23.11.2012 Views

Seasonal dynamics of rotifers in relation to physical - Limnoreferences

Seasonal dynamics of rotifers in relation to physical - Limnoreferences

Seasonal dynamics of rotifers in relation to physical - Limnoreferences

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Hydrobiologia 491: 101–109, 2003.<br />

E. van Donk, M. Boersma & P. Spaak (eds), Recent Developments <strong>in</strong> Fundamental and Applied Plank<strong>to</strong>n Research.<br />

© 2003 Kluwer Academic Publishers. Pr<strong>in</strong>ted <strong>in</strong> the Netherlands.<br />

<strong>Seasonal</strong> <strong>dynamics</strong> <strong>of</strong> <strong>rotifers</strong> <strong>in</strong> <strong>relation</strong> <strong>to</strong> <strong>physical</strong> and chemical<br />

conditions <strong>of</strong> the river Yamuna (Delhi), India<br />

J. Arora & N. K. Mehra ∗<br />

Limnology Unit, Department <strong>of</strong> Zoology, University <strong>of</strong> Delhi, Delhi 110 007, India<br />

E-mail: nareshmehra@hotmail.com ( ∗ Author for correspondence)<br />

Received 13 June 2001; <strong>in</strong> revised form 27 December 2001; accepted 13 June 2002<br />

Key words: backwaters, <strong>rotifers</strong>, species composition, seasonal variations, <strong>physical</strong> and chemical variables,<br />

river Yamuna<br />

Abstract<br />

We exam<strong>in</strong>ed the seasonal succession <strong>of</strong> the rotifer assemblages <strong>in</strong> the backwaters <strong>of</strong> the Delhi segment <strong>of</strong> the river<br />

Yamuna <strong>in</strong> <strong>relation</strong> <strong>to</strong> 18 <strong>physical</strong>–chemical variables across one year. These shallow, weedy, and perennial aquatic<br />

bio<strong>to</strong>pes support a diverse and abundant zooplank<strong>to</strong>n. A <strong>to</strong>tal <strong>of</strong> 89 rotifer species belong<strong>in</strong>g <strong>to</strong> 34 genera and 18<br />

families were recorded. Their seasonal <strong>dynamics</strong> were characterized by (i) maxima and m<strong>in</strong>ima <strong>in</strong> <strong>to</strong>tal densities<br />

dur<strong>in</strong>g spr<strong>in</strong>g–early summer and w<strong>in</strong>ter, respectively; (ii) <strong>in</strong>dividual species reach<strong>in</strong>g maximum and m<strong>in</strong>imum<br />

densities dur<strong>in</strong>g different seasons; and (iii) an absence <strong>of</strong> seasonal variation <strong>in</strong> species diversity. The relative<br />

importance <strong>of</strong> various <strong>physical</strong> and chemical fac<strong>to</strong>rs <strong>in</strong> determ<strong>in</strong><strong>in</strong>g rotifer community structure and seasonal<br />

succession is evaluated and Pearson-product moment cor<strong>relation</strong>s between <strong>physical</strong>–chemical variates and rotifer<br />

densities are analyzed and discussed.<br />

Introduction<br />

The spatial and temporal <strong>dynamics</strong> <strong>of</strong> rotifer communities<br />

are <strong>in</strong>fluenced by a variety <strong>of</strong> <strong>physical</strong>, chemical<br />

and biological fac<strong>to</strong>rs, whose relative role <strong>in</strong> structur<strong>in</strong>g<br />

rotifer assemblages and controll<strong>in</strong>g seasonal<br />

<strong>dynamics</strong> may vary with<strong>in</strong> or between biological systems<br />

(Hunter & Price, 1992). In general, both biotic<br />

and abiotic fac<strong>to</strong>rs def<strong>in</strong>e the microhabitat boundaries<br />

for rotifer species by partition<strong>in</strong>g the environment<br />

and m<strong>in</strong>imiz<strong>in</strong>g competitive <strong>in</strong>teractions (Nogrady et<br />

al., 1993). Biotic fac<strong>to</strong>rs such as food quality and<br />

quantity (Dumont, 1977), exploitative and <strong>in</strong>terference<br />

competition (May & Jones, 1989), predation<br />

(Williamson, 1983) and parasitism (Ruttner-Kolisko,<br />

1977) may <strong>in</strong>ter alia <strong>in</strong>duce changes <strong>in</strong> rotifer communities<br />

favour<strong>in</strong>g one species over another. Further,<br />

<strong>rotifers</strong> are highly susceptible <strong>to</strong> <strong>physical</strong> and chemical<br />

changes <strong>in</strong> their environment due <strong>to</strong> their small size<br />

and permeable <strong>in</strong>tegument (Nogrady et al., 1993). The<br />

various fac<strong>to</strong>rs that <strong>in</strong>fluence the <strong>dynamics</strong> <strong>of</strong> natural<br />

rotifer populations are: temperature, oxygen concentration,<br />

light <strong>in</strong>tensity and pH (H<strong>of</strong>mann, 1977). In<br />

101<br />

addition, variables related <strong>to</strong> the trophic status <strong>of</strong> the<br />

aquatic ecosystem such as nutrient and chlorophyll<br />

concentrations and conductivity determ<strong>in</strong>e the presence<br />

<strong>of</strong> particular species and seasonal succession <strong>of</strong><br />

rotifer assemblages (Berz<strong>in</strong>s & Pejler, 1987, 1989a;<br />

Devetter, 1998). Although <strong>physical</strong>–chemical and biological<br />

conditions prevail<strong>in</strong>g <strong>in</strong> the Delhi region <strong>of</strong><br />

river Yamuna have been studied by Rai (1974a, b),<br />

de Zwart (1991) and Kaur (1996), these studies were<br />

episodic and limited <strong>to</strong> a small number <strong>of</strong> <strong>physical</strong>,<br />

chemical and biological fac<strong>to</strong>rs. The present <strong>in</strong>vestigation<br />

attempts <strong>to</strong> analyze the relative impact <strong>of</strong> a variety<br />

<strong>of</strong> variables on rotifer assemblages <strong>in</strong> the backwaters<br />

<strong>of</strong> the river Yamuna <strong>in</strong> the Delhi region by correlat<strong>in</strong>g<br />

rotifer abundances with various abiotic fac<strong>to</strong>rs.<br />

Materials and methods<br />

Study area<br />

Our study was conducted <strong>in</strong> backwaters <strong>of</strong> the river<br />

Yamuna upstream <strong>of</strong> the Wazirabad barrage (see


102<br />

Fig. 1), at an average elevation <strong>of</strong> 216 m above sea<br />

level, <strong>in</strong> the National Capital Terri<strong>to</strong>ry <strong>of</strong> Delhi (Lat.<br />

28 ◦ 12 ′ –28 ◦ 53 ′ N, Long. 76 ◦ 50 ′ –77 ◦ 23 ′ E).<br />

These low-ly<strong>in</strong>g areas get <strong>in</strong>undated dur<strong>in</strong>g monsoon<br />

(July–September) due <strong>to</strong> heavy discharge from the<br />

headwaters <strong>of</strong> the river. In addition, the overflow<strong>in</strong>g<br />

water <strong>of</strong> the river due <strong>to</strong> discharges from a reservoir<br />

situated upstream <strong>of</strong> the barrage also replenishes<br />

these backwaters. Due <strong>to</strong> the presence <strong>of</strong> agricultural<br />

fields and a few human settlements <strong>in</strong> the vic<strong>in</strong>ity <strong>of</strong><br />

the backwaters, the <strong>in</strong>flow from the catchment area<br />

also <strong>in</strong>fluences the <strong>physical</strong>–chemical characteristics<br />

<strong>of</strong> the backwaters. These shallow, perennial and weedy<br />

aquatic bio<strong>to</strong>pes can be designated as open, lentic ecosystem<br />

with an <strong>in</strong>let. They support luxuriant growth<br />

<strong>of</strong> float<strong>in</strong>g macrophytes, viz. Eichhornia crassipes<br />

(Mart.) Solm and Salv<strong>in</strong>ia molesta Mitch, along the<br />

shore throughout the year. In addition, two submerged<br />

macrophytes viz. Hydrilla sp. and Vallisnaria sp. were<br />

also recorded.<br />

The sampl<strong>in</strong>g sites viz. Site-I (S-I) and Site-II (S-<br />

II), were located diagonally opposite <strong>to</strong> each other<br />

(Fig. 1). S-I supported thick growth <strong>of</strong> macrophytes,<br />

especially dur<strong>in</strong>g spr<strong>in</strong>g and summer, whereas S-II<br />

was located near the <strong>in</strong>let po<strong>in</strong>t <strong>of</strong> the river Yamuna<br />

and supported lesser growth <strong>of</strong> macrophytes. Also,<br />

float<strong>in</strong>g and submerged leaves <strong>of</strong> Salv<strong>in</strong>ia were smaller<br />

<strong>in</strong> size at S-II.<br />

Sampl<strong>in</strong>g and analyses<br />

Water samples for <strong>physical</strong>–chemical analysis and<br />

plank<strong>to</strong>n analysis were collected once a month from<br />

the two sampl<strong>in</strong>g sites for one year.<br />

Physical–chemical analysis<br />

Water temperature (us<strong>in</strong>g dial thermometer) was recorded<br />

<strong>in</strong> the field. In addition, the samples for estimation<br />

<strong>of</strong> dissolved oxygen (DO) were collected directly<br />

<strong>in</strong> the BOD bottles and fixed immediately. Water<br />

samples were collected <strong>in</strong> clean 1L-polyethylene<br />

bottles for analysis <strong>of</strong> other variables <strong>in</strong> the labora<strong>to</strong>ry.<br />

Samples were analyzed with<strong>in</strong> 4–6 h <strong>of</strong> collection.<br />

pH and conductivity were recorded us<strong>in</strong>g Control Dynamics<br />

pH meter and conductivity meter, respectively.<br />

Analyses <strong>of</strong> all fac<strong>to</strong>rs except nitrates, colour and<br />

turbidity were done accord<strong>in</strong>g <strong>to</strong> the ‘Standard Methods<br />

for the Exam<strong>in</strong>ation <strong>of</strong> Water and Wastewater’<br />

(APHA, 1989). Nitrates were analyzed accord<strong>in</strong>g <strong>to</strong><br />

‘Water Analysis’ (Fresenius et al., 1988) and colour<br />

and turbidity us<strong>in</strong>g Hellige’s Instruction Manual.<br />

Figure 1. Map show<strong>in</strong>g two sampl<strong>in</strong>g stations (Site-I and Site-II)<br />

located on the backwaters <strong>of</strong> the Delhi segment <strong>of</strong> the river Yamuna<br />

<strong>to</strong>wards the eastern side <strong>of</strong> Wazirabad barrage.<br />

Plank<strong>to</strong>n analysis<br />

The plank<strong>to</strong>n was concentrated for quantitative analysis<br />

by filter<strong>in</strong>g 25 L <strong>of</strong> water through a 50 µm mesh<br />

plank<strong>to</strong>n net. In order <strong>to</strong> collect relatively rare species,<br />

50 L <strong>of</strong> water was also filtered for qualitative<br />

analysis. All the concentrated plank<strong>to</strong>n samples were<br />

preserved with 4% neutral formal<strong>in</strong> solution after anaesthesia<br />

with CO2-saturated m<strong>in</strong>eral water. Rotifers<br />

were enumerated us<strong>in</strong>g a modified Sedgewick–Rafter<br />

cell equipped with a grid base. Samples were diluted <strong>to</strong><br />

a desired volume and three counts tak<strong>in</strong>g 1ml aliquots<br />

each time were exam<strong>in</strong>ed. Densities were expressed<br />

as <strong>in</strong>d. l −1 . Qualitative analysis <strong>of</strong> the <strong>rotifers</strong> was<br />

done us<strong>in</strong>g a stereoscopic b<strong>in</strong>ocular microscope (Leitz<br />

Wetzlar). Trophi were isolated, whenever necessary,<br />

by dissolv<strong>in</strong>g the s<strong>of</strong>t tissue with 4% sodium hypochlorite.<br />

Entire animals and trophi were mounted <strong>in</strong><br />

glycer<strong>in</strong> on a glass slide, sealed with ‘nail polish’ and


exam<strong>in</strong>ed under 50× or 100× magnification. Rotifers<br />

were identified <strong>to</strong> species us<strong>in</strong>g Koste (1978).<br />

Data analysis<br />

Species diversity <strong>of</strong> <strong>rotifers</strong> was calculated us<strong>in</strong>g<br />

Shannon–Wiener Index (H ′ )<br />

H ′ s�<br />

=−<br />

pi Log2 pi<br />

i=1<br />

where s and pi are population parameters and s is the<br />

number <strong>of</strong> species with known proportional abundance<br />

(pi). α diversity was calculated as <strong>to</strong>tal number <strong>of</strong><br />

species present at each sampl<strong>in</strong>g site.<br />

Maximum diversity (H ′ max ) was calculated as<br />

H ′ max = Log 2 s<br />

which assumes that all <strong>in</strong>dividuals <strong>in</strong> a collected<br />

sample are distributed as evenly as possible among the<br />

number <strong>of</strong> species present (Brower et al., 1990).<br />

Species evenness or equitability was calculated as<br />

J ′ = H ′ /Hmax<br />

which has a m<strong>in</strong>imum value <strong>of</strong> 0 when evenness is<br />

low and a maximum value <strong>of</strong> 1 when evenness is high<br />

(Brower et al., 1990).<br />

The spatial and temporal variations <strong>in</strong> <strong>physical</strong> and<br />

chemical fac<strong>to</strong>rs as also rotifer abundance, diversity<br />

and equitability were analyzed us<strong>in</strong>g two-way AN-<br />

OVA. Also, data <strong>of</strong> rotifer abundances were analyzed<br />

and correlated with non-biological variables us<strong>in</strong>g<br />

Pearson-product moment cor<strong>relation</strong>s.<br />

Results<br />

Physical–chemical analyses<br />

Mean values as well as ranges for various variates are<br />

shown <strong>in</strong> Table 1. Temperature ranged from 11 ◦ C<strong>to</strong><br />

30 ◦ C, and showed no substantial differences between<br />

the two sampl<strong>in</strong>g sites. Generally, water temperature<br />

was for most part <strong>of</strong> the year above 20 ◦ C except dur<strong>in</strong>g<br />

the period December–February. DO was <strong>in</strong>versely<br />

related with temperature and recorded a maximum <strong>of</strong><br />

23.6 mg l −1 at S-II. pH ranged from neutral <strong>to</strong> slightly<br />

alkal<strong>in</strong>e (7.2–8.7) and its values significantly differed<br />

<strong>in</strong> the different months (p


104<br />

Figure 2. <strong>Seasonal</strong> variations <strong>in</strong> (a) Shannon–We<strong>in</strong>er diversity<br />

Index (H ′ ); (b) α diversity at S-I & S-II.<br />

ity dur<strong>in</strong>g different seasons (p < 0.01). However,<br />

the spatial differences for all these parameters were<br />

marg<strong>in</strong>al.<br />

The concentrations <strong>of</strong> NO3–N, PO4–P, silicates<br />

and SO4 2− exhibited high temporal (p < 0.01) but<br />

little spatial variability, except for PO4–P, which was<br />

generally higher at S-I.<br />

Rotifer species composition<br />

Eighty-n<strong>in</strong>e species <strong>of</strong> <strong>rotifers</strong> belong<strong>in</strong>g <strong>to</strong> 34 genera<br />

and 14 families were recorded. They were categorized<br />

as common, frequent, occasional and rare on the<br />

basis <strong>of</strong> frequency <strong>of</strong> their occurrence <strong>in</strong> the plank<strong>to</strong>n<br />

samples (Table 2). Species such as Colurella<br />

unc<strong>in</strong>ata bicuspidata (Ehrb.), Lecane closterocerca<br />

(Schmarda), L. bulla (Gosse), L. leont<strong>in</strong>a (Turner) and<br />

Limnias melicerta Weisse were perennial, whereas<br />

Fil<strong>in</strong>ia term<strong>in</strong>alis (Plate) and Notholca labis Gosse<br />

(w<strong>in</strong>ter), Pompholyx sulcata (Hudson), Ascomorpha<br />

saltans Bartsch (spr<strong>in</strong>g–early summer), Fil<strong>in</strong>ia opoliensis<br />

(Zacharias) and Brachionus falcatus Zacharias<br />

(late summer–monsoon) were recorded only dur<strong>in</strong>g<br />

certa<strong>in</strong> seasons.<br />

Table 2. List <strong>of</strong> plank<strong>to</strong>nic rotifer species recorded at the two<br />

study sites (Site-I and Site-II) from the backwaters <strong>of</strong> Delhi<br />

segment <strong>of</strong> the river Yamuna<br />

PHYLUM: ROTIFERA<br />

CLASS: EUROTATORIA<br />

SUBCLASS: DIGONONTA<br />

ORDER: BDELLOIDEA<br />

SITE-I SITE-II<br />

FAMILY: PHILODINIDAE<br />

Rotaria sp. C C<br />

SUBCLASS: MONOGONONTA<br />

ORDER: PLOIMIDA<br />

FAMILY: ASPLANCHNIDAE<br />

Asplanchna brightwelli Gosse, 1850 – R<br />

A. <strong>in</strong>termedia Hudson, 1886 F F<br />

A. priodonta Gosse, 1850 O O<br />

FAMILY: BRACHIONIDAE<br />

Anuraeopsis fissa (Gosse, 1851) F F<br />

Brachionus angularis Gosse, 1851 O O<br />

B. bidentatus Anderson, 1889 O O<br />

B. caudatus (Hauer, 1937) O O<br />

B. calyciflorus Pallas, 1766 F F<br />

B. falcatus Zacharias, 1898 O O<br />

B. leydigi Cohn, 1862 R R<br />

B. quadridentatus Hermann, 1783 F F<br />

Keratella cochlearis (Gosse, 1851) F F<br />

K. quadrata (Müller, 1786) R –<br />

K. tropica (Apste<strong>in</strong>, 1907) C C<br />

Platyias leloupi (Gillard, 1957) F –<br />

P. quadricornis (Ehrb., 1832) F F<br />

Notholca labis Gosse, 1887 O O<br />

FAMILY: COLURELLIDAE<br />

Colurella unc<strong>in</strong>ata f. bicuspidata<br />

(Ehrb., 1832) C C<br />

C. adriatica Ehrb., 1831 – R<br />

C. obtusa (Gosse, 1886) C C<br />

C. oxycauda Carl<strong>in</strong>, 1939 R R<br />

Lepadella costa<strong>to</strong>ides Segers, 1992 O R<br />

L. heterostyla (Murray, 1913) O –<br />

L. ovalis (Müller, 1786) C C<br />

L. patella (Müller, 1786) C C<br />

∗ L. qu<strong>in</strong>quecostata (Lucks, 1912) R –<br />

L. quadricar<strong>in</strong>ata (Stenroos, 1898) F O<br />

Squat<strong>in</strong>ella lamellaris (Ehrb., 1832) R –


Table 2. Cont<strong>in</strong>ued<br />

SITE-I SITE-II<br />

FAMILY: DICRANOPHORIDAE<br />

Dicranophorus epicharis<br />

Harr<strong>in</strong>g & Myers, 1928 R –<br />

Encentrum sp. R –<br />

FAMILY: EUCHLANIDAE<br />

Dipleuchlanis propatula (Gosse, 1886) F R<br />

Euchlanis dilatata Ehrb., 1832 C C<br />

FAMILY: GASTROPODIDAE<br />

Ascomorpha saltans Bartsch, 1870 O O<br />

FAMILY: LECANIDAE<br />

Lecane arcuata (Bryce, 1891) F O<br />

L. arcula Harr<strong>in</strong>g, 1914 O O<br />

L. bulla (Gosse, 1886) C C<br />

L. closterocerca (Schmarda, 1859) C C<br />

L. curvicornis (Murray, 1913) F F<br />

L. furcata (Murray, 1913) F F<br />

L. hamata (S<strong>to</strong>kes, 1896) C C<br />

L. leont<strong>in</strong>a (Turner, 1892) C C<br />

L. ludwigii (Eckste<strong>in</strong>, 1883) C F<br />

L. luna (Müller, 1776) C C<br />

L. lunaris (Ehrb., 1832) C C<br />

L. pyriformis (Daday, 1905) C F<br />

L. quadridentata (Ehrb., 1832) F F<br />

L. signifera (Jenn<strong>in</strong>gs, 1896) O O<br />

L. stenroosi (Meissner, 1908) O O<br />

L. ungulata (Gosse, 1887) F F<br />

L. unguitata (Fadeev, 1925) F F<br />

FAMILY: MYTILINIDAE<br />

Lophocharis salp<strong>in</strong>a (Ehrb., 1834) R O<br />

Mytil<strong>in</strong>a bisulcata (Lucks, 1912) O O<br />

M. mucronata (Müller, 1773) R R<br />

M. ventralis (Ehrb., 1832) C C<br />

FAMILY: NOTOMMATIDAE<br />

Cephalodella catell<strong>in</strong>a (Müller, 1786) F O<br />

C. forficula (Ehrb., 1838) O –<br />

C. gibba (Ehrb., 1838) C C<br />

mucronata Myers, 1924 R –<br />

Eosphora najas Ehrb., 1830 F O<br />

Monommata sp. O O<br />

No<strong>to</strong>mmata copeus Ehrb., 1834 F F<br />

No<strong>to</strong>mmata sp. C C<br />

Table 2. Cont<strong>in</strong>ued<br />

FAMILY: PROALIDAE<br />

105<br />

SITE-I SITE-II<br />

Proales sp. O R<br />

FAMILY: SCARIDIIDAE<br />

Scaridium longicaudum Müller, 1786 C C<br />

FAMILY: SYNCHAETIDAE<br />

Polyarthra sp. F F<br />

Synchaeta oblonga Ehrb., 1831 R R<br />

FAMILY: TRICHOCERCIDAE<br />

Trichocerca braziliensis (Murray, 1913) O O<br />

T. brachyura (Gosse, 1851) O O<br />

T. bicristata (Gosse, 1887) R –<br />

T. cavia (Gosse, 1886) R R<br />

T. iernis (Gosse, 1887) R R<br />

T. longiseta (Schrank, 1802) O O<br />

T. porcellus (Gosse, 1886) F F<br />

T. rattus (Müller, 1776) O O<br />

T. similis (Wierzejski, 1893) F O<br />

T. tigris (Müller, 1776) R R<br />

Trichocerca sp. O R<br />

FAMILY: TRICHOTRIIDAE<br />

Trichotria tetractis (Ehrb., 1830) C C<br />

ORDER: FLOSCULARIACEAE<br />

FAMILY: FILINIIDAE<br />

Fil<strong>in</strong>ia opoliensis (Zacharias, 1898) O O<br />

longiseta (Ehrb., 1834) O O<br />

F. term<strong>in</strong>alis (Plate, 1886) R R<br />

FAMILY: FLOSCULARIIDAE<br />

Floscularia r<strong>in</strong>gens L<strong>in</strong>naeus, 1758 O O<br />

Limnias melicerta Weisse, 1848 C C<br />

∗ Ptygura kostei Jose De Paggi, 1996 R R<br />

FAMILY: TESTUDINELLIDAE<br />

Testud<strong>in</strong>ella emarg<strong>in</strong>ula (Stenroos, 1898) C C<br />

T. pat<strong>in</strong>a (Hermann, 1783) C C<br />

Testud<strong>in</strong>ella sp. R R<br />

Pompholyx sulcata (Hudson, 1885) O O<br />

The system <strong>of</strong> classification followed is after Koste (1978).<br />

R = Rare; O = Occasional; F = Frequent; C= Common; – = Absent;<br />

( ∗ = New record).


106<br />

Rotifer diversity<br />

Table 3. Cor<strong>relation</strong>s between rotifer<br />

abundance (Individuals L −1 ) versus<br />

<strong>physical</strong>-chemical parameters<br />

Parameter Site-I Site-II<br />

Temperature 0.383 0.206<br />

DO −0.126 −0.139<br />

pH 0.537 0.497<br />

COD −0.780 ∗∗ −0.595 ∗<br />

BOD −0.710 ∗∗ −0.684 ∗<br />

Conductivity 0.414 0.588 ∗<br />

Turbidity −0.343 −0.227<br />

Colour 0.596 ∗ 0.270<br />

Total hardness −0.149 −0.011<br />

Total alkal<strong>in</strong>ity −0.210 −0.241<br />

Chlorides 0.090 0.220<br />

Calcium −0.090 −0.093<br />

Magnesium −0.162 −0.250<br />

PO4–P 0.818 ∗∗ 0.935 ∗∗<br />

NO3–N 0.868 ∗∗ 0.768 ∗∗<br />

NO2–N 0.659 ∗ 0.452<br />

Silicates −0.019 0.128<br />

Sulphates 0.397 0.658 ∗<br />

Cor<strong>relation</strong>s are Pearson product-moment<br />

type ( ∗ = p


is supported by the presence <strong>of</strong> fewer species <strong>of</strong><br />

‘temperate-centered’ brachionid genera such as Keratella<br />

and a restricted occurrence <strong>of</strong> the cold-water<br />

genera Notholca and Synchaeta. These observations<br />

are <strong>in</strong> concurrence with reports by Sharma & Michael<br />

(1980) and Sharma (1998) with regard <strong>to</strong> Indian rotifer<br />

fauna. Dumont (1983) and Green (1994) also reported<br />

that Brachionus is predom<strong>in</strong>antly tropical, whereas the<br />

boreal Notholca is rarely present <strong>in</strong> tropical waters.<br />

The presence <strong>of</strong> cold-water Notholca labis Gosse <strong>in</strong><br />

this segment <strong>of</strong> the river could be due <strong>to</strong> drift from<br />

higher altitudes (Sharma, 1998).<br />

Dur<strong>in</strong>g the one-year cycle, the rotifer density<br />

reached maxima dur<strong>in</strong>g spr<strong>in</strong>g–early summer and<br />

m<strong>in</strong>ima dur<strong>in</strong>g w<strong>in</strong>ter. In earlier studies on river<br />

Yamuna, the rotifer density was found <strong>to</strong> be maximum<br />

dur<strong>in</strong>g summer (Rai, 1974b: Kaur, 1996). This<br />

difference could reflect the different ecological conditions<br />

prevail<strong>in</strong>g <strong>in</strong> the backwaters. Although the rotifer<br />

density observed def<strong>in</strong>ite seasonal variations, species<br />

diversity (H ′ ) and equitability did not vary significantly<br />

across the year. This can be attributed <strong>to</strong> the<br />

different rotifer taxa register<strong>in</strong>g their peak populations<br />

at different times <strong>of</strong> the year.<br />

The present study reveals no significant variations<br />

<strong>in</strong> density, H ′ and equitability between the two study<br />

sites. However, α diversity varied significantly at the<br />

two study sites, possibly due <strong>to</strong> differential growth<br />

<strong>of</strong> macrophytes. A number <strong>of</strong> <strong>in</strong>vestiga<strong>to</strong>rs (Pont<strong>in</strong><br />

& Shiel, 1995; Duggan et al., 1998) also observed<br />

that macrophytes <strong>in</strong> aquatic ecosystems provide a rich<br />

variety <strong>of</strong> microhabitats for a diverse rotifer fauna.<br />

In general, high densities <strong>of</strong> <strong>rotifers</strong> reflect the<br />

availability <strong>of</strong> a wide range <strong>of</strong> natural ses<strong>to</strong>nic food<br />

particles, which <strong>rotifers</strong> may consume (Dumont, 1977;<br />

Gulati, 1990). Various <strong>in</strong>vestiga<strong>to</strong>rs reported that the<br />

Figure 3. <strong>Seasonal</strong> variations <strong>in</strong> the abundance <strong>of</strong> <strong>rotifers</strong> at S-I and S-II.<br />

107<br />

rapid <strong>in</strong>crease <strong>in</strong> <strong>rotifers</strong> numbers may be attributed <strong>to</strong><br />

their <strong>in</strong>tr<strong>in</strong>sic high fecundity supported by favourable<br />

food and environmental conditions (Dumont, 1977;<br />

Lynch, 1979; Gulati, 1999). Thus, the presence <strong>of</strong> favourable<br />

<strong>physical</strong>–chemical characteristics (e.g., temperature,<br />

nutrients and pH) as also relative abundance<br />

<strong>of</strong> dia<strong>to</strong>ms viz. Cymbella and Gomphonema, followed<br />

by green algae viz. Rhizoclonium and Spirogyra and<br />

blue-green algae viz. Lyngbya and Anabaena (Arora,<br />

1998), were possibly responsible for promot<strong>in</strong>g the<br />

growth <strong>of</strong> <strong>rotifers</strong> dur<strong>in</strong>g spr<strong>in</strong>g–early summer seasons<br />

dur<strong>in</strong>g this study. In contrast, lower density <strong>of</strong><br />

<strong>rotifers</strong> recorded dur<strong>in</strong>g w<strong>in</strong>ter could be due <strong>to</strong> low<br />

temperatures, which do not favour their growth and<br />

reproduction (Michaloudi et al., 1997).<br />

H<strong>of</strong>mann (1977) suggested that temperature (a<br />

conditional fac<strong>to</strong>r) and oxygen (a material fac<strong>to</strong>r)<br />

are the ma<strong>in</strong> but not the only determ<strong>in</strong>ative fac<strong>to</strong>rs<br />

which <strong>in</strong>fluence the occurrence and diversity <strong>of</strong> <strong>rotifers</strong>.<br />

Influence <strong>of</strong> temperature on rotifer communities<br />

was also confirmed by May (1983), Berz<strong>in</strong>s & Pejler<br />

(1989b) and Hessen et al. (1995). However, dur<strong>in</strong>g<br />

our study high rotifer density was weakly associated<br />

with temperature and oxygen. This can be expla<strong>in</strong>ed<br />

on the assumption <strong>of</strong> Holland et al. (1983) that the<br />

<strong>in</strong>fluence <strong>of</strong> temperature and oxygen on rotifer abundances<br />

is less manifested <strong>in</strong> warmer climates as also<br />

<strong>in</strong> shallow waters. Nevertheless, dur<strong>in</strong>g the present<br />

study, seasonal variations <strong>in</strong> species composition <strong>of</strong><br />

<strong>rotifers</strong> were ma<strong>in</strong>ly controlled by temperature. For <strong>in</strong>stance,<br />

cold stenotherm species viz. Fil<strong>in</strong>ia term<strong>in</strong>alis<br />

(Plate) and Notholca labis Gosse were recorded dur<strong>in</strong>g<br />

w<strong>in</strong>ter, whereas warm stenotherm species viz.<br />

Ascomorpha saltans Bartsch and Pompholyx sulcata<br />

(Hudson) were observed dur<strong>in</strong>g spr<strong>in</strong>g–early summer.<br />

These observations are <strong>in</strong> accord with May (1983) and


108<br />

Figure 4. <strong>Seasonal</strong> variations <strong>in</strong> the relative per cent abundance <strong>of</strong> different representative families <strong>of</strong> <strong>rotifers</strong> (a) at S-I and (b) at S-II. The<br />

abbreviations <strong>of</strong> different <strong>rotifers</strong> families are as follows: Flos – Flosculariidae; Test – Testud<strong>in</strong>ellidae; Euch – Euchlanidae; Lec – Lecanidae;<br />

Brach – Brachionidae; Others – Rest <strong>of</strong> the families.<br />

Berz<strong>in</strong>s & Pejler (1989b), who have also regarded the<br />

above-mentioned cold- and warm-stenotherm species<br />

as ‘w<strong>in</strong>ter forms’ and ‘summer forms’, respectively.<br />

The results <strong>of</strong> this study <strong>in</strong>dicate that rotifer population<br />

density was positively related with PO4–P,<br />

NO3–N, NO2–N, SO4 2− , colour and conductivity, and<br />

negatively associated with COD and BOD. Besides,<br />

no significant cor<strong>relation</strong> was observed between rotifer<br />

abundance and alkal<strong>in</strong>ity, pH, turbidity, silicates<br />

and <strong>to</strong>tal hardness. NO3–N and PO4–P <strong>in</strong>dicate the<br />

trophic status, and may partly determ<strong>in</strong>e the species<br />

presence and <strong>dynamics</strong> <strong>of</strong> rotifer assemblages (Berz<strong>in</strong>s<br />

& Pejler, 1987, 1989a). In addition, there are reports<br />

<strong>of</strong> significant cor<strong>relation</strong>s <strong>of</strong> rotifer populations<br />

with <strong>to</strong>tal nitrogen by Devetter (1998), and with phosphorus<br />

by Stemberger (1995). Devetter (1998) did not<br />

observe any cor<strong>relation</strong> among rotifer populations and<br />

the concentrations <strong>of</strong> anions (SO4 2− and Cl − )and<br />

cations (Mg 2+ and Ca 2+ ). Our results are <strong>in</strong> agreement<br />

with Devetter’s observations, except for SO4 2−<br />

ions, for which we observed significant positive cor<strong>relation</strong><br />

with rotifer density at S-II. In addition, water<br />

colour may partly determ<strong>in</strong>e the occurrence <strong>of</strong> rotifer<br />

species and hence their seasonal <strong>dynamics</strong> (Berz<strong>in</strong>s &<br />

Pejler, 1989c). An analysis <strong>of</strong> <strong>physical</strong> and chemical<br />

data from a large number <strong>of</strong> water bodies (e.g., Berz<strong>in</strong>s<br />

& Pejler, 1987; Hessen et al., 1995; P<strong>in</strong>el-Alloul<br />

et al., 1995) revealed that alkal<strong>in</strong>ity and pH are <strong>of</strong>ten<br />

important <strong>in</strong> predict<strong>in</strong>g zooplank<strong>to</strong>n community composition,<br />

which is contrary <strong>to</strong> the results obta<strong>in</strong>ed by<br />

us. Perhaps relatively high values for pH and alkal<strong>in</strong>ity<br />

throughout the study period were important because<br />

they <strong>in</strong>dicate high pho<strong>to</strong>synthetic activity, and <strong>rotifers</strong><br />

were not food-limited.<br />

De Zwart (1991) and Kaur (1996) observed dom<strong>in</strong>ance<br />

<strong>of</strong> <strong>rotifers</strong> with low species diversity <strong>in</strong> the


segments <strong>of</strong> the Yamuna hav<strong>in</strong>g high levels <strong>of</strong> BOD<br />

and COD. In comparison, the present study sites recorded<br />

highly diverse rotifer fauna with relatively low<br />

BOD and COD values. The levels <strong>of</strong> BOD and COD<br />

were low exhibit<strong>in</strong>g seasonal variations and negative<br />

cor<strong>relation</strong> with rotifer density.<br />

Our study suggests that <strong>physical</strong> and chemical<br />

fac<strong>to</strong>rs largely <strong>in</strong>fluence the spatial and temporal <strong>dynamics</strong><br />

<strong>of</strong> the rotifer populations <strong>in</strong> the backwaters <strong>of</strong><br />

the Yamuna. However, an additional <strong>in</strong>vestigation <strong>of</strong><br />

some <strong>to</strong>p-down fac<strong>to</strong>rs and on the <strong>in</strong>fluence <strong>of</strong> competitive<br />

<strong>in</strong>teractions on the seasonal succession <strong>of</strong> rotifer<br />

communities is required <strong>to</strong> reach a def<strong>in</strong>ite conclusion.<br />

References<br />

American Public Health Association, 1989. Standard Methods for<br />

the Exam<strong>in</strong>ation <strong>of</strong> Water and Wastewater. 17th edn., Wash<strong>in</strong>g<strong>to</strong>n<br />

D.C.: 1197 pp.<br />

Arora, J., 1998. Biodiversity <strong>of</strong> <strong>rotifers</strong> <strong>in</strong> the backwaters <strong>of</strong> Delhi<br />

segment <strong>of</strong> river Yamuna. M.Phil. dissertation, University <strong>of</strong><br />

Delhi, Delhi, India: 70 pp.<br />

Berz<strong>in</strong>s, B. & B. Pejler, 1987. Rotifer occurrence <strong>in</strong> <strong>relation</strong> <strong>to</strong> pH.<br />

Hydrobiologia 147: 107–116.<br />

Berz<strong>in</strong>s, B. & B. Pejler, 1989a. Rotifer occurrence and trophic<br />

degree. Hydrobiologia 182: 171–180.<br />

Berz<strong>in</strong>s, B. & B. Pejler, 1989b. Rotifer occurrence <strong>in</strong> <strong>relation</strong> <strong>to</strong><br />

temperature. Hydrobiologia 175: 223–231.<br />

Berz<strong>in</strong>s, B. & B. Pejler, 1989c. Rotifer occurrence <strong>in</strong> <strong>relation</strong> <strong>to</strong><br />

water colour. Hydrobiologia 184: 23–28.<br />

Brower, J. E., J. H. Zan & L. N. vonEnde, 1990. Species diversity.<br />

In Methods for General Ecology, 3rd edn., William C. Brown<br />

Publishers, Dubuque, IA: 153–175.<br />

de Zwart, D., 1991. Report on an Expert mission for the Evaluation<br />

<strong>of</strong> Yamuna River Biomoni<strong>to</strong>r<strong>in</strong>g Data / Report No. 768602008.<br />

National Institute <strong>of</strong> Public Health and Environment Protection,<br />

Bilthoven, Netherlands: 65 pp + Annex: 192 pp.<br />

Devetter, M., 1998. Influence <strong>of</strong> environmental fac<strong>to</strong>rs on the rotifer<br />

assemblages <strong>in</strong> an artificial lake. Hydrobiologia 387/388: 171–<br />

178.<br />

Duggan, I. C., J. D. Green, K. Thompson & R. J. Shiel, 1998. Rotifers<br />

<strong>in</strong> <strong>relation</strong> <strong>to</strong> lit<strong>to</strong>ral eco<strong>to</strong>ne structure <strong>in</strong> Lake Ro<strong>to</strong>manuka,<br />

North Island, New Zealand. Hydrobiologia 387/388: 179–197.<br />

Dumont, H. J., 1977. Biotic fac<strong>to</strong>rs <strong>in</strong> the population <strong>dynamics</strong> <strong>of</strong><br />

<strong>rotifers</strong>. Arch. Hydrobiol. Beih. 8: 98–122.<br />

Dumont, H. J., 1983. Biogeography <strong>of</strong> Rotifers. Hydrobiologia 104:<br />

19–30.<br />

Dumont, H. J. & H. Segers, 1996. Estimat<strong>in</strong>g lacustr<strong>in</strong>e zooplank<strong>to</strong>n<br />

species richness and complementarity. Hydrobiologia 341: 125–<br />

132.<br />

Fresenius, W., K. E. Quent<strong>in</strong> & W. Schneider, 1988. Water Analysis.<br />

A Practical Guide <strong>to</strong> Physico–Chemical, Chemical and Microbiological<br />

Water Exam<strong>in</strong>ation and Quality Assurance. Spr<strong>in</strong>ger<br />

Verlag, Berl<strong>in</strong>: 840 pp.<br />

Green, J., 1994. The temperate-tropical gradient <strong>of</strong> plank<strong>to</strong>nic<br />

Pro<strong>to</strong>zoa and Rotifera. Hydrobiologia 272: 13–26.<br />

Gulati, R. D., 1990. Zooplank<strong>to</strong>n structure <strong>in</strong> the Loosdrecht lakes<br />

<strong>in</strong> <strong>relation</strong> <strong>to</strong> trophic status and recent res<strong>to</strong>ration measures.<br />

Hydrobiologia 191: 173–188.<br />

109<br />

Gulati, R. D., 1999. Population <strong>dynamics</strong> <strong>of</strong> plank<strong>to</strong>nic <strong>rotifers</strong> <strong>in</strong><br />

Lake Loosdrecht, the Netherlands, <strong>in</strong> <strong>relation</strong> <strong>to</strong> their potential<br />

food and preda<strong>to</strong>rs. Freshwat. Biol. 42: 77–97.<br />

Hessen, D. O., B. A. Faafeng & T. Anderson, 1995. Replacement<br />

<strong>of</strong> herbivore zooplank<strong>to</strong>n species along gradients <strong>of</strong> ecosystem<br />

productivity and fish predation pressure. Can. J. Fish. aquat. Sci.<br />

52: 733–742.<br />

H<strong>of</strong>mann, W., 1977. The <strong>in</strong>fluence <strong>of</strong> abiotic environmental fac<strong>to</strong>rs<br />

on population <strong>dynamics</strong> <strong>in</strong> plank<strong>to</strong>nic <strong>rotifers</strong>. Arch. Hydrobiol.<br />

Beih. 8: 77–83.<br />

Holland, L. E., C. F. Bryan & J. Pres<strong>to</strong>n Newman Jr., 1983. Water<br />

quality and the rotifer populations <strong>in</strong> the Atchafalaya river Bas<strong>in</strong>,<br />

Louisiana. Hydroiologia 98: 55–69.<br />

Hunter, M. D. & P. W. Price, 1992. Play<strong>in</strong>g chutes and ladders:<br />

heterogeneity and relative role <strong>of</strong> bot<strong>to</strong>m-up and <strong>to</strong>p-down forces<br />

<strong>in</strong> natural communities. Ecology 73: 724–732.<br />

Kaur, P., 1996. Spatio-temporal variations <strong>in</strong> epiphytic communities<br />

<strong>in</strong> <strong>relation</strong> <strong>to</strong> water quality <strong>of</strong> the Delhi segment <strong>of</strong> river Yamuna,<br />

and experiments on the patterns <strong>of</strong> colonization <strong>of</strong> epiphy<strong>to</strong>n<br />

on natural and artificial substrates. Ph.D. Thesis, University <strong>of</strong><br />

Delhi, Delhi, India: 194 pp.<br />

Koste, W., 1978. Rota<strong>to</strong>ria. Die Radertiere Mittleeuropas. Borntraeger,<br />

Berl<strong>in</strong>, Stuttgart, 2 Vols: 673 pp.<br />

Lynch, M., 1979. Predation, competition, and zooplank<strong>to</strong>n community<br />

structure: An experimental study. Limnol. Oceangr. 24:<br />

253–272.<br />

May, L., 1983. Rotifer occurrence <strong>in</strong> <strong>relation</strong> <strong>to</strong> water temperature<br />

<strong>in</strong> Leven, Scotland. Hydrobiologia 104: 311–315.<br />

May, L. & D. H. Jones, 1989. Does <strong>in</strong>terference competition<br />

from Daphnia affect populations <strong>of</strong> Keratella cochlearis <strong>in</strong> Loch<br />

Leven, Scotland? J. Plank<strong>to</strong>n Res. 11: 445–461.<br />

Michaloudi, E., M. Zarfdjian & P. S. Economidis, 1997. The<br />

Zooplank<strong>to</strong>n <strong>of</strong> lake Mikri Prespa. Hydrobiologia 351: 77–94.<br />

Nogrady, T., R. L. Wallace & T. W. Snell, 1993. Rotifera, Vol.<br />

1. Biology, ecology and systematics. In Nogrady, T. & H. J.<br />

Dumont (eds), Guides <strong>to</strong> the Identification <strong>of</strong> the Micro<strong>in</strong>vertebrates<br />

<strong>of</strong> the Cont<strong>in</strong>ental Waters <strong>of</strong> the World. SPB Academic<br />

Publish<strong>in</strong>g BV, The Hague: 142 pp.<br />

P<strong>in</strong>el-Alloul, B., T. Niyonsega & P. Legendre, 1995. Spatial and<br />

environmental components <strong>of</strong> freshwater zooplank<strong>to</strong>n structure.<br />

Ecoscience 2: 1–19.<br />

Pont<strong>in</strong>, R. M. & R. J. Shiel, 1995. Periphytic rotifer communities <strong>of</strong><br />

an Australian seasonal floodpla<strong>in</strong> pool. Hydrobiologia 313/314:<br />

63–67.<br />

Rai, H., 1974a. Limnological studies on the river Yamuna at Delhi,<br />

India. Part I: Relation between the chemistry and the state <strong>of</strong><br />

pollution <strong>in</strong> the river Yamuna. Arch. für Hydrobiol. 73: 369–393.<br />

Rai, H., 1974b. Limnological studies on the river Yamuna at Okhla,<br />

Delhi. Part II: The <strong>dynamics</strong> <strong>of</strong> potamoplank<strong>to</strong>n populations <strong>in</strong><br />

the river Yamuna. Arch. für Hydrobiol. 73: 492–517.<br />

Ruttner-Kolisko, A., 1977. The effect <strong>of</strong> the microsporid Plis<strong>to</strong>phora<br />

aperospora on Conochilus unicornis <strong>in</strong> Lunzer untersee<br />

(LUS). Arch. Hydrobiol. Beih. 8: 135–137.<br />

Sharma, B. K., 1998. Rotifera. In Alfred J. B. B., A. K. Das &<br />

A. K. Sanyal (eds), Faunal Diversity <strong>in</strong> India. ENVIS Centre,<br />

Zoological Survey <strong>of</strong> India, Calcutta: 58–70.<br />

Sharma, B. K. & R. G. Michael, 1980. Synopsis <strong>of</strong> taxonomic<br />

studies on Indian Rota<strong>to</strong>ria. Hydrobiologia 73: 229–236.<br />

Stemberger, R. S., 1995. The <strong>in</strong>fluence <strong>of</strong> mix<strong>in</strong>g on rotifer assemblages<br />

<strong>of</strong> Michigan lakes. Hydrobiologia 297: 149–161.<br />

Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems.<br />

Academic Press, San Diego: 1012 pp.<br />

Williamson, C. E., 1983. Invertebrate predation on plank<strong>to</strong>nic<br />

<strong>rotifers</strong>. Hydrobiologia 104: 385–396.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!