10 case 28 s(Λ A, benchmark =2.9 × 2, with τ DM = 1.1 × 10 27 s(Λ =∘•10 15 ∘∘GeV). The upper panels show <strong>the</strong>3.7 positron × 10 15 0.01 ∘•∘•5 10 6 GeV). fraction The (left) yellow andband <strong>the</strong> total shows electron <strong>the</strong> uncertainty + in <strong>the</strong> anti-proton flux due to∘∘∘0.001 positron flux (right) compared with experimental <strong>the</strong> ∘ propagation data. model Dashed parameters. lines show <strong>the</strong> adoptedE 2 dJdE cm 2 str s 1 GeVoperator A & B1 10 51 10 65 10 8Energy GeV5 10astrophysical 7background, solid lines are background + <strong>dark</strong> <strong>matter</strong> signal (which overlap∘10 4 <strong>the</strong> background 1 10 in this plot). The lower excluded left panel and shows <strong>the</strong> anti-<strong>matter</strong> <strong>the</strong> gamma-ray fluxes signal can from be sizeable. <strong>dark</strong>7∘<strong>matter</strong> decay, whereas <strong>the</strong> lower right panel shows <strong>the</strong> ¯p/p-ratio: background (dashedline) and 1 10 overall 8100.1 1flux (solid 10 lines, 100 1000 again 10identical with 6background).4 1 8∘0.20 •∘ ∘0.020 ∘ ∘ ∘ ∘ ∘ •0.10 ∘ ∘ ∘ ∘ ∘ ∘ ∘ • ∘ •• ••••••••••••••• • • • • • • • • •• ∘• • • ∘ • ∘ • • FERMI ∘ ∘∘• • •0.05• • ∘0.010• ∘ HESS 2009 ∘ HESS 2008 PPBBETS ATIC1,20.02 0.005 ∘∘ AMS01 BETS∘ HEAT94951 1 5 10 10 50 100 100 500 1000 1000operator ∘ A &EnergyBEnergy GeV GeV ••• •••∘m DM = 600 GeV Λ =3.7 · 10 15 GeV∘0.01 ∘•1 10 5 ∘•∘•5 10 6← τ DM =1.6 · 10 27 sec∘∘0.0500.001 ∘1 ∘10 6∘ ∘0.20 ∘ ⋆ ∘∘ ∘ ⋆⋆ 5 10 7 10 4 PAMELA⋆ IMAX19921 10 7 •∘0.020 ∘ ∘ ∘ ∘ ∘ ∘ •0.10 ∘ ∘ ∘ ∘ ∘ 10 5 ∘ • ∘ ••••••••••••••••• • • • • • • • ∘ HEAT2000 • • • CAPRICE19985 10 8∘∘ ∘•• • ∘ • ∘ • • ∘∘∘ ∘∘• • •0.05• • 0.010• ∘ CAPRICE1994 BESS2000 ∘ BESS1999 1 10 8 10 60.020.005∘0.1 11 2 10 5 10010 20 1000 5010 4 100∘Energy kin. Energy GeV GeV∘1 1 5 10 10 50 100 500 1000operator D∘Energy Energy GeV GeV •••m •••DM = 600 GeV Λ =1.5 · 10 16 ∘ GeV∘ 0.01∘∘•1 10 5 ∘•∘•5 10 6 ∘∘0.001 ∘1 ∘10 6 ∘∘ ∘ ⋆ ∘∘ ∘ ⋆ ∘ 5 10 710 4⋆1 10 710 55 10∘82 5 10 20 50 1000.1 1 10 100 1000kin. Energy GeV10 4Energy GeVE 2 dJdE cm 2 str s 1 GeVe e e pp3.3 Positron ∘ fluxC. Arina, T.H., A. Ibarra, C. Weniger 10’by <strong>the</strong> renormalizable Lagrangian, <strong>the</strong> three A µ i components are degenerate inare absolutely stable. Never<strong>the</strong>less, since this SO(3) global symmetry is accidA smoking gun DM decay signal: intense γ-ray linesin <strong>the</strong> UVexpects in <strong>the</strong> Lagrangian <strong>the</strong> existence <strong>of</strong> non-renormalizable operators suppa large scale Λ which break <strong>the</strong> custodial symmetry. The complete list <strong>of</strong> operdimension smaller or equal than six which lead, after <strong>the</strong> spontaneous symmeing <strong>of</strong> SU(2) HS and SU(2) L × U(1) Y , to <strong>the</strong> breaking <strong>of</strong> <strong>the</strong> SO(3) custodialreads:dim 6 operators:CaseFigureD.4: LikeThisFig.operator,1, butseeforEq.case(2.7),C, Here is particularly we will briefly interesting discuss since <strong>the</strong>itpredictions induces a kinetic for <strong>the</strong> anti-<strong>matter</strong> fluxes concentrating onFigure benchmark 5: Like4, Fig. with1, τ DM but= for1.6 case × 10 D, 27 s(Λ benchmark =∘mixing 1.2 × 10between 16 <strong>the</strong> U(1) Y <strong>of</strong> hypercharge case D, and since onethis <strong>of</strong> <strong>the</strong> operator hiddenfeatures SU(2) gauge two-body bosons.Ibarra,2, withTran 07’;τ DM Ishiwata,= 6.7Matsumoto,× 10 26 Morois(Λ08’;=decay ∘GeV).into fermions pairs due to effective1.5 × 10 16 GeV).Buchmuller, Ibarra, Shindou, Takayama, Tran 09’;As a result two-body decay modes into kinetic leptonmixing and quark between pairs hidden are allowed, sector and in contrast <strong>the</strong> hypercharge Choi, Lopez-Fogliani, U(1) Y . Munoz, The de correspondingAustri 09’+ ∘ − + − ¯∘E 3 e cm 2 str s 1 GeV 2 E 3 e cm 2 str s 1 GeV 2 ∘ 0.020 ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘1 ∘ ∘ ∘ (A)••••••••••••••• • • • • • • • • ∘ ∘• • •∘∘0.010Λ D µφ † φ D 2 µ H † H, ∘ 1 (B)0.005 ∘Λ D µφ † φ H † D 2 µ H,∘ 11 (C) 10 100 1000∘Energy GeVΛ D µφ † D 2 ν φ F µνY ,0.01 ∘0.050 ∘0.001 ∘0.02010 4p p∘ 0.0105 pp∘0.005 10 6∘∘ ∘ ⋆ ∘∘ ⋆ ⋆ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ••••••••••••••• • • • • • • • • ∘∘ ∘• • • ∘ ∘ ∘ ∘1 2 5 10 20 50 100 kin. Energy GeV∘ ∘ ⋆ ∘∘ ⋆ ⋆ (no astrophysical background!)10 5Annihilation: Bergstrom, Ullio, 97’ 98’;Bern, Gondolo, Perelstein 97’;10 6(D)1Λ 2 φ† F a µν5τ a2 φF µνY .1 2 5 10 20 50 100kin. Energy GeVall give 2-body radiative decaysmonochromatic γ-raysin particular <strong>of</strong>f<strong>the</strong> galactic plane!DM smoking gun!!Bergstrom, Bringmann, Eriksson, Gustafsson 04’, 05’; Boudjema,Semenov, Temes 05’; Jackson, Servant, Shaughnessy, Tait, Taoso 09’, ...one tree level exception: Dudas, Mambrini, Pokorski, Romagnoni 09‘Decay: Buchmuller, Covi, Hamagushi, Ibarra, Tran 07’;


Dark Matteras aPseudo Goldstone Boson<strong>stability</strong>: pseudo-Goldstone decay suppressed by large spontaneous breaking scale2 examples: - AxionGoldstone boson <strong>of</strong> U(1)spontaneously broken atU(1) explicitly broken at axion gets a massPQPQΛ QCDΓ(a → γγ) ∝ 1/Λ n PQ very long lifetimeΛ PQ- DM Majoron


The pseudo-Goldstone stabilization mechanism: Majoron casedecay width suppressed by large seesaw scaleChikashige, Mohapatra, Peccei 81’•globalU(1) B−L spontaneous breaking scale driven by L=2 scalar fieldU(1) B−L breaking scaleφL ∋−Y ij N Ri L j H − 1 2 c ijφN Ri N Rj〈φ〉 ≡f− 1 2 M Nij N Ri N Rj e iθ/f − 1 2 c ij φ ′ N Ri N Rj e iθ/fφ =(φ ′ + f) e iθ/fM Nij = c ij fMajoron• Majoron as DM:Akhmedov, Berezhiani, Senjanovic, Tao 93’• Majoron needs to be massive Planck effects breaks explicitely <strong>the</strong> global U(1) B−L sym.• Majoron needs to be stable it couples only to SM through suppressed ν − N R mixingΓ(θ → νν) ∝ (m ν /M N ) 4 ∝ (m ν /f) 4Γ(θ → e + e − ) ∝ α W (m ν /M N ) 4 ∝ α W (m ν /f) 4decay suppressed by naturally large seesaw scale• Majoron needs to have <strong>the</strong> observed relic density ???Singlet-triplet DM extension:Berezinsky, Valle 93, Lattanzi, Valle 07’,Bazzocchi, Lattanzi, Riener-Sorensen,Valle 08’,Esteves, Joaquim, Joshipura, Romao, Tortola, Valle 10’


A new pseudo-Goldstone DM frameworkFrigerio, TH, Masso, 11’in addition to provide <strong>the</strong> naturally large stabilizing scale <strong>the</strong> seesawalso provide:Lcan- <strong>the</strong> source <strong>of</strong> explicit symmetry breaking <strong>of</strong>m DM- <strong>the</strong> interactions producing <strong>the</strong> DM relic density- with a justification for scalar DM at low scale with a mass radiatively “stable”a possibility <strong>of</strong> a direct link between DM mass and DM relic density


Seesaw interactions Higgs portal θθHH † interactions DM massConsider a global sym. with charges for <strong>the</strong> not <strong>the</strong> usualU(1) B−L ≠ N i U(1) B−Lsuch that some <strong>of</strong> seesaw interactions break explicitely U(1) B−LhL αh××θY 1αN 1 N 2×M 1j M j2N jY 2α×θcollective breaking <strong>of</strong> global symmetry à la Hill and Ross ‘88Q X N 1= −1, Q X N 2=1,Q X φ =2,Q X ν =1L ∋ λ θθ H † Hλ = 1 M 12 (M 11 + M 22 )4π 2 f 2Y 1α Y 2α log Λ2µ 2logarithmic onlym 2 θ = λv 2 = 1 M 12 (M 11 + M 22 ) m D 1α m D 2α4π 2 f 2log Λ2µ 2mass not quadraticallysensitive to <strong>the</strong> cut<strong>of</strong>f<strong>the</strong> Majoron DM gets a mass proportional to <strong>the</strong> electroweak scale


A pseudo-Goldstone one to one link between DM relic density and massFrigerio, TH, Masso, 11’L ∋ λ θθ H † HDM mass: m 2 θ = λ v 2 DM at <strong>the</strong> electroweak scale or belowDM relic density from: θθ↔ HH †a Goldstone boson has no scalar potentialno massno scalar interactionboth induced by explicit sym. breaking:direct link between DM mass and relic densityif dominated byscalar interactions


DM relic density from <strong>the</strong> Higgs portal:L ∋ λ θθ H † H2 regimesm 2 θ = λv 2large λ coupling: freezeout small λ coupling: freezein<strong>of</strong> DM annihilation <strong>of</strong> DM pair creationθθ → hh, W W, ZZ, f ¯f hh, W W, ZZ, f ¯f → θθ and h → θθn DMsn DMsHall, Jedamzik,March-Russell, West 09’10 5 0.01 0.1 1 1010 710 910 11m DM = 55 GeV (m h = 120 GeV)Farina, Pappadopoulos, Strumia 10’z = m h /T10 130.01 0.1 1 10 100m DM =2.7 MeVz = m h /TFrigerio, TH, Masso, 11’γ eqn eqθ H10 610 9h → θθWW → θθ10 1210 15t¯t → θθ10 1810 21b¯b → θθhh → θθZZ → θθz = m h /T


Freezein - freezeout transition0.23Ω DMFreezeinFreezeoutm DM =2.7 MeVm DM = 55 GeVλHall, Jedamzik,March-Russell, West 09’NB: - if reheating temperature very high and φNN couplings large enough<strong>the</strong> relic density can be produced also from NN → θθ pair production- to avoid generation <strong>of</strong> a DM tadpole, <strong>the</strong> easiest way is to assume CP symmetry


Compilation <strong>of</strong> constraintstoo largeΓ(θ → e + e − ) ∝ α W m θ m 2 em 2 νM 2 /f 2Frigerio, TH, Masso, 11too largeΓ(θ → νν) ∝ m θ m 4 ν/f 4 Ω DM h 2 =0.11 ± 0.01g ≡ M Nfg10.0110 4NN → θθfrom experimental constraintstudy on:Γ(DM → νν) :Palomares-Ruiz 08’Γ(DM → e + e − ):Bell, Galen, Petraki 10’see also E. Fernandez-Martinez talkm ν =0.05 eV10 610 8M N = 10 7 GeVM N = 10 10 GeVM N = 10 13 GeV10 9 10 7 510 0.001 0.1m Θ GeVm DM =0.15 KeVm DM =2.7 MeVh → θθ, W W → θθ, ...m θ (GeV )f > M P lanckunique value if T reheating


Summary•The <strong>origin</strong> <strong>of</strong> particle DM <strong>stability</strong> is a fundamental question!Each UV or low energy scenario requires a very specific pattern in term <strong>of</strong> type <strong>of</strong>particle needed, energy scale, ..., which leads to a specific phenomenology- long range <strong>dark</strong> force- intense flux <strong>of</strong> cosmic rays, γ-lines,...- GUT specific realizations- specific DM mass- relic density/DM mass link- ....• Pseudo-Goldstone setup: seesaw interactions assuming a U(1) flavour symmetry:- can provide <strong>the</strong> explicit breaking sourcem DM- generate <strong>the</strong> DM relic densitym DM ∝ v EW- with a one-to-one link between m DM and Ω DM m DM =2.7 MeV- that can be probed by DM → νν and DM → e + e − searches


Backup


DM <strong>stability</strong> in non-susy SO(10) setups: scalar caseadd a16 scalar representation:DM is a combination <strong>of</strong> a scalar doublet and a scalar singletKadastik, Kannike, Raidal 09’direct detection:inert doublet7similar phenomenologywith additional constraint:m DM 100 GeVnot for DAMA, CoGeNTσ N SI (cm 2 )Σcm 210 4210 4310 4410 4510 4610 4710 4810 1 10 2 10 3 10 410 41 M DM GeVXenon10CDMS II combinedCDMS II projectedXenon100SCDMS 25 kgSCDMS CXenon1Tm DM (GeV)Huitu, Kannike, Raccioppi, Raidal 10’+ long lived DM partners at LHC


DM <strong>stability</strong> in non-susy SO(10) setups: fermion caseadd a 45 or 54 fermion representation:DM is <strong>the</strong> neutral component <strong>of</strong> a fermion triplet Σ + , Σ 0 , Σ −Frigerio, TH 09’advantage that <strong>the</strong> DM triplet candrive gauge coupling unificationas in split susy but without susylow energy pheno is as for a generic fermion triplet:- relic density requires- σSI N ∼ 10 −45 cm 2m DM ≃ 2.7 TeVCirelli, Fornengo, Strumia 06’- indirect detection: - too many antiprotons for explaining excess <strong>of</strong> Pamela- DM DM → γγ expected to give γ-lines with a ratethan can be probed at atmospheric Cerenkov telescopesHisano et al 04’; Cirelli, Franceschini, Strumia 08’e +


DM <strong>stability</strong> from unbroken U(1) gauge groupas for <strong>the</strong>e − : stable because lightest charged particle under a U(1)<strong>the</strong> simple adjunction <strong>of</strong> a new QED structurefor a single fermion gives a viable DM candidate!!L = L SM + L QED′Ackerman, Buckley, Carroll, Kamionkowski 08’Feng, Tu, Yu 08’; Feng, Kaplinghat, Tu, Yu 09’Foot at al. 06’-10’L QED′ = ψ e ′(i/∂ − e /A γ′ − m e ′)ψ e′e ′ −e ′ ±relic densitye ′ +>γ ′γ ′e ′ ±stableα ′ m e′e ′ −>>γ ′depends onm e ′, α ′ , ξ ≡ T γ ′/T γFeng, Kaplinghat, Tu, Yu 09’


DM <strong>stability</strong> from accidental symmetry: Minimal Dark Matteras <strong>the</strong>p +in <strong>the</strong> SMCirelli, Fornengo, Strumia 06’Cirelli, Strumia, Tamburini 07’without adding any new gauge group, largerenormalizable interactions with SM fields due to(or dimension-5)SU(2) LSU(2) Lmultiplet cannot have anygauge invariancea fermion quintuplet, septuplet, ... a scalar septuplet, nonuplet, ...m DM = (9.6 ± 0.2) TeVσN SI =1.2 · 10 −44 cm 2nice fit <strong>of</strong> Pamela e + excesstotal flux fluxe + + e −¯pe positron fractione e HEAT 949530CAPRICE 94AMS01 MASS 91PAMELA 08 10 31Background?10 1 Energy in GeVFERMI 2009HESS 2008 09ATIC2PPBBETSEC ◽◽◽ ◽ ◽ ◽ ◽ ◽ ◽ 10 2 ◽ ◽ E 3 e e in GeV 2 cm 2 s srpp10 310 410 2 p kinetic energy in GeVPAMELA 08 background?prefers an iso<strong>the</strong>rmalpr<strong>of</strong>ile for compatibilitywith galactic center anddwarf galaxy γ flux0.31 10 10 2 10 3 10 4Energy in GeVBoost ⩵ 50(large Sommerfeld resonanceBoost ⩵ 5010 310 10 2 10 3 10 41 10 10 2 10 3 10 4( mron fraction. The positron fraction from MDM Figure galactic 7: Sum annihilations <strong>of</strong> electrons DM too high for HESS cut<strong>of</strong>f) ( m DM high enough to avoidis comatafrom PAMELA and previous experiments. annihilations We have taken is compared a boost factor <strong>the</strong> <strong>of</strong> data from ATIC, PPB-BETS, MDMECannihilations, and previouscompared experiments, low toenergy <strong>the</strong> recentexcess)PAMELA data. We have assumed <strong>the</strong> same boostand positrons. The flux <strong>of</strong> electrons Figure 8: and Antiprotons. positrons fromThe MDM antiproton over proton ratio (at top <strong>of</strong> <strong>the</strong> atmosphere) fromboost + need <strong>of</strong> ∼ 50 astro boost)e show <strong>the</strong> DM signal (<strong>the</strong> lines) and <strong>the</strong> total plus e + fraction <strong>the</strong> datapoints when summed from HESS to <strong>the</strong> and FERMI. The main result factor (solid as for linepositrons and shaded (B = area) 50). isThe main result (solid line and shaded area) is computed10 5


NHidden vector: relickdensityArelic density from <strong>the</strong>rmaliη, H Hh Afreezeouti l il ismall Higgsportal regimeA iA i ilarge Higgsportal regimem η (GeV)m η (GeV)η, hA iNN k kHN jl iN kHAl η, AhiA il H ∗ iN jH(a) (a)Figure 1: 1: One-loop diagW, ZA iη, η, hhl l HA ∗ iHη, η, h hAH iη, η,Figure1: 1: One-loop diagrams contributing to <strong>the</strong> toasymmetry <strong>the</strong> asymmetry η from hV i<strong>the</strong> fromN η∗k <strong>the</strong> decay. N k decay.NV ji NN j ∆ kjLFigure AN k 2: Annilation processes N k with no DM particle N k in <strong>the</strong> final state.Hη, h i A η, hA iη, h iη,H l A l iVhi AHiW, Z l A iVW, Zl lA ii i if fFigureFigure2:2:Annilatiη, η, h h(a)This asymmetry λ φ = 10 −1is given by <strong>the</strong> interference <strong>of</strong> η, <strong>the</strong> h η, ordinary h tree level decay with η, h <strong>the</strong> η, 3 h (a)A iinvolving ano<strong>the</strong>r (virtual) right-handed neutrino and give This asymmetry is given byη, iFigureη, hAA1: This asymmetry is given byi One-loop diagrams η, h contributing W, Z Aη, h A to <strong>the</strong> asymmetry from i<strong>the</strong>diagramsNFigure k decay. 1:<strong>of</strong> Fig. 1: One-loop ¯fiVη, hi A diag1. The firstA diagrams <strong>of</strong> Fig. 1. The first tε Nk = 1 i ∑ Im[(Y N Y † η,N )2 kj ] h iW, Z AV i i¯f√[]∑involving ano<strong>the</strong>r (virtual)8πinvolving ano<strong>the</strong>r (virtual) rj i |(Y A xjN ) ki | 2 1 − (1 + x j ) log(1 + 1/x j ) + 1/(1 − x j ) , (5)A iη, h A iη, h ih, ηηV iη, hA iiVh, ηA iη, η, h hVA W, i Z A ih, ηA iη, hfFigure 2: Annilation λ φ = processes 10 −4 with no DM particle in <strong>the</strong> final state.Figure 2: Annilationη, processes h with no DM particle in <strong>the</strong> final η, state.ηhε Nk = 1 ∑ Im[(Ywhere x j = MN 2 j/MN 2 k. The third diagram A ih, η, h<strong>of</strong> Fig. 1 which was already displayed without η,∑ε 8πj i |(Nk = 1η, hηg ∑ Im[(Y NThis asymmetry is given calculations by φ<strong>the</strong> interference Ref. [10] involves <strong>of</strong> <strong>the</strong>aordinary virtual triplet tree level and isdecay a newwith contribution. <strong>the</strong> 3 Calculating ∑A iη, h itAwe i obtainη, hAA8πj i |(Yiη, h iW, Z A i¯fdiagrams This asymmetry m<strong>of</strong> Fig. 1. The is given first two by diagrams <strong>the</strong> interference are <strong>the</strong> ordinary <strong>of</strong> <strong>the</strong> ordinary vertex andtree Aself-energy A η, h Awhere x j = MN 2 j/MN 2 k. Theε ∆ Nwhere calculations x j = Min N 2 j/M Ref. N 2 k= − 1∑iVlevel decay i diagrams ηwithη, h V<strong>the</strong> i3V (GeV)A iη η, η, hinvolving diagramsano<strong>the</strong>r <strong>of</strong> Fig. (virtual) 1. The first right-handed two diagrams neutrinoj Im[(Y are <strong>the</strong>N) andordinary ki (YgiveN ) klh,(Y∆ ∗) vertex ηh, ηilµ] ( and∑2πi |(Y N ) ki | 2 1 − M self-energy diagrams∆2 ) h, ηinvolving ano<strong>the</strong>r (virtual) right-handed neutrino and giveM Nk MN 2 log(1 + MN 2 k/M∆ 2 ) . (6)Figure 2: Annilation processes with no DM particle kin <strong>the</strong> final state.[10] . The invFigure 2: Annilatioε Nk = 1 ∑ Im[(Y N Y † N )2 kj ] √[A ] A AV ki A iV k Acalculations kVA iVA kj∑it we obtain Figure in Ref. 2: [10] Annilatio invo8π Note that <strong>the</strong> tree level decay width is not affected by <strong>the</strong> existence <strong>of</strong> <strong>the</strong> triplet:j Thisi asymmetry |(Y xjN ) ki | 2 1 − (1 + x j ) log(1 + 1/x j ) + 1/(1 − x j ) , (5)ε Nk = 1 ∑ Im[(Y N Y † N )2 kj ] √[VA k]∑ is given by <strong>the</strong> interference <strong>of</strong> <strong>the</strong> ordinary tree level it decay we obtain with <strong>the</strong> 38πε ∆ N k= − 1∑diagrams <strong>of</strong> Fig. 1. The first two diagramsΓ j Im[Nk = 1∑2πε ∆ N k= − 1∑8π M are <strong>the</strong> ∑ordinary N k|(Y N ) ki | 2 vertex and self-energy diagrams.This asymmetry(7)is given bywhere x j = M involving ano<strong>the</strong>r (virtual) right-handed neutrino and give Thisj Im[(idiagramsasymmetry<strong>of</strong> Fig.is1.givenThe firstbyN 2 j/M 2 j i |(Y xjN ) ki | 2 1 − (1 + x j ) log(1 + 1/x j ) + 1/(1 A k − x j ) , (5) AV jkjN k. The third diagram <strong>of</strong> Fig. 1 which was VA already displayed withoutj A j η, tcalculations where x diagrams ∑From <strong>the</strong> decay <strong>of</strong> <strong>the</strong> triplet to two leptons an asymmetry can also be produced. It is2πgiven byε Nk<strong>the</strong>= 1 ∑ Im[(Y N Y † N )2 kj∑]involving<strong>of</strong> ano<strong>the</strong>r Fig. 1. (virtual) The firstritwj = inM Ref. [10] involves a virtual triplet and is a new contribution. CalculatingN 2 j/MN 2 k. The third diagram <strong>of</strong> Fig. 1 which was already displayed η, h V Awithout k jη, η, h√[involving] η, hit ano<strong>the</strong>r (virtual) rigcalculations we obtain in Ref. [10] involves a virtualinterference 8π <strong>of</strong> <strong>the</strong> tree level process with <strong>the</strong> one-loop vertex Note diagram, thatgiven<strong>the</strong> tree level decj i |(Y triplet and xjN ) ki | 2 1is − a(1 new + x j ) contribution. log(1 + 1/x j ) + Calculating1/(1 − x j ) , (5)it we obtain in Fig. 2, involving a virtual right-handed neutrino [10]. Note that with Note one that tripletε <strong>the</strong> Nkalone = tree 1 ∑ Im[(Y Nlevel ∑decaε ∆ <strong>the</strong>re is no self-energy diagram, and <strong>the</strong>refore without at least one right-handed neutrino 8πwhere xno asymmetry j = MN 2 j/McanN 2 be k. The third diagram <strong>of</strong> Fig. 1 which was already displayedε without j i |(Y NNk = 1 ∑ Im[(YN Nk= − 1∑j Im[(Y N) ki (Y N ) kl (Y∆ ∗) ilµ] (Figure Figure∑2π∑i |(Y N ) ki | 2 1 − M 3: 3: Annilation processes∆2 )with a DM particle in in<strong>the</strong> <strong>the</strong>final final staM Nk M 2 log(1 + MN 2 k/M∆ 2 ) . (6)produced. At least N ktwo triplets are necessary in order to produce8πε ∆ calculations an asymmetry in Ref. without [10] right-handed involves a virtual neutrinos, tripletin and which is acase new<strong>the</strong> contribution. asymmetry comes Calculating j i |(Y NN k= − 1∑two DM to one DM particle annihilationj Im[(Y N) ki (Y N ) kl (Ycase ∆ ∗) ilµ] in ( left-right∑fromNote that <strong>the</strong> tree level2πitself-energy we decay obtainwidth i |(Y N is) ki not| 2 1 − M 2 and SO(10) models,∆Maffected Nkby <strong>the</strong> existence M 2 log(1 + MN 2 k/M 2 both )∆ ) ordinary and supersymmetric).case in left-right and SO(10) models, both. ordinary (6) and supersymmetric<strong>the</strong> asymmetry from Fig. 2 we obtain:<strong>of</strong> <strong>the</strong> triplet: where xdiagrams 1 MeV<strong>the</strong> asymmetry Nas was 10 −3 .A iηη, hV iV iN kHl llη, η, hηηf¯f


Hidden vector: direct detectionV iV iη×hNNFigure 8: Obtained spin independent cross-section on nucleon σ SI (An → An) versus M A ,in agreement with <strong>the</strong> constraint 0.091 < Ωh 2 < 0.129. Small λ m regime (10 −7 < λ m 10 −3 on <strong>the</strong> right. The colorcaption is as in Figs. 6 and 7. The thick (dashed) black curve is <strong>the</strong> CDMS (Xenon10)upper bounds at 90% C.L.. The dotted-dashed curve is <strong>the</strong> recent published CDMS-IIupper bound, at 90% C.L.


Monochromatic γ-ray lines: a smoking gun for DMDM DM → γγ , γZannihilation leads to a monochromatic γ-ray line(not expected in astrophysics background)e.g. obtained at one loop levelra<strong>the</strong>r suppressedBergstrom, Ullio, 97’ 98’;Bern, Gondolo, Perelstein 97’;Bergstrom, Bringmann, Eriksson, Gustafsson 04’, 05’;Boudjema, Semenov, Temes 05’;Jackson, Servant, Shaughnessy, Tait, Taoso 09’, ...one tree level exception: Dudas, Mambrini, Pokorski,Romagnoni 09‘e.g. needs for large boost factor or a TeV DM massBut what about a γ-ray line from DM decay?????has been considered from gravitino decay through R-parity violationBuchmuller, Covi, Hamagushi, Ibarra, Tran 07’;Ibarra, Tran 07’; Ishiwata, Matsumoto, Moroi 08’;Buchmuller, Ibarra, Shindou, Takayama, Tran 09’;Choi, Lopez-Fogliani, Munoz, de Austri 09’


Lagrangian <strong>the</strong> existence <strong>of</strong> non-renormalizable operators suppressed bywhich break <strong>the</strong> custodial symmetry. The complete list <strong>of</strong> operators withDimension-6 operators breaking <strong>the</strong> custodial symmetryler or equal than six which lead, after <strong>the</strong> spontaneous symmetry breakandSU(2) L × U(1) Y , to <strong>the</strong> breaking <strong>of</strong> <strong>the</strong> SO(3) custodial symmetry(A)(B)(C)(D)1Λ D µφ † φ D 2 µ H † H, (2.4)1Λ D µφ † φ H † D 2 µ H, (2.5)1Λ D µφ † D 2 ν φ F µνY ,0.20 (2.6)1Λ 2 φ† Fµνa τ a 2 φF µνY •∘ ∘ •0.10 ∘ . •∘ •• • • • •(2.7)∘ • ∘ ∘ ∘∘• • •0.05• • •examples <strong>of</strong> branching ratios:operator A & B51 10Benchmark ηη hη hh γη Zη 7γh Zhe e e 0.02all give 2-body decay to γh1 - 0.09 - 0.04 0.02Fermi 0.65 excesses 0.20 and moreover <strong>the</strong> PAMELA 1 measurements 0.19 on 0.81 <strong>the</strong> antiproton-to-proton0 02 - 0.04 0.62 0.002 0.0031 10 810 61 10 100 1000 100.15 0.181 2 5 10 20 50 100ratio set very stringent constraints on possible 2∘new sources 0.22 <strong>of</strong> 0.78 kin. antiprotons. Energy GeV0 Interestingly, 03 - 0.04 0.80 3 × 10 −6 0.002 0.0003 even if <strong>the</strong> 0.16 scale Λ is increased in order to 3 avoid an0.23 antiproton 0.77 excess, 0 <strong>the</strong> generically 0Figure 4: present Like Fig. gamma-ray 1, butlines for can casestill C, bebenchmark intense4enough 4, 0.028 with to be τobserved DM 0.79= 0.041 1.6 in experiments, × 10.1427 s(Λ due =∘Table 2: Branching Ratios for Case A.1.2 × 10 16 to <strong>the</strong> enormousoperator sensitivity <strong>of</strong> <strong>dark</strong> C <strong>matter</strong> line searches.GeV).This is Table illustrated 3: Branching Figs. 1Ratios and 2, for where Casewe C, show including <strong>the</strong> predictions benchmark for <strong>the</strong> point positron 4 whicThe Fermi-LAT observations <strong>of</strong> <strong>the</strong> region |b| > 10 ◦ plus a 20 ◦ × 20 ◦ channels square around∘Benchmark fraction, total Zηelectron with Zhplus h inpositron <strong>the</strong> γη final W flux, state. Wantiproton-to-proton − ν¯ν e + e − fraction uū and d¯d gammaraythan a few times<strong>the</strong> Galactic center constrain <strong>the</strong> <strong>dark</strong> <strong>matter</strong> lifetime to be longer0.0501 flux for 0.01 two generic 0.005scenarios, 0.04 namely 0.02<strong>the</strong> benchmark 0.09 0.39 points0.29 1 and 20.15defined in10 28 s at energies below 200 GeV [67], which is taken into account Tab. in 1. These <strong>the</strong> results choices shown <strong>of</strong>0.20 parameters can successfully reproduce <strong>the</strong> observed <strong>dark</strong> <strong>matter</strong>2 0.019 0.004 0.036 0.014 0.072 0.35 0.39 0.12for benchmark point 1 (see Fig. 1), where <strong>the</strong> line is around 110 GeV. Thus present∘ •∘ •0.10 ∘ ∘• abundance and are consistent with all present laboratory constraints.0.020 We also show in <strong>the</strong> ∘experiments can probe values <strong>of</strong> <strong>the</strong> scale <strong>of</strong> custodial symmetry breaking close to • <strong>the</strong>∘ ∘ ∘3 0.22 0.0002 0.73 0.0005 0.003 0.016 0.018 0.005operator D∘∘ •∘ ••••••••••••••• • • • • • • • • • • ∘ • • • •plots for <strong>the</strong> positron fraction <strong>the</strong> results from PAMELA [9], HEAT [56], ∘ CAPRICE [57]∘ ∘•e e 0.05∘ ∘ ∘ ∘∘orm 2 str s 1 GeV 2 γη ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ••••••••••••••• • • • • • • • • ∘ ∘• • • ∘∘ ∘ ∘1 5 10 50 100 500 10001 10 100 10001 Energy GeV 300 GeV 0.55 1090 GeV 30 GeV∘Energy150 GeV GeV ≈ 0••• •••∘2 600 GeV ∘ 0.6 2000 GeV 30 GeV 120 GeV ≈ 0•1 10 5 ∘0.01 ∘•∘•5 10 3 14 TeV 12 2333 GeV 500 GeV 145 GeV ≈ 06 ∘∘41550 GeV ∘2.1 1457 0.001 GeV 1245 GeV 153 GeV 0.251 10 6∘∘5 10 7∘ ∘ ⋆ ∘∘ ∘ ⋆ 10 4⋆Benchmark Zη γη Zh γh5 10 810 5∘Energy GeVE 2 dJdE cm 2 str s 1 GeVC. Arina, T.H., A. Ibarra, C. Weniger 09’E 3 e cm 2 str s 1 GeV 2 Benchmark M A g φ v φ M η M h sin βTable 1: Benchmark points used for <strong>the</strong> calculation <strong>of</strong> cosmic-ray signatures. pp0.0500.0200.0100.005∘0.010∘∘


∘ ∘ 0.020∘ •0.10 ∘ • ∘ ∘ ∘ ∘∘ ∘ 0.020∘ •away from <strong>the</strong>0.10disk. ∘∘ ∘ •∘ •∘ • • • • ∘ • Flux <strong>of</strong> monochromatic ∘∘ ∘∘• • •0.05• • ∘ ∘∘ ∘∘• ∘-rays For this• reason <strong>the</strong>y ••••••••••••••• • • • • • • • • • could be misident ∘∘∘ •• • • • • • • ∘ • FERMI0.010∘ ∘ ∘∘• • • • • ∘ ∘ HESS 20090.05extragalactic • 0.010∘γ gamma-ray background (although <strong>the</strong>y can be•PAMELA 08∘ HESS 2008 ∘HEAT 949500 PPBBETS∘ ATIC1,20.02 AMS01scale anisotropy, see Ref. [43]). In this work we will show p0.02 0.005 ∘∘∘AMS010.005 CAPRICE 94 BETS∘ HEAT9495∘gamma-ray flux in <strong>the</strong> region 0 ≤ l ≤ 360 ◦ , 10 ◦ ≤ |b| ≤ 90 ◦ , we e e E 2 e dJdE e e cm 2 str s 1 GeV1 5 10 50 100 500 1000Energy GeVE 3 ee cm e 2 str es 1 GeE 2 dJdE cm 2 str s 1 GeVE 3 e cm e e 2 str e s 1 p pGeV 2 1 1 5 10 10 50 100 500 1000∘Energy GeV GeV ••∘operator A & B•• ••••operator A & B• •••∘m∘ DM = 300 GeV Λ =2.9 ∘ · 10 15 GeVm DM = 600 GeVΛ =3.7 ∘· 10 15 GeV ← τ DM =1.6 · 10 27 sec•10 5 ∘∘HESS e e ••0.01•∘• Γ1 10 5 ∘0.01 ∘HESS e e •∘• Γ∘∘∘• Prel. Fermi EGBG5 10 60.050 Prel. Fermi b10 °∘0.050∘∘10 6 ∘ ∘∘0.0010.001 3.2 Gamma-ray ∘ lines1 10 60.20∘ 0.20∘ ∘ ∘ ⋆ 7∘∘ ∘ ⋆⋆ • ∘ 5 10 7∘10 4 •0.10 ∘∘10 4 • ∘ ∘ ∘ •0.020 ∘ ∘∘ ∘ 0.020∘ •0.10 ∘ ∘ ∘ PAMELA•∘ •∘ • ⋆IMAX19921 10 7⋆• • • ∘ • ∘ 10 8∘ ∘∘• • •0.05• • ∘ • ∘••••••••••••••• ∘ ∘ ∘• • •The existence <strong>of</strong>• • • •• two-body ∘ • •∘ ∘• • • • •decay modes• •with gamma-ray∘ • ∘ ∘• 10 5∘ HEAT2000 0.010∘ ∘∘• • • • • ∘ li∘0.055 10 CAPRICE1998∘8 ∘ •0.010 10 5 ∘generic prediction ∘<strong>of</strong> hidden vector CAPRICE1994 <strong>dark</strong> <strong>matter</strong> models. ∘∘ W BESS2000 BESS19990.020.02 0.005 ∘0.005 ∘possible operator separately, Eqs. (2.4)-(2.7).10 910 60.1 1 10 100 1000 10 4 1 10 810 60.1 1 1 2 10 5 100 20 1000 50 1010041∘∘Energy GeV∘Energy kin. Energy GeV GeV∘1 5 10 50 100 500 10001 1 5 10 50 100 500 10001Energy GeV ••∘Energy GeV••∘operator C• •••operator D• •••∘∘m DM =1.5 TeVΛ =1.2 ∘· 10 16 GeVm DM = 600 GeV Λ =1.5 · ∘ 10 16 GeV•1 10 5 ∘0.01 ∘•∘••∘•5 10 6∘∘•5 10 6 ∘∘∘0.001 ∘∘1 10 6∘1 10 6∘∘5 10 7∘ ∘∘ ⋆ 5 10 7∘∘∘ ∘ ⋆ 10 4 1 10 7⋆1 10 75 10 85 10 10 85∘1 10 80.1 1 10 100 1000 10 4Energy GeVCase A and B. In cases A and B, Eqs. (2.4) and (2.5), <strong>the</strong>igure 1: Predictions for case A, benchmark Figure12: 101, 5 with τ DM =1.7 × 10 28 0.01 ∘Like Fig. 1, but for case s(Λ A, =2.9 benchmark × 2, wi0 15 ∘ei<strong>the</strong>r into two scalar particles (ηη, hη, hh) or into a gaugeGeV). The upper panels show <strong>the</strong> 3.7 positron × 10 15 fraction GeV). The (left) yellow and <strong>the</strong> bandtotal shows electron <strong>the</strong> uncertainty∘+ 0.001 (γη, γh, Zη, Zh). Whe<strong>the</strong>r <strong>the</strong> <strong>dark</strong> <strong>matter</strong> particle decays positron flux (right) compared with experimental <strong>the</strong> propagation data. model Dashedparameters.lines show <strong>the</strong> adopted∘particles or into a gauge boson and a scalar particle∘10 depends4 strophysical background, solid lines are background + <strong>dark</strong> <strong>matter</strong> signal (which overlap ⋆ In bothhe background in this plot). The lower excluded cases,left paneland <strong>the</strong> shows <strong>the</strong> fragmentation <strong>the</strong> anti-<strong>matter</strong> andgamma-ray fluxes decaysignal canfrom be <strong>of</strong> sizeable. <strong>the</strong> Higgs bo10<strong>dark</strong>5∘boson could produce a sizable flux <strong>of</strong> electrons, positrons andatter decay, whereas <strong>the</strong> lower right panel shows 1 10 10<strong>the</strong> ¯p/p-ratio: background (dashed8610 60.1 1 1 2 10 5 100 20 1000 50 1010041<strong>the</strong> electrons and positrons produced∘kin. Energy Energy GeV GeVin fragmentations canno∘ne) and overall flux (solid lines, again identical with background).E 2 dJdE cm 2 str s 1 GeVfor searching gamma-ray lines from <strong>dark</strong> <strong>matter</strong> decay [55].E 2 dJdE cm 2 str s 1 GeVp p3.3 Positron fluxE 3 e cm 2 str s 1 GeE 3 e cm 2 str s 1 GeV 2 p pp pC. Arina, T.H., A. Ibarra, C. Weniger 09’1


DM <strong>stability</strong> from accidental symmetry: Weakly interacting stable pionsQCD interactions conserve G-parity:ρ → ππ but−+ −−pions would be stable if <strong>the</strong>re were only QCDbut G-parity is not conserved byρ → πππweak interactions (V − Ahypercharge interactionsBai, Hill 10’structure)assume a new QCD structure with new quarksψwithno hyperchargevector weak interact.G-parity is exactly conservedπ 0′ W +ψ L = doubletψ R = doublet<strong>the</strong>π 0′is stable and is a WIMPπ 0′π +′>W −m DM = 100 GeV − 2 TeVσ SIN ∼ 10 −45 cm 2but dim-5 operators breaking G-parity are allowedDM decay would be too fast


O<strong>the</strong>r naturally stable DM candidates• DM <strong>stability</strong> from small couplings (suppressed by heavy scale)and/or small DM mass:- axion- KeV right-handed neutrino- gravitino- ...• KK parity in Universal Extra Dimension models (assuming orbifold,...)• .....P. Sikivie’s talkF. Bezrukov’s talkServant, Tait 06’, ...• U(1) B ′ in technicolor modelsGudnason, Kouvaris, Sannino 06’• DM <strong>stability</strong> from a flavour symmetry Hirsch, Morisi, Peinado, Valle 10’


More Backup


Relic densityjH ∗• T m V :in <strong>the</strong>rmal equilibrium with SM <strong>the</strong>rmal bath•N T < m V : n eq.V ∼ e−m V /Tk kN kkN annihilation kkfreeze out (WIMP)l l H ∗ H l il iN jl iN kHl iN kl lHHl i ∗∆ Lto two real(c)η:l iN k NHkl ll lHH H(b)(a)H ∗ H ∗N j N j(a)l i l il iN k N kl iλ mgHφ H ∗l l l H ∗l H ∗∆ L l l lN j N jHH(c)(b) (b)l il l Hwith at least one ∗NSM part. in final kstate:N jN kl lH(c)H ∗ H ∗∆ L ∆ LFigure (b) 1: 1: One-loop diagrams contributing l l to to<strong>the</strong> H ∗asymmetry from <strong>the</strong> N H H ∗k decay.N kH HFigure Figure 1: One-loop 1: One-loop diagrams N j diagrams contributing to <strong>the</strong> to <strong>the</strong> asymmetry ∆ L from from <strong>the</strong> <strong>the</strong> N k Ndecay.k decayN kN kN kη, hiη, h Ag iη, η, h A iη, h iφ(+λ φ ) η, hH A Vl lHl λiiW, Z AV m , g φ , ...Al i lηA iη, h A iη,Ah iη, hA iη, h A η, h iη, hη, hηA i A iW, ZW, ZA i AA iiV iηiif(a)η, η, hhW, Z A i (a) fη, (b) η, h(c) η, hAη, hη, η i ihη, h η, hη, hη, hA iA i A iFigure Figure 1: One-loop 1: One-loop diagη, η, hhA Figure 1: One-loop diagrams contributing to <strong>the</strong> asymmetry from <strong>the</strong> N k decay.i iη, η, hhA i η, hA A iη, A V ¯fiA η, hη, AhAW, i Z A iη, h i iW, Z AV ii¯fiη, η, h¯fV iV iA AA iη, h iW, Z Aηηη VA iiη, h iW, Z AA iiη, h A iη, h ih, ηAη, i hA Vh, i Aη, h Aiη, η ηh AV i W, iZ A ih, η η, h2: η, hno DM η, hη, η hη, h η, hAV in <strong>the</strong> h, ηFigure 2: Annilation processes with no DM particle in i<strong>the</strong> final state.with subsequent decay <strong>of</strong> Figure ηFigure to2: Annilation 2: processes processes with with no DM no DM particle particle in <strong>the</strong> in <strong>the</strong> final final state. state.A iη, h A iη, hAA η, h iW, Z AViThis given <strong>the</strong> <strong>of</strong> <strong>the</strong> i tree A iAV iη, ηhη, AV hiA iη, hThis SM asymmetry particles isviagiven h −by <strong>the</strong> η mixing interference <strong>of</strong> <strong>the</strong> ordinary tree h, ηlevel decay with h, ηh, η<strong>the</strong> 3grams contributing to <strong>the</strong> asymmetry from <strong>the</strong> N k decay.V iA iV iV iVA iV µ1,2,3l l l l(a) (a)H ∗∗N j jion processes with no DM particle in <strong>the</strong> final state.<strong>the</strong> interference <strong>of</strong> <strong>the</strong> ordinary tree level decay with <strong>the</strong> 3two diagrams are <strong>the</strong> ordinary vertex and self-energy diagramswith due to couplingwith due to couplingη h :V i η :l l ∗l H ∗N jj l il iN kl lH(c)l il il ll l(a)N j


Relic density: additional new type <strong>of</strong> contributionnon abelian trilinear gauge couplings:F a µνF µνa ∋ ε ijk ∂ µ A iν (A µ j Aν k − A ν j A µ k )do not lead to any V idecay even if trilinear(carries 3 ≠ indices)but induces two DM to oneDM particle annihilation≠from <strong>the</strong> Z case 2V iA i iA V j jη, η, hA k A kVA iVA jA jA kV kV kV kV kη, hη, η, hη, hFigureFigure3:3:AnnilationAnnilationprocessesprocesseswithwitha DMDMparticleparticle inin<strong>the</strong><strong>the</strong>finalfinalstate.state.no dramatic effect for <strong>the</strong> freeze out (same order as o<strong>the</strong>r diagrams)


Small Higgs portal regimeλ m 10 −3(but larger than∼ 10 −7to have <strong>the</strong>rmalization with <strong>the</strong> SM bath)V i V i → ηη , V i V j → V k η dominantdepend only ong φ , v φ , λ φwithm V = g φv φ2 , m η ≃ √ 2λ φ v φm V (GeV)λ φ = 10 −4ifλ φalso small:σ annih. ∼ g4 φm 2 V∼ g2 φv 2 φm V ∝ g 2 φ (∝ v 2 φ)1 MeV m DM 25 TeVg φ


Small Higgs portal regimeλ m 10 −3(but larger than∼ 10 −7to have <strong>the</strong>rmalization with <strong>the</strong> SM bath)V i V i → ηη , V i V j → V k η dominantdepend only ong φ , v φ , λ φwithm V = g φv φ2 , m η ≃ √ 2λ φ v φm V (GeV)λ φ = 10 −1ifλ φlarge:g φ


Large Higgs portal regimem η (GeV)large hidden sec-λ m 10 −3 large η − h mixing tor - SM mixingcan lead to <strong>the</strong> rightΩ DMeven for maximal mixingproduction at LHC <strong>of</strong>justas for <strong>the</strong> Higgs in <strong>the</strong> SM butwith possibly a larger massηm V (GeV)pace leading to 0.091 < Ωh 2T parameter constraint:ifm h = 120 GeV< 0.129 for <strong>the</strong> large λ m regimeif m η = m hm η < ∼ 240 GeV (3σ)or larger if nonmaximal mixingm h = m η < 154 GeV (3σ)


Hidden vector: direct detectionV iV iη×hNNLog(ViN → ViN) (cm 2 )can saturate <strong>the</strong> experimental bound easilym V(GeV)Figure 8: Obtained spin independent cross-section on nucleon σ SI (An → An) versus M A ,in agreement with <strong>the</strong> constraint 0.091 < Ωh 2 < 0.129. Small λ m regime (10 −7 < λ m 10 −3 on <strong>the</strong> right. The colorcaption is as in Figs. 6 and 7. The thick (dashed) black curve is <strong>the</strong> CDMS (Xenon10)


Hidden vector: cosmic ray fluxesoperator A & Bm DM = 300 GeVΛ =2.9 · 10 15 GeVe +e e e • • • •• ∘0.20 ∘ ∘ 0.10 ∘ ∘0.05∘ • ∘•• ∘ • • • •0.02•∘••e + 0.050 + e −E 3 e cm 2 str s 1 GeV 2 0.020 ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ••••••••••••••• • • • • • • • • ∘ ∘• • • ∘0.010∘ ∘ 0.005 ∘γE 2 dJdE cm 2 str s 1 GeV1 5 10 50 100 500 1000Energy GeV ••• •••∘∘•∘•∘•5 10 6 ∘∘1 10 6∘∘5 10 71 10 75 10 8∘1 10 100 1000∘Energy GeV¯p 0.01 ∘p p∘∘0.001∘10 410 5⋆∘ ∘ ⋆ ∘ ∘⋆ 1 10 5 Energy GeVγe +e e e 0.20 •∘ ∘ •0.10 ∘ •∘ •• • • • • ∘ • ∘ ∘ ∘∘• • •0.05• • •0.021 5 10 50 100 500 1000Energy GeV ••• •••∘∘•1 10 5 ∘•∘•5 10 6 ∘∘1 10 6 ∘5 10 7∘ 1 10 75 10 81 10 80.1 1 10 100 1000 10 4Energy GeVE 2 dJdE cm 2 str s 1 GeVe + 0.050 + e −E 3 e cm 2 str s 1 GeV 2 ¯pp p∘∘0.0200.0100.0050.01 ∘∘0.001 ∘10 41 10 80.1 1 10 100 1000 10 4∘∘∘10 61 2 5 10 20 50 100kin. Energy GeVFigure 2: Like Fig. 1, but for case A, benchmark 2, with τ DM = 1.1 × 10 27 s(Λ =3.7 × 10 15 GeV). The yellow band shows <strong>the</strong> uncertainty in <strong>the</strong> anti-proton flux due to ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘ ••••••••••••••• • • • • • • • ∘ • ∘∘• • • ∘ ∘∘∘<strong>the</strong> propagation model parameters.∘excluded and <strong>the</strong> anti-<strong>matter</strong> fluxes can be sizeable.∘1 10 100 1000∘Energy GeV10 510 6⋆3.3 Positron fluxHere we will briefly discuss <strong>the</strong> predictions for <strong>the</strong> anti-<strong>matter</strong> fluxes concentrating oncase D, since∘ ∘ this operator features two-body decay into fermions pairs due to effective ⋆ ∘ ∘kinetic ⋆ mixing between hidden sector and <strong>the</strong> hypercharge U(1) Y . The correspondingbranching ratios are listed in Tab. 4. In <strong>the</strong> cases with lower <strong>dark</strong> <strong>matter</strong> mass, <strong>the</strong>m DM =1.5 TeVbranching ratio into hard leptons (and in particular electrons) is sizable. Namely, in <strong>the</strong>limit M A ≫ M Z <strong>the</strong> inverse decayΛ =1.2rate·into10 16 chargedGeVlepton pairs is given bykin. Energy GeV( ) 4 ( ) 4 ( )1 2 5 10 20 50 100operator C


What about <strong>the</strong> non-perturbative regime <strong>of</strong> this model?SU(2)Hidden Sect.confines automatically ifT.H., M. Tytgat, arXiv:0907.1007Λ SU(2) >> v φdynamicalscaleperturbativebreaking scalebut <strong>the</strong> custodial symmetry remains exact in this case too‘t Ho<strong>of</strong>t ‘98φ confines: boundstates are eigenstates <strong>of</strong> <strong>the</strong> custodial sym.:- scalar state: S ≡ φ † φ singlet <strong>of</strong> SO(3) expected <strong>the</strong> lightest- “charged” vector state:- “neutral” vector state:V µ+ ≡ φ † D µ ˜φ}Vµ− ≡ ˜φ † D µ φVµ 0 ≡ φ† D µ φ − ˜φ † D µ ˜φ√2SO(3) tripletstable DMcandidates!


Relic density in <strong>the</strong> confined regimestrongly interactive massive particle (SIMP)annihilation cross section cannot be calculated perturbativelyV iV iσ annih. ∼ASSΛ 2 SU(2)A = 10 − 50(V i h)+ ...V i Sif S − h mixing isexpected do-minant channel:λ mlarge (for large )m DM ≃ 20 − 120 TeVconfining non-abelian hidden sector coupled to <strong>the</strong> SMthrough <strong>the</strong> Higgs portal: perfectly viable DM candidate


Expected spectrum (in a similar case)vector states e.g. expected heavier than scalar ones:1.00.8m* H= 120 GeVm/g 320.60.4vector0.2scalar64 348 332 30.0208.0 210.0 212.0 214.0 216.0 218.0T*/GeV1.2m* H= 180 GeVKajantie, Laine. Rummukainen, Shaposhnikov ‘961.0m/g 320.80.60.440 3 vector32 3 vector


Possible effects on Electroweak Symmetry Breakingcontribution <strong>of</strong> <strong>the</strong> vev <strong>of</strong> <strong>the</strong> hidden scalar to<strong>the</strong> Higgs mass term:L Higgs portal = −λ m φ † φH † H∋−λ m v 2 φH † Hgives a contribution to <strong>the</strong> Higgs vev:v 2 ∝ λ mλ Hv 2 φ ∝ m 2 DMgives a hint for <strong>the</strong> m DM versus v WIMP coincidencesee also T.H, M. Tytgat, arXiv 0707.0633, (PLB 659)


Collective breaking <strong>of</strong> a U(1) flavour symmetrycollective breaking <strong>of</strong> global symmetry à la Hill and Ross ‘88consider flavour symmetry (instead <strong>of</strong> ) U(1) B−LU(1) Xinduces a mass only if several M Nij ≠0θexample: N Q X 1,2 :N 1=0Q X N 2=1Q X φ =2M N =allowed by U(1) X( )M11 M 12M 12 M 22 e iθ/fexplicitfrom U(1) X SSBU(1) Xbreakingm 2 θ ∼ 1 M 11 M 12 M 22 M 218π 2 f 2ln Λ2 if any <strong>of</strong> M ij =0weµ 2 recover an exact U(1)N 1M 11×× ×M 12 M 21M 22N 1N 2 N 2×θ θlogarithmic onlymass not quadratically sensitive to <strong>the</strong> cut<strong>of</strong>f


Inducing <strong>the</strong> pseudo-Goldstone-Higgs portalFrigerio, TH, Masso, 11o<strong>the</strong>r possible realization <strong>of</strong> collective breakinginvolving both Majorana and Dirac terms:hL αh×Y 1α×N 1 N 2×M 1j M j2N jY 2α×θθHiggs portal: λ = 1 M 12 (M 11 + M 22 )4π 2 f 2L ∋ λ θθ H † HY 1α Y 2α log Λ2µ 2m 2 θ = λv 2 = 1 M 12 (M 11 + M 22 ) m D 1α m D 2α4π 2 f 2log Λ2µ 2example: Q X N 1= −1, Q X N 2=1,Q X φ =2,Q X ν =1NB: - to avoid generation <strong>of</strong> a DM tadpole, <strong>the</strong> easiest way is to assume CP symmetry- if reheating temperature very high and φNN couplings large enough<strong>the</strong> relic density can be produced also from NN → θθ pair production


<strong>Phenomenological</strong> <strong>aspects</strong> <strong>of</strong> <strong>the</strong><strong>dark</strong> <strong>matter</strong> <strong>stability</strong> <strong>origin</strong>The Dark Universe Conference, Heidelberg, 07/10/2011


Examples <strong>of</strong> specific phenomenologyderiving fromgauge symmetry stabilization mechanisms


Dark Matteras aPseudo Goldstone Boson<strong>stability</strong>: pseudo-Goldstone decay suppressed by large spontaneous breaking scaleΛ2 well-known examples: - AxionGoldstone boson <strong>of</strong> U(1)spontaneously broken atU(1) explicitly broken at axion gets a massPQPQΛ PQΓ(a → γγ) ∝ 1/Λ n PQ very long lifetimeΛ PQ- DM Majoron


Summary•The <strong>origin</strong> <strong>of</strong> particle DM <strong>stability</strong> is a fundamental question!Each UV or low energy scenario requires a very specific pattern in term <strong>of</strong> type <strong>of</strong>particle needed, energy scale, ..., which leads to a specific phenomenology- long range <strong>dark</strong> force- intense flux <strong>of</strong> cosmic rays, γ-lines, ...- GUT specific realizations- specific DM mass- relic density/DM mass link- ....• Pseudo-Goldstone setup: seesaw interactions assuming a U(1) flavour symmetry:- can provide <strong>the</strong> explicit breaking source m DM- generate <strong>the</strong> DM relic density m DM ∝ v EW- with a one-to-one link between m DM and Ω DM m DM =2.7 MeV- that can be probed by DM → νν and DM → e + e − searches

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!