11.07.2015 Views

Lectures on Representations of Quivers by William Crawley-Boevey ...

Lectures on Representations of Quivers by William Crawley-Boevey ...

Lectures on Representations of Quivers by William Crawley-Boevey ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A ’quiver’ is a directed graph, and a representati<strong>on</strong> is defined <strong>by</strong> a vectorspace for each vertex and a linear map for each arrow. The theory <strong>of</strong>representati<strong>on</strong>s <strong>of</strong> quivers touches linear algebra, invariant theory, finitedimensi<strong>on</strong>al algebras, free ideal rings, Kac-Moody Lie algebras, and manyother fields.These are the notes for a course <strong>of</strong> eight lectures given in Oxford inspring 1992. My aim was the classificati<strong>on</strong> <strong>of</strong> the representati<strong>on</strong>s for the~ ~ ~ ~ ~Euclidean diagrams A , D , E , E , E . It seemed ambitious for eightn n 6 7 8lectures, but turned out to be easier than I expected.The Dynkin case is analysed using an argument <strong>of</strong> J.Tits, P.Gabriel andC.M.Ringel, which involves acti<strong>on</strong>s <strong>of</strong> algebraic groups, a study <strong>of</strong> rootsystems, and some clever homological algebra. The Euclidean case is treatedusing the same tools, and in additi<strong>on</strong> the Auslander-Reiten translati<strong>on</strong>s-t,t , and the noti<strong>on</strong> <strong>of</strong> a ’regular uniserial module’. I have avoided theuse <strong>of</strong> reflecti<strong>on</strong> functors, Auslander-Reiten sequences, and case-<strong>by</strong>-caseanalyses.The prerequisites for this course are quite modest, c<strong>on</strong>sisting <strong>of</strong> the basic1noti<strong>on</strong>s about rings and modules; a little homological algebra, up to Extnand l<strong>on</strong>g exact sequences; the Zariski topology <strong>on</strong> A ; and maybe some ideasfrom category theory.In the last secti<strong>on</strong> I have listed some topics which are the object <strong>of</strong>current research. I hope these lectures are a useful preparati<strong>on</strong> forreading the papers listed there.<strong>William</strong> <strong>Crawley</strong>-<strong>Boevey</strong>,Mathematical Institute, Oxford University24-29 St. Giles, Oxford OX1 3LB, England2


§1. Path algebrasOnce and for all, we fix an algebraically closed field k.DEFINITIONS.(1) A quiver Q = (Q ,Q ,s,t:Q ----------LQ ) is given <strong>by</strong>0 1 1 0a set Q <strong>of</strong> vertices, which for us will be {1,2,...,n}, and0a set Q <strong>of</strong> arrows, which for us will be finite.1An arrow r starts at the vertex s(r) and terminates at t(r). We sometimesrindicate this as s(r) --------------------L t(r).(2) A n<strong>on</strong>-trivial path in Q is a sequence r ...r (m>1) <strong>of</strong> arrows which1 msatisfies t(r )=s(r ) for 1


EXAMPLES.(1) If Q c<strong>on</strong>sists <strong>of</strong> <strong>on</strong>e vertex and <strong>on</strong>e loop, then kQ = k[T]. If Q has <strong>on</strong>evertex and r loops, then kQ is the free associative algebra <strong>on</strong> r letters.(2) If there is at most <strong>on</strong>e path between any two points, then kQ can beidentified with the subalgebra{C e M (k) | C =0 if no path from j to i}n ij<strong>of</strong> M (k). If Q is 1----------L2----------L...----------Ln this is the lower triangular matrices.nIDEMPOTENTS. Set A=kQ.2(1) The e are orthog<strong>on</strong>al idempotents, ie e e = 0 (i$j), e = e .i i j i in(2) A has an identity given <strong>by</strong> 1 = S e .i=1 i(3) The spaces Ae , e A, and e Ae have as bases the paths starting at ii j j iand/or terminating at j.n(4) A = s Ae , so each Ae is a projective left A-module.i=1 i i(5) If X is a left A-module, then Hom (Ae ,X) = e X.A i i(6) If 0$feAe and 0$gee A then fg$0.iiPROOF. Look at the l<strong>on</strong>gest paths x,y involved in f,g. In the product fg thecoefficient <strong>of</strong> xy cannot be zero.(7) The e are primitive idempotents, ie Ae is a indecomposable module.ii2PROOF. If End (Ae )=e Ae c<strong>on</strong>tains idempotent f, then f =f=fe , soA i i i if(e -f)=0. Now use (6).i(8) If e eAe A then i=j.i jPROOF. Ae A has as basis the paths passing through the vertex j.j(9) The e are inequivalent, ie Ae @Ae for i$j.i i jPROOF. Thanks to (5), inverse isomorphisms give elements fee Ae , gee Aei j j iwith fg=e and gf=e . This c<strong>on</strong>tradicts (8).ij4


PROPERTIES OF PATH ALGEBRAS.These are exercises, but some are rather testing.(1) A is finite dimensi<strong>on</strong>al 5 Q has no oriented cycles.(2) A is prime (ie IJ$0 for two-sided ideals I,J$0) 5 Ai,j E path i to j.(3) A is left (right) noetherian 5 if there is an oriented cycle through i,then <strong>on</strong>ly <strong>on</strong>e arrow starts (terminates) at i.(4) rad A has basis {paths i to j | there is no path from j to i}.(5) The centre <strong>of</strong> A is k*k*...*k[T]*k[T]*..., with <strong>on</strong>e factor for eachc<strong>on</strong>nected comp<strong>on</strong>ent C <strong>of</strong> Q, and that factor is k[T] 5 C is an orientedcycle.REPRESENTATIONS.We define a category Rep(Q) <strong>of</strong> representati<strong>on</strong>s <strong>of</strong> Q as follows.A representati<strong>on</strong> X <strong>of</strong> Q is given <strong>by</strong> a vector space X for each ieQ and ai 0linear map X :X ----------LX for each reQ .r s(r) t(r) 1A morphism q:X----------LX’ is given <strong>by</strong> linear maps q :X ----------LX’ for each ieQi i i 0satisfying X’q = q X for each reQ .r s(r) t(r) r 1The compositi<strong>on</strong> <strong>of</strong> q with f:X’----------LX" is given <strong>by</strong> (fqq) = f qq .i i iEXAMPLE. Let S(i) be the representati<strong>on</strong> with( k (j=i)S(i) = { S(i) =0 (all reQ ).j r 19 0 (else)EXERCISE. It is very easy to compute with representati<strong>on</strong>s. For example letQ be the quiver •J----------•----------L•, and let X and Y be the representati<strong>on</strong>s1 1 1kJ----------k----------Lk kJ----------k----------L0.Show that Hom(X,Y) is <strong>on</strong>e-dimensi<strong>on</strong>al, and that Hom(Y,X)=0.5


LEMMA. The category Rep(Q) is equivalent to kQ-Mod.PROOF. We <strong>on</strong>ly give the c<strong>on</strong>structi<strong>on</strong>. IfX is a kQ-module, define arepresentati<strong>on</strong> X withX = eXi iX (x) = rx = e rx e X for xeX .r t(r) t(r) s(r)If X is a representati<strong>on</strong>, define a moduleX viae pn i iX=s X . Let X ----------LX----------LX be the can<strong>on</strong>ical maps.i=1 i i ir ...r x = e X ...X p (x)1 m t(r ) r r s(r )1 1 m me x = e p (x),ii iIt is straightforward, but tedious, to check that these are inverses andthat morphisms behave, etc. We can now use the same letter for a module andthe corresp<strong>on</strong>ding representati<strong>on</strong>, ignoring the distincti<strong>on</strong>.EXAMPLE. Under this corresp<strong>on</strong>dence, the representati<strong>on</strong>s S(i) are simplemodules. Moreover, if Q has no oriented cycles, it is easy to see that theS(i) are the <strong>on</strong>ly simple modules.DEFINITIONS.(1) The dimensi<strong>on</strong> vector <strong>of</strong> a finite dimensi<strong>on</strong>al kQ-module X is the vectorndim X e N , with(dim X) = dim X = dim e X = dim Hom(Ae ,X).i i i inThus dim X = S (dim X) .i=1 inn(2) The Euler form is = S a b - S a b for a,b e Z .i=1 i i reQ1 s(r) t(r)nThis is a bilinear form <strong>on</strong> Z .n(3) The Tits form is q(a) = . This is a quadratic form <strong>on</strong> Z .(4) The Symmetric bilinear form is (a,b) = + .6


THE STANDARD RESOLUTION.Let A=kQ. If X is a left A-module, there is an exact sequencenfg0 ----------L s Ae t e X ----------L s Ae t e X ----------L X ----------L 0t(r) k s(r)i k ireQ1 i=1where g(atx) = ax for aeAe , xee X, andi if(atx) = artx - atrx for aeAe and xee Xt(r) s(r)in s(r) t(r) comp<strong>on</strong>ent.PROOF. Clearly gqf=0 and g is <strong>on</strong>to. If x is an element <strong>of</strong> the middle term<strong>of</strong> the sequence, we can write it uniquely in the formnx = S S atx (x ee X almost all zero)a a s(a)i=1 paths a with s(a)=iand define degree(x) = length <strong>of</strong> the l<strong>on</strong>gest path a with x $0.aIf a is a n<strong>on</strong>-trivial path with s(a)=i, then we can express it as a producta=a’r with r an arrow with s(r)=i, and a’ another path. Viewing a’tx as anaelement in the r’th comp<strong>on</strong>ent <strong>of</strong> left hand term, we havef(a’tx ) = atx - a’trx .a a aWe claim that x + Im(f) always c<strong>on</strong>tains an element <strong>of</strong> degree 0. Namely, ifx has degree d>0, thennx - f( S S a’tx ) ai=1 paths a with s(a)=i and length dhas degree < d, so the claim follows <strong>by</strong> inducti<strong>on</strong>.Im(f)=Ker(g): If xeKer(g), let x’ex+Im(f) have degree zero. Thus0 = g(x) = g(x’) = g(S e tx’ ) = S x’i i e ei inNow this bel<strong>on</strong>gs to s X , so each term in the final sum must be zero.i=1 iThus x’=0, and the asserti<strong>on</strong> follows.Ker(f)=0: we can write an element xeKer(f) in the formx = S S atx (x ee X almost all 0).reQ paths a with s(a)=t(r) r,a r,a s(r)1Let a be a path <strong>of</strong> maximal length such that x $0 (some r). Nowr,af(x) = S S artx - S S atrxr a r,a r a r,aso the coefficient <strong>of</strong> ar in f(x) is x . A c<strong>on</strong>tradicti<strong>on</strong>.r,a7


CONSEQUENCES.i(1) If X is a left A-module, then proj.dim X < 1, ie Ext (X,Y)=0 AY,i>2.PROOF. f and g are A-module maps and Ae tV is isomorphic to the direct sumi<strong>of</strong> dim V copies <strong>of</strong> Ae , so is a projective left A-module. Thus the standardiresoluti<strong>on</strong> is a projective resoluti<strong>on</strong> for X.(2) A is hereditary, ie if XcP with P projective, then X is projective.1 2PROOF. Ext (X,Y) = Ext (P/X,Y) = 0 AY.1(3) If X,Y are f.d., then dim Hom(X,Y) - dim Ext (X,Y) = .PROOF. Apply Hom(-,Y) to the standard resoluti<strong>on</strong>:10-----LHom(X,Y)-----LHom(s Ae t e X,Y)-----LHom(s Ae t e X,Y)-----LExt (X,Y)-----L0.i i k i r t(r) k s(r)Now dim Hom(Ae te X,Y) = (dim e X)(dim Hom(Ae ,Y)) = (dim X) (dim Y) .i j j i j i1(4) If X is f.d., then dim End(X) - dim Ext (X,X) = q(dim X).PROOF. Put X=Y in (3).REMARK.Let i be a vertex in Q and suppose that either no arrows start at i, or noarrows terminate at i. Let Q’ be the quiver obtained <strong>by</strong> reversing thedirecti<strong>on</strong> <strong>of</strong> every arrow c<strong>on</strong>nected to i. We say that Q’ is obtained from Qbe reflecting at the vertex i. The two categories Rep(Q) and Rep(Q’) areclosely related, <strong>by</strong> means <strong>of</strong> so-called reflecti<strong>on</strong> functors. SeeI.N.Bernstein, I.M.Gelfand and V.A.P<strong>on</strong>omarev, Coxeter functors andGabriel’s Theorem, Uspekhi Mat. Nauk. 28 (1973), 19-33, English Translati<strong>on</strong>Russ. Math. Surveys, 28 (1973), 17-32.8


§2. BricksIn this secti<strong>on</strong> we c<strong>on</strong>sider finite dimensi<strong>on</strong>al left A-modules with A anhereditary k-algebra. In particular the results hold when A is a pathalgebra. We recall the Happel-Ringel Lemma and another lemma due to Ringel.INDECOMPOSABLE MODULES.Recall Fitting’s Lemma, that X is indecomposable 5 End(X) is a local ring,ie End(X) = k1 +rad End(X), since the field k is algebraically closed.XAny module can be written as a direct sum <strong>of</strong> indecomposable modules, and <strong>by</strong>the Krull-Schmidt Theorem the isomorphism types <strong>of</strong> the summands and theirmultiplicities are uniquely determined.We say that X is a brick if End(X)=k. Thus a brick is indecomposable.1LEMMA 1. Suppose X,Y are indecomposable. If Ext (Y,X)=0 then any n<strong>on</strong>-zeromap q:X----------LY is m<strong>on</strong>o or epi.PROOF. We have exact sequencesx:0----------LIm(q)----------LY----------LCok(q)----------L0 and h:0----------LKer(q)----------LX----------LIm(q)----------L0.1From Ext (Cok(q),h) we get1 f 1... ----------L Ext (Cok(q),X) ----------L Ext (Cok(q),Im(q)) ----------L 0.so x = f(z) for some z. Thus there is commutative diagramaz:0 ----------L X ----------L Z ----------L Cok(q) ----------L 0b1


If Im(q)$0 then X or Y is summand <strong>of</strong> Im(q) <strong>by</strong> Krull-Schmidt. But if q isnot m<strong>on</strong>o or epi, then dim Im(q) < dim X, dim Y, a c<strong>on</strong>tradicti<strong>on</strong>.SPECIAL CASE. If X is indecomposable with no self-extensi<strong>on</strong>s (ie1Ext (X,X)=0), then X is a brick.LEMMA 2. If X is indecomposable, not a brick, then X has a submodule and aquotient which are bricks with self-extensi<strong>on</strong>s.PROOF. It suffices to prove that if X is indecomposable and not a brickthen there is a proper submodule UCX which is indecomposable and withself-extensi<strong>on</strong>s, for if U is not a brick <strong>on</strong>e can iterate, and a dualargument deals with the case <strong>of</strong> a quotient.Pick qeEnd(X) with I=Im(q) <strong>of</strong> minimal dimensi<strong>on</strong> $ 0. We have IcKer(q), for2X is indecomposable and not a brick so q is nilpotent. Now q =0 <strong>by</strong>rminimality. Let Ker(q) = s K with K indecomposable, and pick j suchi=1 i ithat the compositi<strong>on</strong> a : I(-----LKer(q)----------)K is n<strong>on</strong>-zero. Now a is m<strong>on</strong>o, forjathe map X----------)I----------LK (-----LX has image Im(a)$0 so a m<strong>on</strong>o <strong>by</strong> minimality.j1We have Ext (I,K )$0, for otherwise the pushoutjr0 ----------L s K ----------L X ----------L I ----------L 0i=1 i11 <


§3. The variety <strong>of</strong> representati<strong>on</strong>sIn this secti<strong>on</strong> Q is a quiver and A=kQ. We define the variety <strong>of</strong>nrepresentati<strong>on</strong>s <strong>of</strong> Q <strong>of</strong> dimensi<strong>on</strong> vector aeN , and describe some elementaryproperties. We use elementary dimensi<strong>on</strong> arguments from algebraic geometry.The properties we need are listed below.ALGEBRAIC GEOMETRY.rA is affine r-space with the Zariski topology. We c<strong>on</strong>sider locally closedr -----subsets U in A , ie subsets U which are open in their closure U.A n<strong>on</strong>-empty locally closed subset U is irreducible if any n<strong>on</strong>-empty subsetr<strong>of</strong> U which is open in U, is dense in U. The space A is irreducible.The dimensi<strong>on</strong> <strong>of</strong> a n<strong>on</strong>-empty locally closed subset U issup{n | E Z CZ C...CZ irreducible subsets closed in U}.0 1 n----- rWe have dim U = dim U; if W=UuV then dim W = max{dim U,dim V}; the space Ahas dimensi<strong>on</strong> r.rIf an algebraic group G acts <strong>on</strong> A , then the orbitsO are locally closed;------O\O is a uni<strong>on</strong> <strong>of</strong> orbits <strong>of</strong> dimensi<strong>on</strong> strictly smaller than dimO; and ifxeO then dimO=dim G-dim Stab (x).GnDEFINITIONS. Let Q be a quiver and aeN . We defines(r) t(r)Rep(a) = p Hom (k ,k ).reQ k1rThis is isomorphic to A where r = S a a .reQ1 t(r) s(r)aiAn element xeRep(a) gives a representati<strong>on</strong> R(x) <strong>of</strong> Q with R(x) = k fori1


THE ACTION.GL(a) acts <strong>on</strong> Rep(a) <strong>by</strong> c<strong>on</strong>jugati<strong>on</strong>. Explicitly-1(gx) = g x gr t(r) r s(r)for geGL(a) and xeRep(a).If x,yeRep(a), then the set <strong>of</strong> A-module isomorphisms R(x)-----LR(y) can beidentified with {geGL(a)|gx=y}. It follows that(1) Stab (x) = Aut (R(x)).GL(a)A(2) There is a 1-1 corresp<strong>on</strong>dence between isoclasses <strong>of</strong> representati<strong>on</strong>s Xwith dimensi<strong>on</strong> vector a and orbits, given <strong>by</strong>O = {xeRep(a) | R(x)=X}. ToXsee this we <strong>on</strong>ly need to realize that every representati<strong>on</strong> <strong>of</strong> dimensi<strong>on</strong>vector a is isomorphic to some R(x), which follows <strong>on</strong> choosing a basis.REMARKS.(1) Invariant Theory is about polynomial and rati<strong>on</strong>al maps f:Rep(a)----------Lkwhich are c<strong>on</strong>stant <strong>on</strong> GL(a)-orbits. For example, if a = r ...r is an1 moriented cycle, we have a polynomial invariantf (x) = Trace(x x ...x ),a r r r1 2 mand more generally if c (T) is the characteristic polynomial <strong>of</strong> q, we haveqif (x) = Coefficient <strong>of</strong> T in c (T).ai x x ...xr r r1 2 m(2) If char k=0, then any polynomial invariant can be expressed as apolynomial in the f . This has been proved <strong>by</strong> Sibirski and Procesi in caseaQ has <strong>on</strong>ly <strong>on</strong>e vertex, and in general can be found in L.Le Bruyn &C.Procesi, Semisimple representati<strong>on</strong>s <strong>of</strong> quivers, Trans. Amer. Math. Soc.317 (1990), 585-598.(3) If char k>0 and Q has <strong>on</strong>ly <strong>on</strong>e vertex, any polynomial invariant can beexpressed as a polynomial in the f . This is recent work <strong>of</strong> S.D<strong>on</strong>kin.aiPresumably the restricti<strong>on</strong> <strong>on</strong> Q is unnecessary.12


1LEMMA 1. dim Rep(a) - dimO = dim End (X) - q(a) = dim Ext (X,X).XAPROOF. Say X=R(x). We havedimO = dim GL(a) - dim Stab(x) = dim GL(a) - dim Aut (X)XAsNow GL(a) is n<strong>on</strong>-empty and open in A , so dense, so dim GL(a) = s.Similarly Aut (X) is n<strong>on</strong>-empty and open in End (X), so dense, soAAdim Aut(x) = dim End(X). The asserti<strong>on</strong> follows.CONSEQUENCES.(1) If a$0 and q(a)


&u 0r*| |0 v7 r8which corresp<strong>on</strong>ds to UsV.Finally Hom(x,U) gives an exact sequences<strong>of</strong> 10----------LHom(V,U)----------LHom(X,U)----------LHom(U,U)----------LExt (V,U),dim Hom(V,U) - dim Hom(X,U) + dim Hom(U,U) - dim Im(f) = 0,but f(1 )=x$0, so dim Hom(X,U) $ dim Hom(UsV,U), and hence X @ UsV.UCONSEQUENCES.(1) IfO is an orbit in Rep(a) <strong>of</strong> maximal dimensi<strong>on</strong>, and X=UsV, thenX1Ext (V,U)=0.A------PROOF. If there is n<strong>on</strong>-split extensi<strong>on</strong> 0----------LU----------LE----------LV----------L0 thenO cO \O , soX E EdimO < dimO .X E(2) IfO is closed then X is semisimple.XREMARKS.(1) Suppose Q has no oriented cycles. Let zeRep(a) be the element with allmatrices z =0. We can easily show that z is in the closure <strong>of</strong> every orbit,rand it follows that there are no n<strong>on</strong>-c<strong>on</strong>stant polynomial invariants.Moreover, an orbitO is closed 5 X is semisimple, for the <strong>on</strong>ly semisimpleXmodule <strong>of</strong> dimensi<strong>on</strong> a is R(z), and {z} is clearly a closed orbit.(2) If Q is allowed to have oriented cycles, x,x’eRep(a) and R(x) and R(x’)are n<strong>on</strong>-isomorphic semisimple modules, then there is a polynomial invariantf (<strong>of</strong> the form f ) with f(x)$f(y). In case Q has <strong>on</strong>ly <strong>on</strong>e vertex andaichar k=0 this is proved in §12.6 <strong>of</strong> M.Artin, On Azumaya algebras and finitedimensi<strong>on</strong>al representati<strong>on</strong>s <strong>of</strong> rings, J.Algebra 11 (1969), 532-563, but itseems to be true in general. It follows thatO is closed 5 X isXsemisimple.14


§4. Dynkin and Euclidean diagramsIn this secti<strong>on</strong> we give the classificati<strong>on</strong> <strong>of</strong> graphs into Dynkin,Euclidean, and ’wild’ graphs, and in the first two cases we study thecorresp<strong>on</strong>ding root system.DEFINITIONS.Let G be finite graph with vertices {1,..,n}. We allows loops and multipleedges, so that G is given <strong>by</strong> any set <strong>of</strong> natural numbersn = n = the number <strong>of</strong> edges between i and j.ij jin 2Let q(a) = S a - S n a ai=1 i i0 for all 0$aeZ .nWe say q is positive semi-definite if q(a)>0 for all aeZ .nThe radical <strong>of</strong> q is rad(q) = {aeZ | (a,-) = 0}.nnWe have a partial ordering <strong>on</strong> Z given <strong>by</strong> a0 is a n<strong>on</strong>-zero radical vector, then b isnsincere and q is positive semi-definite. For aeZ we haveq(a)=0 5 aeQb 5 aerad(q).15


PROOF. By assumpti<strong>on</strong> 0 = (e ,b) = (2-2n )b - S n b .i ii i j$i ij jIf b =0 then S n b = 0, and since each term in >0 we have b =0i j$i ij j jwhenever there is an edge i----------j. Since G is c<strong>on</strong>nected it follows that b=0, ac<strong>on</strong>tradicti<strong>on</strong>. Thus b is sincere. Nowb b a a 2i j & iSj*n -------------------- ---------- - ----------i


PROOF.(2) By inspecti<strong>on</strong> the given vector d is radical, eg if there are no loopsor multiple edges, we need to check that2d = S d .i neighbours j <strong>of</strong> i jNow q is positive semi-definite <strong>by</strong> the lemma. Finally, since some d =1,inrad(q) = Qd n Z = Zd.~(1) Embed the Dynkin diagram in the corresp<strong>on</strong>ding Euclidean diagram G, and~note that the quadratic form for G is strictly positive <strong>on</strong> n<strong>on</strong>-zero,n<strong>on</strong>-sincere vectors.(3) It is not hard to show that G has a Euclidean subgraph G’, say withradical vector d. If all vertices <strong>of</strong> G are in G’ take a=d. If i is a vertexnot in G’, c<strong>on</strong>nected to G’ <strong>by</strong> an edge, take a=2d+e iEXTENDING VERTICES.If G is Euclidean, a vertex e is called an extending vertex if d =1. Notee(1) There always is an extending vertex.(2) The graph obtained <strong>by</strong> deleting e is the corresp<strong>on</strong>ding Dynkin diagram.NOW SUPPOSE that G is Dynkin or Euclidean, so q is positive semi-definite.ROOTS.nWe define D = {aeZ | a$0, q(a)


PROPERTIES.(1) Each e is a root.i(2) If aeDu{0}, so are -a and a+b with berad(q).PROOF. q(b+a) = q(b)+q(a)+(b,a) = q(a).( o (Dynkin)(3) {imaginary roots} = {9 {rd | 0$reZ} (Euclidean)PROOF. Use the lemma.(4) Every root a is positive or negative.+ - + -PROOF. Let a = a -a where a ,a >0 are n<strong>on</strong>-zero and have disjoint support.+ -Clearly we have (a ,a ) q(a) = q(a ) + q(a ) - (a ,a ) > q(a ) + q(a ).+ -Thus <strong>on</strong>e <strong>of</strong> a ,ais an imaginary root, and hence is sincere. This meansthat the other is zero, a c<strong>on</strong>tradicti<strong>on</strong>.(5) If G is Euclidean then (Du{0})/Zd is finite.PROOF. Let e be an extending vertex. If a is a root with a =0, then d-a anded+a are roots which are positive at the vertex e, and hence are positiveroots. Thusn{aeDu{0}|a =0} c {aeZ |-d


§5. Finite representati<strong>on</strong> typeIn this secti<strong>on</strong> we combine almost everything that we have d<strong>on</strong>e so far inorder to prove Gabriel’s Theorem. The pro<strong>of</strong> given here is due to J.Tits,P.Gabriel, and the key step to C.M.Ringel, Four papers <strong>on</strong> problems inlinear algebra, in I.M.Gelfand, ’Representati<strong>on</strong> Theory’, L<strong>on</strong>d<strong>on</strong> Math. Soc.Lec. Note Series 69 (1982).THEOREM 1. Suppose Q is a quiver with underlying graph G Dynkin. Theassignment X9-----Ldim X induces a bijecti<strong>on</strong> between the isoclasses <strong>of</strong>indecomposable modules and the positive roots <strong>of</strong> q.PROOF.If X is indecomposable, then X is a brick, for otherwise <strong>by</strong> §2 Lemma 2there is YcX a brick with self-extensi<strong>on</strong>s, and then10 < q(dim Y) = dim End(Y) - dim Ext (Y,Y) < 0.If X is indecomposable then it has no self-extensi<strong>on</strong>s and dim X is a1positive root, for 0 < q(dim X) = 1 - dim Ext (X,X).If X,X’ are two indecomposables with the same dimensi<strong>on</strong> vector, then X=X’<strong>by</strong> §3 Lemma 1.If a is a positive root, then there is an indecomposable X with dim X = a.To see this, pick an orbitO <strong>of</strong> maximal dimensi<strong>on</strong> in Rep(a). If XX1 1decomposes, X=UsV then Ext (U,V)=Ext (V,U)=0 <strong>by</strong> §3 Lemma 2. Thus1 = q(a) = q(dim U) + q(dim V) + + = q(dim U) + q(dim V) + dim Hom(U,V) + dim Hom(V,U) > 2,a c<strong>on</strong>tradicti<strong>on</strong>.THEOREM 2. If Q is a c<strong>on</strong>nected quiver with graph G, then there are <strong>on</strong>lyfinitely many indecomposable representati<strong>on</strong>s 5 G is Dynkin.19


PROOF. If G is Dynkin then the indecomposables corresp<strong>on</strong>d to the positiveroots, and there are <strong>on</strong>ly a finite number <strong>of</strong> roots.C<strong>on</strong>versely, suppose there are <strong>on</strong>ly a finite number <strong>of</strong> indecomposables. Anymodule is a direct sum <strong>of</strong> indecomposables, so it follows that there aren<strong>on</strong>ly finitely many isoclasses <strong>of</strong> modules <strong>of</strong> dimensi<strong>on</strong> a for all aeN . Thusthere are <strong>on</strong>ly finitely many orbits in Rep(a). By §3 Lemma 1 we have q(a)>0nfor 0$aeN . Now the classificati<strong>on</strong> <strong>of</strong> graphs shows that G is Dynkin.20


§6. More homological algebraFROM NOW ON we suppose that Q is a quiver without oriented cycles, so thepath algebra A=kQ is finite dimensi<strong>on</strong>al. We still c<strong>on</strong>sider f.d. A-modules.We study the properties <strong>of</strong> projective, injective, n<strong>on</strong>-projective, andn<strong>on</strong>-injective modules. We give a little bit <strong>of</strong> Auslander-Reiten theory.DUALITIES.(1) If X is a left or right A-module, then DX = Hom (X,k), Hom(X,A) andk1Ext (X,A) are all A-modules <strong>on</strong> the other side.(2) D is duality between left and right A-modules.PROOF. Hom(X,Y)=Hom(DY,DX) and DDX=X.(3) D gives a duality between injective left modules and projective rightmodules.1 1PROOF. Ext (DX,DY) = Ext (Y,X). This is zero for all Y if and <strong>on</strong>ly if DX isprojective, if and <strong>on</strong>ly if X is injective.(4) Hom(-,A) gives a duality between projective left modules and projectiveright modules.n n nPROOF. If P is a summand <strong>of</strong> A then Hom(P,A) is a summand <strong>of</strong> Hom(A ,A)=A ,so is projective. Now the map P----------LHom(Hom(P,A),A) is an iso for all P,since it is for P=A.(5) The Nakayama functor n(-) = DHom(-,A) gives an equivalence fromprojective left modules to injective left modules. The inverse functor is-n (-) = Hom(D(-),A) = Hom(DA,-).(6) Hom(X,nP) = DHom(P,X) for X,P left A-modules, P projective.PROOF. The compositi<strong>on</strong>Hom(P,A)t X = Hom(P,A)t Hom(A,X) ----------L Hom(P,X)AAis an isomorphism, since it is for P=A. ThusDHom(P,X) = Hom (Hom(P,A)t X,k) = Hom(X,Hom (Hom(P,A),k)) = Hom(X,nP).k A k21


DEFINITION. The Auslander-Reiten translate <strong>of</strong> a left A-module X is1 - 1 1tX = DExt (X,A). We also define t X = Ext (DX,A) = Ext (DA,X).If 0----------LL----------LM----------LN----------L0 is an exact sequence then since A is hereditary thereare l<strong>on</strong>g exact sequences0----------LtL ----------LtM ----------LtN ----------LnL ----------LnM ----------LnN ----------L0- - - - - -0----------Ln L----------Ln M----------Ln N----------Lt L----------Lt M----------Lt N----------L0.1 -LEMMA 1. Hom(Y,tX) = DExt (X,Y) = Hom(t Y,X).-(Thus t is left adjoint to t)PROOF. Let 0----------LP----------LQ----------LX----------L0 be a projective resoluti<strong>on</strong>. The sequencetQ----------LtX----------LnP----------LnQis exact, and tQ=0, so we have a commutative diagram with exact rows0----------LHom(Y,tX) ----------LHom(Y,nP)----------LHom(Y,nQ)@@10----------LDExt (X,Y)----------LDHom(P,Y)----------LDHom(Q,Y)1and hence Hom(Y,tX) = DExt (X,Y). The other isomorphism is dual.LEMMA 2. Let X be indecomposable.-(1) If X is n<strong>on</strong>-projective then Hom(X,P)=0 for P projective, and t tX=X.-(2) If X is n<strong>on</strong>-injective then Hom(I,X)=0 for I injective, and tt X=X.PROOF OF (1). If q:X----------LP is n<strong>on</strong>-zero, then Im(q) is projective since A ishereditary. Now X----------)Im(q) is epi, so Im(q) is summand <strong>of</strong> X. But X isindecomposable so X=Im(q), a c<strong>on</strong>tradicti<strong>on</strong>.Let 0----------LP----------LQ----------LX----------L0 be a projective resoluti<strong>on</strong>. Now0----------LtX----------LnP----------LnQ----------LnXis exact, and nX=0 since Hom(X,A)=0. Thus we have a commutative diagram- - - -n nP----------Ln nQ----------Lt tX----------Lt nP@ @P ----------L Q ----------L X ----------L 0- -with exact rows. Since nP is injective, t nP=0, and hence t tX = X.22


-LEMMA 3. t and t give inverse bijecti<strong>on</strong>s--------------------Ltn<strong>on</strong>-projective indecomposablesJ---------------------tn<strong>on</strong>-injective indecomposablesPROOF. Let X be a n<strong>on</strong>-projective indecomposable, and write tX as a directrsum <strong>of</strong> indecomposables, say tX = s Y . Each Y is n<strong>on</strong>-injective, sincei=1 i iotherwise Hom(Y ,tX)=0 <strong>by</strong> Lemma 1. By part (2) <strong>of</strong> Lemma 2 it follows thati- - r -each t (Y )$0. By part (1) <strong>of</strong> Lemma 2 we have X = t tX = s t (Y ), andi i=1 isince X is indecomposable we must have r=1. Thus tX is a n<strong>on</strong>-injective-indecomposable. Dually for t .REMARKS.-(1) For any f.d. algebra there are more complicated c<strong>on</strong>structi<strong>on</strong>s t,tgiving the bijecti<strong>on</strong> above, which involve D and a transpose operator Tr. In-general, however, t and t are not functors, Lemma 1 needs to be modified,and Lemma 2 is n<strong>on</strong>sense.1(2) If X is indecomposable and n<strong>on</strong>-projective, then Ext (X,tX) = DEnd(X),and this space c<strong>on</strong>tains a special element, the map feHom (End(X),k) withkf(1 )=1 and f(rad End(X))=1. The corresp<strong>on</strong>ding short exact sequenceX0----------LtX----------LE----------LX----------L0 is an Auslander-Reiten sequence, which has very specialproperties.Auslander-Reiten sequences exist for any f.d. algebra, and (under the name’almost split sequences’ and together with the transpose) have been definedand studied <strong>by</strong> M.Auslander & I.Reiten, Representati<strong>on</strong> theory <strong>of</strong> artinalgebras III,IV,V,VI, Comm. in Algebra, 3(1975) 239-294, 5(1977) 443-518,5(1977) 519-554, 6(1978) 257-300.(3) The translate t can also be defined as a product <strong>of</strong> reflecti<strong>on</strong>functors, see the remark in §1 and the paper <strong>by</strong> Bernstein, Gelfand andP<strong>on</strong>omarev. The equivalence <strong>of</strong> the two definiti<strong>on</strong> was proved <strong>by</strong> S.Benner andM.C.R.Butler, The equivalence <strong>of</strong> certain functors occuring in therepresentati<strong>on</strong> theory <strong>of</strong> artin algebras and species, J. L<strong>on</strong>d<strong>on</strong> Math. Soc.,14 (1976), 183-187.23


INDECOMPOSABLE PROJECTIVES AND INJECTIVES.(1) The modules P(i) = Ae are a complete set <strong>of</strong> n<strong>on</strong>-isomorphiciindecomposable projective left A-modules.nPROOF. The e are inequivalent primitive idempotents and A = s Ae . Nowi i=1 iuse Krull-Schmidt.(2) The modules I(i) = n(P(i)) = D(e A) are a complete set <strong>of</strong>in<strong>on</strong>-isomorphic indecomposable injective left A-modules.PROOF. Use Hom(-,A) and D.(3) = a = for any a.iPROOF. If X has dimensi<strong>on</strong> a, then1 = dim Hom(P(i),X) - dim Ext (P(i),X) = dim e X = a . = dim Hom(X,I(i)) = dim Hom(P(i),X) = a . inn(4) The vectors dim P(i) are a basis <strong>of</strong> Z . The dim I(i) are a basis <strong>of</strong> Z .PROOF. The module S(i) with dimensi<strong>on</strong> vector e has a projective resoluti<strong>on</strong>i0----------LP ----------LP ----------LS(i)----------L0 and an injective resoluti<strong>on</strong> 0----------LS(i)----------LI ----------LI ----------L0.1 0 0 1iiCOXETER TRANSFORMATION.n n(1) There is an automorphism c:Z ----------LZ with dim nP = - c(dim P) for Pprojective.PROOF. Define c via c(dim P(i)) = - dim I(i).(2) If X is indecomposable and n<strong>on</strong>-projective then dim tX = c(dim X).PROOF. Let 0----------LP----------LQ----------LX----------L0 be a projective resoluti<strong>on</strong>. We have an exactsequence 0----------LtX----------LnP----------LnQ----------L0 and sodim tX = dim nP - dim nQ = -c(dim P - dim Q) = -c(dim X).(3) = - = .PROOF. = = -.(4) ca=a 5 aerad(q).PROOF. =-=(b,a).REMARK. When t is written as a product <strong>of</strong> reflecti<strong>on</strong>s, <strong>on</strong>e sees that theCoxeter transformati<strong>on</strong> is a Coxeter element in the sense <strong>of</strong> Coxeter groups.24


§7. Euclidean case. Preprojectives and preinjectivesFROM NOW ON we set A=kQ where Q is a quiver without oriented cycles andwith underlying graph G Euclidean. We denote <strong>by</strong> d the minimal positiveimaginary root for G. In this secti<strong>on</strong> we describe the three classes <strong>of</strong>preprojective, regular and preinjective modules.DEFINITIONS. If X is indecomposable, theni -m(1) X is preprojective 5 t X=0 for i>>0 5 X=t P(j) some m>0, j.-i m(2) X is preinjective 5 t X=0 for i>>0 5 X=t I(j) some m>0, j.i(3) X is regular 5 t X$0 for all ieZ.We say a decomposable module X is preprojective, preinjective or regular ifeach indecomposable summand is.The defect <strong>of</strong> a module X is = -.NLEMMA 1. There is N>0 such that c dim X = dim X for regular X.PROOF. Recall that ca=a if and <strong>on</strong>ly if a is radical, and that q(ca)=q(a).Thus c induces a permutati<strong>on</strong> <strong>of</strong> the finite set Du{0}/Zd. Thus there is someNNN>0 with c the identity <strong>on</strong> Du{0}/Zd. Since e eD it follows that c is theinidentity <strong>on</strong> Z /Zd.NiNLet c dim X - dim X = rd. An inducti<strong>on</strong> shows that c dim X = dim X + irdfor all ieZ. If r>0, so X must bepreprojective. If r>0 this is not positive for i


LEMMA 2. If X is indecomposable, then X is preprojective, regular orpreinjective according as the defect <strong>of</strong> X is -ve, zero or +ve.PROOF. If X is preprojective then defect < 0, since-m -m m====d >0.iSimilarly preinjectives have defect > 0. If X is regular with dimensi<strong>on</strong>N N-1vector a, then c a=a. Let b=a+..+c a. Clearly cb=b, so that b=rd. NowN-1 i0 = = S = N,i=0so =0, ie X has defect zero.LEMMA 3. Let X,Y be indecomposable.1(1) If Y is preprojective and X is not, then Hom(X,Y)=0 and Ext (Y,X)=0.1(2) If Y is preinjective and X is not, then Hom(Y,X)=0 and Ext (X,Y)=0.-i iPROOF. (1) As X is not preprojective, X=t t X for i>0. Thus-i i i iHom(X,Y) = Hom(t t X,Y) = Hom(t X,t Y) = 0 for i>>0.1 -Also Ext (Y,X) = DHom(t X,Y) = 0. (2) is dual.REMARK. We draw a pictureu-------------------------------------------------------------------------------- u--------------------------------------------------o ---------------------------------------------------------------------------o1 preprojectives 1 regulars 1 preinjectives 1m-------------------------------------------------------------------------------- m--------------------------------------------------. ---------------------------------------------------------------------------.<strong>by</strong> drawing a dot for each indecomposable module. We draw the projectives at- -2the extreme left, then the modules t P(j), then the t P(j), etc. We draw2the injectives at the extreme right, then the modules tI(j), then t I(j),etc. Finally we draw all the regular indecomposables in the middle.The lemma above, and §6 Lemma 2, say that n<strong>on</strong>-zero maps tend to go from theleft to the right in the picture.26


LEMMA 4. If a is a positive real root, and either $0 or ad. This isimpossible for either X has dimensi<strong>on</strong> a


§8. Euclidean case. Regular modulesIn this secti<strong>on</strong> we study the category <strong>of</strong> regular modules. We show that itsbehaviour is completely determined <strong>by</strong> certain ’regular simple’ modules.PROPERTIES OF REGULAR MODULES.(1) If q:X----------LY with X,Y regular, then Im(q) is regular.PROOF. Im(q)cY, so it has no preinjective summand. Also X----------)Im(q), so ithas no preprojective summand.(2) In the situati<strong>on</strong> above Ker(q) and Coker(q) are also regular.PROOF. 0----------LKer(q)----------LX----------LIm(q)----------L0 is exact, so Ker(q) has defect zero. NowKer(q)cX, so Ker(q)=preprojectivessregulars. If there were anypreprojective summand, then the defect would have to be negative. Similarlyfor Coker(q).(3) If 0----------LX----------LY----------LZ----------L0 is exact and X,Z are regular, then so is Y.PROOF. The l<strong>on</strong>g exact sequence shows Hom(Z,Preproj) = 0 = Hom(Preinj,Z).(4) The regular modules form an extensi<strong>on</strong>-closed abelian subcategory <strong>of</strong> thecategory <strong>of</strong> all modules.-(5) t and t are inverse equivalences <strong>on</strong> this category.DEFINITION.A module X is regular simple if it is regular, and has no proper n<strong>on</strong>-zeroregular submodule. Equivalently if defect(X)=0, and defect(Y)


PROPERTIES. Let X be regular simple, dim X = a.(1) X is a brick, so a is a root.i(2) t X is regular simple for all ieZ.(3) tX=X 5 a is an imaginary root.PROOF. If tX=X then ca=a so a is radical. C<strong>on</strong>versely, if q(a)=0, then1Hom(X,tX)=DExt (X,X)$0, so X=tX since X and tX regular simple.N(4) t X=X.NPROOF. We may assume a is a real root. Now ==1, soNNHom(X,t X)$0, so X=t X.DEFINITION.X is regular uniserial if there are regular submodules0 = X C X C ... C X = X0 1 rand these are the ONLY regular submodules <strong>of</strong> X. We say X has regularcompositi<strong>on</strong> factors X ,X /X ,..,X /X (which are clearly regular1 2 1 r r-1simples), regular length r, regular socle X and regular top X/X .1 r-1LEMMA 1. If X is regular uniserial, S is regular simple, andfx:0----------LS----------LE----------LX----------L0 is n<strong>on</strong>-split, then E is regular uniserial.PROOF. It suffices to prove that if UcE is regular and U is not c<strong>on</strong>tainedin S, then ScU. Thus f(U)$0, so Tcf(U) where T is the regular socle <strong>of</strong> X,-1 -1and so f (T) = S + Unf (T).-Since t S is regular simple the inclusi<strong>on</strong> T(-----LX gives an isomorphism- -Hom(t S,T)----------LHom(t S,X). Thus it gives an isomorphism1 - - 1Ext (X,S) = DHom(t S,X) = DHom(t S,T) = Ext (T,S),so the pullback sequence-10 ----------L S ----------L f (T) ----------L T ----------L 0@ 1


LEMMA 2. For each regular simple T and r>1 there is a unique regularuniserial module with regular top T and regular length r. Its regularr-1compositi<strong>on</strong> factors are (from the top) T, tT, ..., t T.PROOF. Inducti<strong>on</strong> <strong>on</strong> r. Suppose X is regular uniserial <strong>of</strong> regular length rr-1with regular top T and regular socle t T. Let S be regular simple. Now1 - - r-1r( k (S=t T)Ext (X,S) = Hom(t S,X) = Hom(t S,t T) = {9 0 (else)rso there is a n<strong>on</strong>-split sequence x:0----------LY----------LE----------LX----------L0 if and <strong>on</strong>ly if S=t T,and in this case, since the space <strong>of</strong> extensi<strong>on</strong>s is 1-dimensi<strong>on</strong>al, any1n<strong>on</strong>-zero xeExt (X,S) gives rise to the same module E. It is regularuniserial <strong>by</strong> the previous lemma.THEOREM. Every indecomposable regular module X is regular uniserial.PROOF. Inducti<strong>on</strong> <strong>on</strong> dim X. Let ScX be a regular simple submodule <strong>of</strong> X. Byrinducti<strong>on</strong> X/S = s Y is a direct sum <strong>of</strong> regular uniserials. Nowi=1 ir1 1Ext (X/S,S) = s Ext (Y ,S), 0----------LS----------LX----------LX/S----------L0 J-----L (x )iii=1Since X is indecomposable, all x $0. Nowi-( k (if Y has regular socle t S)1 iExt (Y ,S) = {i9 0 (else)-so all Y have regular socle t S.iIf r=1 then X is regular uniserial, so suppose r>2, for c<strong>on</strong>tradicti<strong>on</strong>. Wemay assume that dim Y


DEFINITION.Given a t-orbit <strong>of</strong> regular simples, the corresp<strong>on</strong>ding tube c<strong>on</strong>sists <strong>of</strong> theindecomposable regular modules whose regular compositi<strong>on</strong> factors bel<strong>on</strong>g tothis orbit.PROPERTIES.(1) Every regular indecomposable bel<strong>on</strong>gs to a unique tube.(2) Every indecomposable in a tube has the same period p under t.PROOF. If X is regular uniserial with regular top T and regular length r,iithen t X is regular uniserial with regular top t T and regular length r. Ifiit T=T we must have t X=X.i(3) If the regular simples in a tube <strong>of</strong> period p are S =t S, then theimodules in the tube can be displayed as below. The symbol obtained <strong>by</strong>stacking various S ’s is the corresp<strong>on</strong>ding regular uniserial. We indicateithe inclusi<strong>on</strong> <strong>of</strong> the maximal proper regular submodule Y <strong>of</strong> X <strong>by</strong> Y(-----LX, andthe map <strong>of</strong> X <strong>on</strong>to the quotient Z <strong>of</strong> X <strong>by</strong> its regular socle as X----------)Z. Thetranslati<strong>on</strong> t acts as a shift to the left, and the two vertical dottedlines must be identified.31


§9. Euclidean case. Regular simples and rootsIn this secti<strong>on</strong> we show that the tubes are indexed <strong>by</strong> the projective line,and that the dimensi<strong>on</strong> vectors <strong>of</strong> indecomposable representati<strong>on</strong>s areprecisely the positive roots for G.CONSTRUCTION.Let e be an extending vertex, P=P(e), p=dim P. Clearly =1=.By §7 Lemma 4 there is a unique indecomposable L <strong>of</strong> dimensi<strong>on</strong> d+p.P and L are preprojective, are bricks, and have no self-extensi<strong>on</strong>s.Hom(L,P)=0 for if q:L----------LP then Im q is a summand <strong>of</strong> L, a c<strong>on</strong>tradicti<strong>on</strong>.1Ext (L,P)=0 since ==-=0.dim Hom(P,L)=2 since = 2.LEMMA 1. If 0$qeHom(P,L) then q is m<strong>on</strong>o, Coker q is a regularindecomposable <strong>of</strong> dimensi<strong>on</strong> d, and reg.top(Coker q) $0.ePROOF. Suppose q is not m<strong>on</strong>o. Now Ker q and Im q are preprojective (sincethey embed in P and L), and so they have defect


LEMMA 2. If X is regular, X $0 then Hom(Coker q,X)$0 for some 0$qeHom(P,L).e1PROOF. Ext (L,X)=0, sodim Hom(L,X) = = = dim Hom(P,X) $ 0.Let a,b be a basis <strong>of</strong> Hom(P,L). These give maps a,b:Hom(L,X)----------LHom(P,X).-1If a is an iso, let l be an eigenvalue <strong>of</strong> a b and set q=b-la.If a is n<strong>on</strong>-iso, set q=a.-----Either way, there is 0$feHom(L,X) with fqq=0. Thus f:Coker q----------LX.LEMMA 3. If X is regular simple <strong>of</strong> period p, thenp-1dim X + dim tX + ... + dim t X = d.PROOF. Let dim X=a.If a $0 there is a map Coker q----------LX which must be <strong>on</strong>to.eIf a =0 then d-a is a root, and (d-a) =1, so d-a is a positive root.eeEither way a


THEOREM 1. The assignment q9-----LCoker q gives a bijecti<strong>on</strong> PHom(P,L)----------LW, sothe set <strong>of</strong> tubes is indexed <strong>by</strong> the projective line.PROOF. If U is indecomposable regular <strong>of</strong> dimensi<strong>on</strong> d and reg.top(U) $0,ethen there is a map Coker q----------LU for some q. This map must be epi, since anyproper regular submodule <strong>of</strong> U is zero at e. Thus the map is an isomorphism.If 0$q,q’eHom(P,L) and Coker q=Coker q’, then1Hom(L,P)----------LHom(L,L)----------LHom(L,Coker q)----------LExt (L,P)=0so the compositi<strong>on</strong> L----------LCoker q’ = Coker q lifts to map g:L----------LL. Thus <strong>on</strong>eobtains a commutative diagramq’0----------LP----------LL----------LCoker q’----------L0f1 1g<


REMARKS.~(1) For the Kr<strong>on</strong>ecker quiver A 1•---------------L•,---------------Lthe regular simples all have period <strong>on</strong>e. They are---------------Ll1k k l:meP .---------------Lm~(2) For the 4-subspace quiver, D4with the following orientati<strong>on</strong>u----------LuL•JoJ----------o1 1 1 1• • • •the real regular simples have period 2, and have dimensi<strong>on</strong> vectors1 1 1 1 1 11100 0011 1001 0110 1010 0101The regular simples <strong>of</strong> dimensi<strong>on</strong> vector d are2u----------LuLkJoJ----------o1 1 1 1k k k k&1*with maps ,708&0*,718&1*,718&1*7l8where lek, l$0,1.(3) One can find lists <strong>of</strong> regular simples in the tables in the back <strong>of</strong>V.Dlab & C.M.Ringel, Indecomposable representati<strong>on</strong>s <strong>of</strong> graphs and algebras,Mem. Amer. Math. Soc., 173 (1976). For the different graphs G the tubeswith period $ 1 have period as follows~Amp,q if p>0 arrows go clockwise and q>0 go anticlockwise.~D m-2,2,2m~E 3,3,26~E 4,3,27~E 5,3,28One always has Stubesmore analysis.(period-1) = n-2, which can be proved with a little35


§10. Further topicsIn this secti<strong>on</strong> I want to list some <strong>of</strong> the topics which have attractedinterest in the past, and which are areas <strong>of</strong> present research. The lists <strong>of</strong>papers are <strong>on</strong>ly meant to be pointers: you should c<strong>on</strong>sult the references inthe listed papers for more informati<strong>on</strong>.(1) Kac’s Theorem: for any quiver the dimensi<strong>on</strong> vectors <strong>of</strong> theindecomposables are the positive roots <strong>of</strong> the graph.V.Kac, Infinite root systems, representati<strong>on</strong>s <strong>of</strong> graphs and invarianttheory I,II, Invent. Math 56 (1980), 57-92, J. Algebra 77 (1982),141-162.V.Kac, Root systems, representati<strong>on</strong>s <strong>of</strong> quivers and invariant theory, inSpringer Lec. Notes 996 (1983), 74-108.H.Kraft & Ch.Riedtmann, Geometry <strong>of</strong> representati<strong>on</strong>s <strong>of</strong> quivers, inRepresentati<strong>on</strong>s <strong>of</strong> algebras (ed. P.Webb) L<strong>on</strong>d<strong>on</strong> Math. Soc. Lec. NoteSeries 116 (1986), 109-145.(2) Invariant theory and geometry for the acti<strong>on</strong> <strong>of</strong> the group GL(a) <strong>on</strong> thevariety Rep(a).C.Procesi, The invariant theory <strong>of</strong> n*n matrices, Adv. Math. 19(1976),306-381.C.M.Ringel, The rati<strong>on</strong>al invariants <strong>of</strong> the tame quivers, Invent. Math.,58(1980), 217-239.L.Le Bruyn & C.Procesi, Semisimple representati<strong>on</strong>s <strong>of</strong> quivers, Trans. Amer.Math. Soc. 317 (1990), 585-598.Ch.Riedtmann & A.Sch<strong>of</strong>ield, On open orbits and their complements, J.Algebra130 (1990), 388-411.A.Sch<strong>of</strong>ield, Semi-invariants <strong>of</strong> quivers, J. L<strong>on</strong>d<strong>on</strong> Math. Soc. 43 (1991),385-395.A.Sch<strong>of</strong>ield, Generic representati<strong>on</strong>s <strong>of</strong> quivers, preprint.(3) C<strong>on</strong>structi<strong>on</strong> <strong>of</strong> the Lie algebra and quantum group <strong>of</strong> type G from therepresentati<strong>on</strong>s <strong>of</strong> a quiver with graph G.C.M.Ringel, Hall polynomials for the representati<strong>on</strong>-finite hereditaryalgebras, Adv. Math. 84 (1990), 137-178.C.M.Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990),583-592.G.Lusztig, <strong>Quivers</strong>, perverse sheaves, and quantized enveloping algebras, J.Amer. Math. Soc. 4 (1991), 365-421.A.Sch<strong>of</strong>ield, <strong>Quivers</strong> and Kac-Moody Lie algebras, preprint.36


(4) Auslander-Reiten theory for wild quivers. In particular, the behaviouri<strong>of</strong> the functi<strong>on</strong>s dim Hom(X,t Y) for fixed X,Y.C.M.Ringel, Finite dimensi<strong>on</strong>al hereditary algebras <strong>of</strong> wild representati<strong>on</strong>type, Math.Z., 161 (1978), 235-255.V.Dlab and C.M.Ringel, Eigenvalues <strong>of</strong> Coxeter transformati<strong>on</strong>s and theGelfand-Kirillov dimensi<strong>on</strong> <strong>of</strong> the preprojective algebras, Proc. Amer.Math. Soc. 83 (1981), 228-232.D.Baer, Wild hereditary artin algebras and linear methods, ManuscriptaMath. 55 (1986), 68-82.O.Kerner, Tilting wild algebras, J.L<strong>on</strong>d<strong>on</strong> Math.Soc, 39(1989), 29-47.J.A.de la Peña & M.Takane, Spectral properties <strong>of</strong> Coxeter transformati<strong>on</strong>sand applicati<strong>on</strong>s, Arch. Math. 55 (1990), 120-134.O.Kerner & F.Lukas, Regular modules over wild hereditary algebras,preprint.(5) Tame algebras <strong>of</strong> global dimensi<strong>on</strong> 2, but with properties analogous tothose <strong>of</strong> path algebras: the tame c<strong>on</strong>cealed and tubular algebras.C.M.Ringel, Tame algebras and integral quadratic forms, Springer Lec. Notes1099 (1984).C.M.Ringel, Representati<strong>on</strong> theory <strong>of</strong> finite-dimensi<strong>on</strong>al algebras, inRepresentati<strong>on</strong>s <strong>of</strong> algebras (ed. P.Webb) L<strong>on</strong>d<strong>on</strong> Math. Soc. Lec. NoteSeries 116 (1986), 7-79.I.Assem & A.Skowr<strong>on</strong>ski, Algebras with cycle finite derived categories,Math. Ann., 280 (1988), 441-463.(6) Interpretati<strong>on</strong> <strong>of</strong> the representati<strong>on</strong> theory <strong>of</strong> quivers asn<strong>on</strong>-commutative algebraic geometry.H.Lenzing, Curve singularities arising from the representati<strong>on</strong> theory <strong>of</strong>tame hereditary artin algebras, in Springer Lec.Notes 1177 (1986),199-231.W.Geigle & H.Lenzing, A class <strong>of</strong> weighted projective curves arising inrepresentati<strong>on</strong> theory <strong>of</strong> finite dimensi<strong>on</strong>al algebras, in Springer Lec.Notes 1273 (1987), 265-297.(7) Tame hereditary algebras when the field is not algebraically closed,and the more ring-theoretic aspects <strong>of</strong> hereditary algebras.V.Dlab & C.M.Ringel, Indecomposable representati<strong>on</strong>s <strong>of</strong> graphs and algebras,Mem. Amer. Math. Soc., 173 (1976).C.M.Ringel, Representati<strong>on</strong>s <strong>of</strong> K-species and bimodules, J. Algebra, 41(1976), 269-302.V.Dlab & C.M.Ringel, Real subspaces <strong>of</strong> a vector space over the quaterni<strong>on</strong>s,Can. J. Math. 30 (1978), 1228-1242.A.Sch<strong>of</strong>ield, Universal localizati<strong>on</strong> for hereditary rings and quivers, inSpringer Lec. Notes 1197 (1986).D.Baer, W.Geigle & H.Lenzing, The preprojective algebra <strong>of</strong> a tamehereditary Artin algebra, Comm. Algebra 15 (1987), 425-457.W.<strong>Crawley</strong>-<strong>Boevey</strong>, Regular modules for tame hereditary algebras, Proc.L<strong>on</strong>d<strong>on</strong> Math. Soc., 62 (1991), 490-508.37


(8) Infinite dimensi<strong>on</strong>al representati<strong>on</strong>s, and c<strong>on</strong>trast with the theory <strong>of</strong>abelian groups.C.M.Ringel, Infinite dimensi<strong>on</strong>al representati<strong>on</strong>s <strong>of</strong> finite dimensi<strong>on</strong>alhereditary algebras, Symposia Math., 23 (1979), 321-412.F.Okoh, Indecomposable pure-injective modules over hereditary artinalgebras <strong>of</strong> tame type, Commun. in Algebra 8 (1980), 1939-1941.F.Okoh, Separable modules over finite-dimensi<strong>on</strong>al algebras, J. Algebra, 116(1988), 400-414.~A.Dean & F.Zorzitto, Infinite dimensi<strong>on</strong>al representati<strong>on</strong>s <strong>of</strong> D4, GlasgowMath. J. 32 (1990), 25-33.F.Lukas, A class <strong>of</strong> infinite-rank modules over tame hereditary algebras,preprint.D.Happel & L.Unger, A family <strong>of</strong> infinite-dimensi<strong>on</strong>al n<strong>on</strong>-selfextendingbricks for wild hereditary algebras, preprint38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!