24.11.2012 Views

Experimental Evaluation of the High-Current Drawn Arc ... - Tavrida

Experimental Evaluation of the High-Current Drawn Arc ... - Tavrida

Experimental Evaluation of the High-Current Drawn Arc ... - Tavrida

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Experimental</strong> <strong>Evaluation</strong> <strong>of</strong> <strong>the</strong> <strong>High</strong>-<strong>Current</strong><br />

<strong>Drawn</strong> <strong>Arc</strong> Energy Balance<br />

V. A. Dmitriev 1 , V. N. Poluyanov 1 , I. N. Poluyanova 1<br />

1 <strong>Tavrida</strong> Electric, 22 Vakulenchuka, Sevastopol, 99053, Ukraine<br />

Abstract The distribution <strong>of</strong> energy between anode and<br />

cathode <strong>of</strong> high-current drawn vacuum arc has been<br />

experimentally evaluated for different CuCr based<br />

contact materials. The energy distribution was<br />

determined by measurement <strong>of</strong> <strong>the</strong> temperature rise with<br />

one <strong>the</strong>rmocouple soldered into drilled hole in <strong>the</strong><br />

holder <strong>of</strong> <strong>the</strong> electrode, which was in turns cathode and<br />

anode. The measurements were carried out in <strong>the</strong><br />

commercial vacuum interrupter, 36-55mm in diameter<br />

AMF electrodes were made from SSS CuCr 70/30 and<br />

LSS CuCr 50/50. The contacts were separated by<br />

magnetic actuator with stable and invariable average<br />

opening speed 1m/s, maximum contact distance was<br />

7мм. The arc duration was 8.5-9.5ms in all <strong>the</strong> tests.<br />

The study <strong>of</strong> material influence on <strong>the</strong> energy<br />

distribution has been done for <strong>the</strong> typical range <strong>of</strong><br />

currents for commercial vacuum interrupter 5кА – 40кА<br />

and for <strong>the</strong> extreme, knowingly overheating regime with<br />

current 60кА.<br />

I. INTRODUCTION<br />

Dielectric strength <strong>of</strong> <strong>the</strong> vacuum gap after <strong>the</strong> arc<br />

burning is lower <strong>the</strong>n <strong>the</strong> dielectric strength <strong>of</strong> <strong>the</strong> cold<br />

gap. Prevalent explanation is based on Paschen<br />

mechanism <strong>of</strong> hot breakdown - <strong>the</strong> breakdown in metal<br />

vapour that originates from <strong>the</strong> molten electrode zones<br />

and found in <strong>the</strong> gap up to some ms after current zero<br />

[1,2]. Such obvious connection between hot vacuum<br />

gap breakdown characteristics and contact surface<br />

temperature stimulated direct measurements [3,4] and<br />

<strong>the</strong>oretical estimations <strong>of</strong> «<strong>the</strong> temperature <strong>of</strong> failure»<br />

[5-8]. The correctness <strong>of</strong> any heat calculations in this<br />

case is determined not only by knowledge <strong>of</strong><br />

<strong>the</strong>rmophysical properties <strong>of</strong> <strong>the</strong> contact material, but<br />

also by knowledge <strong>of</strong> arc energy distribution between<br />

anode and cathode.<br />

In case <strong>of</strong> <strong>the</strong> low current vacuum arcs (both<br />

electrodes are far from <strong>the</strong> melting) and pure metal<br />

electrodes <strong>the</strong>re were determined that 1) <strong>the</strong> distribution<br />

depends on <strong>the</strong> contact material, 2) energy input into <strong>the</strong><br />

cathode falls within <strong>the</strong> range <strong>of</strong> [25-35]% out <strong>of</strong> arc<br />

energy [9-11]. Energy input into <strong>the</strong> cathode does not<br />

depend on <strong>the</strong> contact gap in <strong>the</strong> range 0,5-10мм [10].<br />

Calculated value <strong>of</strong> <strong>the</strong> anode surface potential for Cu,<br />

based on <strong>the</strong> experimental estimation <strong>of</strong> cathode<br />

effective potential for Cu [10] is in a well agreement<br />

with <strong>the</strong>oretical estimation based on ecton mechanism<br />

<strong>of</strong> vacuum arc [12].<br />

Dates for pure metals can not be used to evaluate<br />

proper characteristic <strong>of</strong> CuCr composition due to <strong>the</strong><br />

1-4244-0192-5/06/$20.00 ©2006 IEEE.<br />

XXIInd Int. Symp. on Discharges and Electrical Insulation in Vacuum-Matsue-2006<br />

special conditions <strong>of</strong> heating <strong>of</strong> <strong>the</strong> components with<br />

sufficiently different <strong>the</strong>rmal conductivities<br />

( 67Wt /( m⋅K<br />

) for Cu and 394Wt /( m ⋅ K ) for Cr), as Cr<br />

grains might be melted and effectively vaporized when<br />

Cupper is not melted at all. It is <strong>the</strong>refore <strong>of</strong> interest to<br />

know <strong>the</strong> distribution <strong>of</strong> arc energy in a high current<br />

vacuum arc burning on <strong>the</strong> CuCr AMF electrodes in <strong>the</strong><br />

range <strong>of</strong> current densities which includes currents<br />

densities when both electrodes are certainly not melted,<br />

when only anode is melted and when both, anode and<br />

cathode are melted.<br />

II. EXPERIMENTAL PROCEDURE<br />

The energy distribution was determined by<br />

measurement <strong>of</strong> temperature increase due to <strong>the</strong> 50Hz<br />

drawing arc for 2 CuCr composition (TABLE I).<br />

TABLE I<br />

TEST OBJECT IDENTIFICATION<br />

Material D, Maximum current density, kA/cm2<br />

mm 1 2 3 4 5-6<br />

SSS 70/30 55 V V V V<br />

SSS 70/30 50 V V V V<br />

SSS 70/30 36 V V V V V<br />

LSS 50/50 36 V V V V<br />

Electrodes differed by contact diameters and contact<br />

system design, provided different AMF levels (TABLE<br />

II).<br />

TABLE II<br />

AMF LEVELS FOR DIFFERENT CONTACT SYSTEM DESIGN<br />

Diameters Type <strong>of</strong> Design B/I, a.u.<br />

50, 55 1 1<br />

36 2 1.4<br />

The arc duration was 8.5-9ms, <strong>the</strong> contacts were<br />

separated by magnetic actuator, maximum contact<br />

distance did not exceed 7мм in dynamic, steady contact<br />

gap was 6mm, contact opening speed was 1m/s. Typical<br />

oscillograms <strong>of</strong> <strong>the</strong> arc current, arc voltage, contact<br />

movement and contact velocity are shown on <strong>the</strong> Fig.1.<br />

Temperature was measured in one point by<br />

<strong>the</strong>rmocouple soldered into <strong>the</strong> drilled hole <strong>of</strong> fixed<br />

contact holder (Fig.2). The polarities <strong>of</strong> current<br />

impulses were alternated from shot to shot; <strong>the</strong> electrode<br />

was in turns cathode and anode, which courses <strong>the</strong><br />

different changes <strong>of</strong> temperature rise in <strong>the</strong> point <strong>of</strong><br />

measurement (Fig.3).


Time, s<br />

<strong>Current</strong>, 10 kA/div<br />

Ipeak = 30 kA<br />

<strong>Arc</strong> voltage, 10 V/div<br />

Upeak = 40 V<br />

Contact distance, 5 mm/div<br />

Contact velocity, 1 m/s/div<br />

Fig.1 Typical oscillograms <strong>of</strong> <strong>the</strong> arc current, arc voltage,<br />

contact movement and contact velocity<br />

Temperature, gradC<br />

55<br />

50<br />

45<br />

40<br />

position <strong>of</strong> <strong>the</strong>rmocouple<br />

peak<br />

Tanode<br />

0<br />

Tanode<br />

fixed contact<br />

bellows<br />

Fig.2 Position <strong>of</strong> <strong>the</strong>rmocouple<br />

peak<br />

Tcathode<br />

0<br />

Tcathode<br />

peak<br />

Tanode<br />

0<br />

Tanode<br />

movable contact<br />

peak<br />

Tcathode<br />

0<br />

Tcathode<br />

35<br />

0 100 200 300 400 500 600 700 800 900<br />

Time, ms<br />

Fig.3. Temperature rise at polarities alternation .<br />

The measurements were done in <strong>the</strong> point where <strong>the</strong><br />

temperature rise deliberately could not exceed 80C so<br />

<strong>the</strong> <strong>the</strong>rmophysical parameters might be accepted as<br />

constant and <strong>the</strong> temperature was proportional to energy<br />

input. Relation <strong>of</strong> differences between peak and initial<br />

values <strong>of</strong> temperature when electrode was anode and<br />

when electrode was cathode was equal to <strong>the</strong> relation<br />

between energy inputs into <strong>the</strong> anode and cathode (1).<br />

peak 0<br />

ΔTanode = Tanode<br />

− Tanode<br />

∼ Q anode<br />

peak 0<br />

ΔTcathode = Tcathode<br />

− Tcathode<br />

∼ Q cathode (1)<br />

Δ T anode<br />

Δ T<br />

=<br />

Q anode<br />

Q<br />

cathode<br />

cathode<br />

Relative energy input into <strong>the</strong> anode RQanode<br />

and<br />

cathode RQcathode<br />

were determined with assumption<br />

what arc energy divides between electrodes only (2)<br />

Q = Qanode<br />

+ Qcathode<br />

+ Q<br />

Q 0<br />

arc<br />

out≈<br />

Qcathode<br />

RQ cathode = =<br />

Qarc<br />

1<br />

ΔTanode<br />

ΔTcathode<br />

+ 1<br />

(2)<br />

Qanode<br />

1<br />

RQ canode = =<br />

Q ΔT<br />

arc cathode + 1<br />

ΔT<br />

out<br />

anode<br />

To grade possible influence <strong>of</strong> preliminary<br />

interruptions <strong>the</strong> value <strong>of</strong> interrupted current for each<br />

shot was selected stochastically from <strong>the</strong> sequence that<br />

provided <strong>the</strong> same current densities for <strong>the</strong> contact <strong>of</strong><br />

different diameters (TABLE I). The last measurements<br />

were done at <strong>the</strong> deliberately damaging current densities<br />

5-6kA. There were done 5 impulses for each current<br />

density level for each polarity, relative energy inputs<br />

were calculated by average T and ΔT<br />

.<br />

Δ anode<br />

cathode<br />

III. EXPERIMENTAL RESULTS<br />

Fig.4 demonstrates relative energy inputs into <strong>the</strong><br />

anode and cathode for <strong>the</strong> SSS CuCr 70/30 and contact<br />

design <strong>of</strong> types 1 and 2 (TABLE II).<br />

Fig.5 shows <strong>the</strong> relative energy inputs for different<br />

CuCr compositions and contact design <strong>of</strong> type 2.<br />

Relative arc energy inputs significantly depend on <strong>the</strong><br />

current density and contact system type (Fig.6).<br />

For SSS CuCr 70/30 <strong>the</strong> arc voltage and <strong>the</strong>refore <strong>the</strong><br />

arc energy for contact system 36mm are smaller than for<br />

<strong>the</strong> contact system 50 and 55mm (Fig.7), never<strong>the</strong>less<br />

<strong>the</strong> influence <strong>of</strong> <strong>the</strong> contact system type is confirmed by<br />

<strong>the</strong> dependence between energy inputs and arc energy<br />

density (Fig.8).<br />

Equalization <strong>of</strong> <strong>the</strong> anode and cathode energy input<br />

for CuCr 50/50 comes at <strong>the</strong> smaller current/arc energy<br />

densities in comparison with <strong>the</strong> CuCr 70/30 (Fig.9-10).<br />

III. CONCLUSION<br />

For <strong>the</strong> high current vacuum arc on CuCr AMF<br />

electrodes <strong>the</strong> distribution <strong>of</strong> arc energy between anode<br />

and cathode strictly depends on <strong>the</strong> current/arc energy<br />

density and content <strong>of</strong> Cr.


Relative energy input<br />

Relative energy input<br />

1,2<br />

1,1<br />

1,0<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

0 10 20 30 40 50 60 70<br />

1,2<br />

1,1<br />

1,0<br />

0,9<br />

0,8<br />

<strong>Current</strong> (magnitude), kA<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

0 5 10 15 20 25 30 35<br />

<strong>Current</strong> (magnitude), kA<br />

cathode, 55 mm<br />

anode, 55 mm<br />

cathode, 50 mm<br />

anode, 50 mm<br />

cathode, 36 mm<br />

anode, 36 mm<br />

Fig. 4. Relative energy input for SSS CuCr 70/30.<br />

cathode, SSS CuCr 70/30<br />

anode, SSS CuCr 70/30<br />

cathode, LSS CuCr 50/50<br />

anode, LSS CuCr 50/50<br />

Fig. 5. Relative energy input for SSS CuCr 70/30 and LSS 50/50,<br />

contact type 2<br />

Relative energy input<br />

1,2<br />

1,1<br />

1,0<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

0 1 2 3 4 5 6 7<br />

Maximum current density, kA/cm2<br />

cathode, 55 mm<br />

anode, 55 mm<br />

cathode, 50 mm<br />

anode, 50 mm<br />

cathode, 36 mm<br />

anode, 36 mm<br />

Fig. 6 Dependence between relative energy input and maximum<br />

current density for SSS CuCr 70/30<br />

Maximum arc voltage, V<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 1 2 3 4 5 6<br />

Maximum current density, kA/cm2<br />

55 mm<br />

50 mm<br />

36 mm<br />

Fig. 7 SSS CuCr 70/30, maximum arc voltage for different<br />

contact design<br />

Relative energy input<br />

1,2<br />

1,1<br />

1,0<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

0 200 400 600 800 1000 1200 1400 1600<br />

<strong>Arc</strong> energy density, J/m2<br />

cathode, 55 mm<br />

anode, 55 mm<br />

cathode, 50 mm<br />

anode, 50 mm<br />

cathode, 36 mm<br />

anode, 36 mm<br />

Fig. 8 Dependence between relative energy input and arc energy<br />

density for SSS CuCr 70/30<br />

Relative energy input<br />

1,2<br />

1,1<br />

1,0<br />

0,9<br />

0,8<br />

cathode, SSS CuCr 70/30<br />

anode, SSS CuCr 70/30<br />

cathode, LSS CuCr 50/50<br />

anode, LSS CuCr 50/50<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

0 1 2 3 4 5 6<br />

Maximum current density, kA/cm2<br />

Fig. 9 Dependence between relative energy input and maximum<br />

current density for contact design 2


Relative energy input<br />

1,2<br />

1,1<br />

1,0<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

0 200 400 600 800 1000 1200 1400 1600<br />

<strong>Arc</strong> energy density, J/cm2<br />

cathode, SSS CuCr 70/30<br />

cathode, LSS CuCr 50/50<br />

anode, LSS CuCr 50/50<br />

anode, SSS CuCr 70/30<br />

Fig. 10 Dependence between relative energy input and arc energy<br />

density for contact design type 2<br />

ACKNOWLEDGEMENTS<br />

Authors wish to sincerely thank Dr Chaly and Dr<br />

Shkol’nik for encouraging this work and for fruitful<br />

discussions. We would also like to thank all engineers <strong>of</strong><br />

<strong>Tavrida</strong> Electric Test Laboratory provided valuable<br />

assistance to this work<br />

REFERENCES<br />

[1] B.Juttner, "Surface Migration as a Possible Cause for Late<br />

Breakdowns", Proc.18 th Int. Symp. Discharges and Electrical<br />

Insulation in vacuum, Eindhoven, 1998, pp. 488-491.<br />

[2] S. Anders, B.Juttner, M.Lindmayer, C. Rusteberg, H. Pursch, F.<br />

Unger-Weber, "Vacuum Breakdown with Microsecond Delay<br />

Time", IEEE Transactions on Electrical Insulation, Vol.28, N4,<br />

August 1993, pp. 461-467.<br />

[3] K. Watanabe et all, "The Anode Surface Temperature <strong>of</strong> CuCr<br />

Contacts<br />

at <strong>the</strong> Limit <strong>of</strong> <strong>Current</strong> Interruption", IEEE Transactions on<br />

Plasma<br />

Science, Vol. 25, NO.4, AUGUST 1997, pp.637-641.<br />

[4] H. Schellekens, "Physical <strong>Arc</strong> Appearance and Electrode<br />

Phenomena <strong>of</strong> Vacuum <strong>Arc</strong>s in Axial Magnetic Fields", Proc. 20 th<br />

Int. Symp. Discharges and Electrical Insulation in vacuum, 2002,<br />

France, pp. 38-43.<br />

[5] Y. Niwa et al., "The Effect <strong>of</strong> Contact material on Temperature<br />

and Melting <strong>of</strong> Anode Surface in <strong>the</strong> Vacuum Interrupter", Proc.<br />

19 th Int. Symp. Discharges and Electrical Insulation in vacuum,<br />

2000, Xi’an, pp.524-257.<br />

[6] A. M. Chaly, I. N. Poluyanova, V.N. Poluyanov, "Maximum<br />

Interrupting Capacity <strong>of</strong> CuCr Contacts under <strong>the</strong> effect <strong>of</strong> uniform<br />

axial magnetic field (AMF)", Proc.22 d Int. Symp. Discharges and<br />

Electrical Insulation in vacuum, Matsue, 2006.<br />

[7] P. Borkowski, E.Walczuk, "Introduction to computer simulation<br />

<strong>of</strong> <strong>the</strong>rmal influence <strong>of</strong> electric arc on contacts during breaking <strong>of</strong><br />

high currents", Proc.3 d International Conference on Electrical<br />

Contacts, <strong>Arc</strong>s, Apparatus and <strong>the</strong>ir Applications (IC0ECAAA)<br />

Xi’an, P.R. China, 1997, pp. 206-211.<br />

[8] P.Scarpa, L.Spronck, C. Defays, W. Legros, "Numerical<br />

Modelling <strong>of</strong> Copper-Tungsten Electrodes Heating During <strong>Current</strong><br />

Interruption in Circuit-breakers", Proc.3 d International Conference<br />

on Electrical Contacts, <strong>Arc</strong>s, Apparatus and <strong>the</strong>ir Applications<br />

(IC0ECAAA) Xi’an, P.R. China, 1997, pp.258-262.<br />

[9] M.P. Reece, "The vacuum arc switch. Properties <strong>of</strong> <strong>the</strong> vacuum<br />

arc", Proc.IEE, V.110.P.793-802, 1963.<br />

[10] J. E. Daalder 1977 J. Phys. D: Appl. Phys. 10 2225-<br />

2234 doi:10.1088/0022-3727/10/16/013.<br />

[11] J.Foosnaas, W.Rondeel, "The energy balance <strong>of</strong> a vacuum arc in<br />

an axial magnetic field", Proc.7 th Int. Symp. Discharges and<br />

Electrical Insulation in vacuum, pp.312-316<br />

[12] G. A. Mesyats, Cathode Phenomena in a Vacuum Discharge: <strong>the</strong><br />

Breakdown, <strong>the</strong> Spark and <strong>the</strong> <strong>Arc</strong>. M.: Nauka, 2000.- 400 pp<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!