11.07.2015 Views

Estimation of dynamic linear models in short panels with ... - Cemmap

Estimation of dynamic linear models in short panels with ... - Cemmap

Estimation of dynamic linear models in short panels with ... - Cemmap

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ESTIMATION OF DYNAMIC LINEAR MODELS INSHORT PANELS WITH ORDINAL OBSERVATIONStephen PudneyTHE INSTITUTE FOR FISCAL STUDIESDEPARTMENT OF ECONOMICS, UCLcemmap work<strong>in</strong>g paper CWP05/05


<strong>Estimation</strong> <strong>of</strong> <strong>dynamic</strong> <strong>l<strong>in</strong>ear</strong> <strong>models</strong> <strong>in</strong> <strong>short</strong> <strong>panels</strong> <strong>with</strong>ord<strong>in</strong>al observationStephen PudneyCentre for Microdata Methods and PracticeInstitute for Fiscal StudiesandInstitute for Social and Economic ResearchUniversity <strong>of</strong> EssexSeptember 2004, revised May 2005Abstract: We develop a simulated ML method for <strong>short</strong>-panel estimation <strong>of</strong> oneor more <strong>dynamic</strong> <strong>l<strong>in</strong>ear</strong> equations, where the dependent variables are only partiallyobserved through ord<strong>in</strong>al scales. We argue that this latent autoregression (LAR)model is <strong>of</strong>ten more appropriate than the usual state-dependence (SD) probit modelfor attitud<strong>in</strong>al and <strong>in</strong>terval variables. We propose a score test for assist<strong>in</strong>g <strong>in</strong> thetreatment <strong>of</strong> <strong>in</strong>itial conditions and a new simulation approach to calculate the requiredpartial derivative matrices. An illustrative application to a model <strong>of</strong> households’perceptions <strong>of</strong> their f<strong>in</strong>ancial well-be<strong>in</strong>g demonstrates the superior fit <strong>of</strong> the LARmodel.Keywords: Dynamic panel data <strong>models</strong>, ord<strong>in</strong>al variables, simulated maximumlikelihood, GHK simulator, BHPS.JEL classifications: C23, C25, C33, C35, D84Address for correspondence: Steve Pudney, ISER, University <strong>of</strong> Essex,Wivenhoe Park, Colchester CO4 3SQ. E-mail: spudney@essex.ac.uk.I am grateful to Sarah Brown and Karl Taylor for allow<strong>in</strong>g me to use their BHPS dataset and to themand to Manuel Arellano, Olympia Bover, Stephen Jenk<strong>in</strong>s, Cheti Nicoletti and participants at the ISERJESS sem<strong>in</strong>ar and CIDE conference, Venice 2005, for helpful comments. This work was supported bythe Economic and Social research Council through project “Fertility and poverty <strong>in</strong> develop<strong>in</strong>gcountries” (award no. RES000230462) and the UK Longitud<strong>in</strong>al Studies Centre.


1 IntroductionIn discrete data modell<strong>in</strong>g there is an important dist<strong>in</strong>ction to be made between<strong>in</strong>herent and observational discreteness. Inherent discreteness refers to a case wherethe variables <strong>of</strong> <strong>in</strong>terest are naturally discrete. For example, an <strong>in</strong>dividual is eitheremployed or not employed; she has a university degree or not; she is married or not.Observational discreteness arises when the variables <strong>of</strong> <strong>in</strong>terest are naturallycont<strong>in</strong>uous, but the survey <strong>in</strong>strument used to observe them imposes discreteness via apre-specified ord<strong>in</strong>al scale <strong>of</strong> allowable responses. This applies to a wide range <strong>of</strong>attitud<strong>in</strong>al questions, which ask respondents to record their perceptions or beliefs on aLikert scale. Examples <strong>of</strong> econometric analysis <strong>of</strong> attitud<strong>in</strong>al variables haveproliferated <strong>in</strong> recent years, <strong>with</strong> the development <strong>of</strong> the economic literature onhapp<strong>in</strong>ess and satisfaction (see Van Praag and Ferrer-i-Carbonell, 2004, for a recentsurvey). There has been important work on econometric methodology <strong>in</strong> this area,particularly the choice between random and fixed effects modell<strong>in</strong>g <strong>in</strong> <strong>panels</strong> (Ferreri-Carbonelland Frijters, 2004), but there has so far been little discussion <strong>of</strong> the<strong>dynamic</strong>s <strong>of</strong> perceptions or <strong>of</strong> the most appropriate type <strong>of</strong> <strong>dynamic</strong> model to use.Observational discreteness does not only arise <strong>with</strong> attitud<strong>in</strong>al data. It mayalso occur <strong>in</strong> survey questions about more ‘objective’ entities like <strong>in</strong>come, whenrespondents are required to place themselves <strong>with</strong><strong>in</strong> one <strong>of</strong> a number <strong>of</strong> given <strong>in</strong>comeranges. The discreteness here is an essentially artificial consequence <strong>of</strong> questionnairedesign. For example, bus<strong>in</strong>ess surveys <strong>of</strong>ten ask about expectations <strong>of</strong> future sales or<strong>in</strong>vestment <strong>in</strong>tentions. The respondent’s expected value for sales or <strong>in</strong>vestmentconditional on his <strong>in</strong>formation set is a cont<strong>in</strong>uous variable but the survey questionstypically ask for a response graded as “up”, “down” or “no change”.Most <strong>of</strong> the econometric literature deal<strong>in</strong>g <strong>with</strong> discrete <strong>models</strong> forlongitud<strong>in</strong>al data assumes <strong>in</strong>herent discreteness. The pioneer<strong>in</strong>g work <strong>of</strong> Heckman(1978, 1981a,b) centred on b<strong>in</strong>ary response <strong>models</strong> <strong>of</strong> the form:yy*it= αyit−1it= 1( y*it+ β'x> 0)where 1(.) is the <strong>in</strong>dicator function, x it is a vector <strong>of</strong> strictly exogenous covariates, u iis an unobserved <strong>in</strong>dividual effect uncorrelated <strong>with</strong> x it and ε it is a random residualuncorrelated across <strong>in</strong>dividuals and time. We refer to (1) as the state dependence (SD)model. It was developed primarily for applications <strong>in</strong> labour economics, whereit+ ui+ εit(1)- 1 -


discreteness is <strong>in</strong>herent <strong>in</strong> the problem and where past outcomes <strong>of</strong> y it represent statedependence. In these applications, the latent variable y * itis essentially an artificialconstruct and there is no reason whyy should appear <strong>in</strong> the model (1).*it −1However, attitudes, expectations and <strong>in</strong>comes are not <strong>in</strong>herently discrete andthe use <strong>of</strong> <strong>models</strong> like (1), although common <strong>in</strong> the applied literature, is questionable. 1If the discrete nature <strong>of</strong> y it is only an artificial construct imposed by the questionnairedesigner, then behaviour centres on the cont<strong>in</strong>uous variable y * it, rather than theobserved <strong>in</strong>dicator y it . In these cases,*yit−1rather than y it-1 , should carry the <strong>dynamic</strong>feedback if the <strong>dynamic</strong> equation is to be a description <strong>of</strong> behaviour.The paper has four ma<strong>in</strong> objectives. Firstly, (above and <strong>in</strong> section 2) we makethe case for us<strong>in</strong>g <strong>dynamic</strong>s <strong>in</strong> y* it−1, rather than y it-1, <strong>in</strong> applications where thediscreteness is observational rather than <strong>in</strong>herent; and then explore the <strong>in</strong>terpretation<strong>of</strong> the model and its <strong>dynamic</strong> implications. The second objective, which is the subject<strong>of</strong> sections 3-4, is to consider identification and propose a practical method <strong>of</strong>estimation. The third aim is to set up a procedure for deal<strong>in</strong>g <strong>with</strong> the <strong>in</strong>itialconditions problem, us<strong>in</strong>g new specification tests which are proposed <strong>in</strong> section 5.Fourthly, we propose a new simulation method <strong>of</strong> estimat<strong>in</strong>g the cross-derivativematrices required for these tests; this is described <strong>in</strong> the appendix. Section 6 <strong>of</strong> thepaper presents an illustrative application to a panel data model <strong>of</strong> <strong>in</strong>dividuals’f<strong>in</strong>ancial expectations and section 7 concludes.2 The model2.1 The statistical structureWe work <strong>with</strong> a behavioural model specified <strong>in</strong> terms <strong>of</strong> the ‘natural’cont<strong>in</strong>uous variables as follows:y*it= α y−+ β'x + u + ε*it 1We refer to this as the Latent Autoregression (LAR) model. The vector x it is assumedstrictly exogenous and <strong>in</strong>dividuals are sampled <strong>in</strong>dependently from the underly<strong>in</strong>gpopulation. We make the standard assumption <strong>of</strong> Gaussian random effects so that theunobservables u i and ε it satisfy the follow<strong>in</strong>g assumptions:itiit(2)- 2 -


imperfect observation: there is a lack <strong>of</strong> natural units for ‘happ<strong>in</strong>ess’ or ‘utility’ whichrenders the scale <strong>of</strong> β <strong>in</strong>herently ambiguous. In some cases, where there are naturalunits <strong>of</strong> measurement for y * , we can fix σ ε at a reasonable hypothetical value. Forexample, for an analysis <strong>of</strong> survey responses to a question about expected <strong>in</strong>flation wemight reasonably set σ ε at (say) half a percentage po<strong>in</strong>t to allow a rough but direct<strong>in</strong>terpretation <strong>of</strong> the model <strong>in</strong> terms <strong>of</strong> the natural units. Note that α is identifiable<strong>in</strong>dependently <strong>of</strong> σ ε . As a consequence, we can estimate unambiguously the speed <strong>of</strong>adjustment. For example, follow<strong>in</strong>g a shock, the proportion <strong>of</strong> disequilibrium which iselim<strong>in</strong>ated <strong>with</strong><strong>in</strong> s periods is 1-α s and this is unaffected by normalisation.2.3 DynamicsThe SD and LAR processes (1) and (2) imply different patterns <strong>of</strong> <strong>dynamic</strong> behaviour.Consider the follow<strong>in</strong>g artificial example:SD model:y*t= .8yt−10 + x + ε(8)tLAR model:y*t= 0.422y−+ 0.355 + 0. 770x+ ε*t 1t(9)where x = 0.5, ε t ~ N(0,1) and y 1 ( y* > 0). The parameters <strong>of</strong> the LAR process (9)t=thave been chosen to reproduce exactly three properties <strong>of</strong> the SD process (8): 2(i) Pr(y = 1) = 0.877;(ii) ∂Pr(y = 1 | x)/∂x = 0.246;(iii) Pr(y t ≠ y t-1 ) = 0.170.With the LAR parameters chosen <strong>in</strong> this way, the distributions <strong>of</strong> run lengths <strong>in</strong> states0 and 1 are identical for the two processes. However, the relationship betweensuccessive run lengths is not. This is reflected <strong>in</strong> the autocorrelation functions (Figure1). As we would expect, the LAR model has much higher autocorrelations than theSD model for*yt. For the observed y t , the ACF decays faster for the SD than the LARprocess, despite the fact that they have the same 1st-order autocorrelation byconstruction. Thus, an LAR model will display greater persistence than anobservationally similar SD model, <strong>in</strong> this quite subtle sense.2 Conditions (i) and (ii) are imposed analytically to determ<strong>in</strong>e β 0 and β 1 for given α; Monte Carlosimulation was then used to f<strong>in</strong>d the value <strong>of</strong> α to equalise the 1 st order autocorrelations.- 4 -


0.450.40.350.30.250.2SD model: ACF(y)SD model: ACF(y*)LAR model: ACF(y)LAR model: ACF(y*)0.150.10.0501 2 3 4 5 6 7LAG ORDERFigure 1ACFs for the SD and LAR <strong>models</strong>The two <strong>models</strong> also differ <strong>in</strong> terms <strong>of</strong> the implied <strong>dynamic</strong> multiplier effects<strong>of</strong> x on y. To illustrate this, consider aga<strong>in</strong> the b<strong>in</strong>ary case and focus on two importantfeatures: the impact on Pr(y it =1 | y it-1 , X i , u i ) <strong>of</strong> switch<strong>in</strong>g the condition<strong>in</strong>g event fromy it-1 = 0 to y it-1 = 1; and the impact <strong>of</strong> the history <strong>of</strong> {x it } on the probability <strong>of</strong> apositive response, <strong>with</strong>out condition<strong>in</strong>g on y it-1 .For the former, the SD model is relatively simple:Pr( yit= 1| yit−1= 1, Xi, ui) − Pr( yit= 1| yit−1= 0, Xi, ui) =Φ( α + β'x + u ) − Φ( β'x + u )where Φ(.) is the cdf <strong>of</strong> the N(0,1) distribution. For the LAR model, we have <strong>in</strong>stead:itiiti(10)Pr( yit= 1| yit−1= 1, X , u ) − Pr( yiiit= 1| yit−1= 0, Xi, u )i=Pr( yitPr( y= 1, yit−1it−1= 1| X , u )= 1| X , u )iiii−Pr( yit= 1| X , u ) − Pr( yi1−Pr( yiit−1it= 1, yit−1= 1| X , u )ii= 1| Xi, u )i=Pr( yit= 1, yit−1Pr( y= 1| X , u ) − Pr( yit−1ii= 1| X , u ) 1iiit= 1| X , u ) Pr( yi[ − Pr( y = 1| X , u )]it−1iiit−1i= 1| X , u )ii(11)Assume the process (2) is stable and long-established. Then:y*it=∞∑s=0∞s uisα β ' xit− s+ + ∑αεit−s(12)1−αs=0- 5 -


and therefore Pr(y it =1, y it-1 =1 | X i , u i ) = Φ * (µ it , µ it-1 ; α) and Pr(y it =1 | X i , u i ) = Φ(µ it ),where Φ * (.,.;α) is the bivariate standard normal cdf <strong>with</strong> correlation α and µ it is thescaled conditional mean (1-α 2 ) 1/2 [∑ s α s β′x it-s +u i /(1-α)]. Thus:Pr( yit= 1| yit−1= 1, X , u ) − Pr( yiiit= 1| yit−1Φ(µit, µit−1;α)− Φ(µit) Φ(µit= 0, Xi, ui) =Φ(µ ) 1it−1[ − Φ(µ )]it−1−1)(13)The important difference between (10) and (13) is that the former depends only on thecurrent vector x it , whereas the latter depends on the entire history <strong>of</strong> x it .Consider now the alternative summary measure, Pr(y it =1 | X i , u i ). The LARprocess gives a relatively simple form:Pr( y = 1| X , u ) = Φ(µ )(14)itiiitimply<strong>in</strong>g that the lagged marg<strong>in</strong>al response decays geometrically:X 2∂ Pr( y it= 1|i, ui)s= φ(µit) α 1−α β∂xit−s(15)where φ(.) is the standard normal pdf.For the state-dependence model, we can write:Pr( yit= 1| Xi, u ) = Pr( yi+ Pr( yitit= 1| y= 1| yRearrange and write this as a recursion:PitP itwhere:P it = Pr(y it =1 | X i , u i )δ it = Φ(α+β′x it +u i ) - Φ(β′x it +u i )ρ it = Φ(β′x it +u i ).Solv<strong>in</strong>g back to an arbitrary period 0:Pit−1it−1it= 0, X= 1, Xitii, u) Pr( y, u ) Pr( yiiit−1it−1= 0 | X= 1| Xii, u ), uii)(16)=−1δ + ρ(17)=t−1∏itP i 0j=01∏ j= −j= 0 it−jt−1it− j+ ∑s=0it−ss−1∏δ ρ δ(18)where we use the convention δ ≡ 1. On reasonable assumptions about the x-process, solv<strong>in</strong>g back <strong>in</strong>def<strong>in</strong>itely leads to the follow<strong>in</strong>g representation:j=0it−jPit=∞∑s=0it−ss−1∏ρ δ(19)j=0it−j- 6 -


Thus:∂ Pr( yit= 1| X∂xit−s, u )ii==∂ρ∂x⎛⎜⎝s−1∏it−sj=0+it−sδ∞∑it−jk = s+1s−1∏j=0δ⎞⎟φ⎠⎛ ρ⎜⎝ δit−j( β'x + u )it−kit−s+it−sk −1∏j=0∞∑k = s+1δit−jρδit−si⎞⎟⎠it−kβk −1∏j=0δit−j∂δ∂x[ φ( α + β'x + u ) − φ( β'x + u )]β(20)The pr<strong>of</strong>ile <strong>of</strong> ∂ Pr(y it =1 | X i , u i )/ ∂x it-s is thus considerably more complicated than thegeometric decay implied by the SD model (1).it−sit−sit−siit−si3 <strong>Estimation</strong>3.1 Initial conditionsIn the SD model, there are two alternative approaches for deal<strong>in</strong>g <strong>with</strong> the randomeffects u. Heckman (1981b) specifies an approximation to the distribution <strong>of</strong> y i0 | X i ,u i , and then derives the distribution <strong>of</strong> y i1 ... y iT | y i0 , X i , u i us<strong>in</strong>g sequentialcondition<strong>in</strong>g. The random effects are then <strong>in</strong>tegrated out by numerical quadrature.The alternative approach, used by Wooldridge (2000) is to specify <strong>in</strong>stead thedistribution <strong>of</strong> u i | y i0 , X i . A semi-parametric variant due to Arellano and Carrasco(2003) <strong>in</strong>volves the sequence <strong>of</strong> conditional means = E( u y ... y ,x ... x )λ ,iti|i0it i0which are estimated as nuisance parameters. The latter approach has many advantages<strong>in</strong> <strong>models</strong> like (1) but is problematic <strong>in</strong> LAR <strong>models</strong>, where the lagged dependentvariable is not observable and cannot be conditioned on. Condition<strong>in</strong>g on itsobservable counterpart complicates matters enormously. For this reason, we use theHeckman treatment <strong>of</strong> <strong>in</strong>itial conditions, together <strong>with</strong> an explicit hypothesis test<strong>in</strong>gprocedure to control the bias <strong>in</strong>duced by approximation error <strong>in</strong> the assumeddistribution <strong>of</strong> y i0 | X i , u i .Assume that we observe y and x over a period t = 0 … T. The LAR process (2)implies the follow<strong>in</strong>g distributed lag representation: 3it3 In the case where the Γ r are not observable, we impose the normalisation σ ε = 1 and henceforthand σ u are re-<strong>in</strong>terpreted accord<strong>in</strong>gly.*yit, β- 7 -


y*itt= α y*i0+t−1∑s=0s 1−αsα β ' xα ε(21)t t−1it− s+ ui+ ∑1−αs=0it−sThis is a useful basis for estimation if either t is sufficiently large and α t decayssufficiently rapidly <strong>with</strong> t or if we can f<strong>in</strong>d a good empirical approximation forWrite this approximation to*i*yi0| X i , u i as:iii*yi0.y0= δ' w + γ u + η(22)* 0 0yi = r iff yi∈[Γr−, Γr), r 1...R(23)0 0 1=where w i is a vector constructed from X i ; δ and γ are parameters and, <strong>in</strong> the orderedprobit case, Γ 0rmay differ from Γ r . The random term η i satisfies the follow<strong>in</strong>gassumptions:η i ⊥ u i ⏐ X i (24)η i ⊥ ε it ⏐ X i for every t > 0 (25)u i ⏐ X i ∼ N(0, σ η 2 ) (26)Note that, even <strong>in</strong> the ordered probit case, η is not normalised to have unit variance.In pr<strong>in</strong>ciple, the vector w i may conta<strong>in</strong> all dist<strong>in</strong>ct elements <strong>of</strong> {x i0 , X i }.However, <strong>in</strong> practice it may be found that w i = x i0 is adequate, or that limitedT0 ∑11summaries, such as w = { ,−ixiT xit} , work well. This is essentially an empiricalissue.With approximation (22)-(23), equation (21) becomes:y*itt−1t−1tsstδ ' wi+ ∑αβ'xit−s+ ctui+ α εit−sα ηi(27)s=0s=0= α ∑ +where c t = (1 - α t )/ (1 - α) + α t γ.The model now consists <strong>of</strong> equation (22) and a set <strong>of</strong> equations (27) for anycollection <strong>of</strong> periods t > 0. In practice, the <strong>in</strong>itial conditions model (22) is only anapproximation and is a potential source <strong>of</strong> specification error. However, if |α | < 1 sothat α t → 0 as t → ∞, then the <strong>in</strong>fluence <strong>of</strong> the <strong>in</strong>itial conditions decl<strong>in</strong>es as weconsider later periods. There is, therefore, a case for leav<strong>in</strong>g a gap (<strong>of</strong> S periods)between the <strong>in</strong>itial period 0 and the subsequent periods used to estimate the LARmodel. Consequently, we work <strong>with</strong> a system <strong>of</strong> (T-S+1) equations consist<strong>in</strong>g <strong>of</strong> (22)and (27) for t = S+1…T. Data on {y i1 …y iS } are not used. The choice <strong>of</strong> S <strong>in</strong>volves atrade-<strong>of</strong>f between possible misspecification bias and efficiency, s<strong>in</strong>ce <strong>in</strong>creas<strong>in</strong>g S- 8 -


educes both the <strong>in</strong>fluence <strong>of</strong> <strong>in</strong>itial conditions and the amount <strong>of</strong> data used forestimation. Increas<strong>in</strong>g S also reduces the scale <strong>of</strong> the computational problem. Thissystem is non<strong>l<strong>in</strong>ear</strong> <strong>in</strong> its parameters θ = {α, β, δ, γ, σ u , σ ε , σ η }, where σ ε = 1 <strong>in</strong> thecase <strong>of</strong> observable <strong>in</strong>terval boundaries.3.2 IdentificationConsider the model <strong>with</strong> unobserved grad<strong>in</strong>g thresholds. Partition thecovariates <strong>in</strong>to a common set <strong>of</strong> time-<strong>in</strong>variant variables ζ i and a sequence <strong>of</strong> timevary<strong>in</strong>gcovariates ξ it , so that x it = (ζ i , ξ it ). Assume a full specification <strong>of</strong> the <strong>in</strong>itialcondition (9), so that w i = (ζ i , ξ i1 ... ξ iT ). Make the further assumption that the matrixplim(n -1 ∑w i w i ′) is positive def<strong>in</strong>ite. An ordered probit model for y i0 on w i willconsistently estimate the normed coefficient vector δ/v 0 , where v 2 0 = σ 2 η + γ 2 σ 2 u .Consider equation (27), for any period, t > 0. Rewrite it <strong>in</strong> standardised form:⎛ y⎜⎝ v*ittt⎞ ⎛αv⎟ =⎜⎠ ⎝ vt0t⎞ ⎛ (1 − α ) β⎜⎟ωi+⎠ ⎝ (1 − α)vtζ⎞⎟'ζ⎠i⎛ β+⎜⎝ vξt⎞⎟'ξ⎠it⎛αβ+⎜⎝ vt⎡+ ⎢ctu⎣iξ+⎞⎟'ξ⎠t 1∑ −s=0it−1α εt−1⎛αβ+ ... + ⎜⎝ vtsit−sξt ⎤+ α ηi⎥ / v⎦⎞⎟'ξ⎠ti1(28)where β ′ = (β ζ ′ , β ξ ′ ), v 2 t = c 2 t σ 2 u + (1-α 2t )/(1-α 2 ) + α 2t 2σ η and ω i is the variableδ′w i /v 0 which can be constructed from the coefficients <strong>of</strong> the <strong>in</strong>itial conditions model(22). Rewrite (28) <strong>in</strong> simplified notation as:y*it/ v ω b ξ + υ(29)t= ati+t' ζi+ d0 t' ξit+ d1t' ξit−1+ ... + dt −1,t'i1Note that the covariates (ω i , ζ i , ξ i1 ... ξ it ) are (asymptotically) non-col<strong>l<strong>in</strong>ear</strong>. Thus,ordered probit estimation <strong>of</strong> (29) will generate consistent estimates <strong>of</strong> the scaledcoefficients (a t , b t , d 0t , ..., d t-1,t ). Identification then proceeds as follows. First, thevalue <strong>of</strong> α can be constructed as any element <strong>of</strong> any <strong>of</strong> the vectors <strong>of</strong> ratios d st /d s-1,t . Ifα is zero, the model becomes a static random effects ordered probit, so there is nonew identification issue; we consider the case α ≠ 0 henceforth. With α known, β canitbe <strong>in</strong>ferred up to scale asg / g where g = [b t (1-α)/(1-α t ), d 0t ]. Thus, the keybehavioural parameters α and the direction <strong>of</strong> the vector β are essentially identifiablefrom only two waves <strong>of</strong> the panel.The ratio, R t , <strong>of</strong> a t to α t gives the value v 0 /v t , thus:- 9 -


then done sequentially, start<strong>in</strong>g <strong>with</strong> S = 8, so that it <strong>in</strong>itially <strong>in</strong>volved only the y-observations from waves 0, 9 and 10. The skip rate S was then reduced sequentiallywhile the score test rema<strong>in</strong>ed <strong>in</strong>significant. We encountered no rejection at any stage,so our f<strong>in</strong>al specification uses all available waves <strong>of</strong> data. Consequently, the rectangleprobabilities <strong>in</strong>volved <strong>in</strong> SML estimation are 11-dimensional.The analogous SD model is:*where d = ( y m )mit it=y*it4= ∑α mdmit−1+ β'xit+ ui+ εitm=1(60)1 . Estimated parameters for the SD model are given <strong>in</strong>Appendix Table A2.1. They were computed us<strong>in</strong>g 48-po<strong>in</strong>t Gauss-Hermitequadrature. Despite the fact that the SD model has 3 more parameters than the LARmodel, the latter achieves a substantially higher log-likelihood.In the model, economic circumstances are represented by the level <strong>of</strong>household <strong>in</strong>come per capita, the proportion <strong>of</strong> household <strong>in</strong>come earned by therespondent himself, and a dummy for owner-occupation, together <strong>with</strong> the estimatedvalue <strong>of</strong> the equity <strong>in</strong> the house. As expected, the level <strong>of</strong> household per capita<strong>in</strong>come has a significant positive effect on perceptions <strong>of</strong> f<strong>in</strong>ancial well-be<strong>in</strong>g. Themagnitude <strong>of</strong> the respondent’s personal contribution to household f<strong>in</strong>ances has asignificant positive <strong>in</strong>fluence on his reported perceptions. There is strong evidence tosupport the widely-held view that homeowners’ perceptions respond to ris<strong>in</strong>g housevalues. Human capital also appears to be an important element <strong>in</strong> perceived f<strong>in</strong>ancialwell-be<strong>in</strong>g, s<strong>in</strong>ce there is a strong positive <strong>in</strong>fluence <strong>of</strong> educational atta<strong>in</strong>ment. Recentchanges <strong>in</strong> circumstances are represented by the first differences <strong>in</strong> per capitahousehold <strong>in</strong>come, the respondent’s own <strong>in</strong>come and the estimated house value. None<strong>of</strong> these is statistically significant.However, these ‘objective’ f<strong>in</strong>ancial factors are not sufficient to expla<strong>in</strong> thedeterm<strong>in</strong>ation and evolution <strong>of</strong> perceived f<strong>in</strong>ancial well-be<strong>in</strong>g. Other explanatoryvariables are mostly are time-<strong>in</strong>variant. The small number <strong>of</strong> time-vary<strong>in</strong>g covariatesare <strong>in</strong>cluded <strong>in</strong> the form <strong>of</strong> current levels and changes from the previous year.Ethnicity is represented by dummies for the Black and Asian groups and thereis evidence <strong>of</strong> a negative difference, which is statistically significant for the lattergroup. The effect <strong>of</strong> marital status is captured by dummies for be<strong>in</strong>gmarried/cohabit<strong>in</strong>g, divorced/separated or widowed. A further dummy identifies those- 16 -


Table 1 Estimates and tests (standard errors <strong>in</strong> parentheses)Dynamic model Initial conditionsCovariate βˆ Std. err.ˆδ /σˆη Std. err.α 0.331 0.012Black -0.224 0.290 0.153 0.602Asian -0.366 0.128 -0.030 0.235In relationship 0.081 0.043 -0.069 0.100Divorced/separated -0.161 0.079 -0.729 0.181Widowed 0.300 0.159 0.765 0.828Newly divorced/separated/widowed -0.178 0.114Employed 0.291 0.048 0.346 0.129Self-employed 0.234 0.060 0.250 0.155Unemployed -0.340 0.076 -0.653 0.171Newly unemployed -0.396 0.096Degree or other further education 0.222 0.055 0.448 0.111A-level 0.269 0.066 0.384 0.125O-level / GCSE / CSE / other qualification 0.130 0.062 0.373 0.110Household size 0.169 0.026 0.175 0.050Number <strong>of</strong> children <strong>in</strong> household -0.105 0.018 -0.137 0.039∆ number <strong>of</strong> children -0.026 0.029Homeowner 0.078 0.057 0.053 0.199Annual household <strong>in</strong>come per head (£×10 -3 ) 0.199 0.013 0.474 0.053∆ household <strong>in</strong>come per head (£×10 -3 ) 0.005 0.016∆ own <strong>in</strong>come (£×10 -3 ) -0.018 0.019Own <strong>in</strong>come as share <strong>of</strong> household <strong>in</strong>come 0.356 0.061 0.498 0.639Value <strong>of</strong> house (£×10 -5 ) 0.211 0.062 0.245 0.268Proportionate change <strong>in</strong> value <strong>of</strong> house 0.000 0.005Age 18-30 -0.065 0.052 -0.293 0.119Age 31-40 -0.084 0.044 -0.101 0.129Age 41-50 -0.052 0.045 -0.009 0.130Age 51-65 0.117 0.052 -0.004 0.157Poor health 0.014 0.067 0.016 0.122Newly-developed ill-health 0.036 0.082Wave 1 dummy -0.270 0.130Wave 2 dummy -0.136 0.051Wave 3 dummy -0.075 0.051Wave 4 dummy -0.148 0.051Wave 5 dummy 0.041 0.051Wave 6 dummy 0.007 0.052Wave 7 dummy 0.018 0.051Wave 8 dummy -0.081 0.052Wave 9 dummy -0.111 0.052Γ 1 -1.542 0.168 -1.598 0.315Γ 2 -0.620 0.166 -0.577 0.309Γ 3 0.934 0.166 1.233 0.323Γ 4 2.463 0.167 2.870 0.3602σ u 0.375 0.027γ 1.005 0.0812σ η 2.666 0.193Score test for the S = 1 model χ 2 (59) 54.78 (P = 0.368)Log-likelihood -14,535.50- 18 -


7 ConclusionsWe have considered an alternative to the discrete state dependence (SD) model for<strong>dynamic</strong> modell<strong>in</strong>g <strong>of</strong> ord<strong>in</strong>al variables from panel data. The alternative LAR model<strong>in</strong>volves ord<strong>in</strong>al observation <strong>of</strong> a latent autoregression, rather than lagged feedback <strong>of</strong>the previous period’s discrete outcome. It is argued that this specification is moreappropriate for a range <strong>of</strong> applications <strong>in</strong>volv<strong>in</strong>g observational, rather than <strong>in</strong>herent,discreteness. Examples <strong>in</strong>clude <strong>in</strong>terval regressions and <strong>models</strong> <strong>of</strong> expectations, andsatisfaction.We have developed a simulated maximum likelihood estimator and anassociated test procedure designed to assist <strong>in</strong> handl<strong>in</strong>g the <strong>in</strong>itial conditions problem.As part <strong>of</strong> this procedure, a novel simulation algorithm has been implemented forcomput<strong>in</strong>g a required numerical Hessian matrix.The method has been applied to a simple model <strong>of</strong> <strong>in</strong>dividual perceptions <strong>of</strong>f<strong>in</strong>ancial well-be<strong>in</strong>g, applied to UK household panel data. The LAR model provides arobust description <strong>of</strong> the evolution <strong>of</strong> f<strong>in</strong>ancial perceptions over time, <strong>with</strong> asignificant role for lagged adjustment. The LAR model fits the data considerablybetter than the conventional SD model and has quite different equilibrium and<strong>dynamic</strong> properties. In particular, the SD model generally displays less persistencethan the LAR model, and when misused to model highly-persistent data, the estimatedvariance <strong>of</strong> the <strong>in</strong>dividual effect is biased upwards to compensate.ReferencesArellano, M. and Carrasco, R. (2003). B<strong>in</strong>ary choice panel data <strong>models</strong> <strong>with</strong>predeterm<strong>in</strong>ed variables, Journal <strong>of</strong> Econometrics 115, 125-157.Arellano, M., Bover, O. and Labeaga, J. M. (1997). Autoregressive <strong>models</strong> <strong>with</strong>sample selectivity for panel data, unpublished work<strong>in</strong>g paper(http://rt001hfd.eresmas.net/obmajl97.pdf)Bover, O. and Arellano, M. (1997). Estimat<strong>in</strong>g <strong>dynamic</strong> limited dependent variable<strong>models</strong> from panel data, Investigaciones Economicas 21, 141-165.Chow, G. S. (1960). Tests for equality between sets <strong>of</strong> coefficients <strong>in</strong> two <strong>l<strong>in</strong>ear</strong>regressions, Econometrica 28, 591-605.Ferrer-i-Carbonell, A. and Frijters, P. (2004) How important is methodology for theestimates <strong>of</strong> the determ<strong>in</strong>ants <strong>of</strong> happ<strong>in</strong>ess? Economic Journal 114, 641-659.- 19 -


Hajivassiliou, V. and Ruud, P. (1994). Classical estimation methods for LDV <strong>models</strong>us<strong>in</strong>g simulation, <strong>in</strong> Engle, R. F. and McFadden, D. L. (eds.) Handbook <strong>of</strong>Econometrics 4, 2383-2441. Amsterdam: North-Holland.Heckman, J. J. (1978). Simple statistical <strong>models</strong> for discrete panel data developed andapplied to test the hypothesis <strong>of</strong> true state dependence aga<strong>in</strong>st the hypothesis <strong>of</strong>spurious state dependence, Annales de l’INSEE 30, 227-269.Heckman, J. J. (1981a). Statistical <strong>models</strong> for discrete panel data, <strong>in</strong> StructuralAnalysis <strong>of</strong> Discrete Data <strong>with</strong> Econometric Applications, Manski, C. F. andMcFadden, D. (eds.), 227-269. Cambridge MA: MIT Press.Heckman, J. J. (1981b). The <strong>in</strong>cidental parameters problem and the problem <strong>of</strong> <strong>in</strong>itialconditions <strong>in</strong> estimat<strong>in</strong>g a discrete time-discrete data stochastic process, <strong>in</strong>Structural Analysis <strong>of</strong> Discrete Data <strong>with</strong> Econometric Applications, Manski, C.F. and McFadden, D. (eds.), 179-195. Cambridge MA: MIT Press.Van Praag, B. and Ferrer-i-Carbonell, A. (2004). Happ<strong>in</strong>ess Quantified. A SatisfactionCalculus Approach. Oxford: Oxford University Press.Wooldridge, J.M. (2000), A framework for estimat<strong>in</strong>g <strong>dynamic</strong>, unobserved effectspanel data <strong>models</strong> <strong>with</strong> possible feedback to future explanatory variables,Economics Letters 68, 245-250.- 20 -


*Appendix 1: A simulation approximation to L~ψψOur aim is to estimate the probability limit <strong>of</strong> the partial Hessiann−1∂2L( ψˆ, ~ τ ) / ∂ψˆ∂ψˆ' . Let V be an asymptotically valid approximation to the*2covariance matrix <strong>of</strong> ψˆ : for example, we might use−1−1V = −n H(ˆ)θ . S<strong>in</strong>ce V reflectsthe variability <strong>of</strong> ψˆ and is O p (n -1 ), it provides a good metric for the approximation <strong>of</strong>derivatives. Let K be the Choleski factor such that V = KK′. Note that K = O p (n -1/2 ).Now generate a sequence <strong>of</strong> <strong>in</strong>dependent pseudo-random N(0, I) vectors v 1 … v M andm 1mconstruct z n ( L ( ψˆ+ Kv , ~ τ ) − L *( ψˆ, ~ τ ))= − µ , where µ is a steplength*n22parameter. Note that z m , and any covariance (<strong>with</strong> respect to the distribution <strong>of</strong> v m ) <strong>of</strong>z m <strong>with</strong> powers <strong>of</strong> v m , are O p (n -1/2 µ ). Expand z m <strong>in</strong> a Taylor series:z2m= µmm mdpvp+ ∑ 2∑ ∑ Dpqvpvq+ ∑p n p q>p 2npnµµDppm 2 m( v ) + ζ−1where d p and D pq are elements <strong>of</strong> d = K' ( n ∂L*( ψˆ, ~ τ ) / ψˆ2∂ )−12D = n K ( n ∂ L *( ψˆ, ~ τ ) / ∂ψˆ∂ψˆ') K'2are O p (1). We then have the follow<strong>in</strong>g results:EEEp(A1)n and, and ζ is a rema<strong>in</strong>der term. Note that d and Dm m µm m( z v ) d + E( v ζ )p=p p(A2)nm m mm m m( z v v ) = D + E( v v ζ ),p ≠ qpq2µnpqm m 2m m( z ( v ) ) 3D+ D + E( v ) ζ )ppµ 2⎡⎤⎢2ppqq ⎥ p2nq≠p= ∑⎣q⎦(A3)(A4)where the expectations are taken <strong>with</strong> respect to v m .If necessary, the process for generat<strong>in</strong>g the variates v m should be appropriatelymtruncated to ensure that L *(ψˆ+ µ Kv , ~nτ2) always exists and that terms <strong>of</strong> the formv3 *( v v ( ∂ L ∂ψ∂ψ∂ψ| +)E exist for any function ψ + (v) bounded byij/ p q r ψ = ψ ( v )( ψ ˆ , ψˆ+ µ Kv). In practice, this requires ensur<strong>in</strong>g that simulation <strong>of</strong>mˆ avoidsψ + µKvregions where the Γ r are non-ordered. A sufficiently small value for µ (for example- 21 -


0.001) will generally achieve this. Under these circumstances, the rema<strong>in</strong>der terms <strong>in</strong>(A2)-(A4) are o p (1). Thus we can estimate the cross-partials consistently as follows:Dˆpqn=µ−1M m m mM ∑ m =z vpv2 1 q,p ≠ q(A5)To calculate the rema<strong>in</strong><strong>in</strong>g second derivatives, we solve the simulated analogue <strong>of</strong> thesystem <strong>of</strong> equations (A4), to give:Dˆpp=nM2µNow transform D back to ψ-space:⎡MP−1m m 2∑z⎢vp− ⎜ ⎟∑m= 1 2 + P q=1⎣⎛⎝1⎞⎠vm 2q⎤⎥⎦(A6)Lˆ* −1−1ψψ≈ n K'D K(A7)One advantage <strong>of</strong> this method is that replications can be made sequentially and theprocedure stopped when the quantities (A5) and (A6) appear to have reachedconvergence. The simulated analogue <strong>of</strong> expression (A2) can be compared <strong>with</strong> aconventional numerical derivative to check on the negligibility assumption for therema<strong>in</strong>der terms. Antithetic variance reduction can be used to improve simulationprecision <strong>in</strong> (A5) and (A6).- 22 -


Appendix 2: SD model estimatesTable A2.1 Estimates for the SD model (standard errors <strong>in</strong> parentheses)Dynamic model Initial conditionsCovariate βˆ Std. err.ˆδ /σˆη Std. err.α 1 0.286 0.080α 2 0.631 0.071α 3 1.083 0.074α 4 1.524 0.076Black -0.254 0.327 0.186 0.603Asian -0.398 0.144 -0.034 0.247In relationship 0.088 0.045 -0.085 0.100Divorced/separated -0.173 0.083 -0.708 0.181Widowed 0.328 0.165 0.780 0.818Newly divorced/separated/widowed -0.160 0.113Employed 0.302 0.050 0.342 0.131Self-employed 0.239 0.062 0.270 0.156Unemployed -0.387 0.077 -0.634 0.172Newly unemployed -0.321 0.096Degree or other further education 0.240 0.059 0.454 0.111A-level 0.297 0.071 0.398 0.127O-level / GCSE / CSE / other qualification 0.144 0.066 0.369 0.111Household size 0.181 0.027 0.184 0.050Number <strong>of</strong> children <strong>in</strong> household -0.116 0.019 -0.131 0.039∆ number <strong>of</strong> children -0.016 0.029Homeowner 0.087 0.059 0.064 0.207Annual household <strong>in</strong>come per head (£×10 -3 ) 0.215 0.012 0.484 0.056∆ household <strong>in</strong>come per head (£×10 -3 ) -0.010 0.016∆ own <strong>in</strong>come (£×10 -3 ) -0.010 0.019Own <strong>in</strong>come as share <strong>of</strong> household <strong>in</strong>come 0.365 0.063 0.574 0.639Value <strong>of</strong> house (£×10 -5 ) 0.215 0.065 0.215 0.290∆ value <strong>of</strong> house (£×10 -5 ) 0.000 0.005Age 18-30 -0.077 0.053 -0.283 0.118Age 31-40 -0.090 0.044 -0.092 0.128Age 41-50 -0.052 0.045 -0.007 0.129Age 51-65 0.124 0.053 -0.001 0.154Poor health 0.017 0.068 0.025 0.122Newly-developed ill-health 0.029 0.082Wave 1 dummy -0.175 0.053Wave 2 dummy -0.148 0.051Wave 3 dummy -0.084 0.051Wave 4 dummy -0.155 0.051Wave 5 dummy 0.031 0.051Wave 6 dummy 0.010 0.051Wave 7 dummy 0.020 0.050Wave 8 dummy -0.075 0.051Wave 9 dummy -0.109 0.050Γ 1 -0.954 0.132 -1.092 0.212Γ 2 -0.037 0.131 -0.367 0.213Γ 3 1.511 0.132 0.892 0.219Γ 4 3.028 0.132 2.035 0.2212σ u 0.684 0.022γ 0.945 0.071Log-likelihood -14,560.686- 23 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!