11.07.2015 Views

an experimental overview of neutrino physics - University of ...

an experimental overview of neutrino physics - University of ...

an experimental overview of neutrino physics - University of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

AN EXPERIMENTAL OVERVIEWOF NEUTRINO PHYSICSKate Scholberg, Duke <strong>University</strong>TASI 2008, Boulder, CO


Alexei Smirnov, Neutrino 2008, Christchurch NZ


These lectures:experimentHow do we know what we know?What's within reach for the future?


OUTLINELecture 1: Oscillation experiments ILecture 2: Oscillation experiments IILecture 3: Non­oscillation experiments


Lecture 1Overview <strong>of</strong> <strong>neutrino</strong> sources, detectionNeutrino mass <strong>an</strong>d oscillationsCurrent status <strong>of</strong> oscillation <strong>physics</strong>, part I:Atmospheric parameter spaceSuper­K atmospheric <strong>neutrino</strong>sK2K beamMINOS beamCNGS beam


NEUTRINOS~3 ~1200 174,000 MeV/c 2QuarksuctdsbLeptons~6 ~100 ~4200 MeV/c 20.511 105.6 1778 MeV/c 2eµτν ν νe µ τ●Spin 1/2●Zero charge●3 flavors (families)●Interact only via weak interaction●Tiny mass (< 1 eV)In the St<strong>an</strong>dardModel <strong>of</strong> particle<strong>physics</strong>, neutralpartners to thecharged leptons


Why Do Neutrinos Matter?They are a piece <strong>of</strong> the puzzle: we must underst<strong>an</strong>d theirproperties if we are to underst<strong>an</strong>d fundamental particles <strong>an</strong>dtheir interactions, as well as gain insight into cosmologyWhat are the masses <strong>an</strong>d mixings? Do <strong>neutrino</strong>s violate CP?What is the absolute mass scale?Are <strong>neutrino</strong>s their own <strong>an</strong>tiparticles? Do <strong>neutrino</strong>s haveproperties pointing the way beyond the SM?What astrophysical information c<strong>an</strong> welearn from <strong>neutrino</strong>s?


The Big B<strong>an</strong>gSources <strong>of</strong> wild <strong>neutrino</strong>sThe Atmosphere(cosmic rays)SupernovaeAGN's, GRB'smeV eV keV MeV GeV TeV PeV EeVRadioactivedecay in theEarthThe SunJ. Becker,arXiv:0810.1557


Sources <strong>of</strong> 'tame' <strong>neutrino</strong>sNuclearreactorsProton acceleratorsBeta beamseV keV MeV GeV TeVArtificialradioactivesourcesStoppedpionsourcesMuonstorageringsUsually (but not always) better understood


Neutrino Interactions with MatterCharged Current (CC) Neutral Current (NC)d ud dW +ν ll ­ Z 0ν l+ N → l ± + N'Produces leptonwith flavor correspondingto <strong>neutrino</strong> flavor(must have enough energyto make lepton)ν xν xFlavor­blindDetect energy loss <strong>of</strong> final state charged particle


Neutrino detectors: in general w<strong>an</strong>t to knowCC or NC?What flavor?What energy?Features that matter­ energy resolution<strong>an</strong>d threshold­ flavor/mode tagging­ statistics (lots <strong>of</strong> target massor <strong>neutrino</strong>s or both)­ low background: typicallyunderground to hide fromcosmic rays


AssumeNeutrino Mass <strong>an</strong>d OscillationsHow c<strong>an</strong> we learn about <strong>neutrino</strong> mass?FLAVOR STATES| ν f>weaklyinteractingaresuperpositions<strong>of</strong>MASS STATES| ν m>N| f>=∑i=1U fi| i>unitary mixing matrixIf mixing matrix isnot diagonal,get flavor oscillationsas <strong>neutrino</strong>s propagate(essentially, interference between mass states)


Simple two­flavor case| f>= cos| 1>sin| 2>| g>=−sin| 1>cos| 2>Propagate a dist<strong>an</strong>ce L:| i( t )>=e −iE t i| i( 0 )>~e −im 2 L/2pi|i ( 0 )>Probability <strong>of</strong> detecting flavor g at L:P( f g)=sin 2 2sin 2 1.27m2 LEE in GeVL in km∆m 2 in eV 2Parameters <strong>of</strong> nature to measure: θ, ∆m 2 =m 12­m 22


P( f g)=sin 2 2sin 2 1.27 m2 LE∆m 2 =m 12­m 22If flavor oscillations are observed,then there must be at least onenon­zero mass state* Note: oscillation depends on mass differences,not absolute masses


Probability<strong>of</strong> ch<strong>an</strong>gingflavorP( f f)P ( f g)=sin 2 2sin 2 1.27 m2 LEWavelength=πE/(1.27∆m 2 )P( f g)Amplitude∝ sin 2 2θDist<strong>an</strong>ce traveled∆m 2 , sin 2 2θ are the parameters <strong>of</strong> nature;L, E depend on the <strong>experimental</strong> setup


The Experimental Game●Start with some <strong>neutrino</strong>s (natural or artificial)●Measure (or calculate) flavor composition<strong>an</strong>d energy spectrum●Let them propagate●Measure flavor <strong>an</strong>d energies againHave the flavors <strong>an</strong>d energies ch<strong>an</strong>ged?If so, does thech<strong>an</strong>ge followP ( f g)=sin 2 2sin 2 1.27 m2 LDisappear<strong>an</strong>ce: ν's oscillate into 'invisible' flavore.g. ν e→ ν µat ~MeV energiesAppear<strong>an</strong>ce: directly see new flavore.g. ν µ→ ν τat ~GeV energiesE?


Experimental statisticsOscillationParameterSpaceTwiddleL/EFrequency∝ ∆m 2 L/Efastwiggle2 P ( f g)=sin 2 2sin 1.27 Lm2 Eallowed regionslowwiggleAmplitude∝ sin 2 2θ


More generally, for 3 flavors: e e1U e2U e3 1 U 1U 2U 3 2 U =U 1U 2U 3 3Maki­Nakagawa­Sakata (MNS)matrixP( f g)= fg−4∑ji±2∑ji2 Re(U fiU giU * fjU * gj)sin 1.27m 2ijEIm(U fiU giU * fjU * gj)sin 2.54 m 2ijEFrequently, c<strong>an</strong> use 2­flavor approximatione.g. if ∆m ij 2 >> ∆m jk2LLNote:3 flavors ⇒ 2 independent ∆m ij2


The Three SignalsSOLAR NEUTRINOS e xElectron <strong>neutrino</strong>s from the Sun aredisappearingDist<strong>an</strong>ce ~ 10 8 km, Energy ~ 0.1­15 MeVATMOSPHERIC NEUTRINOS xMuon <strong>neutrino</strong>s created in cosmic ray showersare disappearing on their way through the EarthDist<strong>an</strong>ce ~ 10­13000 km, Energy ~ 0.1­100 GeVACCELERATOR NEUTRINOSElectron <strong>an</strong>ti<strong>neutrino</strong>s appearing in a beam<strong>of</strong> muon <strong>an</strong>ti<strong>neutrino</strong>s at LSNDDist<strong>an</strong>ce ~ 30 m, Energy ~ 30­50 MeV e


The Three Signals in Parameter SpaceLSND eAtmosphericν's xSolar(<strong>an</strong>dreactor)ν's e x(Note: c<strong>an</strong> have only 2 independent ∆m 2 , for 3 <strong>neutrino</strong>s)


First, zoom in to atmospheric ν parameter space x


Atmospheric Neutrinoscosmic ray (p)E~ 0.1­100 GeVL~10­13000 kmπ + µ + e +ν µν µν eAbsolute flux knownto ~15%, but flavor ratioknown to ~5%By geometry, expect flux withup­down symmetry above ~1 GeV(no geomagnetic effects)


Detecting Neutrinos with Cherenkov LightCharged particles produced in <strong>neutrino</strong>interactions emit Cherenkov radiation if β>1/nThresholds (MeV)mE th=e 0.731−1/n 2 1/2µ 150π 200p 1350Angle: cos C= 1θ C= 42 0No. <strong>of</strong> photons ∝ energy lossnfor relativisticparticle in water


Water Cherenkov ν DetectorsPhotons → photoelectrons→ amplified PMT pulses→ digitize charge, time→ reconstruct energy,direction, vertex


Super­Kamiok<strong>an</strong>deOuterdetector:1889outwardlookingPMTsWater Cherenkov detectorin Mozumi, Jap<strong>an</strong>32 kton <strong>of</strong>ultrapure waterInner detector:11,146inward­lookingPMTs1 km underground to keep away from cosmic rays


Event display <strong>of</strong> ahigh energy <strong>neutrino</strong>interaction in SK("snapshot <strong>of</strong> a ν")


Super­K Accident November 12, 20012/3 <strong>of</strong> PMTsdestroyedin chain reactionimplosion


Now haveacrylic/fiberglassshellsfor shockprotectionBack online in 2003 with 47% <strong>of</strong> ID PMTs, full OD (SK II)Full reconstruction over winter '05­'06 (SK III)Electronics/DAQ/<strong>of</strong>fline upgrade this year (SK IV)


Super­K Full Reconstruction Photo Gallery


Atmospheric ν's Experimental Strategy:High energy interactions <strong>of</strong> ν's with nucleonsd uW +ν l l ­ν e+ n → e − + pν e+ p → e + + nν µ+ n → µ − + pν µ+ p → µ + + nTag neutrin<strong>of</strong>lavorby flavor <strong>of</strong>outgoingleptonν l+ N → l ± + N'CC quasi­elastic ("single ring"): cle<strong>an</strong>est sample


Get differentpatternsin Cherenkovlight fore <strong>an</strong>d µ(sim. for otherdetector types)From Cherenkov cone get <strong>an</strong>gle, infer pathlength


Deficit interpreted as two­flavor oscillationSK I+II, preliminaryDisappear<strong>an</strong>ceconsistentwith ν µ→ν τ


Getting more from the data set:parent ν energies for subsamplesFully­containedsingle ring multi ringe­likeµ­likePartially­containedUpward­going muonsstopping throughgoing


SK I+II <strong>an</strong>alysis:Excellent fit tooscillation hypothesis!


What flavors are involved in thisν µ→ ν xdisappear<strong>an</strong>ce?Expect about 80 τ's in sample;hard to distinguish from multi­π events●Pure ν µ→ ν e?No upgoinge­like excesse­likeup­goingdown­going


What flavors are involved in thisν µ→ ν xdisappear<strong>an</strong>ce?Expect about 80 τ's in sample;hard to distinguish from multi­π events●NOT pure ν µ→ ν e: no up­going e­like excess(some admixture in 3­flavor scenario allowed)●Could it be ν µ→ ν sterile?


For ν µ→ ν sterilewould expect:Up­going NC deficit:●ν τ's have NC interactions●ν sterile's "really" disappearAngular distortion at high energy (>~ 5 GeV):qν τZ 0qν τvs.qν sqν s"mattereffects"in theEarthaffectoscillationprobability


Super­K data: select NC multi­ring<strong>an</strong>d high­energy eventsSK I dataSK, PRL 85(2000) 3999­4003ν µ→ ν τν µ→ ν sterilemulti­ringPCupmuNC events:no upgoingHigh energy events:(partially contained<strong>an</strong>d upgoing muons)deficit no <strong>an</strong>gular distortionCurrent preliminary SK I+II ν µ→ ν sterileexclusion: 7.3


What flavors are involved in thisν µ→ ν xdisappear<strong>an</strong>ce?Expect about 80 τ's in sample;hard to distinguish from multi­π events●NOT pure ν µ→ ν e: no up­going e­like excess(some admixture in 3­flavor scenario allowed)●NOT pure ν → µν sterile: would expect* up­going NC deficit* <strong>an</strong>gular distortion <strong>of</strong> high E events} notseen


What flavors are involved in thisν µ→ ν xdisappear<strong>an</strong>ce?Expect about 80 τ's in SK I sample;hard to distinguish from multi­π events●NOT pure ν µ→ ν e: no up­going e­like excess(some admixture in 3­flavor scenario allowed)●NOT pure ν → µν sterile: would expect* up­going NC deficit} not* <strong>an</strong>gular distortion <strong>of</strong> high E events seen●C<strong>an</strong> we check ν µ→ ν τdirectly ?


Tau Appear<strong>an</strong>cein Super­KTypical MC τ event Energy Threshold:3.5 GeVe or or hadronsHadronsExpect about 80 τ'sin SK I sample... but they arehard to distinguishfrom other multi­ringν interaction events


Select τ­like events: (energy, shape, rings, decay electrons)2 <strong>an</strong>alyses (likelihood <strong>an</strong>d neural network)yield consistent <strong>an</strong>swersSK, PRL 97(2006) 171801MC expectation:78.4±27 τ'sNeural Network(39% efficiency)From fit toτ­like sample:(shaded)16.0134±48 stat ± 27.2τ'sConsistent with (expected) slight excess <strong>of</strong> upgoing τ's


What flavors are involved in thisν µ→ ν xdisappear<strong>an</strong>ce?Expect about 80 τ's in sample;hard to distinguish from multi­π events●NOT pure ν µ→ ν e: no up­going e­like excess(some admixture in 3­flavor scenario allowed)●NOT pure ν → µν sterile: would expect* up­going NC excess* <strong>an</strong>gular distortion <strong>of</strong> high E events●CONSISTENT WITH ν µ→ ν τ:~2.4σ excess <strong>of</strong> up­going "τ­like" events} notseen


Resolving the "wiggle" with SK atm ν'sP( f g)=sin 2 2sin 2 1.27m2 LEFC/PC eventsPoor resolution in L/E (~10's <strong>of</strong> %) washes it out⇒ hard to distinguish oscillationfrom exotic kinds <strong>of</strong> disappear<strong>an</strong>ce


Select events for which resolution in L/E is good: (


Similar plot with this selected subset:Decoherence ruled out at 5.0Decay ruled out at 4.1"the dip"Seems tobe reallywiggling!


Improves ∆m 2 resolution a littleOscillation fit w/high­resolution L/E data sampleSt<strong>an</strong>dard <strong>an</strong>alysis


Next: INDEPENDENT TEST <strong>of</strong>atmospheric <strong>neutrino</strong> oscillationsusing a well­understood ν beamE ν~ GeV, L~ 100's <strong>of</strong> km for same L/E2LP( f g)=sin 2 2sin 1.27m2 ELONG BASELINE EXPERIMENTSCompare flux, flavor <strong>an</strong>denergy spectrum atnear <strong>an</strong>d far detectors


K2K (KEK to Kamioka)Long BaselineExperiment~ 1 GeV muon <strong>neutrino</strong>s12 GeV protons on Al target+ π focusing horn+ decay pipe for pionsEvents matched w/GPS


The Neutrino Beamline at KEK


The Near Detector (300 m away)(scibar)Characterize the ν beam for extrapolation to SK


Results from K2K: full data sampleSingle­ringµ­likeeventsTotal 112beam eventsobserved;expect 158±9Suppression observed,spectral distortionconsistent withoscillations2 P ( f g)=sin 2 2sin 1.27 Lm2 E


K2K Allowed Oscillation ParametersConsistentwith SKatmosphericν's !SK INo­oscillationexcluded at>4σ


Current state<strong>of</strong> the art forlong baselinedisappear<strong>an</strong>ceoscillation:MINOS(Main InjectorNeutrino OscillationSearch)Fermilab to Minnesota,735 km baselinemuon <strong>neutrino</strong> beam


NuMI Beamline at FermilabH. Gallagher, Nu200893% muon <strong>neutrino</strong>in low energy mode


MINOS Detectors:near <strong>an</strong>d fariron plates+ pl<strong>an</strong>es <strong>of</strong>scintillating fibersw/ magnetic fieldMagnetic fieldallows <strong>neutrino</strong> vs<strong>an</strong>ti<strong>neutrino</strong> selectionν µ+ n → µ − + pν µ+ p → µ + + n


Event flavors selected based on topology


Results <strong>of</strong> MINOS muon <strong>neutrino</strong> disappear<strong>an</strong>ce <strong>an</strong>alysisH. Gallagher, Nu2008SpectraldistortionobservedP( f g)=sin 2 2 sin 2 1.27 m2 LE


Allowed oscillation parameters from MINOSTightestresolutionin m 2


CNGS: CERN Neutrinos to Gr<strong>an</strong> Sasso~20 GeV ν µbeam, 732 km baseline


The CNGS beamlineDesignedto searchfor appear<strong>an</strong>ceneed highenergy beam tomakethemG. Rosa, Nu2008


Detectors at LNGS are optimizedfor τ appear<strong>an</strong>cefine­grain imaging detectors tos earch explicitly for τ decaysOPERA, ICARUS


OPERAlead/emulsion s<strong>an</strong>dwich +active scintillator strip pl<strong>an</strong>es +magnetic spectrometerExtract bricks forsc<strong>an</strong>ning ifelectronic detectorindicates τ­like event1.35 kton target mass(~90% complete)


First long dist<strong>an</strong>ce data in 2007G. Rosa, Nu200838 in­target(non­tau)events


Expectations for 5 years <strong>of</strong> OPERA runningG. Rosa, Nu2008totalexpectedsignal in targettotalexpectedbackground


ICARUSLiquid Argon Time ProjectionChamberElectronic fine­grain imaging"Digital BubbleChamber"Drift ionizationcharge:­ space collection<strong>of</strong> charge givesx,y coordinate­ drift time givesz coordinate


600 ton detector at LNGS awaiting fill


Summary <strong>of</strong> atmospheric ν parameter space­ Super­K has cle<strong>an</strong>,high statistics atmospheric disappear<strong>an</strong>ce signal;good evidence it's ­ K2K confirmed the oscillationhypothesis with disappear<strong>an</strong>ce<strong>of</strong> beam <strong>neutrino</strong>s­ MINOS now has highestprecision m 2 measurement­ Soon: CNGS experimentsto explicitly see appear<strong>an</strong>ce


Lecture 2Current status <strong>of</strong> oscillation <strong>physics</strong>, part II:Solar <strong>neutrino</strong> experimentsReactor <strong>neutrino</strong> experimentsShort baseline experimentsWhat's next for oscillation <strong>physics</strong>Long baseline experimentsReactor experiments

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!