11.07.2015 Views

(SEI) Formation on Graphene as a Model Li-ion Battery Anode

(SEI) Formation on Graphene as a Model Li-ion Battery Anode

(SEI) Formation on Graphene as a Model Li-ion Battery Anode

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Articlepubs.acs.org/cmIn Situ X‐ray Study of the Solid Electrolyte Interph<strong>as</strong>e (<str<strong>on</strong>g>SEI</str<strong>on</strong>g>) <str<strong>on</strong>g>Formati<strong>on</strong></str<strong>on</strong>g><strong>on</strong> <strong>Graphene</strong> <strong>as</strong> a <strong>Model</strong> <strong>Li</strong>-i<strong>on</strong> <strong>Battery</strong> <strong>Anode</strong>Sudeshna Chattopadhyay, §,† Albert L. <strong>Li</strong>ps<strong>on</strong>, §,† Hunter J. Karmel, † J<strong>on</strong>athan D. Emery, †Timothy T. Fister, ‡ Paul A. Fenter, ‡ Mark C. Hersam,* ,† and Michael J. Bedzyk* ,†† Department of Materials Science and Engineering, Northwestern University, Evanst<strong>on</strong>, Illinois 60208, United States‡ Chemical Sciences and Engineering Divisi<strong>on</strong>, Arg<strong>on</strong>ne Nati<strong>on</strong>al Laboratory, Lem<strong>on</strong>t, Illinois 60439, United States*S Supporting Informati<strong>on</strong>ABSTRACT: The solid electrolyte interph<strong>as</strong>e (<str<strong>on</strong>g>SEI</str<strong>on</strong>g>) plays a critical role in theperformance and safety of <strong>Li</strong>-i<strong>on</strong> batteries, but the crystal structure of the materialsformed have not been previously studied. We employ the model system of epitaxialgraphene <strong>on</strong> SiC to provide a well-defined graphitic surface to study the crystallinity andtexture formati<strong>on</strong> in the <str<strong>on</strong>g>SEI</str<strong>on</strong>g>. We observe, via in situ synchrotr<strong>on</strong> X-ray scattering, theformati<strong>on</strong> and growth of <strong>Li</strong>F crystallites at the graphene surface, which incre<strong>as</strong>e in size withlithiati<strong>on</strong> dose and are textured such that the <strong>Li</strong>F (002) planes are approximately parallel tothe graphene sheets. Furthermore, X-ray photoelectr<strong>on</strong> spectroscopy (XPS) reveals thecompositi<strong>on</strong> of the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> formed in this system to c<strong>on</strong>sist of <strong>Li</strong>F and organic compoundssimilar to those found previously <strong>on</strong> graphite. <str<strong>on</strong>g>SEI</str<strong>on</strong>g> comp<strong>on</strong>ents, other than <strong>Li</strong>F, do notproduce X-ray diffracti<strong>on</strong> peaks and are categorized <strong>as</strong> amorphous. From high-resoluti<strong>on</strong>transmissi<strong>on</strong> electr<strong>on</strong> microscopy, the <strong>Li</strong>F crystallites are seen in near proximity to thegraphene surface al<strong>on</strong>g with additi<strong>on</strong>al apparently amorphous material, which is likely tobe other <str<strong>on</strong>g>SEI</str<strong>on</strong>g> comp<strong>on</strong>ents detected by XPS and/or misoriented <strong>Li</strong>F. This newunderstanding that <strong>Li</strong>F crystallites grow <strong>on</strong> the graphene surface with str<strong>on</strong>g texturing will <strong>as</strong>sist future efforts to model andengineer the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> formed <strong>on</strong> graphitic materials.KEYWORDS: <strong>Li</strong>-i<strong>on</strong> batteries, solid electrolyte interph<strong>as</strong>e, graphene, graphite, X-ray scattering■ INTRODUCTIONThe performance, lifetime, and safety of batteries need to beenhanced to enable emerging are<strong>as</strong> of technology, such <strong>as</strong>electric vehicles. During cycling, a layer of decomposedelectrolyte, known <strong>as</strong> the solid electrolyte interph<strong>as</strong>e (<str<strong>on</strong>g>SEI</str<strong>on</strong>g>),forms <strong>on</strong> <strong>Li</strong>-i<strong>on</strong> battery electrodes. 1 Since the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> is formedfrom the breakdown of the electrolyte, it reduces the capacity ofthe battery and can be detrimental to cell lifetime. On the otherhand, the stability and p<strong>as</strong>sivating qualities of the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> areimportant to limit unc<strong>on</strong>trolled reacti<strong>on</strong>s, which can pose safetyrisks resulting from cat<strong>as</strong>trophic failure. 2The <str<strong>on</strong>g>SEI</str<strong>on</strong>g> previously h<strong>as</strong> been studied using a variety of in situmethods including atomic force microscopy (AFM), scanningi<strong>on</strong> c<strong>on</strong>ductance microscopy (SICM), Fourier-transform infrared(FTIR) spectroscopy, and ellipsometry. 3−7 Ex situ studies,using X-ray photoelectr<strong>on</strong> spectroscopy (XPS) and scanningelectr<strong>on</strong> microscopy (SEM), have been utilized to probe the<str<strong>on</strong>g>SEI</str<strong>on</strong>g> compositi<strong>on</strong> and morphology. 8−10 These studies show that<str<strong>on</strong>g>SEI</str<strong>on</strong>g> formati<strong>on</strong> <strong>on</strong> the anode surface is more pr<strong>on</strong>ounced thanthat <strong>on</strong> the cathode, 11 and its compositi<strong>on</strong> depends <strong>on</strong> thechoice of electrolyte and electrode materials. 11,12 Although the<str<strong>on</strong>g>SEI</str<strong>on</strong>g> is critical to the operati<strong>on</strong> of <strong>Li</strong>-i<strong>on</strong> batteries, its structureand evoluti<strong>on</strong> are not fully understood.The most comm<strong>on</strong>ly used anode material in commercial <strong>Li</strong>i<strong>on</strong>batteries is graphitic carb<strong>on</strong>. The compositi<strong>on</strong> of the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> <strong>on</strong>graphite with fluorinated electrolytes h<strong>as</strong> been found to includehydrocarb<strong>on</strong>s, lithium alkyl carb<strong>on</strong>ates, <strong>Li</strong>OH, <strong>Li</strong> 2 CO 3 ,<strong>Li</strong> 2 O,and <strong>Li</strong>F. 7,8,10,13−16 <strong>Li</strong>F w<strong>as</strong> shown to grow in the <str<strong>on</strong>g>SEI</str<strong>on</strong>g>, but nostructural study (to our knowledge) w<strong>as</strong> previously performed.10 C<strong>on</strong>sequently, the structural relati<strong>on</strong>ships (if any)between the <strong>Li</strong>F and the electrode surface are not wellestablished.<strong>Li</strong>F is postulated to form from decompositi<strong>on</strong>/reducti<strong>on</strong> of the <strong>Li</strong>PF 6 salt (due to its thermal and chemicalinstabilities), via the reacti<strong>on</strong> <strong>Li</strong>PF 6 ↔ <strong>Li</strong> + F − ↓ +PF 5 and manyother possible reacti<strong>on</strong>s. 12,15,17,18 Furthermore, the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> w<strong>as</strong>found to grow thicker and with different compositi<strong>on</strong> <strong>on</strong> theedge planes of graphite <strong>as</strong> compared to the b<strong>as</strong>al plane. 8,19−21To reduce the total irreversible capacity of the system, whilestill allowing f<strong>as</strong>t <strong>Li</strong> + diffusi<strong>on</strong> into the anode via the edgesurfaces, a combinati<strong>on</strong> of b<strong>as</strong>al and edge surfaces is used. Anunderstanding of the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> <strong>on</strong> both the b<strong>as</strong>al and edge planes ofgraphite is therefore necessary in order to understand how tooptimize anode morphology.X-ray scattering can probe interfacial systems in situ, isn<strong>on</strong>destructive, and can determine the interfacial structure atthe atomic scale. In situ and ex situ X-ray diffracti<strong>on</strong> haveReceived: May 23, 2012Revised: July 10, 2012Published: July 23, 2012© 2012 American Chemical Society 3038 dx.doi.org/10.1021/cm301584r | Chem. Mater. 2012, 24, 3038−3043


Chemistry of Materialspreviously been used to study the bulk crystal structure of <strong>Li</strong>i<strong>on</strong>battery electrodes during cycling, 22−30 but it h<strong>as</strong> not yetbeen utilized to study the structure of the <str<strong>on</strong>g>SEI</str<strong>on</strong>g>. C<strong>on</strong>sequently,there is little informati<strong>on</strong> about the crystallinity andmorphology of the <str<strong>on</strong>g>SEI</str<strong>on</strong>g>.We have employed a model system of epitaxial graphene <strong>on</strong>6H-SiC (EG/SiC) for these studies. <strong>Graphene</strong> sheets provide awell-defined graphitic surface that is not perturbed duringlithiati<strong>on</strong>. 31 These graphene sheets fully cover the SiC withdomains of ∼200 nm and therefore possess a high percentageof b<strong>as</strong>al plane area and minimal edge plane sites. C<strong>on</strong>sequently,this system provides a model substrate for probing <str<strong>on</strong>g>SEI</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> graphitic b<strong>as</strong>al planes. Furthermore, in thissystem, the graphene sheets are excepti<strong>on</strong>ally parallel to the SiC(0006) b<strong>as</strong>al planes 31 enabling the study of texture formati<strong>on</strong>(i.e., preferential orientati<strong>on</strong> of crystals) in the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> that is notpossible with graphitic substrates having substantial mosaicdisorder and surface roughness. Preferential orientati<strong>on</strong> ofcrystallites in the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> may modify the rate of <strong>Li</strong> + diffusi<strong>on</strong> to theelectrode surface through those crystals, which could changethe rate performance of the battery. 32,33Herein, we report our studies <strong>on</strong> the atomic structure of the<str<strong>on</strong>g>SEI</str<strong>on</strong>g> formed <strong>on</strong> EG/SiC. XPS studies show <str<strong>on</strong>g>SEI</str<strong>on</strong>g> comp<strong>on</strong>ents <strong>on</strong>EG/SiC that are similar to that found previously <strong>on</strong> graphiteanodes. Furthermore, we find that <strong>Li</strong>F crystallites form andgrow <strong>on</strong> the EG/SiC surface with str<strong>on</strong>g texturing duringlithiati<strong>on</strong> via in situ synchrotr<strong>on</strong> X-ray scattering. L<strong>as</strong>tly, usinghigh-resoluti<strong>on</strong> transmissi<strong>on</strong> electr<strong>on</strong> microscopy (HRTEM),we observe the structure and morphology of the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> <strong>on</strong> theEG/SiC surface.■ EXPERIMENTAL SECTIONSiC samples were n-type doped single crystal wafers purch<strong>as</strong>ed fromCREE. As described elsewhere, 31 the SiC(0001) substrates werecleaned with acet<strong>on</strong>e and isopropanol before being graphitized inultrahigh vacuum. Scanning tunneling microscopy (STM) revealedthat the surfaces were covered by a combinati<strong>on</strong> of single and bilayergraphene with minimal 6√3 × 6√3 rec<strong>on</strong>structi<strong>on</strong> exposed. Theelectrolyte w<strong>as</strong> 1 M <strong>Li</strong>PF 6 (99.99%, Sigma-Aldrich) in 1:1 ethylenecarb<strong>on</strong>ate (EC) to dimethyl carb<strong>on</strong>ate (DMC) (anhydrous, Sigma-Aldrich), and the counter electrode w<strong>as</strong> metallic <strong>Li</strong> (Sigma-Aldrich).The samples for the XPS and HRTEM me<strong>as</strong>urements were lithiatedgalvanostatically in a two electrode beaker type cell with a current of21 μA/cm 2 . The sample used for the X-ray scattering experiment w<strong>as</strong>lithiated in a home-built in situ X-ray thin-film 34 cell with a 7.5 μmKapt<strong>on</strong> window (see Supporting Informati<strong>on</strong>, S1). The cell w<strong>as</strong> sealedin an inert atmosphere using a combinati<strong>on</strong> of Kapt<strong>on</strong> film, a Vit<strong>on</strong>g<strong>as</strong>ket, and pipe fittings. The seal w<strong>as</strong> leak tested, and the <strong>Li</strong> metalcounter electrode showed no significant oxidati<strong>on</strong> when examinedafter the X-ray experiments, which is c<strong>on</strong>sistent with an insignificantamount of water inside the cell. The galvanostatic lithiati<strong>on</strong> of thissample started at a current of 0.032 mA/cm 2 until a charge of 0.13mAh/cm 2 , then 0.064 mA/cm 2 until 0.26 mAh/cm 2 , and l<strong>as</strong>t 0.13 mA/cm 2 until 0.51 mAh/cm 2 .XPS me<strong>as</strong>urements were taken using an ESCA Probe (Omicr<strong>on</strong>)after samples were cleaned with isopropanol to remove residualelectrolyte. The spectra were smoothed by using f<strong>as</strong>t Fourier transform(FFT) filtering to remove noise. A peak fitting procedure w<strong>as</strong> used tofind the exact peak positi<strong>on</strong>s listed in Table 1.X-ray scattering experiments were performed at sector 5ID-C(DND-CAT) at the Advanced Phot<strong>on</strong> Source using 17.00 keVphot<strong>on</strong>s in a reflecti<strong>on</strong> geometry (see Supporting Informati<strong>on</strong>, S2).Two detectors were used during these experiments: a charge coupleddevice (CCD) area detector (“Roper CCD”) (Princet<strong>on</strong> Instruments7501-0002) mounted <strong>on</strong> the detector arm of the diffractometer 35 anda MAR165 large area CCD detector (“MAR CCD”) (MAR Research)3039ArticleFigure 1. Ex situ XPS spectra for a 14 mAh/cm 2 lithiated EG/SiCsample using 1 M <strong>Li</strong>PF 6 in 1:1 EC/DMC electrolyte for (a) <strong>Li</strong> 1s, (b)F 1s, (c) C 1s, and (d) O 1s.centered <strong>on</strong> the beam path after the sample. The diffracti<strong>on</strong> data fromthe <str<strong>on</strong>g>SEI</str<strong>on</strong>g> (i.e., intensity vs momentum transfer, q z , me<strong>as</strong>ured near thesurface normal directi<strong>on</strong>) w<strong>as</strong> extracted from the Roper CCD imagesby m<strong>as</strong>king-out the true specularly reflected X-ray beam from theimages, integrating the image al<strong>on</strong>g q x , and plotting the remainingnear-specular scattering intensity vs q z . Using Nika software, the MARCCD images were c<strong>on</strong>verted into reciprocal space maps and ‘polefigures’ were extracted. 36 For the <strong>Li</strong>F (002) pole figure, a combinati<strong>on</strong>of MAR CCD images were taken at incident angles of 5° and 10.384°.10.384° is the local specular positi<strong>on</strong> for <strong>Li</strong>F (002), meaning that <strong>Li</strong>Fcrystals with their (002) planes parallel to the SiC (0006) planessatisfy the Bragg c<strong>on</strong>diti<strong>on</strong> at this incident angle. The pole figure for<strong>Li</strong>F (111) w<strong>as</strong> extracted from those same two images and an imagenear to the local specular from the Roper CCD (see SupportingInformati<strong>on</strong>, S3). The extracted data for both <strong>Li</strong>F (002) and (111)were merged, <strong>as</strong> w<strong>as</strong> proposed by Baker et al. to remove artifactscreated by the geometry. 37The sample for HRTEM w<strong>as</strong> prepared using focused i<strong>on</strong> beammilling procedures, <strong>as</strong> described previously. 31 HRTEM w<strong>as</strong> performed■using a JEM-2100F TEM (JEOL) at 200 kV.RESULTS AND DISCUSSIONEx situ XPS w<strong>as</strong> utilized to investigate the surface compositi<strong>on</strong>of the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> formed <strong>on</strong> EG/SiC. The resulting spectra for a 14mAh/cm 2 lithiated EG/SiC sample using 1 M <strong>Li</strong>PF 6 in 1:1 EC/DMC electrolyte are shown in Figure 1, and peak positi<strong>on</strong>swith proposed <strong>as</strong>signments are given in Table 1. The <strong>Li</strong> 1sTable 1. Binding Energies and Proposed Assignments for theXPS Spectra for a 14 mAh/cm 2 <strong>Li</strong>thiated EG/SiC SampleUsing 1 M <strong>Li</strong>PF 6 in 1:1 EC/DMC Electrolyteelementbindingenergy (eV) proposed <strong>as</strong>signment ref<strong>Li</strong> 56.1 <strong>Li</strong>F 8, 10, 15,16<strong>Li</strong> 54.7 <strong>Li</strong>−O (R-CH 2 OCO 2 <strong>Li</strong>, <strong>Li</strong>OH and <strong>Li</strong>-Ographite)8, 15or polymerF 686.2 <strong>Li</strong>F 8, 10C 286 Polymer (PEO) 10C 288.1 R-CH 2 OCO 2 <strong>Li</strong> 10C 289 R-CH 2 OCO 2 <strong>Li</strong> 10O 533.4 C−O b<strong>on</strong>ds 8, 10P 135 un<strong>as</strong>signed 15dx.doi.org/10.1021/cm301584r | Chem. Mater. 2012, 24, 3038−3043


Chemistry of MaterialsArticleFigure 2. X-ray scattering data from an in situ lithiated EG/SiC sample. (a) Diffracti<strong>on</strong> pattern extracted from the images taken using the RoperCCD camera in the specular geometry for the sample at open circuit and at 0.51 mAh/cm 2 lithiati<strong>on</strong>. (b) CCD images around the <strong>Li</strong>F (002) Braggpeak (incidence angle of 10.609°) atdifferent lithiati<strong>on</strong> stages. The <strong>Li</strong>F (002) Bragg peak is observed at q z = 3.11 Å −1 , while the small central spot ineach image (at q z = 3.16 Å −1 ) corresp<strong>on</strong>ds to the scattering intensity from the surface rod of EG/SiC interface. (c) Domain size and integratedintensity of the <strong>Li</strong>F (002) Bragg peak in the window of the Roper CCD at different lithiati<strong>on</strong> states.spectrum shows a str<strong>on</strong>g peak at a binding energy of 56.1 eVindicating the formati<strong>on</strong> of <strong>Li</strong>F. 8,10,15,16 There is also a peak at54.7 eV corresp<strong>on</strong>ding possibly to <strong>Li</strong>−O b<strong>on</strong>ds (e.g., R-CH 2 OCO 2 <strong>Li</strong>, <strong>Li</strong>OH, and <strong>Li</strong>-O-graphite) or a lithiumc<strong>on</strong>taining polymer. 8,15 In Figure 1b, the F 1s spectrumshows a peak at 686.2 eV, further indicating <strong>Li</strong>F. 8,10 Note thatthere is no peak at 688 eV, which would indicate residual<strong>Li</strong>PF 6 . 10,16 In the C 1s spectra, there are three peaks at 286 eV,288.1 eV, and 289 eV. The peak at 286 eV could be a polymersuch <strong>as</strong> polyethylene oxide (PEO) with C−O b<strong>on</strong>ds, which canbe formed via the polymerizati<strong>on</strong> of EC. 10 The other two peakscan be <strong>as</strong>signed to the two carb<strong>on</strong>s in R-CH 2 OCO 2 <strong>Li</strong>. 10 Thereis no evidence for <strong>Li</strong> 2 CO 3 , which h<strong>as</strong> a peak between 290.5 and291.5 eV. The O 1s spectrum is shown in Figure 1d with <strong>as</strong>tr<strong>on</strong>g peak at 533.4 eV, which is c<strong>on</strong>sistent with a variety ofC−O b<strong>on</strong>ds. 8,10 There is also a peak from the P 2p at 135 eV,which is not <strong>Li</strong>PF 6 and cannot be <strong>as</strong>signed. 15 These <str<strong>on</strong>g>SEI</str<strong>on</strong>g>compounds are c<strong>on</strong>sistent with those found previously <strong>on</strong>graphite with similar electrolytes. 8,10,15,16To understand the atomic structure of the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> comp<strong>on</strong>entsduring growth, we utilized in situ synchrotr<strong>on</strong> X-ray scattering.Figure 2 shows the scattering data taken using the Roper CCDnear the specular reflecti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong> for the SiC. Thediffracti<strong>on</strong> pattern (Figure 2a) shows four peaks between 2.2Å −1 and 7 Å −1 that incre<strong>as</strong>e in intensity after lithiati<strong>on</strong> (0.51mAh/cm 2 ). These peaks corresp<strong>on</strong>d to the (111), (002),(220), and (004) 38 for cubic <strong>Li</strong>F in the rock salt structure, <strong>as</strong>indicated in Figure 2a. There appears to be n<strong>on</strong>zero intensity atthe peak locati<strong>on</strong> for <strong>Li</strong>F (222) at open circuit due tointerference from the SiC (0 0 0 13) qu<strong>as</strong>i-Bragg peak. There is,however, a trace of <strong>Li</strong>F present at open circuit voltage <strong>as</strong> can beseen by the n<strong>on</strong>zero (002) and (004) peaks (this intensitycorresp<strong>on</strong>ds to 2° <strong>Li</strong>F mosaic width the intensity andpeak shape for <strong>Li</strong>F (002) do not change appreciably betweenthis positi<strong>on</strong> and the local specular positi<strong>on</strong>, where the peakaligns with the surface reflecti<strong>on</strong>. These scattering patternsshow that the intensity of this peak incre<strong>as</strong>es with lithiati<strong>on</strong>, butwithout any significant change in the mosaic width.Furthermore, the central spot in the images, corresp<strong>on</strong>ding tothe surface specular reflecti<strong>on</strong> of EG/SiC, is unchanged atdifferent lithiati<strong>on</strong> stages (in either intensity or shape),indicating that the graphene structure is not disturbed. 31 Figure2c shows the evoluti<strong>on</strong> of the <strong>Li</strong>F (002) Bragg peak integratedintensity and vertical domain size at various lithiati<strong>on</strong> states.The average crystal size (me<strong>as</strong>ured al<strong>on</strong>g the surface normaldirecti<strong>on</strong>) incre<strong>as</strong>es m<strong>on</strong>ot<strong>on</strong>ically with incre<strong>as</strong>ing lithiati<strong>on</strong>and reaches a value of ∼50 nm at 0.51 mAh/cm 2 . The3040dx.doi.org/10.1021/cm301584r | Chem. Mater. 2012, 24, 3038−3043


Chemistry of MaterialsArticleFigure 3. (a) In situ diffracti<strong>on</strong> pattern of 0.51 mAh/cm 2 lithiated EG/SiC taken with the MAR CCD at an incidence angle of 5°. The arrow in theimage indicates the diffuse SiC (0006) peak. (b) Extracted pole figure for the image shown in part a and images at the specular positi<strong>on</strong>s for the <strong>Li</strong>F(111) (right y-axis) and (002) peaks (left y-axis), with background subtracti<strong>on</strong> and polarizati<strong>on</strong> correcti<strong>on</strong>, stitched near to 90° in χ.integrated intensity of the <strong>Li</strong>F (002) in the window of theRoper CCD incre<strong>as</strong>es nearly linearly with charge.These data also reveal informati<strong>on</strong> c<strong>on</strong>cerning theorientati<strong>on</strong> of the <strong>Li</strong>F crystals. The intensity of the <strong>Li</strong>F (002)peak is more than an order of magnitude larger than that of the<strong>Li</strong>F (111) peak, indicating a preferential orientati<strong>on</strong> of the <strong>Li</strong>F(002) planes approximately parallel to the SiC (0006) planes.Since the intensity ratio calculated for a <strong>Li</strong>F powder is 4:3, 39this suggests that a large fracti<strong>on</strong> of the <strong>Li</strong>F h<strong>as</strong> the (002)orientati<strong>on</strong>. While the <strong>Li</strong>F (002) peak is most intense al<strong>on</strong>g thespecular directi<strong>on</strong> (here, indicated <strong>as</strong> q x =0Å −1 ), we do not seeany c<strong>on</strong>tributi<strong>on</strong> from the <strong>Li</strong>F (002) Bragg peak to the surfacereflectivity, suggesting that while the <strong>Li</strong>F is preferentiallyaligned, it is not epitaxial with the graphene.We have also employed a large area detector to collect thepowder rings of <strong>Li</strong>F (002) and <strong>Li</strong>F (111) to probe the full <strong>Li</strong>Ftexture. 37,40−42 Figure 3a shows the diffracti<strong>on</strong> pattern of EG/SiC lithiated to 0.51 mAh/cm 2 taken using the MAR CCD atan incidence angle of 5°. Atq below 2.3 Å −1 , there is additi<strong>on</strong>aldiffracti<strong>on</strong> intensity from the Kapt<strong>on</strong> window 34 and theelectrolyte (note that the sample holder clips this image forq z < 0.7 Å −1 causing the shadow).Figure 3b shows the complete pole figures (between 20° and160° in χ, see Supporting Informati<strong>on</strong>, S2 for geometry) for the<strong>Li</strong>F (111) and (002) peaks. The pole figure is extracted bymerging both the diffracti<strong>on</strong> pattern at an incidence angle of 5°and the local specular positi<strong>on</strong>s (shown in SupportingInformati<strong>on</strong>, Figure S3), including background subtracti<strong>on</strong>and correcti<strong>on</strong> for the horiz<strong>on</strong>tally polarized X-ray beam. 37Since the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> layer is more than 100 nm thick, 31 an incidenceangle of 5° w<strong>as</strong> chosen instead of grazing incidence to reducethe effects of absorpti<strong>on</strong> and beam footprint, which wouldchange the probed regi<strong>on</strong> for the two me<strong>as</strong>urements. 37 The <strong>Li</strong>F(002) peak is str<strong>on</strong>gest at χ =90°, while the <strong>Li</strong>F (111) is mostintense at 35° and 145°. These peaks are due to str<strong>on</strong>gtexturing with crystals oriented such that the <strong>Li</strong>F (002) planesare parallel to the graphene sheets. The full width at halfmaximumof the <strong>Li</strong>F (002) peak at χ =90° is approximately2.4°, indicating a narrow mosaic distributi<strong>on</strong> of <strong>Li</strong>F orientati<strong>on</strong>sin the <str<strong>on</strong>g>SEI</str<strong>on</strong>g>. It should be noted that the signal from the surfacerod at this momentum transfer (q z ) c<strong>on</strong>tributes less than 1% tothe integrated intensity of the <strong>Li</strong>F (002) peak. We also observea weak peak near 90° in χ for <strong>Li</strong>F (111), indicating that thereare some <strong>Li</strong>F crystals that have their (111) planes parallel withthe graphene planes. Figure 4 shows that the peak at χ=145°incre<strong>as</strong>es more rapidly with lithiati<strong>on</strong> than the other regi<strong>on</strong>s ofthe ring corresp<strong>on</strong>ding to the randomly oriented crystals. ThisFigure 4. Pole figure, with background subtracti<strong>on</strong> and polarizati<strong>on</strong>correcti<strong>on</strong>, for <strong>Li</strong>F (111) at different lithiati<strong>on</strong> stages extracted fromMAR CCD images at an incidence angle of 5°.indicates that the growth of oriented crystals, with (002) planesparallel to the graphene sheets, is favored over randomlyoriented crystals after the initial <strong>Li</strong>F nucleati<strong>on</strong>.HRTEM w<strong>as</strong> used to further elucidate the morphology of the<str<strong>on</strong>g>SEI</str<strong>on</strong>g>. Figure 5 shows a representative ex situ HRTEM image ofthe <str<strong>on</strong>g>SEI</str<strong>on</strong>g> near the EG/SiC surface after 14 mAh/cm 2 lithiati<strong>on</strong>,observed al<strong>on</strong>g the SiC [2 12̅ 0] directi<strong>on</strong>. The SiC (0001)crystal lattice structure is clearly observed in this orientati<strong>on</strong>.The HRTEM image also shows a 0.32 nm spacing of graphenebetween the SiC crystalline regi<strong>on</strong> and <str<strong>on</strong>g>SEI</str<strong>on</strong>g>. The thick <str<strong>on</strong>g>SEI</str<strong>on</strong>g> layerc<strong>on</strong>tains crystallites whose layer spacing closely matches the(002) d-spacing of <strong>Li</strong>F. There is also an approximately 3 nmthick regi<strong>on</strong> between the graphene and <strong>Li</strong>F crystals, <strong>as</strong> well <strong>as</strong>small regi<strong>on</strong>s throughout the rest of the <str<strong>on</strong>g>SEI</str<strong>on</strong>g>, which appearamorphous. The amorphous-like regi<strong>on</strong> at the surface of theEG/SiC indicates that the crystalline <strong>Li</strong>F is not truly epitaxialwith EG/SiC, which is c<strong>on</strong>sistent with the X-ray reflectivity.These apparently amorphous regi<strong>on</strong>s likely c<strong>on</strong>tain randomlyoriented <strong>Li</strong>F and/or other <str<strong>on</strong>g>SEI</str<strong>on</strong>g> comp<strong>on</strong>ents that were detectedwith XPS.■ CONCLUSIONWe find that the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> formed <strong>on</strong> the EG/SiC surface iscomposed of <strong>Li</strong>F and other comm<strong>on</strong> <str<strong>on</strong>g>SEI</str<strong>on</strong>g> products that are alsofound <strong>on</strong> graphite. In situ X-ray scattering shows that <strong>Li</strong>Fformed <strong>on</strong> the graphene sheets is crystalline, whose amountand vertical domain size incre<strong>as</strong>e with lithiati<strong>on</strong> dose.Furthermore, these crystals show texturing, which strengthens3041dx.doi.org/10.1021/cm301584r | Chem. Mater. 2012, 24, 3038−3043


Chemistry of MaterialsFigure 5. Ex situ HRTEM near the EG/SiC surface taken al<strong>on</strong>g theSiC [2 12̅0] for a 14 mAh/cm 2 lithiated EG/SiC sample, showing thestructure of the SiC, the graphene layers, and the solid electrolyteinterph<strong>as</strong>e (<str<strong>on</strong>g>SEI</str<strong>on</strong>g>) with <strong>Li</strong>F crystals.with lithiati<strong>on</strong>, with their (002) planes aligning close to parallelwith the graphene sheets with an orientati<strong>on</strong> distributi<strong>on</strong> widthof 2.4° at 0.51 mAh/cm 2 . However, no other diffracti<strong>on</strong> peakswere found, indicating that the other <str<strong>on</strong>g>SEI</str<strong>on</strong>g> compounds areamorphous. Ex situ HRTEM indicates some apparentlyamorphous material between the graphene surface and theregi<strong>on</strong> with <strong>Li</strong>F crystallites, thus c<strong>on</strong>firming the c<strong>on</strong>clusi<strong>on</strong>from X-ray reflectivity that the crystalline <strong>Li</strong>F does not growdirectly <strong>on</strong> the graphene surface. There is also additi<strong>on</strong>alamorphous material throughout the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> that indicates theformati<strong>on</strong> of other <str<strong>on</strong>g>SEI</str<strong>on</strong>g> comp<strong>on</strong>ents or misoriented <strong>Li</strong>F. Theunderstanding that <strong>Li</strong>F forms textured crystals, al<strong>on</strong>g with otheramorphous <str<strong>on</strong>g>SEI</str<strong>on</strong>g> comp<strong>on</strong>ents, will allow for more accuratemodeling of <strong>Li</strong> + diffusi<strong>on</strong> and stability of the <str<strong>on</strong>g>SEI</str<strong>on</strong>g> <strong>on</strong> graphiticsurfaces. These new models will inform <strong>on</strong>going efforts torealize <strong>Li</strong>-i<strong>on</strong> batteries with improved rate capability, safety, andlifetime.■ ASSOCIATED CONTENT*S Supporting Informati<strong>on</strong>X-ray thin-film cell design, X-ray scattering geometry, X-rayscattering data at the local specular positi<strong>on</strong>s for <strong>Li</strong>F (111)(Roper CCD) and <strong>Li</strong>F (002) (MAR CCD), and pole figurec<strong>on</strong>structi<strong>on</strong>. This material is available free of charge via the■Internet at http://pubs.acs.org.AUTHOR INFORMATIONCorresp<strong>on</strong>ding Author*E-mail: bedzyk@northwestern.edu; m-hersam@northwestern.edu.Author C<strong>on</strong>tributi<strong>on</strong>s§ These authors c<strong>on</strong>tributed equally and are co-first authors.NotesThe authors declare no competing financial interest.Article■ ACKNOWLEDGMENTSThis research w<strong>as</strong> supported by the Center for Electrical EnergyStorage, an Energy Fr<strong>on</strong>tier Research Center funded by theU.S. Department of Energy, Office of Science, Office of B<strong>as</strong>icEnergy Sciences (Award Number DE-AC02-06CH11357). Wealso acknowledge the use of Northwestern University andArg<strong>on</strong>ne Nati<strong>on</strong>al Laboratory user facilities including theNUANCE Center, DND-CAT, and NSF-supported MRSECfacilities. We would further like to acknowledge the help of Dr.Jins<strong>on</strong>g Wu and Benjamin Myers with TEM samplepreparati<strong>on</strong> and imaging.■ REFERENCES(1) Peled, E. J. Electrochem. Soc. 1979, 126, 2047.(2) Vetter, J.; Novak, P.; Wagner, M. R.; Veit, C.; Moller, K. C.;Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.;Hammouche, A. J. Power Sources 2005, 147, 269.(3) Chu, A. C.; Josefowicz, J. Y.; Farringt<strong>on</strong>, G. C. J. Electrochem. Soc.1997, 144, 4161.(4) Hir<strong>as</strong>awa, K. A.; Sato, T.; Asahina, H.; Yamaguchi, S.; Mori, S. J.Electrochem. Soc. 1997, 144, L81.(5) <strong>Li</strong>ps<strong>on</strong>, A. L.; Ginder, R. S.; Hersam, M. C. Adv. Mater. 2011, 23,5613.(6) Santner, H. J.; Korepp, C.; Winter, M.; Besenhard, J. O.; Moller,K. C. Anal. Bioanal. Chem. 2004, 379, 266.(7) McArthur, M. A.; Trussler, S.; Dahn, J. R. J. Electrochem. Soc.2012, 159, A198.(8) Bar-Tow, D.; Peled, E.; Burstein, L. J. Electrochem. Soc. 1999, 146,824.(9) Blyth, R. I. R.; Buqa, H.; Netzer, F. P.; Ramsey, M. G.; Besenhard,J. O.; Golob, P.; Winter, M. Appl. Surf. Sci. 2000, 167, 99.(10) Anderss<strong>on</strong>, A. M.; Edstrom, K. J. Electrochem. Soc. 2001, 148,A1100.(11) B<strong>as</strong>ic Research Needs for Electrical Energy Storage; Office of B<strong>as</strong>icEnergy Sciences, Department of Energy: W<strong>as</strong>hingt<strong>on</strong>, DC, 2007.(12) Lu, M.; Cheng, H.; Yang, Y. Electrochim. Acta 2008, 53, 3539.(13) Peled, E.; Tow, D. B.; Mers<strong>on</strong>, A.; Gladkich, A.; Burstein, L.;Golodnitsky, D. J. Power Sources 2001, 97−8, 52.(14) Peled, E.; Golodnitsky, D.; Ardel, G. J. Electrochem. Soc. 1997,144, L208.(15) Kanamura, K.; Tamura, H.; Takehara, Z. J. Electroanal. Chem.1992, 333, 127.(16) Leroy, S.; Martinez, H.; Dedryvère, R.; Lemordant, D.;G<strong>on</strong>beau, D. Appl. Surf. Sci. 2007, 253, 4895.(17) Yan, J.; Xia, B.; Su, Y.; Zhou, X.; Zhang, J.; Zhang, X.Electrochim. Acta 2008, 53, 7069.(18) Yan, J.; Zhang, J.; Su, Y.; Zhang, X.; Xia, B. Electrochim. Acta2010, 55, 1785.(19) Winter, M.; Novak, P.; M<strong>on</strong>nier, A. J. Electrochem. Soc. 1998,145, 428.(20) Placke, T.; Siozios, V.; Schmitz, R.; Lux, S. F.; Bieker, P.; Colle,C.; Meyer, H. W.; P<strong>as</strong>serini, S.; Winter, M. J. Power Sources 2012, 200,83.(21) Olivier, J. P.; Winter, M. J. Power Sources 2001, 97−8, 151.(22) Wang, X.-J.; Chen, H.-Y.; Yu, X.; Wu, L.; Nam, K.-W.; Bai, J.; <strong>Li</strong>,H.; Huang, X.; Yang, X.-Q. Chem. Commun. 2011, 47, 7170.(23) Wang, Z. X.; Wu, C. A.; <strong>Li</strong>u, L. J.; Wu, F.; Chen, L. Q.; Huang,X. J. J. Electrochem. Soc. 2002, 149, A466.(24) Nam, K. W.; Wang, X. J.; Yo<strong>on</strong>, W. S.; <strong>Li</strong>, H.; Huang, X. J.;Ha<strong>as</strong>, O.; Bai, J. M.; Yang, X. Q. Electrochem. Commun. 2009, 11, 913.(25) Wang, X. J.; Jaye, C.; Nam, K. W.; Zhang, B.; Chen, H. Y.; Bai, J.M.; <strong>Li</strong>, H.; Huang, X. J.; Fischer, D. A.; Yang, X. Q. J. Mater. Chem.2011, 21, 11406.(26) Zeng, D. L.; Cabana, J.; Yo<strong>on</strong>, W. S.; Grey, C. P. Chem. Mater.2010, 22, 1209.3042dx.doi.org/10.1021/cm301584r | Chem. Mater. 2012, 24, 3038−3043


Chemistry of MaterialsArticle(27) Sharma, N.; Peters<strong>on</strong>, V. K.; Elcombe, M. M.; Avdeev, M.;Studer, A. J.; Blagojevic, N.; Yusoff, R.; Kamarulzaman, N. J. PowerSources 2010, 195, 8258.(28) Adams, S.; Rao, R. P. J. Mater. Chem. 2012, 22, 1426.(29) Choi, D.; Xiao, J.; Choi, Y. J.; Hardy, J. S.; Vijayakumar, M.;Bhuvaneswari, M. S.; <strong>Li</strong>u, J.; Xu, W.; Wang, W.; Yang, Z. G.; Graff, G.L.; Zhang, J. G. Energy Envir<strong>on</strong>. Sci. 2011, 4, 4560.(30) Aurbach, D.; Ein-Eli, Y. J. Electrochem. Soc. 1995, 142, 1746.(31) <strong>Li</strong>ps<strong>on</strong>, A. L.; Chattopadhyay, S.; Karmel, H. J.; Fister, T. T.;Emery, J. D.; Thackeray, M. M.; Fenter, P. A.; Bedzyk, M. J.; Hersam,M. C. J. Phys. Chem. C 2012, submitted.(32) Garcia, M. E.; Garofalini, S. H. J. Electrochem. Soc. 1999, 146,840.(33) Yamada, H.; Suzuki, T. S.; Uchikoshi, T.; Hozumi, M.; Kohama,K.; Sakka, Y. J. Ceram. Soc. Jpn. 2011, 119, 701.(34) Fenter, P. A. Rev. Mineral Geochem. 2002, 49, 149.(35) Fenter, P.; Catalano, J. G.; Park, C.; Zhang, Z. J. Synchrotr<strong>on</strong>Radiat. 2006, 13, 293.(36) Ilavsky, J. J. Appl. Crystallogr. 2012, 45, 324.(37) Baker, J. L.; Jimis<strong>on</strong>, L. H.; Mannsfeld, S.; Volkman, S.; Yin, S.;Subramanian, V.; Salleo, A.; Alivisatos, A. P.; T<strong>on</strong>ey, M. F. Langmuir2010, 26, 9146.(38) Finch, G. I.; Fordham, S. Proc. Phys. Soc. 1936, 48, 85.(39) Internati<strong>on</strong>al Centre for Diffracti<strong>on</strong> Data Card No. 01-071-3743.(40) Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.;Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R.A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M. Nature 1999, 401,685.(41) Jimis<strong>on</strong>, L. H.; Salleo, A.; Chabinyc, M. L.; Bernstein, D. P.;T<strong>on</strong>ey, M. F. Phys. Rev. B 2008, 78.(42) Belman, N.; Acharya, S.; K<strong>on</strong>ovalov, O.; Vorobiev, A.;Israelachvili, J.; Efrima, S.; Golan, Y. Nano Lett. 2008, 8, 3858.3043dx.doi.org/10.1021/cm301584r | Chem. Mater. 2012, 24, 3038−3043

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!