11.07.2015 Views

Fair division of indivisible goods under risk - Sylvain Bouveret

Fair division of indivisible goods under risk - Sylvain Bouveret

Fair division of indivisible goods under risk - Sylvain Bouveret

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

IntroductionA toy-example :ExamplesA set <strong>of</strong> bottles <strong>of</strong> wine to share. . .Objects : bottles <strong>of</strong> wineAgents : wine amateurs<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>3 / 19


IntroductionA toy-example :ExamplesA set <strong>of</strong> bottles <strong>of</strong> wine to share. . .Objects : bottles <strong>of</strong> wineAgents : wine amateursA more realistic example :A co-funded Earth-observing satellite to operate. . .Agents : the countries that have co-funded thesatelliteObjects : observation requests posted by theagents<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>3 / 19


IntroductionCentralized allocationA classical way to solve the problem :Ask the agents to give a score (weight, utility. . .) w(o) to each object oConsider that they have additive preferences → u(π) = ∑ o∈π w(o)Find an allocation that maximizes min i∈A u(π(i)) (egalitarian solution[Rawls, 1971])The Santa-Claus problem [Bansal and Sviridenko, 2006]Bansal, N. and Sviridenko, M. (2006).The santa claus problem.In Proceedings <strong>of</strong> the thirty-eighth annual ACM symposium on Theory <strong>of</strong> computing, pages 31–40. ACM.<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>4 / 19


IntroductionAdding uncertaintyNow, we might be unsure <strong>of</strong> the quality <strong>of</strong> the objects when they areallocated.<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>5 / 19


IntroductionAdding uncertaintyNow, we might be unsure <strong>of</strong> the quality <strong>of</strong> the objects when they areallocated.The bottles can be tainted.The weather can be cloudy over the observed area.<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>5 / 19


IntroductionAdding uncertaintyNow, we might be unsure <strong>of</strong> the quality <strong>of</strong> the objects when they areallocated.The bottles can be tainted.The weather can be cloudy over the observed area.If we have some probabilistic information on the quality <strong>of</strong> an object, howcan we take it into account in the allocation process ?<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>5 / 19


IntroductionAdding uncertaintyNow, we might be unsure <strong>of</strong> the quality <strong>of</strong> the objects when they areallocated.The bottles can be tainted.The weather can be cloudy over the observed area.If we have some probabilistic information on the quality <strong>of</strong> an object, howcan we take it into account in the allocation process ?We assume that :each object can be in two possible states : good or bad (bad = utility 0)each object o has a probability p(o) to be goodthese probabilities are independent<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>5 / 19


The modelResource allocation <strong>under</strong> <strong>risk</strong>Resource allocation problemA tuple (A,O,W,p) with :A = {1,..,n} a set <strong>of</strong> agentsO = {1,..,l} a set <strong>of</strong> objectsW ∈ M n,l (R + ) a matrix <strong>of</strong> weights (given by agents to objects)p ∈ [0,1] l the probability for each object to be in good state.<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>6 / 19


The modelResource allocation <strong>under</strong> <strong>risk</strong>Resource allocation problemA tuple (A,O,W,p) with :A = {1,..,n} a set <strong>of</strong> agentsO = {1,..,l} a set <strong>of</strong> objectsW ∈ M n,l (R + ) a matrix <strong>of</strong> weights (given by agents to objects)p ∈ [0,1] l the probability for each object to be in good state.Notations :S : the set <strong>of</strong> 2 l states <strong>of</strong> the worldgood(s) ⊆ O : the set <strong>of</strong> objects in good states in s ∈ Su i,s (π) the utility <strong>of</strong> agent i in s with allocation π.<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>6 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>7 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }Preferences :j 1 j 2 j 3i 1 5 4 2i 2 4 1 4<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>7 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }Preferences :j 1 j 2 j 3i 1 5 4 2i 2 4 1 4Risk :∀j, p j = 0.5<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>7 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }Preferences :j 1 j 2 j 3i 1 5 4 2i 2 4 1 4Risk :∀j, p j = 0.5Allocations :π = 〈{j 1, j 2}, {j 3}〉π ′ = 〈{j 1}, {j 2, j 3}〉<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>7 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }Preferences :Risk :Allocations :j 1 j 2 j 3i 1 5 4 2i 2 4 1 4∀j, p j = 0.5π = 〈{j 1, j 2}, {j 3}〉π ′ = 〈{j 1}, {j 2, j 3}〉Pr<strong>of</strong>iles :π −→π ′ −→[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4[0 0 0 0 5 5 5 50 4 1 5 0 4 1 5]]<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>7 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }Preferences :Risk :Allocations :j 1 j 2 j 3i 1 5 4 2i 2 4 1 4∀j, p j = 0.5π = 〈{j 1, j 2}, {j 3}〉π ′ = 〈{j 1}, {j 2, j 3}〉Pr<strong>of</strong>iles :π −→π ′ −→[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4[0 0 0 0 5 5 5 50 4 1 5 0 4 1 5]]<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>7 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }Preferences :Risk :Allocations :j 1 j 2 j 3i 1 5 4 2i 2 4 1 4∀j, p j = 0.5π = 〈{j 1, j 2}, {j 3}〉π ′ = 〈{j 1}, {j 2, j 3}〉Pr<strong>of</strong>iles :π −→π ′ −→[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4[0 0 0 0 5 5 5 50 4 1 5 0 4 1 5]]<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>7 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }Preferences :Risk :Allocations :j 1 j 2 j 3i 1 5 4 2i 2 4 1 4∀j, p j = 0.5π = 〈{j 1, j 2}, {j 3}〉π ′ = 〈{j 1}, {j 2, j 3}〉Pr<strong>of</strong>iles :π −→π ′ −→[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4[0 0 0 0 5 5 5 50 4 1 5 0 4 1 5]]<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>7 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }Preferences :Risk :Allocations :j 1 j 2 j 3i 1 5 4 2i 2 4 1 4∀j, p j = 0.5π = 〈{j 1, j 2}, {j 3}〉π ′ = 〈{j 1}, {j 2, j 3}〉Pr<strong>of</strong>iles :π −→π ′ −→[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4[0 0 0 0 5 5 5 50 4 1 5 0 4 1 5]]<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>7 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }Preferences :Risk :Allocations :j 1 j 2 j 3i 1 5 4 2i 2 4 1 4∀j, p j = 0.5π = 〈{j 1, j 2}, {j 3}〉π ′ = 〈{j 1}, {j 2, j 3}〉Pr<strong>of</strong>iles :π −→π ′ −→[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4[0 0 0 0 5 5 5 50 4 1 5 0 4 1 5]]<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>7 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }π[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4][0 0 0 0 5 5 5 5π ′ 0 4 1 5 0 4 1 5]<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>8 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }π[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4]E−→[4.52][0 0 0 0 5 5 5 5π ′ 0 4 1 5 0 4 1 5]<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>8 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }π[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4]E−→[ ]4.52⏐↓ min[0 0 0 0 5 5 5 5π ′ 0 4 1 5 0 4 1 5]2<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>8 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }π[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4]E−→[ ]4.52⏐↓ min[0 0 0 0 5 5 5 5π ′ 0 4 1 5 0 4 1 5]E−→2[2.52.5]<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>8 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }π[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4]E−→[ ]4.52⏐↓ min[0 0 0 0 5 5 5 5π ′ 0 4 1 5 0 4 1 5]E−→2[ ]2.52.5⏐↓ min2.5<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>8 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }π[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4]E−→[ ]4.52⏐↓ min[0 0 0 0 5 5 5 5π ′ 0 4 1 5 0 4 1 5]E−→2[ ]2.52.5⏐↓ min2.5π ′ ≽ E,minπ<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>8 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }π[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4⏐↓ min[0 0 0 4 0 4 0 4[0 0 0 0 5 5 5 5π ′ 0 4 1 5 0 4 1 5]]]E−→E−→[ ]4.52⏐↓min2[ ]2.52.5⏐↓ min2.5π ′ ≽ E,minπ<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>8 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }π[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4⏐↓ min[0 0 0 4 0 4 0 4[0 0 0 0 5 5 5 5π ′ 0 4 1 5 0 4 1 5]E−→[ ]4.52⏐↓min]E−→ 1.5\2]E−→[ ]2.52.5⏐↓ min2.5π ′ ≽ E,minπ<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>8 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4⏐π↓ min[0 0 0 4 0 4 0 4[0 0 0 0 5 5 5 5π ′ 0 4 1 5 ⏐↓ 0 4 1 5min[0 0 0 0 0 4 1 5]E−→[ ]4.52⏐↓min]E−→ 1.5\2]]E−→[ ]2.52.5⏐↓min2.5π ′ ≽ E,minπ<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>8 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4⏐π↓ min[0 0 0 4 0 4 0 4[0 0 0 0 5 5 5 5π ′ 0 4 1 5 ⏐↓ 0 4 1 5min[0 0 0 0 0 4 1 5]E−→[ ]4.52⏐↓min]E−→ 1.5\2]E−→[ ]2.52.5⏐↓min]E−→ 1.25\2.5π ′ ≽ E,minπ<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>8 / 19


The modelExample3 objects {j 1 ,j 2 ,j 3 }, 2 agents {i 1 ,i 2 }[0 0 4 4 5 5 9 90 4 0 4 0 4 0 4⏐π↓ min[0 0 0 4 0 4 0 4[0 0 0 0 5 5 5 5π ′ 0 4 1 5 ⏐↓ 0 4 1 5min[0 0 0 0 0 4 1 5]E−→[ ]4.52⏐↓min]E−→ 1.5\2]E−→[ ]2.52.5⏐↓min]E−→ 1.25\2.5π ′ ≽ E,minπ or π ≽ min,Eπ ′ !<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>8 / 19


The modelTiming effect [Myerson, 1981]<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>9 / 19


The modelTiming effect [Myerson, 1981]Ex-ante collective utility( ∑acu(π) = min Pr(s) · u i,s (π)i∈As∈S)<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>9 / 19


The modelTiming effect [Myerson, 1981]Ex-ante collective utility( ∑acu(π) = min Pr(s) · u i,s (π)i∈As∈S)Ex-post collective utilitypcu(π) = ∑ ( )Pr(s) · min u i,s(π)i∈As∈S<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>9 / 19


The modelTiming effect [Myerson, 1981]Ex-ante collective utility( ∑acu(π) = min Pr(s) · u i,s (π)i∈As∈S)Ex-post collective utilitypcu(π) = ∑ ( )Pr(s) · min u i,s(π)i∈As∈SProposition∀π,acu(π) ≥ pcu(π)<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>9 / 19


Ex-ante vs ex-post computationex-ante optimizationacu(π) = min ( ∑ Pr(s) · u i,s (π))i∈As∈S<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>10 / 19


Ex-ante vs ex-post computationex-ante optimizationacu(π) = min ( ∑ Pr(s) · u i,s (π))i∈As∈S<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>10 / 19


Ex-ante vs ex-post computationex-ante optimizationacu(π) = min ( ∑ Pr(s) ·i∈As∈S∑j∈π i ∩good(s)w ij )<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>10 / 19


Ex-ante vs ex-post computationex-ante optimizationacu(π) = min ( ∑ Pr(s) ·i∈As∈S∑j∈π i ∩good(s)w ij )<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>10 / 19


Ex-ante vs ex-post computationex-ante optimizationacu(π) = min ( ∑ Pr(s) ·i∈As∈S∑j∈π i ∩good(s)w ij )<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>10 / 19


Ex-ante vs ex-post computationex-ante optimizationacu(π) = min ( ∑ ∑Pr(s) · [j ∈ good(s)] · w ij )i∈Aj∈π is∈S<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>10 / 19


Ex-ante vs ex-post computationex-ante optimizationacu(π) = min ( ∑ ∑Pr(s) · [j ∈ good(s)] · w ij )i∈Aj∈π is∈S<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>10 / 19


Ex-ante vs ex-post computationex-ante optimizationacu(π) = mini∈A ( ∑ j∈π i∑Pr(s) · [j ∈ good(s)] ·w ij )s∈S} {{ }p j<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>10 / 19


Ex-ante vs ex-post computationex-ante optimizationacu(π) = mini∈A ( ∑ j∈π i∑Pr(s) · [j ∈ good(s)] ·w ij )s∈S} {{ }p jThe ˜w ij = p j w ij can be pre-computed in linear time<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>10 / 19


Ex-ante vs ex-post computationex-ante optimizationacu(π) = mini∈A ( ∑ j∈π i∑Pr(s) · [j ∈ good(s)] ·w ij )s∈S} {{ }p jThe ˜w ij = p j w ij can be pre-computed in linear timeEx-ante collective utility∑acu(π) = mini∈A˜w ijj∈π i<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>10 / 19


Ex-ante vs ex-post computationex-ante optimizationacu(π) = mini∈A ( ∑ j∈π i∑Pr(s) · [j ∈ good(s)] ·w ij )s∈S} {{ }p jThe ˜w ij = p j w ij can be pre-computed in linear timeEx-ante collective utilityRisk-free equivalent problem∑acu(π) = min˜w iji∈Aj∈π i(A,O,W,p) ⇐⇒ (A,O, ˜W)<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>10 / 19


Ex-ante vs ex-post computationEx-post optimizationpcu(π) = ∑ ( )Pr(s) · min u i,s(π)i∈As∈S<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>11 / 19


Ex-ante vs ex-post computationEx-post optimizationpcu(π) = ∑ ( )Pr(s) · min u i,s(π)i∈As∈S. . . Even the computation <strong>of</strong> the ex-post utility <strong>of</strong> a given allocation isnot easy :we cannot pre-compute expected utilitieswe must enumerate all the states <strong>of</strong> the world<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>11 / 19


Ex-ante vs ex-post computationEx-post optimizationpcu(π) = ∑ ( )Pr(s) · min u i,s(π)i∈As∈S. . . Even the computation <strong>of</strong> the ex-post utility <strong>of</strong> a given allocation isnot easy :we cannot pre-compute expected utilitieswe must enumerate all the states <strong>of</strong> the world→ Computation <strong>of</strong> ex-post utility suspected to be #P-complete.<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>11 / 19


Ex-ante vs ex-post computationEx-post optimizationpcu(π) = ∑ ( )Pr(s) · min u i,s(π)i∈As∈S. . . Even the computation <strong>of</strong> the ex-post utility <strong>of</strong> a given allocation isnot easy :we cannot pre-compute expected utilitieswe must enumerate all the states <strong>of</strong> the world→ Computation <strong>of</strong> ex-post utility suspected to be #P-complete.Branch on objects (good / bad states) → possible heuristics : smallshares first.<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>11 / 19


Ex-ante vs ex-post computationExample2 agents {i 1 ,i 2 }, 3 objects {j 1 ,j 2 ,j 3 }, π = 〈{j 1 ,j 2 },{j 3 }〉<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>12 / 19


Ex-ante vs ex-post computationExample2 agents {i 1 ,i 2 }, 3 objects {j 1 ,j 2 ,j 3 }, π = 〈{j 1 ,j 2 },{j 3 }〉•j 3pcu(π) =j 1j 2<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>12 / 19


Ex-ante vs ex-post computationExample2 agents {i 1 ,i 2 }, 3 objects {j 1 ,j 2 ,j 3 }, π = 〈{j 1 ,j 2 },{j 3 }〉•j 3pcu(π) =Bj 1j 2p = 0.5<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>12 / 19


Ex-ante vs ex-post computationExample2 agents {i 1 ,i 2 }, 3 objects {j 1 ,j 2 ,j 3 }, π = 〈{j 1 ,j 2 },{j 3 }〉•j 3j 1BBGpcu(π) =+ 0.5 × min{?,0}j 2B G B Gp = 0.5<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>12 / 19


Ex-ante vs ex-post computationExample2 agents {i 1 ,i 2 }, 3 objects {j 1 ,j 2 ,j 3 }, π = 〈{j 1 ,j 2 },{j 3 }〉•j 3j 1BBGGpcu(π) =+ 0.5 × min{?,0}j 2B G B Gp = 0.5<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>12 / 19


Ex-ante vs ex-post computationExample2 agents {i 1 ,i 2 }, 3 objects {j 1 ,j 2 ,j 3 }, π = 〈{j 1 ,j 2 },{j 3 }〉•j 3j 1BBGBGpcu(π) =+ 0.5 × min{?,0}j 2B G B Gp = 0.25<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>12 / 19


Ex-ante vs ex-post computationExample2 agents {i 1 ,i 2 }, 3 objects {j 1 ,j 2 ,j 3 }, π = 〈{j 1 ,j 2 },{j 3 }〉•j 3j 1BBGBGpcu(π) =+ 0.5 × min{?,0}+ 0.125 × min{0,4}j 2B G B GBp = 0.125<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>12 / 19


Ex-ante vs ex-post computationExample2 agents {i 1 ,i 2 }, 3 objects {j 1 ,j 2 ,j 3 }, π = 〈{j 1 ,j 2 },{j 3 }〉•j 3j 1j 2BBGB G B GBBGGpcu(π) =+ 0.5 × min{?,0}+ 0.125 × min{0,4}+ 0.125 × min{4,4}p = 0.125<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>12 / 19


Ex-ante vs ex-post computationExample2 agents {i 1 ,i 2 }, 3 objects {j 1 ,j 2 ,j 3 }, π = 〈{j 1 ,j 2 },{j 3 }〉•j 3j 1j 2BBGB G B GBBGGBGpcu(π) =+ 0.5 × min{?,0}+ 0.125 × min{0,4}+ 0.125 × min{4,4}+ 0.125 × min{5,4}p = 0.125<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>12 / 19


Ex-ante vs ex-post computationExample2 agents {i 1 ,i 2 }, 3 objects {j 1 ,j 2 ,j 3 }, π = 〈{j 1 ,j 2 },{j 3 }〉•j 3j 1j 2BBGB G B GBBp = 0.125GGBGGpcu(π) =+ 0.5 × min{?,0}+ 0.125 × min{0,4}+ 0.125 × min{4,4}+ 0.125 × min{5,4}+ 0.125 × min{9,4}<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>12 / 19


Ex-ante vs ex-post computationExample2 agents {i 1 ,i 2 }, 3 objects {j 1 ,j 2 ,j 3 }, π = 〈{j 1 ,j 2 },{j 3 }〉•j 3j 1j 2BBGB G B GBBp = 0.125GGBGGpcu(π) =+ 0.5 × min{?,0}+ 0.125 × min{0,4}+ 0.125 × min{4,4}+ 0.125 × min{5,4}+ 0.125 × min{9,4}= 1.5<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>12 / 19


Ex-post optimization – Exact proceduresBranch and BoundVariables : objectsQuestion : to whom is it allocated ?Heuristics : give to the poorest agent the object she prefersPossible cuts : ex-ante collective utility acu <strong>of</strong> a virtual allocation whichgives to all agents all the still unallocated objectsThe ex-post utility is computed only at each leaf <strong>of</strong> the search tree<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>13 / 19


Ex-post optimization – Exact proceduresMixed utilityThe ex-post utility is computed only at each leaf <strong>of</strong> the search tree. . .<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>14 / 19


Ex-post optimization – Exact proceduresMixed utilityThe ex-post utility is computed only at each leaf <strong>of</strong> the search tree. . .. . . but it is still very expansive. . .<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>14 / 19


Ex-post optimization – Exact proceduresMixed utilityThe ex-post utility is computed only at each leaf <strong>of</strong> the search tree. . .. . . but it is still very expansive. . .Wouldn’t it be possible to define and use a better approximation thanacu ?<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>14 / 19


Ex-post optimization – Exact proceduresMixed utilityThe ex-post utility is computed only at each leaf <strong>of</strong> the search tree. . .. . . but it is still very expansive. . .Wouldn’t it be possible to define and use a better approximation thanacu ?Idea <strong>of</strong> the mixed utility mcu(π,Ω) :a set Ω <strong>of</strong> objects which are computed ex-anteobjects from O \ Ω are still computed ex-postwe still use acu as an upper bound in the search treewe use mcu(π,Ω) at each leaf to avoid unnecessary ex-post computations<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>14 / 19


Ex-post optimization – Exact proceduresSome resultsn l (a) (b) (c) (d)5 ≤ 9 100 100 100 1005 10 49 52 89 1005 11 1 1 10 525 ≥ 12 0 0 0 0n l (a) (b) (c) (d)7 ≤ 8 100 100 100 1007 9 27 47 100 1007 10 0 1 19 327 ≥ 11 0 0 0 0Figure: Number <strong>of</strong> instances solved in 30 seconds (over 100 instances)10010090(b)90tps calculs ex-post (% temps total)8070(a)6050(c)4030(d)20106 7 8 9 10 11tps calculs ex-post (% temps total)80(b)70(a)605040(c)302010(d)07 7.5 8 8.5 9 9.5 10objetsobjetsFigure: Percentage <strong>of</strong> the total time used for ex-post computations for 5 and7 agents (average over 100 instances)<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>15 / 19


Ex-post optimization – Incomplete searchAn approached algorithmApproximate computation <strong>of</strong> pcu :with mixed collective utilitywith a Monte-Carlo procedure<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>16 / 19


Ex-post optimization – Incomplete searchAn approached algorithmApproximate computation <strong>of</strong> pcu :with mixed collective utilitywith a Monte-Carlo procedureCustomized greedy stochastic algorithm [Bresina, 1996] :"best" solutions storedexact evaluation <strong>of</strong> stored solutions<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>16 / 19


Ex-post optimization – Incomplete searchSome results110.90.80.90.70.8ucp/ucp*0.60.50.4N=200ucp/ucp*0.70.6|Oep| = 80.3N=10000.5|Oep| = 40.20.1N=50000.400 20 40 60 80 100 120temps(s)(a) Monte Carlo approximation, fordifferent numbers <strong>of</strong> draws0.30 20 40 60 80 100 120temps(s)(b) Mixed utility based approximation, fordifferent sizes <strong>of</strong> ΩFigure: Evolution <strong>of</strong> the best solution (average over 100 instances with 5agents and 12 objects)<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>17 / 19


ConclusionSummaryThe model : a Santa-Claus problem <strong>under</strong> <strong>risk</strong>two possible states for each objecteach object is in good state with a given probabilitytwo possible egalitarian collective utility functions : ex-ante and ex-postEx-ante case can be reduced to <strong>risk</strong>-free allocationEx-post optimization :a (supposed) quite harder problema branch-and-bound algorithm with mixed utilitysome incomplete methods<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>18 / 19


ConclusionFuture workOn this problem :Missing complexity resultHow to choose the objects in Ω for mixed utility ?Better algorithms ?Other problems :Matching problems (l ≤ n) with other CUFRelaxing probabilistic independence (Bayesian networks)More possible states for each object<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>19 / 19


ConclusionReferencesBresina, J. L. (1996).Heuristic-Biased Stochastic Sampling.In Proceedings <strong>of</strong> the 13th AAAI Conference on Artificial Intelligence (AAAI-96), pages 271–278, Portland, OR.Myerson, R. B. (1981).Utilitarianism, egalitarianism, and the timing effect in social choice problems.Econometrica, 49(4) :883–897.Rawls, J. (1971).A Theory <strong>of</strong> Justice.Harvard University Press, Cambridge, Mass.Traduction française disponible aux éditions du Seuil.<strong>Fair</strong> <strong>division</strong> <strong>of</strong> <strong>indivisible</strong> <strong>goods</strong> <strong>under</strong> <strong>risk</strong>20 / 20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!