11.07.2015 Views

Design criteria for the energy management system in PV ... - APERe

Design criteria for the energy management system in PV ... - APERe

Design criteria for the energy management system in PV ... - APERe

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Deliverable 6.1:<strong>Design</strong> <strong>criteria</strong> <strong>for</strong> <strong>the</strong> <strong>energy</strong><strong>management</strong> <strong>system</strong> <strong>in</strong> <strong>PV</strong> plants with 3accumulation <strong>system</strong>s


Deliverable 6.1DELIVERABLE 6.1<strong>Design</strong> <strong>criteria</strong> <strong>for</strong> <strong>the</strong> <strong>energy</strong> <strong>management</strong> <strong>system</strong> <strong>in</strong> <strong>PV</strong> plantswith 3 accumulation <strong>system</strong>s.• ObjectiveThe <strong>in</strong>corporation of accumulation <strong>in</strong> <strong>PV</strong> generation plants will allow fur<strong>the</strong>r mitigat<strong>in</strong>g powerfluctuations, allow<strong>in</strong>g <strong>the</strong> power <strong>in</strong>jection to be shifted from its generation by <strong>the</strong> <strong>PV</strong> modules, andadd<strong>in</strong>g o<strong>the</strong>r functionalities. This work package aims to <strong>in</strong>tegrate batteries <strong>in</strong>to <strong>PV</strong> <strong>system</strong>s,develop<strong>in</strong>g hardware and software to manage <strong>the</strong> <strong>energy</strong> flows, and to optimize controlstrategies. Innovative technologies of batteries will be tested. Lead-acid batteries but also<strong>in</strong>novative battery technologies, such as Vanadium Redox-Flow Batteries (VRB) or Lithium ionbatteries will be explored to be adapted to <strong>PV</strong> plants.In this context, <strong>the</strong> ma<strong>in</strong> objective of this first deliverable is to capture both technical andeconomical design <strong>criteria</strong> <strong>for</strong> <strong>the</strong> <strong>energy</strong> <strong>management</strong> <strong>system</strong>s <strong>in</strong> <strong>PV</strong> plants with threeaccumulation <strong>system</strong>s: lead-acid, VRB and lithium ion.• <strong>Design</strong> CriteriaThe design <strong>criteria</strong> are go<strong>in</strong>g to po<strong>in</strong>t to three ma<strong>in</strong> topics: technological, economical andma<strong>in</strong>tenance and reliability requirements.2


Deliverable 6.11. Technological requirementsRecently, <strong>the</strong>re has been <strong>in</strong>creased <strong>in</strong>terest both <strong>in</strong> <strong>the</strong> stability and <strong>the</strong> security of <strong>the</strong> grid, aswell as power quality issues. Short-term fluctuation <strong>in</strong> <strong>the</strong> power generated by large <strong>PV</strong> plants hasalerted grid operators, promot<strong>in</strong>g new grid codes that are go<strong>in</strong>g to play an important role <strong>in</strong> <strong>the</strong>follow<strong>in</strong>g years.In this way, a significative variety of new regulations have been published <strong>in</strong> several countries suchas Puerto Rico, South Africa or France at <strong>the</strong> same time that o<strong>the</strong>rs like Spa<strong>in</strong> has published draftregulations such as <strong>the</strong> PO12.2 (Operat<strong>in</strong>g Procedure 12.2) which is supposed to be applied <strong>in</strong> <strong>the</strong>near future. [1-11]Specifically, <strong>the</strong>se regulations have a bear<strong>in</strong>g on <strong>the</strong> key po<strong>in</strong>ts which are <strong>in</strong> connection with <strong>the</strong>grid stability. The electrical power <strong>system</strong>s require ancillary services such as voltage and frequencyregulation, power quality improvement and <strong>energy</strong> balanc<strong>in</strong>g to operate efficient and reliable. In apower <strong>system</strong>, <strong>the</strong> DSO is responsible to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> correct operations and can purchaseancillary services directly from <strong>the</strong> <strong>PV</strong> generators. Until recently, <strong>the</strong> <strong>in</strong>verter was <strong>the</strong> responsible<strong>for</strong> keep <strong>the</strong> grid requirements <strong>in</strong> case of abnormal grid conditions and faults. The massivedevelopment <strong>in</strong> <strong>the</strong> <strong>PV</strong> sector faced not only new challenges <strong>for</strong> <strong>the</strong> <strong>in</strong>verter but also <strong>for</strong> <strong>the</strong><strong>energy</strong> storage <strong>system</strong> which is now required to contribute to grid stability. In essence, <strong>the</strong> aim isto endow <strong>PV</strong> <strong>system</strong>s with <strong>the</strong> same properties as traditional synchronous generators have, i.e.<strong>in</strong>ertia emulation.The technological requirements shall be developed <strong>in</strong> accordance with <strong>the</strong> prevail<strong>in</strong>g <strong>in</strong>ternationalregulatory framework. This means that <strong>the</strong> technological requirements must focus, <strong>in</strong>clud<strong>in</strong>g butnot limited to:- Frequency support.o Primary and secondary regulation: <strong>the</strong> frequency level <strong>in</strong> <strong>the</strong> grid represents afundamental criterion to determ<strong>in</strong>e <strong>the</strong> quality of <strong>the</strong> power delivered tocustomers. It is important that <strong>PV</strong> provide an immediate real power primaryfrequency response, proportional to frequency deviations from scheduledfrequency, similar to governor response. <strong>PV</strong> facility shall have controls that provideboth <strong>for</strong> down-regulation and up-regulation. In addition, <strong>the</strong> <strong>in</strong>stallation will have<strong>the</strong> necessary requirements <strong>in</strong> order to rema<strong>in</strong> connected to <strong>the</strong> grid when afrequency deviation appears.o Power curtailment: it is necessary to control local over load conditions. The <strong>PV</strong> plantmust have <strong>the</strong> ability to control <strong>PV</strong> generation to a specified rate of nom<strong>in</strong>al powerrat<strong>in</strong>g. Energy <strong>management</strong> <strong>system</strong> should be capable to do this control effectivelyand, also, to accumulate <strong>the</strong> excess of <strong>energy</strong> to be <strong>in</strong>jected when <strong>the</strong> loadconditions allow it.3


Deliverable 6.1Generally, regulations aim to deal with over-frequency problems. Figure 1 shows <strong>the</strong> activepower control as a function of frequency dur<strong>in</strong>g an over-frequency that is required <strong>in</strong> somecountries.(a)(b)(c)Figure 1: Power curtailment dur<strong>in</strong>g over-frequency graphic of voltage. A) Italy [7], B) South Africa [6], C) Germany [5]However, new regulations [1] and draft versions of <strong>the</strong>m [2] are start<strong>in</strong>g to take on boardfrequency responses <strong>for</strong> both down-regulation and up-regulation. Precisely <strong>in</strong> this contextis where <strong>the</strong> storage <strong>system</strong> takes an important part <strong>for</strong> <strong>the</strong> <strong>in</strong>stallation. Dur<strong>in</strong>g an underfrequencyevent is required to <strong>in</strong>ject more active power to <strong>the</strong> grid and this will be possiblethanks to <strong>the</strong> batteries attached to <strong>the</strong> <strong>PV</strong> plant. Figure 2 shows <strong>the</strong> unit <strong>in</strong>crease of poweras a function of <strong>the</strong> unit frequency deviation that is go<strong>in</strong>g to be required <strong>in</strong> Spa<strong>in</strong> [2].4


Deliverable 6.1Figure 2: Unit <strong>in</strong>crease of power as a function of <strong>the</strong> unit frequency deviation [2].Accord<strong>in</strong>g to <strong>the</strong> previous figure, it is possible to calculate <strong>the</strong> <strong>in</strong>crease or decrease <strong>in</strong>power that is required <strong>for</strong> compliance with <strong>the</strong> regulation. Figure 3 shows <strong>the</strong> <strong>in</strong>crease ordecrease <strong>in</strong> power (%) as a function of <strong>the</strong> frequency deviation and <strong>for</strong> different “K” values(K is <strong>the</strong> slope of <strong>the</strong> variation of power accord<strong>in</strong>g to <strong>the</strong> variation of frequency).Figure 3: <strong>in</strong>crease and decrease <strong>in</strong> power (%) as a function of <strong>the</strong> frequency deviation and <strong>for</strong> different “K” values.5


Deliverable 6.1oFrequency ride through (FRT): it is necessary to adopt <strong>the</strong> necessary design andcontrol measures to rema<strong>in</strong> connected to <strong>the</strong> grid while frequency problems appear<strong>in</strong> different ranges. These ranges vary depend<strong>in</strong>g on <strong>the</strong> country. As an example,<strong>the</strong> follow<strong>in</strong>g table shows <strong>the</strong> characteristic ranges accord<strong>in</strong>g to <strong>the</strong> Spa<strong>in</strong> andPuerto Rico regulations.Spa<strong>in</strong>Puerto RicoFrequency (Hz) Time Frequency (Hz) Time47,5


Deliverable 6.1Moreover, <strong>the</strong> follow<strong>in</strong>g figure shows <strong>the</strong> different voltage support requirements whichmight be required depend<strong>in</strong>g on <strong>the</strong> regulation of each country. As it is shown <strong>in</strong> thisfigure, <strong>PV</strong> plants must not disconnect from <strong>the</strong> network <strong>in</strong> <strong>the</strong> event of voltage drops to 0%with a duration which vary from 0 to 600 ms.The <strong>energy</strong> storage <strong>management</strong> <strong>system</strong> should be helpful <strong>for</strong> correct<strong>in</strong>g <strong>the</strong> voltage to<strong>the</strong>ir normal value by means of <strong>in</strong>ject<strong>in</strong>g more or less active power to <strong>the</strong> grid.(a)(b)(c)(d)(e)(f)Figure 5: graphic of voltage vs time that <strong>the</strong> <strong>in</strong>stallation should be able to support, without disconnect<strong>in</strong>g from <strong>the</strong> grid <strong>for</strong> differentcountries. A) Spa<strong>in</strong> [2], B) Puerto Rico [1], C) France [4], D) Germany [5], E) South Africa [6], F) Italy [7]7


Deliverable 6.1- Reactive power capability and m<strong>in</strong>imum power factor requirements: The total powerfactor range shall be controlled between a certa<strong>in</strong> range depend<strong>in</strong>g on <strong>the</strong> differentregulations. The reactive power requirements provide flexibility <strong>for</strong> many types oftechnologies at <strong>the</strong> Renewable Energy Facility. The <strong>in</strong>tent is that <strong>PV</strong> facilities (<strong>PV</strong>F) canramp <strong>the</strong> reactive power from one value to <strong>the</strong> o<strong>the</strong>r <strong>in</strong> a smooth cont<strong>in</strong>uous fashion. Thepower factor range should be dynamic and cont<strong>in</strong>uous. This means that <strong>the</strong> <strong>PV</strong>F has to beable to respond to power <strong>system</strong> voltage fluctuations by cont<strong>in</strong>uously vary<strong>in</strong>g <strong>the</strong> reactiveoutput of <strong>the</strong> plant with<strong>in</strong> <strong>the</strong> specified limits. Generally, it is required that <strong>the</strong> <strong>PV</strong>F reactivecapability meets <strong>the</strong> Power Factor (PF) range based on <strong>the</strong> <strong>PV</strong> Facilities Aggregated MWOutput, which is <strong>the</strong> maximum MVAr capability correspond<strong>in</strong>g to maximum MW Output. Itis understood that positive (+) PF is where <strong>the</strong> <strong>PV</strong>F is produc<strong>in</strong>g MVAr and negative (-) PF iswhere <strong>the</strong> <strong>PV</strong>F is absorb<strong>in</strong>g MVAr. Figure 6 shows reactive power capability that is required<strong>in</strong> different countries.(a)(b)(c)(d)Figure 6: reactive power capability curve <strong>for</strong> different countries A) Puerto Rico [1], B) Spa<strong>in</strong> [2], C) South Africa [6], D) Italy [7]8


Deliverable 6.1In spite of <strong>the</strong> fact that <strong>the</strong> reactive power requirements have no <strong>in</strong>fluence on <strong>the</strong> size of<strong>the</strong> <strong>energy</strong> storage <strong>system</strong>, it is necessary to take <strong>the</strong>m <strong>in</strong>to account <strong>for</strong> <strong>the</strong> charger design.The charger shall be <strong>the</strong> elements which controls <strong>the</strong> reactive power capability help<strong>in</strong>g <strong>the</strong><strong>PV</strong> <strong>in</strong>verters.- Ramp Rate control: ramp rate control is required to smoothly transition from one outputpower level to ano<strong>the</strong>r. The <strong>PV</strong> facility shall be able to control <strong>the</strong> rate of change of poweroutput dur<strong>in</strong>g some circumstances, <strong>in</strong>clud<strong>in</strong>g but not limited to: (1) rate of <strong>in</strong>crease power,(2) rate of decrease power, (3) rate of <strong>in</strong>crease of power when a curtailment of poweroutput is released, (4) rate of decrease <strong>in</strong> power when curtailment limit is engaged. A %per m<strong>in</strong>ute rate (depend<strong>in</strong>g on <strong>the</strong> country regulation and based on AC contractedcapacity) limitation shall be en<strong>for</strong>ced. This ramp limit applies both to <strong>in</strong>crease and decreaseof power output and is <strong>in</strong>dependent of meteorological conditions. Energy <strong>management</strong><strong>system</strong> should control <strong>the</strong> ramp rate to comply with <strong>the</strong> different regulations. The slope of<strong>the</strong> ramp and <strong>the</strong> control strategy will determ<strong>in</strong>e <strong>the</strong> size of <strong>the</strong> needed accumulation<strong>system</strong>.Little is known about <strong>the</strong> rate of changes <strong>in</strong> power output. In fact, <strong>the</strong>re are somecountries, such as South Africa [6], that mention that a power gradient constra<strong>in</strong>t shouldbe used to limit <strong>the</strong> maximum ramp rates but, currently, <strong>the</strong>y do not provide any value.Figure 7 shows <strong>the</strong> active power constra<strong>in</strong>t functions <strong>for</strong> South Africa but, as expla<strong>in</strong>edbe<strong>for</strong>e, without any data.Figure 7: Example of an active power control functions <strong>for</strong> a Renewable Power Plant. [6]9


Deliverable 6.1On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> only country that provides some values about <strong>the</strong> ramp rate controlis Puerto Rico [1]. In this case, a 10 % per m<strong>in</strong>ute rate (based on nameplate capacity)limitation shall be en<strong>for</strong>ced and applied <strong>for</strong> both <strong>the</strong> <strong>in</strong>crease and decrease of poweroutput. This data allow determ<strong>in</strong><strong>in</strong>g <strong>the</strong> m<strong>in</strong>imum approximate capacity of <strong>the</strong> <strong>energy</strong>storage <strong>system</strong>. As an example, let us consider a 1’1 MW <strong>PV</strong> plant which maximum poweroutput can vary from 1’1 MW to 100 kW <strong>in</strong> a few seconds as appears <strong>in</strong> Figure 8 <strong>in</strong> blue (PFV). In order to comply with <strong>the</strong> regulation, <strong>the</strong> power output should be as <strong>the</strong> green l<strong>in</strong>e(P FV smoo<strong>the</strong>d) that appears <strong>in</strong> <strong>the</strong> same figure. Consequently, <strong>the</strong> capacity of <strong>the</strong> storage<strong>management</strong> <strong>system</strong> should be <strong>the</strong> area between <strong>the</strong> blue l<strong>in</strong>e and <strong>the</strong> green l<strong>in</strong>e, i.e. 70kWh <strong>in</strong> this case.Figure 8: <strong>PV</strong> power registered <strong>in</strong> a 1’1 MW plant dur<strong>in</strong>g 2 hours (blue solid l<strong>in</strong>e) and <strong>PV</strong> power smoo<strong>the</strong>d with <strong>the</strong> storage <strong>system</strong>accord<strong>in</strong>g to <strong>the</strong> Puerto Rico regulation [1]- Real-time communication: submission of real time data <strong>for</strong> voltage, V, active power, P, andreactive power, Q: <strong>the</strong> design must consider additional requirements <strong>for</strong> communicationsuch as submission of real time data <strong>for</strong> V, P and Q; remote sett<strong>in</strong>g of P and Q; and remoteshut down.10


Deliverable 6.12. Economical requirements:With <strong>the</strong> <strong>in</strong>corporation of <strong>energy</strong> storage <strong>system</strong>s to <strong>PV</strong> plants, economical requirements arego<strong>in</strong>g to be ano<strong>the</strong>r key po<strong>in</strong>t to take <strong>in</strong>to account. In this way, depend<strong>in</strong>g on <strong>the</strong> electricity priceand demand, new <strong>PV</strong> <strong>system</strong>s shall operate mov<strong>in</strong>g <strong>the</strong> <strong>energy</strong> production to <strong>the</strong> peak <strong>energy</strong>demand. The <strong>system</strong> operator should be able to manage <strong>the</strong> <strong>PV</strong> plant <strong>for</strong> maximum economicalreturn. This will <strong>in</strong>clude an <strong>energy</strong> storage control strategy which can be pre-determ<strong>in</strong>ed bywea<strong>the</strong>r conditions and grid time-of-day pric<strong>in</strong>g.The strategies of <strong>energy</strong> <strong>management</strong> shall be a compendium of <strong>the</strong> quantity of battery that canbe used <strong>for</strong> each requirement, both economic and technological. The analysis of <strong>the</strong> <strong>energy</strong>market price evolution is go<strong>in</strong>g to take an important role as soon as <strong>PV</strong> plants start to operatewithout <strong>in</strong>centives, with <strong>the</strong> same conditions as <strong>the</strong> traditional electricity generators.Fur<strong>the</strong>rmore, <strong>the</strong> prediction of power fluctuations by means of new ad-hoc <strong>for</strong>ecast us<strong>in</strong>g satelliteimages, <strong>in</strong> situ cameras and ma<strong>the</strong>matic models shall help to reduce <strong>the</strong> average diary <strong>energy</strong>storage. Hence, this allows to use <strong>the</strong> storage <strong>system</strong> <strong>for</strong> o<strong>the</strong>r purposes and thus, optimiz<strong>in</strong>g itsvalue.11


Deliverable 6.13. Security and reliability requirements:Regard<strong>in</strong>g to security and reliability, <strong>the</strong> ma<strong>in</strong> factors to take <strong>in</strong>to account can be divided <strong>in</strong> fourpo<strong>in</strong>ts: power and <strong>energy</strong> rat<strong>in</strong>gs, ma<strong>in</strong>tenance; security; and site preparation or <strong>in</strong>stallationprovisions:• Power and <strong>energy</strong> rat<strong>in</strong>gs: attention must be paid to <strong>the</strong> different voltage and currentranges that use both <strong>the</strong> batteries and <strong>the</strong> converters. In addition, <strong>the</strong> work<strong>in</strong>g conditionssuch as maximum and m<strong>in</strong>imum battery voltage, charge power and current are subjects tocontrol <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> optimal conditions. Although, battery characteristicsdepend on <strong>the</strong> different strategies that are go<strong>in</strong>g to be implemented, <strong>the</strong> follow<strong>in</strong>g tablesummarizes some of <strong>the</strong>se work<strong>in</strong>g conditions <strong>for</strong> <strong>the</strong> three battery technologies to beused <strong>in</strong> this project:Power and Energy rat<strong>in</strong>gs VRB Lithium ion Lead acidEnergy 600kWh 36 kWh 115 kWhMaximum voltageM<strong>in</strong>imum voltage300 V (Dischargemode)325 V (Charge mode)175 V (Normaloperation)0 V (First charge afterma<strong>in</strong>tenance)399 V 552 V535 V 414 VRated nom<strong>in</strong>al voltage 220V 480 V -Current max1000 A (5 m<strong>in</strong>s max<strong>in</strong> 30m<strong>in</strong>s)300 A 250 AMax Charge power 100 kW 90 kW 30 kWMax Discharge power200 (5 m<strong>in</strong>s max <strong>in</strong>30m<strong>in</strong>s)150 kW 115 kWRecommended charge power 100 kW 33 kW -Efficiency70% to 80% DC/DCround trip-At 100% SOH:99.4% on discharge / 99.3%on charge-At 80% SOH – 98.4% ondischarge / 98.2% on chargeAverage 83%Table 2: work<strong>in</strong>g conditions <strong>for</strong> <strong>the</strong> three battery technologies to be used <strong>in</strong> this project12


Deliverable 6.1• Ma<strong>in</strong>tenance: <strong>the</strong> ma<strong>in</strong> operations of preventive and corrective ma<strong>in</strong>tenance are related to<strong>the</strong>ir frequency. Preventive ma<strong>in</strong>tenance: The goal of preventive ma<strong>in</strong>tenance is to limit <strong>the</strong> numberand duration of electrical failures result<strong>in</strong>g <strong>in</strong> a corrective ma<strong>in</strong>tenance task.Corrective ma<strong>in</strong>tenance: to carry out corrective ma<strong>in</strong>tenance shall be necessary remotecommunications through <strong>the</strong> converter allow<strong>in</strong>g <strong>in</strong><strong>for</strong>mation feedback to <strong>the</strong> operator.Items such as fire <strong>system</strong>, air condition<strong>in</strong>g, parts replacement and battery module swapsmay require corrective ma<strong>in</strong>tenance.Table 3: summarizes some of <strong>the</strong> ma<strong>in</strong>tenancerequirements <strong>for</strong> <strong>the</strong> three battery technologies to be used <strong>in</strong> this project.Sub<strong>system</strong>VRB Lithium ion Lead acidDescription ofma<strong>in</strong> tasksFrequencySub<strong>system</strong>Descriptionof ma<strong>in</strong>tasksFrequencySub<strong>system</strong>Descriptionof ma<strong>in</strong>tasksFrequencyBattery- RenewNitrogenBottles- Electrolytebalance,Remix andRecharge2times/yr.3/6times/yr.Battery-Isolationcheck-Groundmeasurement-Batteryper<strong>for</strong>mance check1 time /year perconta<strong>in</strong>erBatteryCheck andrecord <strong>the</strong>overallfloatvoltage at<strong>the</strong> batteryterm<strong>in</strong>als(not at <strong>the</strong>charger!),andmeasure<strong>the</strong> pilotcell voltagequarterlyConta<strong>in</strong>erand VRFB<strong>system</strong>- Isolationcheck, groundmeasurement-VRFBper<strong>for</strong>mancecheckyearlyFireext<strong>in</strong>guisherPressurecheck2 times/yearBatteryRecord <strong>the</strong>voltage,specificgravity andtemperatureof all cells.yearlyAircondition<strong>in</strong>gFire <strong>system</strong>-Clean filters-Checkpressure-Check firedetection<strong>system</strong>2times/yrAircondition<strong>in</strong>g-Cleanfilters-Pressurecheck2 times /year perconta<strong>in</strong>erElectrolyteCheck <strong>the</strong>electrolytelevels <strong>in</strong> allcells and ifnecessarytop up withdistilledwaterregularlyTable 3: ma<strong>in</strong>tenance requirements <strong>for</strong> <strong>the</strong> three battery technologies.13


Deliverable 6.1• Security: it is necessary to pay attention at different levels: to prevent a safety event fromoccurr<strong>in</strong>g, to m<strong>in</strong>imize <strong>the</strong> level at which an event occurs and to limit <strong>the</strong> consequences ofan event. This approach requires <strong>in</strong>ter-l<strong>in</strong>ked ef<strong>for</strong>ts <strong>in</strong> areas like technology and materials,cell/battery design, <strong>system</strong> design and process control.The follow<strong>in</strong>g table summarizes some of <strong>the</strong> security requirements <strong>for</strong> <strong>the</strong> three batterytechnologies to be used <strong>in</strong> this project.VRB Lithium ion Lead acidWork<strong>in</strong>gtemperatureAtmospherictemperature5ºC – 35ºC 20ºC -25ºC best results at 25ºC0ºC – 40ºC -20ºC - 55ºC -20ºC - 60ºCRelative humidity0-95%, noncondens<strong>in</strong>g0-100% -Degree ofprotectionM<strong>in</strong>imum 3 waygalvanic isolationbetween AC ma<strong>in</strong>s,battery and control<strong>in</strong>terface.33Comply with:• DIN 40736-1:1992• IEC 60896-11:2002•Norme CEI 21.6 fascicolo 1434Table 4: security requirements <strong>for</strong> <strong>the</strong> three battery technologies.• Site preparation or <strong>in</strong>stallation provisions: depend<strong>in</strong>g on <strong>the</strong> k<strong>in</strong>d of battery it could benecessary special requirements. On <strong>the</strong> o<strong>the</strong>r hand, currently batteries are built <strong>in</strong>conta<strong>in</strong>ers to be quickly and easily accommodated be<strong>in</strong>g <strong>the</strong> site preparation quite simple.Table 5: summarizes some of <strong>the</strong> site preparation and <strong>in</strong>stallation provisions that arenecessary <strong>for</strong> <strong>the</strong> three battery technologies to be used <strong>in</strong> this project.Sub<strong>system</strong>VRB Lithium ion Lead acidProvisionsConta<strong>in</strong>erAir condition<strong>in</strong>g and firecontrolFree space <strong>for</strong> side andrear doors open<strong>in</strong>g-2 m. of free space <strong>for</strong> aircool<strong>in</strong>g condenser airexhaust-3 m. m<strong>in</strong>imum of freespace <strong>for</strong> doors open<strong>in</strong>g-Available roomNecessary space <strong>for</strong>heat<strong>in</strong>g/cool<strong>in</strong>g ventsNecessary space <strong>for</strong>heat<strong>in</strong>g/cool<strong>in</strong>g and gasexhaust ventsWith ventilation andsource of waterCabl<strong>in</strong>g/connectionsAvailable undergroundgalleriesAvailable undergroundgalleriesAvailable undergroundgalleriesSurround<strong>in</strong>g areaClean areaClean area free ofcombustible materials(grass, plants or shrubs)Clean areaTable 5: site preparation and <strong>in</strong>stallation provisions that are necessary <strong>for</strong> <strong>the</strong> three battery technologies14


Deliverable 6.1• ConclusionsTo sum up, <strong>the</strong> ma<strong>in</strong> <strong>criteria</strong> <strong>for</strong> <strong>the</strong> design of <strong>the</strong> <strong>energy</strong> <strong>management</strong> <strong>system</strong> <strong>in</strong> <strong>PV</strong> plants us<strong>in</strong>gbatteries can be reflected <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g table:Technological requirements Economical Requirements Security and reliabilityPower curtailment Energy output Optimization Power and <strong>energy</strong> rat<strong>in</strong>gsFrequency supportVoltage supportDynamic Grid Support/ Fault RideThrough (FRT)Short circuit ratio requirementsReal-time communicationReactive current capability andm<strong>in</strong>imum power factor requirementsRamp Rate controlFluctuations PredictionMa<strong>in</strong>tenanceSecuritySite preparation and <strong>in</strong>stallationprovisionsTable 6: <strong>criteria</strong> <strong>for</strong> <strong>the</strong> design of <strong>the</strong> <strong>energy</strong> <strong>management</strong> <strong>system</strong> <strong>in</strong> <strong>PV</strong> plants us<strong>in</strong>g batteriesThe ma<strong>in</strong> characteristics of <strong>the</strong> three battery technologies that must be taken <strong>in</strong>to account whendesign<strong>in</strong>g <strong>the</strong> <strong>energy</strong> <strong>management</strong> strategies are summarized <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g table:Power and<strong>energy</strong> rat<strong>in</strong>gsMa<strong>in</strong>tenanceSecuritySite preparation or<strong>in</strong>stallationprovisionsEnergyMaximum voltageM<strong>in</strong>imum voltageRated nom<strong>in</strong>alvoltageCurrent maxMax Charge powerMax DischargepowerRecommendedcharge powerEfficiencyBattery (checkisolation,per<strong>for</strong>mance, groundmeasurement,overall float voltage,nitrogen…)Fire ext<strong>in</strong>guisherAir condition<strong>in</strong>gElectrolyteWork<strong>in</strong>gtemperatureAtmospherictemperatureRelativehumidityDegree ofprotectionConta<strong>in</strong>erAvailable RoomCabl<strong>in</strong>g/connectionsSurround<strong>in</strong>g areaTable 7: Ma<strong>in</strong> characteristics of <strong>the</strong> three battery technologies to taken <strong>in</strong>to account when design<strong>in</strong>g <strong>the</strong> <strong>energy</strong> <strong>management</strong>strategies15


Deliverable 6.1• REFERENCES[1] Puerto Rico Electric Power Authority. “M<strong>in</strong>imum Technical Requirements <strong>for</strong> Photovoltaic Generation(<strong>PV</strong>) Projects. “[2] Red Eléctrica de España, “Instalaciones conectadas a la red de transporte y equipo generador: requisitosmínimos de diseño, equipamiento, funcionamiento, puesta en servicio y seguridad. P.O. 12.2”, September2010.[3] ENTSO-E Network Code <strong>for</strong> Requirements <strong>for</strong> Grid Connection Applicable to all Generators, June 2012.[4] Journal official de la republica française. Texte 8 sur 228. 25 avril 2008. “Décrets, arrêtes,circulaires”.[5] “Technical Guidel<strong>in</strong>e Generat<strong>in</strong>g Plants Connected to <strong>the</strong> Medium-Voltage Network. Guidel<strong>in</strong>e<strong>for</strong> generat<strong>in</strong>g plants connection to and parallel operation with <strong>the</strong> medium-voltage network”.bdew. June 2008.[6] Grid connection code <strong>for</strong> renewable power plants (RPPs) connected to <strong>the</strong> electricitytransmission <strong>system</strong> (TS) or <strong>the</strong> distribution <strong>system</strong> (DS) <strong>in</strong> South Africa. Version 2.6. November2012.[7] “Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti BT delleimprese distributrici di energia elettrica”Norma italiana CEI 0-21. 2011-2012.[8] Control of grid connected <strong>PV</strong> <strong>system</strong>s with grid support functions. Department of Energy Technology.Aalborg University, Denmark. Autumn-Spr<strong>in</strong>g 2011-2012.[9] “Cahier des charges de l’appel d’offres n° 332689-2010-FR portant sur des <strong>in</strong>stallationséoliennes terrestres de production d’électricité en Corse, Guadeloupe, Guyane, Mart<strong>in</strong>ique, à LaRéunion, à Sa<strong>in</strong>t-Barthélemy et à Sa<strong>in</strong>t-Mart<strong>in</strong>”. M<strong>in</strong>istère de l’écologie, de l’énergie, dudéveloppement durable et de la mer en charge des technologies tertes et des négociations sur leclimat.[10] International grid codes and local requirements – <strong>the</strong> evolvement of standards <strong>for</strong> distributed<strong>energy</strong> resources and <strong>in</strong>verter technology. SMA.[11] “Regolazione tecnica dei requisiti di sistema della generazione distribuita”. Guida técnica.Allegato A.70. March 2012.16


APPENDIX- Puerto Rico Electric Power Authority. “M<strong>in</strong>imum Technical Requirements <strong>for</strong>Photovoltaic Generation (<strong>PV</strong>) Projects. “- Red Eléctrica de España, “ Instalaciones conectadas a la red de transporte y equipogenerador: requisitos mínimos de diseño, equipamiento, funcionamiento, puesta enservicio y seguridad. P.O. 12.2”, September 2010.- ENTSO-E Network Code <strong>for</strong> Requirements <strong>for</strong> Grid Connection Applicable to allGenerators, June 2012.- Journal official de la republica française. Texte 8 sur 228. 25 avril 2008. “Décrets,arrêtes, circulaires”.- “Cahier des charges de l’appel d’offres n° 332689-2010-FR portant sur des <strong>in</strong>stallationséoliennes terrestres de production d’électricité en Corse, Guadeloupe, Guyane,Mart<strong>in</strong>ique, à La Réunion, à Sa<strong>in</strong>t-Barthélemy et à Sa<strong>in</strong>t-Mart<strong>in</strong>”. M<strong>in</strong>istère del’écologie, de l’énergie, du développement durable et de la mer en charge destechnologies tertes et des négociations sur le climat.- Grid connection code <strong>for</strong> renewable power plants (RPPs) connected to <strong>the</strong> electricitytransmission <strong>system</strong> (TS) or <strong>the</strong> distribution <strong>system</strong> (DS) <strong>in</strong> South Africa. Version 2.6.November 2012.- “Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti BTdelle imprese distributrici di energia elettrica”Norma italiana CEI 0-21. 2011-2012.- “Regolazione tecnica dei requisiti di sistema della generazione distribuita”. Guidatécnica. Allegato A.70. March 2012.- “Technical Guidel<strong>in</strong>e Generat<strong>in</strong>g Plants Connected to <strong>the</strong> Medium-Voltage Network.Guidel<strong>in</strong>e <strong>for</strong> generat<strong>in</strong>g plants connection to and parallel operation with <strong>the</strong> mediumvoltagenetwork”. bdew. June 2008.


_________________________________PUERTO RICO ELECTRIC POWER AUTHORITY


MINIMUM TECHNICAL REQUIREMENTS FORINTERCONNECTION OF PHOTOVOLTAIC (<strong>PV</strong>) FACILITIESThe proponent shall comply with <strong>the</strong> follow<strong>in</strong>g m<strong>in</strong>imum technical requirements:1. VOLTAGE RIDE-THROUGH:Figure 1 Low Voltage Ride-Through Requirementsa. PREPA’s Low Voltage Ride-Through (LVRT) Requirements:i. From Figure 1, PREPA requires all generation to rema<strong>in</strong> onl<strong>in</strong>e andbe able to ride-through faults down to 0.0 per-unit (measured at<strong>the</strong> po<strong>in</strong>t of <strong>in</strong>terconnection), <strong>for</strong> up to 600 ms.ii. All generation rema<strong>in</strong>s onl<strong>in</strong>e and operat<strong>in</strong>g dur<strong>in</strong>g and afternormally cleared faults on <strong>the</strong> po<strong>in</strong>t of <strong>in</strong>terconnection, andiii. All generation rema<strong>in</strong>s onl<strong>in</strong>e and operat<strong>in</strong>g dur<strong>in</strong>g backupclearedfaults on <strong>the</strong> po<strong>in</strong>t of <strong>in</strong>terconnection.Puerto Rico Electric Power AuthorityM<strong>in</strong>imum Technical Requirements <strong>for</strong> Photovoltaic Generation (<strong>PV</strong>) Projects1


. PREPA’s Overvoltage Ride-Through (OVRT) Requirements:i. PREPA requires all generation to rema<strong>in</strong> onl<strong>in</strong>e and able to ridethroughovervoltage conditions specified by <strong>the</strong> follow<strong>in</strong>g values:Overvoltage (pu)M<strong>in</strong>imum time to rema<strong>in</strong>onl<strong>in</strong>e (seconds)1.4 – 1.25 11.25 – 1.15 31.15 or lower <strong>in</strong>def<strong>in</strong>itely2. VOLTAGE REGULATION SYSTEM (VRS)Constant voltage control shall be required. Photovoltaic Systemtechnologies <strong>in</strong> comb<strong>in</strong>ation with Static Var Controls, such as Static VarCompensators (SVC), STATCOMs, DSTATCOMs are acceptable options tocomply with this requirement. A complete description of <strong>the</strong> VRS controlstrategy should be submitted <strong>for</strong> evaluation.a) Photovoltaic Facilities (<strong>PV</strong>F) must have a cont<strong>in</strong>uously-variable,cont<strong>in</strong>uously-act<strong>in</strong>g, closed loop control VRS; i.e. an equivalent to <strong>the</strong>Automatic Voltage Regulator <strong>in</strong> conventional mach<strong>in</strong>es.b) The VRS set-po<strong>in</strong>t must be adjustable by <strong>the</strong> <strong>PV</strong>F Operator follow<strong>in</strong>g aPREPA System Controller dispatch. The set-po<strong>in</strong>t shall be adjustablebetween 95% to 105% of rated voltage at <strong>the</strong> POI.c) The VRS shall operate only <strong>in</strong> a voltage set po<strong>in</strong>t control mode.Controllers such as Power Factor or constant VAR are not permitted.d) The VRS shall be capable of adjustable Droop or adjustable ga<strong>in</strong>. VRSthat utilize Droop shall be adjustable from 0 to 10%.e) The comb<strong>in</strong>ed sett<strong>in</strong>gs of Droop or ga<strong>in</strong> are to achieve a steady-statevoltage regulation of +/- 0.5% of <strong>the</strong> voltage controlled by <strong>the</strong> VRS.f) The VRS shall be calibrated such that a change <strong>in</strong> reactive power willachieve 95% of its f<strong>in</strong>al value no later than 1 second follow<strong>in</strong>g a stepPuerto Rico Electric Power AuthorityM<strong>in</strong>imum Technical Requirements <strong>for</strong> Photovoltaic Generation (<strong>PV</strong>) Projects2


change <strong>in</strong> voltage. The change <strong>in</strong> reactive power should not causeexcessive voltage excursions or overshoot.g) The generator facility VRS must be <strong>in</strong> service at any time <strong>the</strong> <strong>PV</strong>F iselectrically connected to <strong>the</strong> grid regardless of MW output from <strong>the</strong><strong>PV</strong>F.3. REACTIVE POWER CAPABILITY AND MINIMUM POWERFACTOR REQUIREMENTSThe total power factor range shall be from 0.85 lagg<strong>in</strong>g to 0.85 lead<strong>in</strong>g.The reactive power requirements provide flexibility <strong>for</strong> many types oftechnologies at <strong>the</strong> Renewable Energy Facility. The <strong>in</strong>tent is that a <strong>PV</strong>Fcan ramp <strong>the</strong> reactive power from 0.85 lagg<strong>in</strong>g to 0.85 lead<strong>in</strong>g <strong>in</strong> asmooth cont<strong>in</strong>uous fashion.The +/- 0.90 power factor range should be dynamic and cont<strong>in</strong>uous. Thismeans that <strong>the</strong> <strong>PV</strong>F has to be able to respond to power <strong>system</strong> voltagefluctuations by cont<strong>in</strong>uously vary<strong>in</strong>g <strong>the</strong> reactive output of <strong>the</strong> plantwith<strong>in</strong> <strong>the</strong> specified limits. The previously established power factordynamic range could be expanded if studies <strong>in</strong>dicate that additionalcont<strong>in</strong>uous, dynamic compensation is required. It is required that <strong>the</strong><strong>PV</strong>F reactive capability meets +/- 0.85 Power Factor (PF) range based on<strong>the</strong> <strong>PV</strong>F Aggregated MW Output, which is <strong>the</strong> maximum MVAr capabilitycorrespond<strong>in</strong>g to maximum MW Output. It is understood that positive (+)PF is where <strong>the</strong> <strong>PV</strong>F is produc<strong>in</strong>g MVAr and negative (-) PF is where <strong>the</strong><strong>PV</strong>F is absorb<strong>in</strong>g MVAr.This requirement of MVAr capability at maximum output shall besusta<strong>in</strong>ed throughout <strong>the</strong> complete range of operation of <strong>the</strong> <strong>PV</strong>F asestablished by Figure 2.Puerto Rico Electric Power AuthorityM<strong>in</strong>imum Technical Requirements <strong>for</strong> Photovoltaic Generation (<strong>PV</strong>) Projects3


Figure 2 Reactive Power Capability Curve4. SHORT CIRCUIT RATIO (SCR) REQUIREMENTS:Short Circuit Ratio values (at <strong>the</strong> po<strong>in</strong>t of <strong>in</strong>terconnection) under 5 shall notbe permitted. The constructor shall be responsible <strong>for</strong> <strong>the</strong> <strong>in</strong>stallation ofadditional equipment, such as synchronous condensers, and controlsnecessary to comply with PREPA’s m<strong>in</strong>imum short circuit requirements.5. FREQUENCY RIDE THROUGH (FRT):• 57.5 - 61.5 Hz No tripp<strong>in</strong>g (cont<strong>in</strong>uous)• 61.5 - 62.5 Hz 30 sec• 56.5 - 57.5 Hz 10 sec• < 56.5 or > 62.5 Hz Instantaneous trip6. FREQUENCY RESPONSE/REGULATION:<strong>PV</strong> facility shall provide an immediate real power primary frequencyresponse, proportional to frequency deviations from scheduledfrequency, similar to governor response. The rate of real power responseto frequency deviations shall be similar to or more responsive than <strong>the</strong>Puerto Rico Electric Power AuthorityM<strong>in</strong>imum Technical Requirements <strong>for</strong> Photovoltaic Generation (<strong>PV</strong>) Projects4


droop characteristic of 5% used by conventional generators. <strong>PV</strong> facilityshould have controls that provide both down-regulations and upregulationreserves. <strong>PV</strong> technologies, <strong>in</strong> comb<strong>in</strong>ation with <strong>energy</strong> storage<strong>system</strong>s such as BESS, flywheels, hybrid <strong>system</strong>s are acceptable optionsto comply with PREPA’s frequency regulation requirements.7. RAMP RATE CONTROL:Ramp Rate Control is required to smoothly transition from one outputlevel to ano<strong>the</strong>r. The <strong>PV</strong> facility shall be able to control <strong>the</strong> rate of changeof power output dur<strong>in</strong>g some circumstances, <strong>in</strong>clud<strong>in</strong>g but not limited to:(1) rate of <strong>in</strong>crease of power, (2) rate of decrease of power, (3) rate of<strong>in</strong>crease of power when a curtailment of power output is released; (4)rate of decrease <strong>in</strong> power when curtailment limit is engaged. A 10 % perm<strong>in</strong>ute rate (based on nameplate capacity) limitation shall be en<strong>for</strong>ced.This limit applies both to <strong>the</strong> <strong>in</strong>crease and decrease of power output.8. POWER QUALITY REQUIREMENTS:The developer shall address, <strong>in</strong> <strong>the</strong> design of <strong>the</strong>ir facilities potentialsources and mitigation of power quality degradation prior to<strong>in</strong>terconnection. <strong>Design</strong> considerations should <strong>in</strong>clude applicablestandards <strong>in</strong>clud<strong>in</strong>g, but not limited to IEEE Standards 142, 519, 1100,1159, and ANSI C84.1. Typical <strong>for</strong>ms of power quality degradation<strong>in</strong>clude, but are not limited to voltage regulation, voltage unbalance,harmonic distortion, flicker, voltage sags/<strong>in</strong>terruptions and transients.9. SPECIAL PROTECTION SCHEMES:<strong>PV</strong> facility shall provide adequate technology and implement specialprotection schemes as established by PREPA <strong>in</strong> coord<strong>in</strong>ation with power<strong>management</strong> requirements.10. GENERAL INTERCONNECTION SUBSTATIONCONFIGURATION:An <strong>in</strong>terconnect<strong>in</strong>g generation producer must <strong>in</strong>terconnect at an exist<strong>in</strong>gPREPA substation. The configuration requirements of <strong>the</strong><strong>in</strong>terconnection depend on where <strong>the</strong> physical <strong>in</strong>terconnection is tooccur and <strong>the</strong> per<strong>for</strong>mance of <strong>the</strong> <strong>system</strong> with <strong>the</strong> proposed<strong>in</strong>terconnection. The <strong>in</strong>terconnection must con<strong>for</strong>m, at a m<strong>in</strong>imum, toPuerto Rico Electric Power AuthorityM<strong>in</strong>imum Technical Requirements <strong>for</strong> Photovoltaic Generation (<strong>PV</strong>) Projects5


<strong>the</strong> orig<strong>in</strong>al designed configuration of <strong>the</strong> substation. PREPA, at its solediscretion, may consider different configurations due to physicallimitations at <strong>the</strong> site.11. MODELING AND VALIDATIONThe Contractor shall submit to PREPA a Siemens - PTI certified PSS/Ema<strong>the</strong>matical model and data related to <strong>the</strong> proposed <strong>PV</strong> facility. Whenreferred to <strong>the</strong> <strong>PV</strong> facility model, this shall <strong>in</strong>clude but is not limited to <strong>PV</strong><strong>in</strong>verters, trans<strong>for</strong>mers, collector <strong>system</strong>s, plant controllers, control<strong>system</strong>s and any o<strong>the</strong>r equipment necessary to properly model <strong>the</strong> <strong>PV</strong>facility <strong>for</strong> both steady-state and dynamic simulation modules. It isrequired that <strong>the</strong> Contractor submits both an aggregate and detailedversion of <strong>the</strong> <strong>PV</strong> facility model.The Contractor shall be required to submit user manuals <strong>for</strong> both <strong>the</strong> <strong>PV</strong><strong>in</strong>verter and <strong>the</strong> <strong>PV</strong> Facility models. The ma<strong>the</strong>matical models shall befully compatible with <strong>the</strong> latest and future versions of PSS/E. It ispreferred that <strong>the</strong> models are PSS/E standard models. In <strong>the</strong> case that<strong>the</strong> Contractor submits user written models, <strong>the</strong> Contractor shall berequired to keep <strong>the</strong>se models current with <strong>the</strong> future versions of <strong>the</strong>PSS/E program until such time that PSS/E has implemented a standardmodel. The Contractor shall submit to PREPA an official report fromSiemens - PTI that validates and certifies <strong>the</strong> required ma<strong>the</strong>maticalmodels, <strong>in</strong>clud<strong>in</strong>g subsequent revisions. The data and PSS/E model shallalso be updated and officially certified accord<strong>in</strong>g to PREPA requirementswhen f<strong>in</strong>al field adjustments and parameters measurements and fieldtests are per<strong>for</strong>med to <strong>the</strong> facility by <strong>the</strong> contractor. The ma<strong>the</strong>maticalmodel (ei<strong>the</strong>r PSS/E standard or user written model) of <strong>the</strong> <strong>PV</strong> facilityshall be officially certified by Siemens - PTI be<strong>for</strong>e a specific and validatedPSS/E ma<strong>the</strong>matical model of <strong>the</strong> complete <strong>PV</strong> facility be submitted toPREPA. The Contractor shall be responsible of submitt<strong>in</strong>g <strong>the</strong> officialreports and certifications from Siemens – PTI, o<strong>the</strong>rwise <strong>the</strong>ma<strong>the</strong>matical model shall not be considered valid.The Contractor shall be responsible to submit Siemens – PTI certifiedPSSE ma<strong>the</strong>matical models of any k<strong>in</strong>d of compensation devices (ie. SVC,STATCOMs, DSTATCOMs, BESS, etc.) used on <strong>the</strong> <strong>PV</strong> facility. It ispreferred that <strong>the</strong> models are standard models provided with PSS/E. In<strong>the</strong> case that <strong>the</strong> Contractor submits user written models, <strong>the</strong> <strong>PV</strong> facilityContractor shall be required to keep <strong>the</strong>se models current with <strong>the</strong>future versions of <strong>the</strong> PSS/E program until such time that PSS/E hasimplemented a standard model. In its f<strong>in</strong>al <strong>for</strong>m, <strong>the</strong> ma<strong>the</strong>maticalPuerto Rico Electric Power AuthorityM<strong>in</strong>imum Technical Requirements <strong>for</strong> Photovoltaic Generation (<strong>PV</strong>) Projects6


model shall be able to simulate each of <strong>the</strong> required control andoperational modes available <strong>for</strong> <strong>the</strong> compensation device and shall becompatible with <strong>the</strong> latest and future versions of PSSE. F<strong>in</strong>al adjustmentsand parameters sett<strong>in</strong>gs related with <strong>the</strong> control <strong>system</strong> commission<strong>in</strong>gprocess shall be <strong>in</strong>corporated to <strong>the</strong> PSSE ma<strong>the</strong>matical model and testedaccord<strong>in</strong>gly by <strong>the</strong> <strong>PV</strong> facility Contractor and PREPA <strong>system</strong> study groups.The Contractor shall also per<strong>for</strong>m on-site field tests <strong>for</strong> <strong>the</strong> identification,development, and validation of <strong>the</strong> dynamic ma<strong>the</strong>matical models andparameters required by PREPA <strong>for</strong> any k<strong>in</strong>d of compensation devicesused at <strong>the</strong> <strong>PV</strong> facility. The ma<strong>the</strong>matical models of <strong>the</strong> <strong>PV</strong> facility and itsrequired compensation devices shall be officially certified by Siemens -PTI be<strong>for</strong>e a specific and validated PSS/E ma<strong>the</strong>matical model of <strong>the</strong>complete <strong>PV</strong> facility be submitted to PREPA. The Contractor shall beresponsible of submitt<strong>in</strong>g <strong>the</strong> official reports and certifications fromSiemens – PTI, o<strong>the</strong>rwise <strong>the</strong> ma<strong>the</strong>matical models shall not beconsidered valid.<strong>PV</strong> facility Owners that provide user written model(s) shall providecompiled code of <strong>the</strong> model and are responsible to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> userwritten model compatible with current and new releases of PSS/E untilsuch time a standard model is provided. PREPA must be permitted by <strong>the</strong><strong>PV</strong> facility Owner to make available <strong>PV</strong> Facility models if required toexternal consultants with an NDA <strong>in</strong> place.12. TRANSIENT MATHEMATICAL MODELThe Contractor shall be responsible of provid<strong>in</strong>g a detailed transientmodel of <strong>the</strong> <strong>PV</strong> facility and to show that it is capable of comply<strong>in</strong>g withPREPA’s transient M<strong>in</strong>imum Technical Requirements.13. DYNAMIC SYSTEM MONITORING EQUIPMENTThe developer of <strong>the</strong> <strong>PV</strong> facility shall be required to provide and <strong>in</strong>stall adynamic <strong>system</strong> monitor<strong>in</strong>g equipment that con<strong>for</strong>ms to PREPA’sspecifications.Puerto Rico Electric Power AuthorityM<strong>in</strong>imum Technical Requirements <strong>for</strong> Photovoltaic Generation (<strong>PV</strong>) Projects7


ENTSO-E Network Code <strong>for</strong>Requirements <strong>for</strong> Grid ConnectionApplicable to all Generators26 June 2012NoticeThis document reflects <strong>the</strong> work done by ENTSO-E <strong>in</strong> l<strong>in</strong>e with <strong>the</strong> ACER Framework Guidel<strong>in</strong>es onElectricity Grid Connections published on 20 July 2011 after <strong>the</strong> EC mandate letter was received byENTSO-E on 29 July 2011. This document takes <strong>in</strong>to account <strong>the</strong> comments received by ENTSO-Edur<strong>in</strong>g <strong>the</strong> public consultation of <strong>the</strong> “Draft Network Code <strong>for</strong> requirements <strong>for</strong> grid connectionapplicable to all generators” it has organised between 24 January and 20 March 2012 <strong>in</strong> an openand transparent manner <strong>in</strong> compliance with Article 10 of Regulation (EC) 714/2009. It fur<strong>the</strong>rmore<strong>in</strong>cludes <strong>the</strong> outcomes of numerous bilateral and common user group meet<strong>in</strong>gs and work<strong>in</strong>gsessions with stakeholders, <strong>the</strong> DSOs Technical Expert Group, as well as bilateral/trilateralmeet<strong>in</strong>gs with ACER and with <strong>the</strong> EC.In addition, this document is based on <strong>the</strong> <strong>in</strong>put of an extensive <strong>in</strong><strong>for</strong>mal dialogue withstakeholders and of several public workshops that took place dur<strong>in</strong>g <strong>the</strong> pilot period between <strong>the</strong>Summer of 2009 and 3 March 2011, <strong>the</strong> date on which Regulation (EC) 714/2009 entered <strong>in</strong>to<strong>for</strong>ce.This document is now called “Network code <strong>for</strong> requirements <strong>for</strong> grid connection applicable to allgenerators” and is submitted to ACER <strong>for</strong> ACER’s reasoned op<strong>in</strong>ion pursuant to Article 6 ofRegulation (EC) 714/2009.ENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.eu


PURPOSE AND OBJECTIVESHav<strong>in</strong>g regard to Directive 2009/72/EC of <strong>the</strong> European Parliament and of <strong>the</strong> Council of 13 July2009 concern<strong>in</strong>g common rules <strong>for</strong> <strong>the</strong> <strong>in</strong>ternal market <strong>in</strong> electricity and repeal<strong>in</strong>g Directive2003/54/EC;Hav<strong>in</strong>g regard to Regulation (EC) No 714/2009 of <strong>the</strong> European Parliament and of <strong>the</strong> Council of 13July 2009 on conditions <strong>for</strong> access to <strong>the</strong> network <strong>for</strong> cross-border exchanges <strong>in</strong> electricity andrepeal<strong>in</strong>g Regulation (EC) No 1228/2003 and especially Article 6;Hav<strong>in</strong>g regard to <strong>the</strong> priority list issued by <strong>the</strong> European Commission on 22 December 2010;Hav<strong>in</strong>g regard to <strong>the</strong> Framework Guidel<strong>in</strong>es on Electricity Grid Connection issued by <strong>the</strong> Agency <strong>for</strong><strong>the</strong> Cooperation of Energy Regulators (ACER) on 20 July 2011;Whereas :(1) Directive 2009/72/EC of <strong>the</strong> European Parliament and of <strong>the</strong> Council of 13 July 2009 concern<strong>in</strong>gcommon rules <strong>for</strong> <strong>the</strong> <strong>in</strong>ternal market <strong>in</strong> electricity and repeal<strong>in</strong>g Directive 2003/54/CE andRegulation 714/2009 of <strong>the</strong> European Parliament and of <strong>the</strong> Council of 13 July 2009 (whereassection 6) underl<strong>in</strong>e <strong>the</strong> need <strong>for</strong> an <strong>in</strong>creased cooperation and coord<strong>in</strong>ation among transmission<strong>system</strong> operators with<strong>in</strong> a European network of transmission <strong>system</strong> operators <strong>for</strong> electricity(ENTSO-E) to create Network Codes <strong>for</strong> provid<strong>in</strong>g and manag<strong>in</strong>g effective and transparent access to<strong>the</strong> transmission networks across borders, and to ensure coord<strong>in</strong>ated and sufficiently <strong>for</strong>wardlook<strong>in</strong>gplann<strong>in</strong>g and sound technical evolution of <strong>the</strong> transmission <strong>system</strong> <strong>in</strong> <strong>the</strong> Community,<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> creation of <strong>in</strong>terconnection capacities, with due regard to <strong>the</strong> environment ;(2) Transmission <strong>system</strong> operators (TSOs) are accord<strong>in</strong>g to Articles 2 and 12 of Directive 2009/72/ECresponsible <strong>for</strong> provid<strong>in</strong>g and operat<strong>in</strong>g high and extra-high voltage networks <strong>for</strong> long-distancetransmission of electricity as well as <strong>for</strong> supply of lower-level regional distribution <strong>system</strong>s anddirectly connected customers. Apart from this transmission and supply task it is also <strong>the</strong> TSOs’responsibility to ensure <strong>the</strong> <strong>system</strong> security with a high level of reliability and quality;(3) Distribution <strong>system</strong> operators (DSOs) are accord<strong>in</strong>g to Articles 2 and 25 of Directive 2009/72/ECresponsible <strong>for</strong> provid<strong>in</strong>g and operat<strong>in</strong>g low, medium and high voltage networks <strong>for</strong> regionaldistribution of electricity as well as <strong>for</strong> supply of lower-level distribution <strong>system</strong>s and directlyconnected customers. Besides <strong>the</strong> regional distribution and supply task it is also <strong>the</strong> DSOs’responsibility to ensure <strong>the</strong> security of <strong>the</strong>ir networks with a high level of reliability and quality.(4) Secure <strong>system</strong> operation is only possible by close cooperation between Power Generat<strong>in</strong>g FacilityOwners and Network Operators. In particular, <strong>the</strong> <strong>system</strong> behaviour <strong>in</strong> disturbed operat<strong>in</strong>gconditions depends upon <strong>the</strong> response of Power Generat<strong>in</strong>g Modules to deviations from nom<strong>in</strong>alvalues of Voltage and Frequency. In <strong>the</strong> context of <strong>system</strong> security <strong>the</strong> Networks and <strong>the</strong> PowerGenerat<strong>in</strong>g Modules need to be considered as one entity from a <strong>system</strong>s eng<strong>in</strong>eer<strong>in</strong>g approach,respect<strong>in</strong>g that <strong>the</strong> security of both parts of <strong>the</strong> <strong>system</strong> (network or generation) are <strong>in</strong>terdependent`1 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


of <strong>the</strong> o<strong>the</strong>r part. It is <strong>the</strong>re<strong>for</strong>e of crucial importance that Power Generat<strong>in</strong>g Modules are obliged tomeet <strong>the</strong> relevant technical requirements set out <strong>in</strong> <strong>the</strong> Network Code concern<strong>in</strong>g <strong>system</strong> security asa prerequisite <strong>for</strong> grid connection. Appropriate dynamic behaviour of Power Generat<strong>in</strong>g Modulesand <strong>the</strong>ir protection and control facilities are necessary <strong>in</strong> normal operat<strong>in</strong>g conditions and <strong>in</strong> arange of disturbed operat<strong>in</strong>g conditions <strong>in</strong> order to preserve or to re-establish <strong>system</strong> security. Theclose cooperation between Power Generat<strong>in</strong>g Facility Owners and Network Operators shall takeplace <strong>in</strong> due compliance with <strong>the</strong> pr<strong>in</strong>ciple of confidentiality, such as fur<strong>the</strong>r detailed <strong>in</strong> Article 16(1)of Directive 2009/72/EC.(5) ENTSO-E has drafted this Network Code <strong>for</strong> grid connection requirements aim<strong>in</strong>g at sett<strong>in</strong>g outclear and objective requirements <strong>for</strong> Power Generat<strong>in</strong>g Modules <strong>for</strong> grid connection <strong>in</strong> order tocontribute to non-discrim<strong>in</strong>ation, effective competition and <strong>the</strong> efficient function<strong>in</strong>g of <strong>the</strong> <strong>in</strong>ternalelectricity market and to ensure <strong>system</strong> security.(6) Regulation (EC) 714/2009 <strong>in</strong> its Article 9(7) def<strong>in</strong>es that “<strong>the</strong> network codes shall be developed<strong>for</strong> cross-border network issues and market <strong>in</strong>tegration issues and shall be without prejudice to <strong>the</strong>Member States’ right to establish national network codes which do not affect cross-border trade”.For <strong>the</strong> purposes of this Network Code <strong>the</strong> def<strong>in</strong>ition of cross-border network issues and market<strong>in</strong>tegration issues is derived with due consideration to <strong>the</strong> targets of <strong>the</strong> EC 3 rd legislative package<strong>for</strong> <strong>the</strong> <strong>in</strong>ternal electricity market, namely: support<strong>in</strong>g <strong>the</strong> completion and function<strong>in</strong>g of <strong>the</strong> <strong>in</strong>ternal market <strong>in</strong> electricity and cross-bordertrade facilitat<strong>in</strong>g <strong>the</strong> targets <strong>for</strong> penetration of renewable generation ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g security of supplyThe <strong>in</strong>terconnected transmission <strong>system</strong> establishes <strong>the</strong> wholesale plat<strong>for</strong>m <strong>for</strong> <strong>the</strong> <strong>in</strong>ternalelectricity market. TSOs are responsible <strong>for</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g, preserv<strong>in</strong>g and restor<strong>in</strong>g security of <strong>the</strong><strong>in</strong>terconnected <strong>system</strong> with a high level of reliability and quality, which <strong>in</strong> this context is <strong>the</strong> essence<strong>in</strong> facilitat<strong>in</strong>g cross-border trad<strong>in</strong>g.As <strong>in</strong>dicated <strong>in</strong> (4) above, <strong>system</strong> security cannot be ensured <strong>in</strong>dependently from <strong>the</strong> technicalcapabilities of Power Generat<strong>in</strong>g Modules. Regular coord<strong>in</strong>ation at <strong>the</strong> level of generation andadequate per<strong>for</strong>mance of equipment connected to <strong>the</strong> networks with robustness to facedisturbances and to help to prevent any large disturbance or to facilitate restoration of <strong>the</strong> <strong>system</strong>after a collapse are fundamental prerequisites.Also as stated <strong>in</strong> (4) above, secure <strong>system</strong> operation is only possible by close cooperation of PowerGenerat<strong>in</strong>g Facility Owners with Network Operators <strong>in</strong> an appropriate way. Consequently, <strong>the</strong>transmission <strong>system</strong> and <strong>the</strong> Power Generat<strong>in</strong>g Modules need to be considered as one entity from a<strong>system</strong>s eng<strong>in</strong>eer<strong>in</strong>g perspective. It is <strong>the</strong>re<strong>for</strong>e of crucial importance that Power Generat<strong>in</strong>gModules are obliged to meet <strong>the</strong> requirements and to provide <strong>the</strong> technical capabilities withrelevance to <strong>system</strong> security.To ensure <strong>system</strong> security with<strong>in</strong> <strong>the</strong> <strong>in</strong>terconnected transmission <strong>system</strong> and to provide adequatesecurity level a common understand<strong>in</strong>g on <strong>the</strong>se requirements <strong>for</strong> Power Generat<strong>in</strong>g Modules isessential. All requirements that contribute to ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g, preserv<strong>in</strong>g and restor<strong>in</strong>g <strong>system</strong> security<strong>in</strong> order to facilitate proper function<strong>in</strong>g of <strong>the</strong> <strong>in</strong>ternal electricity market with<strong>in</strong> and betweensynchronous areas, and to achiev<strong>in</strong>g cost efficiencies through harmonization of requirements shallbe regarded as “cross-border network issues and market <strong>in</strong>tegration issues”.Pursuant to Article 6 of Regulation (EC) 714/2009, ENTSO-E shall submit this Network Code to ACER.`2 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


Title 1GENERAL PROVISIONSArticle 1SUBJECT MATTERThis Network Code def<strong>in</strong>es a common framework of grid connection requirements <strong>for</strong> PowerGenerat<strong>in</strong>g Facilities, <strong>in</strong>clud<strong>in</strong>g Synchronous Power Generat<strong>in</strong>g Modules, Power Park Modules andOffshore Generation Facilities. It also def<strong>in</strong>es a common framework of obligations <strong>for</strong> NetworkOperators to appropriately make use of <strong>the</strong> Power Generat<strong>in</strong>g Facilities’ capabilities <strong>in</strong> a transparentand non-discrim<strong>in</strong>atory manner ensur<strong>in</strong>g a level-play<strong>in</strong>g field throughout <strong>the</strong> European Union.`3 | P a g eArticle 2DEFINITIONS (glossary)For <strong>the</strong> purpose of this Network Code, <strong>the</strong> follow<strong>in</strong>g def<strong>in</strong>itions shall apply:Active Power - is <strong>the</strong> real component of <strong>the</strong> Apparent Power at fundamental Frequency, expressed<strong>in</strong> watts or multiples <strong>the</strong>reof (e.g. kilowatts (kW) or megawatts (MW)).Active Power Frequency Response - is an automatic response of Active Power output from a PowerGenerat<strong>in</strong>g Module, <strong>in</strong> response to a change <strong>in</strong> <strong>system</strong> Frequency from <strong>the</strong> nom<strong>in</strong>al <strong>system</strong>Frequency.Agency – The Agency <strong>for</strong> <strong>the</strong> Cooperation of Energy Regulators (ACER) as established by Regulation(EC) No 713/2009Alternator – is a device that converts mechanical <strong>energy</strong> <strong>in</strong>to electrical <strong>energy</strong> by means of arotat<strong>in</strong>g magnetic field.Apparent Power - is <strong>the</strong> product of Voltage and Current at fundamental Frequency. It is usuallyexpressed <strong>in</strong> kilovolt-amperes (kVA) or megavolt-amperes (MVA) and consists of a real component(Active Power) and an imag<strong>in</strong>ary component (Reactive Power).Authorised Certifier - is an entity to issue Equipment Certificates. The accreditation of <strong>the</strong>Authorised Certifier shall be given from <strong>the</strong> national affiliation of <strong>the</strong> European co-operation <strong>for</strong>Accreditation (EA), established accord<strong>in</strong>g to Regulation (EC) 765/2008.Automatic Voltage Regulator (AVR) - is <strong>the</strong> cont<strong>in</strong>uously act<strong>in</strong>g automatic equipment controll<strong>in</strong>g <strong>the</strong>term<strong>in</strong>al Voltage of a Synchronous Power Generat<strong>in</strong>g Module by compar<strong>in</strong>g <strong>the</strong> actual term<strong>in</strong>alVoltage with a reference value and controll<strong>in</strong>g by appropriate means <strong>the</strong> output of an ExcitationSystem, depend<strong>in</strong>g on <strong>the</strong> deviations.Black Start Capability - is <strong>the</strong> capability of recovery of a Power Generat<strong>in</strong>g Module from a totalshutdown through a dedicated auxiliary power source without any <strong>energy</strong> supply which is externalto <strong>the</strong> Power Generat<strong>in</strong>g Facility.ENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


Closed Distribution System Operator (CDSO) - is a natural or legal person operat<strong>in</strong>g, ensur<strong>in</strong>g <strong>the</strong>ma<strong>in</strong>tenance of and, if necessary, develop<strong>in</strong>g a closed distribution Network accord<strong>in</strong>g to Article 28 ofDirective 2009/72/CE.Compliance Monitor<strong>in</strong>g - is <strong>the</strong> process to verify that <strong>the</strong> (technical) capabilities of PowerGenerat<strong>in</strong>g Modules are ma<strong>in</strong>ta<strong>in</strong>ed compliant by <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner with <strong>the</strong>specifications and requirements of this Network Code.Compliance Simulation - is <strong>the</strong> process to verify that Power Generat<strong>in</strong>g Modules are compliant with<strong>the</strong> specifications and requirements of this Network Code, <strong>for</strong> example be<strong>for</strong>e start<strong>in</strong>g <strong>the</strong>iroperation. The verification should <strong>in</strong>clude, <strong>in</strong>ter alia, <strong>the</strong> revision of documentation, <strong>the</strong> verificationof <strong>the</strong> requested capabilities of <strong>the</strong> Power Generat<strong>in</strong>g Module by simulation studies and <strong>the</strong> revisionaga<strong>in</strong>st actual measurements.Compliance Test<strong>in</strong>g - is <strong>the</strong> process to verify that Power Generat<strong>in</strong>g Modules are compliant with <strong>the</strong>specifications and requirements of this Network Code, <strong>for</strong> example be<strong>for</strong>e start<strong>in</strong>g <strong>the</strong>ir operation.The verification <strong>in</strong>cludes, <strong>in</strong>ter alia, <strong>the</strong> revision of documentation, <strong>the</strong> verification of <strong>the</strong> requestedcapabilities of <strong>the</strong> Power Generat<strong>in</strong>g Module by practical tests.Connection Agreement - is a contract between <strong>the</strong> Relevant Network Operator and <strong>the</strong> PowerGenerat<strong>in</strong>g Facility Owner which <strong>in</strong>cludes <strong>the</strong> relevant site and technical specific requirements <strong>for</strong><strong>the</strong> Power Generat<strong>in</strong>g Facility.Connection Po<strong>in</strong>t - is <strong>the</strong> <strong>in</strong>terface at which <strong>the</strong> Power Generat<strong>in</strong>g Module is connected to atransmission, distribution or closed distribution Network accord<strong>in</strong>g to Article 28 of Directive2009/72/CE as identified <strong>in</strong> <strong>the</strong> Connection Agreement.Control Area - is a part of <strong>the</strong> <strong>in</strong>terconnected electricity transmission <strong>system</strong> controlled by a s<strong>in</strong>gleTSO.Cost-Benefit Analysis – is a process by which <strong>the</strong> Relevant Network Operator weighs <strong>the</strong> expectedcosts of alternative actions aim<strong>in</strong>g at <strong>the</strong> same objective aga<strong>in</strong>st <strong>the</strong> expected benefits <strong>in</strong> order todeterm<strong>in</strong>e <strong>the</strong> alternative with <strong>the</strong> highest net socio-economic benefit. If applicable, <strong>the</strong> alternatives<strong>in</strong>clude network-based and market-based actions.Current - unless stated o<strong>the</strong>rwise, Current refers to <strong>the</strong> root-mean-square value of <strong>the</strong> positivesequence of <strong>the</strong> phase Current at fundamental Frequency.Derogation - is a time limited or <strong>in</strong>def<strong>in</strong>ite (as specified) acceptance <strong>in</strong> writ<strong>in</strong>g of a non-complianceof a Power Generat<strong>in</strong>g Module with regard to identified requirements of this Network Code.Droop - is <strong>the</strong> ratio of <strong>the</strong> steady-state change of Frequency (referred to nom<strong>in</strong>al Frequency) to <strong>the</strong>steady-state change <strong>in</strong> power output (referred to Maximum Capacity).Distribution System Operator (DSO) - is a natural or legal person responsible <strong>for</strong> operat<strong>in</strong>g, ensur<strong>in</strong>g<strong>the</strong> ma<strong>in</strong>tenance of and, if necessary, develop<strong>in</strong>g <strong>the</strong> distribution Network <strong>in</strong> a given area and,where applicable, its <strong>in</strong>terconnections with o<strong>the</strong>r Networks and <strong>for</strong> ensur<strong>in</strong>g <strong>the</strong> long-term ability of<strong>the</strong> Network to meet reasonable demands <strong>for</strong> <strong>the</strong> distribution of electricity.Energisation Operational Notification (EON) - is a notification issued by <strong>the</strong> Relevant NetworkOperator to a Power Generat<strong>in</strong>g Facility Owner prior to energisation of its <strong>in</strong>ternal Network. An EONentitles <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner to energise its <strong>in</strong>ternal Network by us<strong>in</strong>g <strong>the</strong> gridconnection.`4 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


Equipment Certificate - is a document issued by an Authorised Certifier <strong>for</strong> equipment used <strong>in</strong>Power Generat<strong>in</strong>g Modules confirm<strong>in</strong>g per<strong>for</strong>mance <strong>in</strong> respect of <strong>the</strong> requirements of this NetworkCode. In relation to those parameters, <strong>for</strong> which this Network Code def<strong>in</strong>es ranges ra<strong>the</strong>r thandef<strong>in</strong>ite values, <strong>the</strong> Equipment Certificate shall def<strong>in</strong>e <strong>the</strong> extent of its validity. This will identify itsvalidity at a national or o<strong>the</strong>r level at which a specific value is selected from <strong>the</strong> range allowed at aEuropean level. The Equipment Certificate can additionally <strong>in</strong>clude models confirmed aga<strong>in</strong>st testresults <strong>for</strong> <strong>the</strong> purpose of replac<strong>in</strong>g specific parts of <strong>the</strong> compliance process <strong>for</strong> Type B, C and DPower Generat<strong>in</strong>g Modules. The Equipment Certificate will have a unique number allow<strong>in</strong>g simplereference to it <strong>in</strong> <strong>the</strong> Installation Document or <strong>the</strong> Power Generat<strong>in</strong>g Module Document.Excitation System - is <strong>the</strong> equipment provid<strong>in</strong>g <strong>the</strong> field Current of a synchronous electrical mach<strong>in</strong>e,<strong>in</strong>clud<strong>in</strong>g all regulat<strong>in</strong>g and control elements, as well as field discharge or suppression equipmentand protective devices.Exist<strong>in</strong>g Power Generat<strong>in</strong>g Module - is a Power Generat<strong>in</strong>g Module which is not a New PowerGenerat<strong>in</strong>g Module.F<strong>in</strong>al Operational Notification (FON) - is a notification issued by <strong>the</strong> Relevant Network Operator to aPower Generat<strong>in</strong>g Facility Owner confirm<strong>in</strong>g that <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner is entitled tooperate <strong>the</strong> Power Generat<strong>in</strong>g Module by us<strong>in</strong>g <strong>the</strong> grid connection because compliance with <strong>the</strong>technical design and operational <strong>criteria</strong> has been demonstrated as referred to <strong>in</strong> this Network Code.Frequency - is <strong>the</strong> Frequency of <strong>the</strong> electrical power <strong>system</strong> that can be measured <strong>in</strong> all Networkareas of <strong>the</strong> synchronous <strong>system</strong> under <strong>the</strong> assumption of a coherent value <strong>for</strong> <strong>the</strong> <strong>system</strong> <strong>in</strong> <strong>the</strong>time frame of seconds (with m<strong>in</strong>or differences between different measurement locations only); itsnom<strong>in</strong>al value is 50 Hz.Frequency Control - is <strong>the</strong> capability of a Power Generat<strong>in</strong>g Module to control speed by adjust<strong>in</strong>g<strong>the</strong> Active Power Output <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> stable <strong>system</strong> Frequency (also acceptable as speedcontrol <strong>for</strong> Synchronous Power Generat<strong>in</strong>g Modules).Frequency Response Deadband - is used <strong>in</strong>tentionally to make <strong>the</strong> Frequency Control notresponsive. In contrast to (<strong>in</strong>)sensitivity, deadband has an artificial nature and basically is adjustable.Frequency Response Insensitivity - is <strong>the</strong> <strong>in</strong>herent feature of <strong>the</strong> control <strong>system</strong> def<strong>in</strong>ed as <strong>the</strong>m<strong>in</strong>imum magnitude of <strong>the</strong> Frequency (<strong>in</strong>put signal) which results <strong>in</strong> a change of output power(output signal).Frequency Sensitive Mode (FSM) - is a Power Generat<strong>in</strong>g Module operat<strong>in</strong>g mode which will result<strong>in</strong> Active Power output chang<strong>in</strong>g, <strong>in</strong> response to a change <strong>in</strong> System Frequency, <strong>in</strong> a direction whichassists <strong>in</strong> <strong>the</strong> recovery to Target Frequency, by operat<strong>in</strong>g so as to provide Frequency Response.Houseload Operation - <strong>in</strong> case of Network failures result<strong>in</strong>g <strong>in</strong> disconnection of Power Generat<strong>in</strong>gModules from <strong>the</strong> Network and be<strong>in</strong>g tripped onto <strong>the</strong>ir auxiliary supplies, house-load operationensures that Power Generat<strong>in</strong>g Facilities are able to cont<strong>in</strong>ue to supply <strong>the</strong>ir <strong>in</strong>-house loads.Inertia - is <strong>the</strong> fact that a rotat<strong>in</strong>g rigid body such as an Alternator ma<strong>in</strong>ta<strong>in</strong>s its state of uni<strong>for</strong>mrotational motion. Its angular momentum is unchanged, unless an external torque is applied. In <strong>the</strong>context of this code, this def<strong>in</strong>ition refers to <strong>the</strong> technologies <strong>for</strong> which Alternator speed and <strong>system</strong>Frequency are coupled.Installation Document - is a simple structured document (data/tick sheet) conta<strong>in</strong><strong>in</strong>g <strong>in</strong><strong>for</strong>mationabout a Type A Power Generat<strong>in</strong>g Module and confirm<strong>in</strong>g compliance with <strong>the</strong> relevant`5 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


equirements of this Network Code. The blank Installation Document shall be available from <strong>the</strong>Relevant Network Operator <strong>for</strong> <strong>the</strong> Type A Power Generat<strong>in</strong>g Facility Owner or alternatively <strong>the</strong> site<strong>in</strong>staller on <strong>the</strong> owner’s behalf to fill <strong>in</strong> and submit to <strong>the</strong> Relevant Network Operator.Instruction - is a command given orally, manually or by automatic remote control facilities, e. g. aSetpo<strong>in</strong>t, from a Network Operator to a Power Generat<strong>in</strong>g Facility Owner <strong>in</strong> order to per<strong>for</strong>m anaction.Interim Operational Notification (ION) - is a notification issued by <strong>the</strong> Relevant Network Operator toa Power Generat<strong>in</strong>g Facility Owner confirm<strong>in</strong>g that <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner is entitledto operate <strong>the</strong> Power Generat<strong>in</strong>g Module by us<strong>in</strong>g <strong>the</strong> grid connection <strong>for</strong> a limited period of timeand to undertake compliance tests to meet <strong>the</strong> technical design and operational <strong>criteria</strong> of thisNetwork Code.Island Operation - is <strong>the</strong> <strong>in</strong>dependent operation of a whole or a part of <strong>the</strong> Network that is isolatedafter its disconnection from <strong>the</strong> <strong>in</strong>terconnected <strong>system</strong>, hav<strong>in</strong>g at least one Power Generat<strong>in</strong>gModule supply<strong>in</strong>g power to this Network and controll<strong>in</strong>g <strong>the</strong> Frequency and Voltage.Limited Frequency Sensitive Mode – Overfrequency (LFSM-O) - is a Power Generat<strong>in</strong>g Moduleoperat<strong>in</strong>g mode which will result <strong>in</strong> Active Power output reduction <strong>in</strong> response to a change <strong>in</strong>System Frequency above a certa<strong>in</strong> value.Limited Frequency Sensitive Mode – Underfrequency (LFSM-U) - is a Power Generat<strong>in</strong>g Moduleoperat<strong>in</strong>g mode which will result <strong>in</strong> Active Power output <strong>in</strong>crease <strong>in</strong> response to a change <strong>in</strong> SystemFrequency below a certa<strong>in</strong> value.Limited Operational Notification (LON) - is a notification issued by <strong>the</strong> Relevant Network Operatorto a Power Generat<strong>in</strong>g Facility Owner which has previously reached FON status, but is temporarilysubject to ei<strong>the</strong>r a significant modification or loss of capability which has resulted <strong>in</strong> non-complianceto <strong>the</strong> Network Code.Maximum Capacity - is <strong>the</strong> maximum cont<strong>in</strong>uous Active Power which a Power Generat<strong>in</strong>g Modulecan feed <strong>in</strong>to <strong>the</strong> Network as def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Connection Agreement or as agreed between <strong>the</strong>Relevant Network Operator and <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner. It is also referred to <strong>in</strong> thisNetwork Code as P max .M<strong>in</strong>imum Regulat<strong>in</strong>g Level - is <strong>the</strong> m<strong>in</strong>imum Active Power as def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Connection Agreementor as agreed between <strong>the</strong> Relevant Network Operator and <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner, that<strong>the</strong> Power Generat<strong>in</strong>g Module can regulate down to and can provide Active Power control.M<strong>in</strong>imum Stable Operat<strong>in</strong>g Level - is <strong>the</strong> m<strong>in</strong>imum Active Power as def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> ConnectionAgreement or as agreed between <strong>the</strong> Relevant Network Operator and <strong>the</strong> Power Generat<strong>in</strong>g FacilityOwner, at which <strong>the</strong> Power Generat<strong>in</strong>g Module can be operated stably <strong>for</strong> unlimited time.Network - is plant and apparatus connected toge<strong>the</strong>r <strong>in</strong> order to transmit or distribute electricalpower.Network Operator - is an entity that operates a Network. These can be ei<strong>the</strong>r a TSO, a DSO or CDSO.New Power Generat<strong>in</strong>g Module - is a Power Generat<strong>in</strong>g Module <strong>for</strong> which with regard to <strong>the</strong> provisions of <strong>the</strong> <strong>in</strong>itial version of this Network code, a f<strong>in</strong>al and b<strong>in</strong>d<strong>in</strong>gcontract of purchase of <strong>the</strong> ma<strong>in</strong> plant has been signed after <strong>the</strong> day, which is two yearsafter <strong>the</strong> day of <strong>the</strong> entry <strong>in</strong>to <strong>for</strong>ce of this Network Code, or,`6 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


with regard to <strong>the</strong> provisions of <strong>the</strong> <strong>in</strong>itial version of this Network code, no confirmation isprovided by <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner, with a delay not exceed<strong>in</strong>g thirty monthsas from <strong>the</strong> day of entry <strong>in</strong>to <strong>for</strong>ce of this Network Code, that a f<strong>in</strong>al and b<strong>in</strong>d<strong>in</strong>g contract ofpurchase of <strong>the</strong> ma<strong>in</strong> plant exists prior to <strong>the</strong> day, which is two years after <strong>the</strong> day of <strong>the</strong>entry <strong>in</strong>to <strong>for</strong>ce of this Network Code, or,with regard to <strong>the</strong> provisions of any subsequent amendment to this Network Code and/orafter any change of thresholds pursuant to <strong>the</strong> re-assessment procedure of Article 3(6), af<strong>in</strong>al and b<strong>in</strong>d<strong>in</strong>g contract of purchase of <strong>the</strong> ma<strong>in</strong> plant has been signed after <strong>the</strong> day, whichis two years after <strong>the</strong> entry <strong>in</strong>to <strong>for</strong>ce of any subsequent amendment to this Network Codeand/or after <strong>the</strong> entry <strong>in</strong>to <strong>for</strong>ce of any change of thresholds pursuant to <strong>the</strong> re-assessmentprocedure of Article 3(6).Offshore Connection Po<strong>in</strong>t - is a Connection Po<strong>in</strong>t located offshore.Offshore Grid Connection System - is <strong>the</strong> complete <strong>in</strong>terconnection between <strong>the</strong> OffshoreConnection Po<strong>in</strong>t and <strong>the</strong> connection to <strong>the</strong> <strong>in</strong>terconnected onshore <strong>system</strong> at <strong>the</strong> Onshore GridInterconnection Po<strong>in</strong>t.Offshore Power Park Module - is a Power Park Module located offshore with an OffshoreConnection Po<strong>in</strong>t.Onshore Grid Interconnection Po<strong>in</strong>t - is <strong>the</strong> po<strong>in</strong>t at which <strong>the</strong> Offshore Grid Connection System isconnected to <strong>the</strong> onshore Network of <strong>the</strong> Relevant Network Operator.Overexcitation Limiter - is a control device with<strong>in</strong> <strong>the</strong> AVR which prevents <strong>the</strong> rotor of an Alternatorfrom overload by limit<strong>in</strong>g <strong>the</strong> excitation Current.Power Factor - is <strong>the</strong> ratio of Active Power to Apparent Power.Power Generat<strong>in</strong>g Facility - is a facility to convert primary <strong>energy</strong> to electrical <strong>energy</strong> which consistsof one or more Power Generat<strong>in</strong>g Modules connected to a Network at one or more ConnectionPo<strong>in</strong>ts.Power Generat<strong>in</strong>g Facility Owner - is a natural or legal entity own<strong>in</strong>g a Power Generat<strong>in</strong>g Facility.Power Generat<strong>in</strong>g Module - is ei<strong>the</strong>r a Synchronous Power Generat<strong>in</strong>g Module, or a Power Park Module.Power Generat<strong>in</strong>g Module Document (PGMD) - is a document issued by <strong>the</strong> Power Generat<strong>in</strong>gFacility Owner to <strong>the</strong> Relevant Network Operator <strong>for</strong> a Type B or C Power Generat<strong>in</strong>g Module. ThePGMD is <strong>in</strong>tended to conta<strong>in</strong> <strong>in</strong><strong>for</strong>mation confirm<strong>in</strong>g that <strong>the</strong> Power Generat<strong>in</strong>g Module hasdemonstrated compliance with <strong>the</strong> technical <strong>criteria</strong> as referred to <strong>in</strong> this Network Code andprovided <strong>the</strong> necessary data and statements <strong>in</strong>clud<strong>in</strong>g a Statement of Compliance.Power Park Module (PPM) - is a unit or ensemble of units generat<strong>in</strong>g electricity, which is connected to <strong>the</strong> Network non-synchronously or through power electronics, and has a s<strong>in</strong>gle Connection Po<strong>in</strong>t to a transmission, distribution or closed distribution Network.Power System Stabilizer (PSS) - is an additional functionality of <strong>the</strong> AVR of a Synchronous PowerGenerat<strong>in</strong>g Module with <strong>the</strong> purpose of damp<strong>in</strong>g power oscillations.Pump-Storage - is a hydro unit <strong>in</strong> which water can be raised by means of pumps and stored to beused later <strong>for</strong> <strong>the</strong> generation of electrical <strong>energy</strong>.`7 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


P-Q-Capability Diagram - describes <strong>the</strong> Reactive Power capability of a Power Generat<strong>in</strong>g Module <strong>in</strong>context of vary<strong>in</strong>g Active Power at <strong>the</strong> Connection Po<strong>in</strong>t.Reactive Power - is <strong>the</strong> imag<strong>in</strong>ary component of <strong>the</strong> Apparent Power at fundamental Frequency,usually expressed <strong>in</strong> kilovar (kvar) or megavar (Mvar).Relevant National Regulatory Authority - is <strong>the</strong> regulatory authority as referred to <strong>in</strong> Article 35(1) ofDirective 2009/72/EC.Relevant CDSO - is <strong>the</strong> CDSO to whose Network a Power Generat<strong>in</strong>g Module is or will be connected.Relevant DSO - is <strong>the</strong> DSO to whose Network a Power Generat<strong>in</strong>g Module is or will be connected.Relevant Network Operator - is <strong>the</strong> operator of <strong>the</strong> Network to which a Power Generat<strong>in</strong>g Module isor will be connected.Relevant TSO - is <strong>the</strong> TSO <strong>in</strong> whose Control Area a Power Generat<strong>in</strong>g Module is or will be connectedto <strong>the</strong> Network at any Voltage level.Secured Fault - is def<strong>in</strong>ed as a fault, which is successfully cleared by Network protection accord<strong>in</strong>g to<strong>the</strong> Network Operator’s plann<strong>in</strong>g <strong>criteria</strong>.Setpo<strong>in</strong>t - is a target value <strong>for</strong> any parameter typically used <strong>in</strong> control schemes.Significant Power Generat<strong>in</strong>g Module - is a Power Generat<strong>in</strong>g Module which is deemed significanton <strong>the</strong> basis of its impact on <strong>the</strong> cross-border <strong>system</strong> per<strong>for</strong>mance via <strong>in</strong>fluence on <strong>the</strong> control area’ssecurity of supply, which is identified accord<strong>in</strong>g to <strong>the</strong> <strong>criteria</strong> set <strong>for</strong>th <strong>in</strong> this Network Code andfalls with<strong>in</strong> one of <strong>the</strong> categories provided <strong>in</strong> Article 3(6).Slope - is <strong>the</strong> ratio of <strong>the</strong> change <strong>in</strong> Voltage, based on nom<strong>in</strong>al Voltage, to a change <strong>in</strong> ReactivePower <strong>in</strong>feed from zero to maximum Reactive Power, based on maximum Reactive Power.Statement of Compliance - is a document provided by <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner to <strong>the</strong>Network Operator stat<strong>in</strong>g <strong>the</strong> current status with respect to compliance itemised <strong>for</strong> each relevantelement of this Network Code.Steady-State Stability - if <strong>the</strong> Network or a Synchronous Power Generat<strong>in</strong>g Module previously <strong>in</strong> <strong>the</strong>steady-state reverts to this state aga<strong>in</strong> follow<strong>in</strong>g a sufficiently m<strong>in</strong>or disturbance, it has Steady-StateStability.Synchronous Compensation Operation - is <strong>the</strong> operation of an Alternator without prime mover toregulate Voltage dynamically by production or absorption of Reactive PowerSynchronous Power Generat<strong>in</strong>g Module - is an <strong>in</strong>divisible set of <strong>in</strong>stallations which can generateelectrical <strong>energy</strong>. It is ei<strong>the</strong>r a a s<strong>in</strong>gle synchronous unit generat<strong>in</strong>g power with<strong>in</strong> a Power Generat<strong>in</strong>g Facility directlyconnected to a transmission, distribution or closed distribution Network, or an ensemble of synchronous units generat<strong>in</strong>g power with<strong>in</strong> a Power Generat<strong>in</strong>g Facilitydirectly connected to a transmission, distribution or closed distribution Network with acommon Connection Po<strong>in</strong>t, or an ensemble of synchronous units generat<strong>in</strong>g power with<strong>in</strong> a Power Generat<strong>in</strong>g Facilitydirectly connected to a transmission, distribution or closed distribution Network that cannotbe operated <strong>in</strong>dependently from each o<strong>the</strong>r (e. g. units generat<strong>in</strong>g <strong>in</strong> a comb<strong>in</strong>ed-cycle gasturb<strong>in</strong>e facility), or`8 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


a s<strong>in</strong>gle synchronous storage device operat<strong>in</strong>g <strong>in</strong> electricity generation mode directlyconnected to a transmission, distribution or closed distribution Network, oran ensemble of synchronous storage devices operat<strong>in</strong>g <strong>in</strong> electricity generation modedirectly connected to a transmission, distribution or closed distribution Network with acommon Connection Po<strong>in</strong>t.Syn<strong>the</strong>tic Inertia - is a facility provided by a Power Park Module to replicate <strong>the</strong> effect of Inertia of aSynchronous Power Generat<strong>in</strong>g Module to a prescribed level of per<strong>for</strong>mance.Transmission System Operator (TSO) - is a natural or legal person responsible <strong>for</strong> operat<strong>in</strong>g,ensur<strong>in</strong>g <strong>the</strong> ma<strong>in</strong>tenance of and, if necessary, develop<strong>in</strong>g <strong>the</strong> transmission <strong>system</strong> <strong>in</strong> a given areaand, where applicable, its <strong>in</strong>terconnections with o<strong>the</strong>r <strong>system</strong>s, and <strong>for</strong> ensur<strong>in</strong>g <strong>the</strong> long-termability of <strong>the</strong> <strong>system</strong> to meet reasonable demands <strong>for</strong> <strong>the</strong> transmission of electricity.U-Q/P max -profile - is a profile represent<strong>in</strong>g <strong>the</strong> Reactive Power capability of a Power Generat<strong>in</strong>gModule <strong>in</strong> context of vary<strong>in</strong>g Voltage at <strong>the</strong> Connection Po<strong>in</strong>t.Underexcitation Limiter - is a control device with<strong>in</strong> <strong>the</strong> AVR, <strong>the</strong> purpose of which is to prevent <strong>the</strong>Alternator from los<strong>in</strong>g synchronism due to lack of excitation.Voltage - unless stated o<strong>the</strong>rwise, Voltage refers to <strong>the</strong> root-mean-square value of <strong>the</strong> positivesequence of <strong>the</strong> phase-to-phase Voltages at fundamental Frequency.1 pu grid Voltage - <strong>for</strong> <strong>the</strong> 400 kV grid Voltage level (or alternatively commonly referred to as 380 kVlevel) <strong>the</strong> reference 1 pu value is 400 kV, <strong>for</strong> o<strong>the</strong>r grid Voltage levels <strong>the</strong> reference 1 pu Voltagemay differ <strong>for</strong> each TSO <strong>in</strong> <strong>the</strong> same synchronous area i.e. <strong>the</strong> Voltage range <strong>in</strong> kV <strong>for</strong> all TSOs with<strong>in</strong>a synchronous area may not be <strong>the</strong> same.`9 | P a g eArticle 3SCOPE1. The requirements set <strong>for</strong>th by this Network Code shall apply to New Power Generat<strong>in</strong>g Modules<strong>in</strong> a Member State which are significant accord<strong>in</strong>g to <strong>the</strong> provisions of this Network Code unlesso<strong>the</strong>rwise provided <strong>in</strong> this Network Code.2. The requirements set <strong>for</strong>th by this Network Code shall apply to Exist<strong>in</strong>g Power Generat<strong>in</strong>gModules <strong>in</strong> a Member State which are significant accord<strong>in</strong>g to <strong>the</strong> provisions of this NetworkCode, to <strong>the</strong> extent <strong>the</strong>ir applicability has been decided by <strong>the</strong> National Regulatory Authority of<strong>the</strong> Member State, and if this has been proposed by <strong>the</strong> Relevant TSO, follow<strong>in</strong>g a publicconsultation. The proposal by <strong>the</strong> Relevant TSO shall be made <strong>in</strong> particular on <strong>the</strong> basis of asound and transparent quantitative Cost-Benefit Analysis, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> costs of requir<strong>in</strong>gcompliance that shall demonstrate <strong>the</strong> socio-economic benefit of application of <strong>the</strong>requirements set <strong>for</strong>th by this Network Code to Exist<strong>in</strong>g Power Generat<strong>in</strong>g Modules. TheRelevant TSO shall have <strong>the</strong> right to re-assess, <strong>in</strong> case of factual change such as <strong>the</strong> evolution of<strong>system</strong> requirements (e.g. penetration of renewable <strong>energy</strong> sources, smart grids, distributedgeneration, demand response, etc.), <strong>the</strong> applicability of <strong>the</strong> requirements set <strong>for</strong>th by thisNetwork Code to Exist<strong>in</strong>g Power Generat<strong>in</strong>g Modules regularly, but not more often than everythree years and respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3). The relevant TSO shall notify <strong>the</strong> launchof <strong>the</strong> procedure <strong>for</strong> re-assessment on its website. The date of notification on <strong>the</strong> website shallENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


constitute <strong>the</strong> first day of <strong>the</strong> launch of <strong>the</strong> procedure <strong>for</strong> re-assessment. A public consultationshall be conducted <strong>in</strong> <strong>the</strong> frame of <strong>the</strong> procedure <strong>for</strong> re-assessment. Prior to <strong>the</strong> Relevant TSOcarry<strong>in</strong>g out <strong>the</strong> quantitative Cost-Benefit Analysis an <strong>in</strong>itial qualitative comparison of costs andbenefits shall be undertaken <strong>in</strong> order to determ<strong>in</strong>e <strong>the</strong> cases of sizes of Power Generat<strong>in</strong>gModules or types of Power Generat<strong>in</strong>g Modules or locations of Power Generat<strong>in</strong>g Modules orclauses of this Network Code <strong>for</strong> which <strong>the</strong>re may be a viable case <strong>for</strong> application to Exist<strong>in</strong>gPower Generat<strong>in</strong>g Modules. Where this preparatory stage demonstrates that a subsequentanalytical Cost-Benefit Analysis has a reasonable prospect of demonstrat<strong>in</strong>g positive costbenefit,<strong>the</strong> Relevant TSO may proceed with <strong>the</strong> full transparent quantitative Cost-BenefitAnalysis. Where <strong>the</strong> preparatory stage or later stage demonstrate that applicability of <strong>the</strong>Network Code to Exist<strong>in</strong>g Power Generat<strong>in</strong>g Modules is not required no fur<strong>the</strong>r action is to beundertaken.3. Exist<strong>in</strong>g Power Generat<strong>in</strong>g Modules not covered by Article 3(2) shall cont<strong>in</strong>ue to be bound bysuch technical requirements that apply to <strong>the</strong>m pursuant to legislation <strong>in</strong> <strong>for</strong>ce <strong>in</strong> <strong>the</strong> respectiveMember States or contractual arrangements <strong>in</strong> <strong>for</strong>ce. Should national legislation be repealed orcease to be <strong>in</strong> <strong>for</strong>ce, <strong>the</strong> Exist<strong>in</strong>g Power Generation Module not covered by Article 3(2) shallcont<strong>in</strong>ue to be bound by such technical requirements that applied to it pursuant to <strong>the</strong>respective national legislation such as it was <strong>the</strong> day prior to it ceas<strong>in</strong>g to be <strong>in</strong> <strong>for</strong>ce.4. With regard to Power Generat<strong>in</strong>g Modules not yet connected to <strong>the</strong> Network:a) With<strong>in</strong> a delay not exceed<strong>in</strong>g thirty months as from <strong>the</strong> day of entry <strong>in</strong>to <strong>for</strong>ce of thisNetwork Code, <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner shall provide <strong>the</strong> Relevant NetworkOperator with a confirmation of f<strong>in</strong>al and b<strong>in</strong>d<strong>in</strong>g contracts it has concluded <strong>for</strong> <strong>the</strong>construction, assembly or purchase of <strong>the</strong> ma<strong>in</strong> plant of a Power Generat<strong>in</strong>g Module withrelevance to <strong>the</strong> provisions of this Network Code and which exists prior to <strong>the</strong> day, which istwo years after <strong>the</strong> day of entry <strong>in</strong>to <strong>for</strong>ce of this Network Code.b) The confirmation shall at least <strong>in</strong>dicate <strong>the</strong> contract title, its date of signature and of entry<strong>in</strong>to <strong>for</strong>ce, and <strong>the</strong> specifications of <strong>the</strong> ma<strong>in</strong> plant to be constructed, assembled orpurchased.c) The Relevant Network Operator may demand that <strong>the</strong> National Regulatory Authorityconfirms <strong>the</strong> existence, relevance and f<strong>in</strong>ality of such a contract, i.e. that its material termscan no longer be changed by one of <strong>the</strong> parties to <strong>the</strong> contract unilaterally and that no partyto <strong>the</strong> contract has <strong>the</strong> right to term<strong>in</strong>ate it at will. The Power Generat<strong>in</strong>g Facility Ownershall supply <strong>the</strong> National Regulatory Authority with all documents <strong>the</strong> National RegulatoryAuthority requests <strong>in</strong> order to ascerta<strong>in</strong> that a b<strong>in</strong>d<strong>in</strong>g and f<strong>in</strong>al contract exists.d) The Power Generat<strong>in</strong>g Module shall be considered as an Exist<strong>in</strong>g Power Generat<strong>in</strong>g Module,provided that:`10 | P a g e1) In accordance with Article 3(4) (a) and (b) above, <strong>the</strong> Relevant Network Operator isprovided with sufficient evidence of <strong>the</strong> existence of b<strong>in</strong>d<strong>in</strong>g and f<strong>in</strong>al contracts <strong>for</strong> <strong>the</strong>construction, assembly or purchase of <strong>the</strong> ma<strong>in</strong> plant of a Power Generat<strong>in</strong>g Moduleexists prior to <strong>the</strong> day, which is two years after <strong>the</strong> day of entry <strong>in</strong>to <strong>for</strong>ce of thisNetwork Code; or2) Follow<strong>in</strong>g <strong>the</strong> verification per<strong>for</strong>med by <strong>the</strong> National Regulatory Authority <strong>in</strong> accordancewith Article 3(4) (c), it is ascerta<strong>in</strong>ed that b<strong>in</strong>d<strong>in</strong>g and f<strong>in</strong>al contracts <strong>for</strong> <strong>the</strong> construction,assembly or purchase of <strong>the</strong> ma<strong>in</strong> plant of a Power Generat<strong>in</strong>g Module exist prior to <strong>the</strong>day, which is two years after <strong>the</strong> day of entry <strong>in</strong>to <strong>for</strong>ce of this Network Code.ENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


e) In case <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner does not provide <strong>the</strong> Relevant NetworkOperator with <strong>the</strong> confirmation with<strong>in</strong> <strong>the</strong> delay set <strong>for</strong>th <strong>in</strong> Article 3(4) (a), <strong>the</strong> PowerGenerat<strong>in</strong>g Module shall be considered as a New Power Generat<strong>in</strong>g Module.5. The applicability and extent of <strong>the</strong> requirements a Power Generat<strong>in</strong>g Modules has to complywith depends on <strong>the</strong> Voltage level of <strong>the</strong>ir Connection Po<strong>in</strong>t and <strong>the</strong>ir Maximum Capacityaccord<strong>in</strong>g to <strong>the</strong> categories def<strong>in</strong>ed <strong>in</strong> Article 3 (6).6. Power Generat<strong>in</strong>g Modules which are considered to be Significant Power Generat<strong>in</strong>g Moduleswith<strong>in</strong> <strong>the</strong> scope of this Network Code are categorized as follows:a) A Power Generat<strong>in</strong>g Module is of Type A if its Connection Po<strong>in</strong>t is below 110 kV and itsMaximum Capacity is 0.8 kW or more. Requirements applicable to Type A Power Generat<strong>in</strong>gModules are <strong>the</strong> basic level requirements, necessary to ensure capability of generation overoperational ranges with limited automated response and m<strong>in</strong>imal <strong>system</strong> operator control ofgeneration. They ensure <strong>the</strong>re is no wide scale loss of generation over <strong>system</strong> operationalranges, <strong>the</strong>reby m<strong>in</strong>imiz<strong>in</strong>g critical events, and <strong>in</strong>clude requirements necessary <strong>for</strong> widespread <strong>in</strong>tervention dur<strong>in</strong>g <strong>system</strong> critical events.b) A Power Generat<strong>in</strong>g Module is of Type B if its Connection Po<strong>in</strong>t is below 110 kV and itsMaximum Capacity is at or above a threshold def<strong>in</strong>ed by each Relevant TSO while respect<strong>in</strong>g<strong>the</strong> provisions of Article 4(3). This threshold shall not be above <strong>the</strong> threshold <strong>for</strong> Type BPower Generat<strong>in</strong>g Modules accord<strong>in</strong>g to table 1. The def<strong>in</strong>ition of <strong>the</strong> threshold shall becoord<strong>in</strong>ated with adjacent TSOs and DSOs and shall be reviewed by <strong>the</strong> National RegulatoryAuthority. Power Generat<strong>in</strong>g Facility Owners shall assist and contribute to thisdeterm<strong>in</strong>ation of <strong>the</strong> threshold and provide <strong>the</strong> relevant data as requested by <strong>the</strong> RelevantTSO. The Relevant TSO shall have <strong>the</strong> right to re-assess <strong>the</strong> determ<strong>in</strong>ation of <strong>the</strong> thresholdregularly, if relevant circumstances have changed materially, but not more often than everythree years and respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3). A public consultation shall beconducted <strong>in</strong> <strong>the</strong> frame of <strong>the</strong> procedure <strong>for</strong> re-assessment. Follow<strong>in</strong>g any change tothresholds any Power Generat<strong>in</strong>g Module that has been moved to a new type will notautomatically have to comply retroactively with <strong>the</strong> additional requirements but will besubject to <strong>the</strong> same procedure as applied to Exist<strong>in</strong>g Power Generat<strong>in</strong>g Modules <strong>in</strong> l<strong>in</strong>e withArticle 33. Requirements applicable to Type B Power Generat<strong>in</strong>g Modules provide a widerlevel of automated dynamic response with higher resilience to more specific operationalevents to ensure use of this higher dynamic response and a higher level <strong>system</strong> operatorcontrol and <strong>in</strong><strong>for</strong>mation to utilize <strong>the</strong>se capabilities. They ensure automated response toalleviate and maximize dynamic generation response to <strong>system</strong> events, greater PowerGenerat<strong>in</strong>g Module resilience of <strong>the</strong>se events to ensure this dynamic response and bettercommunication and control to leverage <strong>the</strong>se capabilities.c) A Power Generat<strong>in</strong>g Module is of Type C if its Connection Po<strong>in</strong>t is below 110 kV and itsMaximum Capacity is at or above a threshold def<strong>in</strong>ed by each Relevant TSO while respect<strong>in</strong>g<strong>the</strong> provisions of Article 4(3). This threshold shall not be above <strong>the</strong> threshold <strong>for</strong> Type CPower Generat<strong>in</strong>g Modules accord<strong>in</strong>g to table 1. The def<strong>in</strong>ition of <strong>the</strong> threshold shall becoord<strong>in</strong>ated with adjacent TSOs and DSOs and shall be reviewed by <strong>the</strong> National RegulatoryAuthority. Power Generat<strong>in</strong>g Facility Owners shall assist and contribute to thisdeterm<strong>in</strong>ation of <strong>the</strong> threshold and provide <strong>the</strong> relevant data as requested by <strong>the</strong> RelevantTSO. The Relevant TSO shall have <strong>the</strong> right to re-assess <strong>the</strong> determ<strong>in</strong>ation of <strong>the</strong> thresholdregularly, if relevant circumstances have changed materially, but not more often than everythree years and respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3). A public consultation shall beconducted <strong>in</strong> <strong>the</strong> frame of <strong>the</strong> procedure <strong>for</strong> re-assessment. Follow<strong>in</strong>g any change to`11 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


thresholds any Power Generat<strong>in</strong>g Module that has been moved to a new type will notautomatically have to comply retroactively with <strong>the</strong> additional requirements but will besubject to <strong>the</strong> same procedure as applied to Exist<strong>in</strong>g Power Generat<strong>in</strong>g Modules <strong>in</strong> l<strong>in</strong>e withArticle 33. Requirements applicable to Type C Power Generat<strong>in</strong>g Modules provide ref<strong>in</strong>ed,stable and highly controllable (real time) dynamic response to provide pr<strong>in</strong>ciple ancillaryservices to ensure security of supply. These requirements cover all operational Networkstates with consequential detailed specification of <strong>in</strong>teractions of requirements, functions,control and <strong>in</strong><strong>for</strong>mation to utilize <strong>the</strong>se capabilities. They ensure real time <strong>system</strong> responsenecessary to avoid, manage and respond to <strong>system</strong> events. These requirements providesufficient generation functionality to respond to both <strong>in</strong>tact and <strong>system</strong> disturbed situations,and <strong>the</strong> need <strong>for</strong> <strong>in</strong><strong>for</strong>mation and control necessary to utilise this generation over thisdiversity of situations.Synchronous Areamaximum capacitythreshold fromwhich on a PowerGenerat<strong>in</strong>g Moduleis of Type Bmaximum capacitythreshold fromwhich on a PowerGenerat<strong>in</strong>g Moduleis of Type Cmaximum capacitythreshold fromwhich on a PowerGenerat<strong>in</strong>g Moduleis of Type DCont<strong>in</strong>ental Europe 1 MW 50 MW 75 MWNordic 1.5 MW 10 MW 30 MWGreat Brita<strong>in</strong> 1 MW 10 MW 30 MWIreland 0.1 MW 5 MW 10 MWBaltic 0.5 MW 10 MW 15 MWTable 1: Thresholds <strong>for</strong> Type B, C and D Power Generat<strong>in</strong>g Modulesd) A Power Generat<strong>in</strong>g Module is of Type D if its Connection Po<strong>in</strong>t is at 110 kV or above. ASynchronous Power Generat<strong>in</strong>g Module or Power Park Module is of Type D as well if itsConnection Po<strong>in</strong>t is below 110 kV and its Maximum Capacity is at or above a thresholddef<strong>in</strong>ed by each Relevant TSO while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3). This thresholdshall not be above <strong>the</strong> threshold <strong>for</strong> Type D Power Generat<strong>in</strong>g Modules accord<strong>in</strong>g to table 1.The def<strong>in</strong>ition of <strong>the</strong> threshold shall be coord<strong>in</strong>ated with adjacent TSOs and DSOs and shallbe reviewed by <strong>the</strong> National Regulatory Authority. Power Generat<strong>in</strong>g Facility Owners shallassist and contribute to this determ<strong>in</strong>ation of <strong>the</strong> threshold and provide <strong>the</strong> relevant data asrequested by <strong>the</strong> Relevant TSO. The Relevant TSO shall have <strong>the</strong> right to re-assess <strong>the</strong>determ<strong>in</strong>ation of <strong>the</strong> threshold regularly, if relevant circumstances have changed materially,but not more often than every three years and respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3). Apublic consultation shall be conducted <strong>in</strong> <strong>the</strong> frame of <strong>the</strong> procedure <strong>for</strong> re-assessment.Follow<strong>in</strong>g any change to thresholds any Power Generat<strong>in</strong>g Module that has been moved to anew type will not automatically have to comply retroactively with <strong>the</strong> additionalrequirements but will be subject to <strong>the</strong> same procedure as applied to Exist<strong>in</strong>g PowerGenerat<strong>in</strong>g Modules <strong>in</strong> l<strong>in</strong>e with Article 33. Requirements applicable to Type D PowerGenerat<strong>in</strong>g Modules are <strong>in</strong> particular specific <strong>for</strong> higher Voltage connected generation withimpact on entire <strong>system</strong> control and operation. They ensure stable operation of <strong>the</strong><strong>in</strong>terconnected Network, allow<strong>in</strong>g <strong>the</strong> use of ancillary services from generation Europe wide.`12 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


e) For offshore connected Synchronous Power Generat<strong>in</strong>g Modules <strong>the</strong> requirements <strong>for</strong>onshore synchronous Power Generat<strong>in</strong>g Modules shall apply unless modified by <strong>the</strong>Relevant Network Operator while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3). The categories tobe taken <strong>in</strong>to account <strong>for</strong> Offshore Power Park Modules <strong>for</strong> <strong>the</strong> purpose of this NetworkCode are def<strong>in</strong>ed <strong>in</strong> Article 18(3).f) Pump-storage Power Generat<strong>in</strong>g Modules shall fulfil all requirements <strong>in</strong> both generat<strong>in</strong>g andpump<strong>in</strong>g operation mode. Synchronous Compensation Operation of Pump-Storage PowerGenerat<strong>in</strong>g Modules shall not be limited <strong>in</strong> time by technical design of <strong>the</strong> Power Generat<strong>in</strong>gModules. Pump-Storage variable speed Power Generat<strong>in</strong>g Modules shall fulfil allrequirements applicable to synchronous Power Generat<strong>in</strong>g Modules and <strong>in</strong> addition thoseset <strong>for</strong>th <strong>in</strong> Article 15(2) (b), if <strong>the</strong>y are of Type B, C or D.g) Without prejudice to <strong>the</strong> general applicability of <strong>the</strong> requirements set <strong>for</strong>th <strong>in</strong> this NetworkCode, a Power Generat<strong>in</strong>g Facility Owner, <strong>the</strong> Network Operator of an <strong>in</strong>dustrial site and <strong>the</strong>Relevant Network Operator to whose Network <strong>the</strong> Network of <strong>the</strong> <strong>in</strong>dustrial site isconnected to, shall have <strong>the</strong> right <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO, with respect toPower Generation Modules which are embedded <strong>in</strong> <strong>the</strong> Networks of <strong>in</strong>dustrial sites, to agreewhile respect<strong>in</strong>g <strong>the</strong> provisions of Article 4 (3) on conditions <strong>for</strong> disconnection of such PowerGenerat<strong>in</strong>g Modules toge<strong>the</strong>r with critical loads, which secure production processes, from<strong>the</strong> Relevant Network Operator’s Network. The only objective of such an agreement shall beto secure production processes of such a site <strong>in</strong> case of disturbed conditions <strong>in</strong> <strong>the</strong> RelevantNetwork Operator’s Network. The requirements of this Network Code, notwithstand<strong>in</strong>g suchan agreement, shall apply to Power Generat<strong>in</strong>g Modules embedded <strong>in</strong> <strong>the</strong> Networks of such<strong>in</strong>dustrial sites.h) Without prejudice to <strong>the</strong> general applicability of <strong>the</strong> requirements set <strong>for</strong>th <strong>in</strong> this NetworkCode, a requirement of this Network Code shall not apply to Power Generat<strong>in</strong>g Modules offacilities <strong>for</strong> comb<strong>in</strong>ed heat and power production (CHP) embedded <strong>in</strong> <strong>the</strong> Networks of<strong>in</strong>dustrial sites <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g cumulative circumstances:- <strong>the</strong> primary purpose of <strong>the</strong>se facilities is to produce steam <strong>for</strong> production processes ofthis <strong>in</strong>dustrial site;- <strong>the</strong> generation of steam and power are rigidly coupled to each o<strong>the</strong>r, i. e. any change ofsteam generation results <strong>in</strong>advertently <strong>in</strong> a change of Active Power generation and viceversa;- <strong>the</strong> Power Generat<strong>in</strong>g Modules are of Type A, B or C accord<strong>in</strong>g to Article 3(6) (a) to (c);and- <strong>the</strong> requirement is related to <strong>the</strong> capability ma<strong>in</strong>ta<strong>in</strong> constant Active Power output or tomodulate Active Power output o<strong>the</strong>r than Article 8(1) (c) and (e).i) For <strong>the</strong> avoidance of doubt, comb<strong>in</strong>ed heat and power generat<strong>in</strong>g facilities will be regardedon <strong>the</strong>ir electrical Maximum Capacity.`13 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


Title 2REQUIREMENTSChapter 1GENERAL REQUIREMENTSArticle 8GENERAL REQUIREMENTS FOR TYPE A POWER GENERATING MODULES1. Type A Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirements referr<strong>in</strong>g to Frequencystability:a) With regard to Frequency ranges:1) A Power Generat<strong>in</strong>g Module shall be capable of stay<strong>in</strong>g connected to <strong>the</strong> Network andoperat<strong>in</strong>g with<strong>in</strong> <strong>the</strong> Frequency ranges and time periods specified by table 2.2) While respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3), wider Frequency ranges or longerm<strong>in</strong>imum times <strong>for</strong> operation can be agreed between <strong>the</strong> Relevant Network Operator <strong>in</strong>coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO and <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner to ensure<strong>the</strong> best use of <strong>the</strong> technical capabilities of a Power Generat<strong>in</strong>g Module if needed topreserve or to restore <strong>system</strong> security. If wider Frequency ranges or longer m<strong>in</strong>imumtimes <strong>for</strong> operation are economically and technically feasible, <strong>the</strong> consent of <strong>the</strong> PowerGenerat<strong>in</strong>g Facility Owner shall not be unreasonably withheld.3) While respect<strong>in</strong>g <strong>the</strong> provisions of Article 8(1) (a) po<strong>in</strong>t 1) a Power Generat<strong>in</strong>g Moduleshall be capable of automatic disconnection at specified frequencies, if required by <strong>the</strong>Relevant Network Operator. While respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3), Terms andsett<strong>in</strong>gs <strong>for</strong> automatic disconnection shall be agreed between <strong>the</strong> Relevant NetworkOperator and <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner.b) With regard to <strong>the</strong> rate of change of Frequency withstand capability, a Power Generat<strong>in</strong>gModule shall be capable of stay<strong>in</strong>g connected to <strong>the</strong> Network and operat<strong>in</strong>g at rates ofchange of Frequency up to a value def<strong>in</strong>ed by <strong>the</strong> Relevant TSO while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3) o<strong>the</strong>r than triggered by rate-of-change-of-Frequency-type of loss ofma<strong>in</strong>s protection. This rate-of-change-of-Frequency-type of loss of ma<strong>in</strong>s protection will bedef<strong>in</strong>ed by <strong>the</strong> Relevant Network Operator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO.`16 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


SynchronousAreaFrequency RangeTime period <strong>for</strong> operationCont<strong>in</strong>entalEuropeNordicGreat Brita<strong>in</strong>IrelandBaltic47.5 Hz – 48.5 Hz48.5 Hz – 49.0 HzTo be def<strong>in</strong>ed by each TSO while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3), but not less than 30 m<strong>in</strong>utesTo be def<strong>in</strong>ed by each TSO while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3), but not less than <strong>the</strong> period <strong>for</strong>47.5 Hz – 48.5 Hz49.0 Hz – 51.0 Hz Unlimited51.0 Hz – 51.5 Hz 30 m<strong>in</strong>utes47.5 Hz – 48.5 Hz 30 m<strong>in</strong>utes48.5 Hz – 49.0 HzTo be def<strong>in</strong>ed by each TSO while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3), but not less than 30 m<strong>in</strong>utes49.0 Hz – 51.0 Hz Unlimited51.0 Hz – 51.5 Hz 30 m<strong>in</strong>utes47.0 Hz – 47.5 Hz 20 seconds47.5 Hz – 48.5 Hz 90 m<strong>in</strong>utes48.5 Hz – 49.0 HzTo be def<strong>in</strong>ed by each TSO while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3), but not less than 90 m<strong>in</strong>utes49.0 Hz – 51.0 Hz Unlimited51.0 Hz – 51.5 Hz 90 m<strong>in</strong>utes51.5 Hz – 52.0 Hz 15 m<strong>in</strong>utes47.5 Hz – 48.5 Hz 90 m<strong>in</strong>utes48.5 Hz – 49.0 HzTo be def<strong>in</strong>ed by each TSO while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3), but not less than 90 m<strong>in</strong>utes49.0 Hz – 51.0 Hz Unlimited51.0 Hz – 51.5 Hz 90 m<strong>in</strong>utes47.5 Hz – 48.5 Hz48.5 Hz – 49.0 HzTo be def<strong>in</strong>ed by each TSO while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3), but not less than 30 m<strong>in</strong>utesTo be def<strong>in</strong>ed by each TSO while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3), but not less than <strong>the</strong> period <strong>for</strong>47.5 Hz – 48.5 Hz49.0 Hz – 51.0 Hz Unlimited51.0 Hz – 51.5 HzTo be def<strong>in</strong>ed by each TSO while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3), but not less than 30 m<strong>in</strong>utesTable 2: M<strong>in</strong>imum time periods <strong>for</strong> which a Power Generat<strong>in</strong>g Module shall be capable ofoperat<strong>in</strong>g <strong>for</strong> different frequencies deviat<strong>in</strong>g from a nom<strong>in</strong>al value without disconnect<strong>in</strong>gfrom <strong>the</strong> Network.c) With regard to <strong>the</strong> Limited Frequency Sensitive Mode - Overfrequency (LFSM-O) <strong>the</strong>follow<strong>in</strong>g shall apply:`17 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


1) The Power Generat<strong>in</strong>g Module shall be capable of activat<strong>in</strong>g <strong>the</strong> provision of ActivePower Frequency Response accord<strong>in</strong>g to figure 1 at a Frequency threshold between and<strong>in</strong>clud<strong>in</strong>g 50.2 Hz and 50.5 Hz with a Droop <strong>in</strong> a range of 2 – 12 %. The actual Frequencythreshold and Droop sett<strong>in</strong>gs shall be determ<strong>in</strong>ed by <strong>the</strong> Relevant TSO. The PowerGenerat<strong>in</strong>g Module shall be capable of activat<strong>in</strong>g Active Power Frequency Response asfast as technically feasible with an <strong>in</strong>itial delay that shall be as short as possible andreasonably justified by <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner to <strong>the</strong> Relevant TSO ifgreater than 2 seconds. The Power Generat<strong>in</strong>g Module shall be capable of ei<strong>the</strong>rcont<strong>in</strong>u<strong>in</strong>g operation at M<strong>in</strong>imum Regulat<strong>in</strong>g Level when reach<strong>in</strong>g it or fur<strong>the</strong>rdecreas<strong>in</strong>g Active Power output <strong>in</strong> this case, as def<strong>in</strong>ed by <strong>the</strong> Relevant TSO whilerespect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3).PP reff 1f nff n• Synchronous Power Generat<strong>in</strong>g Modules:P ref is <strong>the</strong> Maximum Capacitys 2• Power Park Modules:P ref is <strong>the</strong> actual Active Power output at <strong>the</strong> moment<strong>the</strong> LFSM-O threshold is reached or <strong>the</strong> MaximumCapacity , as def<strong>in</strong>ed by <strong>the</strong> Relevant TSO, whilerespect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3)Figure 1: Active Power Frequency Response capability of Power Generat<strong>in</strong>g Modules <strong>in</strong>LFSM-O. P ref is <strong>the</strong> reference Active Power to which P is related and may be def<strong>in</strong>eddifferently <strong>for</strong> Synchronous Power Generat<strong>in</strong>g Modules and Power Park Modules. P is<strong>the</strong> change <strong>in</strong> Active Power output from <strong>the</strong> Power Generat<strong>in</strong>g Module. f n is <strong>the</strong> nom<strong>in</strong>alFrequency (50 Hz) <strong>in</strong> <strong>the</strong> Network and f is <strong>the</strong> Frequency change <strong>in</strong> <strong>the</strong> Network. Atoverfrequencies where f is above f 1 <strong>the</strong> Power Generat<strong>in</strong>g Module has to provide anegative Active Power output change accord<strong>in</strong>g to <strong>the</strong> Droop S 2 .2) The Power Generat<strong>in</strong>g Module shall be capable of stable operation dur<strong>in</strong>g LFSM-Ooperation. When LFSM-O is active, <strong>the</strong> LFSM-O Setpo<strong>in</strong>t will prevail over any o<strong>the</strong>rActive Power Setpo<strong>in</strong>ts.d) The Power Generat<strong>in</strong>g Module shall be capable of ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g constant output at its targetActive Power value regardless of changes <strong>in</strong> Frequency, unless output shall follow <strong>the</strong>def<strong>in</strong>ed changes <strong>in</strong> output <strong>in</strong> <strong>the</strong> context of Article 8(1) (c), (e) or Article 10(2) (b), and Article10(2) (c) where applicable.`18 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


e) The Relevant TSO shall def<strong>in</strong>e admissible Active Power reduction from maximum outputwith fall<strong>in</strong>g Frequency with<strong>in</strong> <strong>the</strong> boundaries, given by <strong>the</strong> full l<strong>in</strong>es <strong>in</strong> Figure 2:- Below 49 Hz fall<strong>in</strong>g by a reduction rate of 2 % of <strong>the</strong> Maximum Capacity at 50 Hz per 1Hz Frequency drop;- Below 49.5 Hz by a reduction rate of 10 % of <strong>the</strong> Maximum Capacity at 50 Hz per 1 HzFrequency drop.Applicability of this reduction is limited to a selection of affected generation technologiesand may be subject to fur<strong>the</strong>r conditions def<strong>in</strong>ed by <strong>the</strong> Relevant TSO while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3).`19 | P a g eFigure 2 – Maximum power capability reduction with fall<strong>in</strong>g Frequency. The diagramrepresents <strong>the</strong> boundaries def<strong>in</strong>ed by <strong>the</strong> Relevant TSO while respect<strong>in</strong>g <strong>the</strong> provisionsof Article 4(3).f) The Power Generat<strong>in</strong>g Module shall be equipped with a logic <strong>in</strong>terface (<strong>in</strong>put port) <strong>in</strong> orderto cease Active Power output with<strong>in</strong> less than 5 seconds follow<strong>in</strong>g an Instruction from <strong>the</strong>Relevant Network Operator. The Relevant Network Operator shall have <strong>the</strong> right to def<strong>in</strong>ewhile respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) <strong>the</strong> requirements <strong>for</strong> fur<strong>the</strong>r equipment tomake this facility operable remotely.g) The Relevant TSO shall def<strong>in</strong>e while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) <strong>the</strong> conditionsunder which a Power Generat<strong>in</strong>g Module shall be capable of connect<strong>in</strong>g automatically to <strong>the</strong>Network. These conditions shall <strong>in</strong>clude:- Frequency ranges, with<strong>in</strong> which an automatic connection is admissible, and acorrespond<strong>in</strong>g delay time- maximum admissible gradient of <strong>in</strong>crease of Active Power outputAutomatic connection is allowed unless determ<strong>in</strong>ed o<strong>the</strong>rwise by <strong>the</strong> Relevant NetworkOperator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO.ENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


`20 | P a g eArticle 9GENERAL REQUIREMENTS FOR TYPE B POWER GENERATING MODULES1. In addition to fulfill<strong>in</strong>g <strong>the</strong> requirements listed <strong>in</strong> Article 8, Type B Power Generat<strong>in</strong>g Modulesshall fulfil <strong>the</strong> requirements <strong>in</strong> this Article.2. Type B Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirements referr<strong>in</strong>g to Frequencystability:a) In order to be able to control Active Power output, <strong>the</strong> Power Generat<strong>in</strong>g Module shall beequipped with a <strong>in</strong>terface (<strong>in</strong>put port) <strong>in</strong> order to be able to reduce Active Power output as<strong>in</strong>structed by <strong>the</strong> Relevant Network Operator and/or <strong>the</strong> Relevant TSO. The RelevantNetwork Operator shall have <strong>the</strong> right to def<strong>in</strong>e while respect<strong>in</strong>g <strong>the</strong> provisions of Article4(3) <strong>the</strong> requirements <strong>for</strong> fur<strong>the</strong>r equipment to make this facility operable remotely.3. Type B Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirements referr<strong>in</strong>g to robustnessof Power Generat<strong>in</strong>g Modules:a) With regard to fault-ride-through capability of Power Generat<strong>in</strong>g Modules:1) Each TSO shall def<strong>in</strong>e while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) a voltage-aga<strong>in</strong>sttime-profileaccord<strong>in</strong>g to figure 3 at <strong>the</strong> Connection Po<strong>in</strong>t <strong>for</strong> fault conditions whichdescribes <strong>the</strong> conditions <strong>in</strong> which <strong>the</strong> Power Generat<strong>in</strong>g Module shall be capable ofstay<strong>in</strong>g connected to <strong>the</strong> Network and cont<strong>in</strong>u<strong>in</strong>g stable operation after <strong>the</strong> power<strong>system</strong> has been disturbed by Secured Faults on <strong>the</strong> Network.2) This voltage-aga<strong>in</strong>st-time-profile shall be expressed by a lower limit of <strong>the</strong> course of <strong>the</strong>phase-to-phase Voltages on <strong>the</strong> Network Voltage level at <strong>the</strong> Connection Po<strong>in</strong>t dur<strong>in</strong>g asymmetrical fault, as a function of time be<strong>for</strong>e, dur<strong>in</strong>g and after <strong>the</strong> fault. This lowerlimit is def<strong>in</strong>ed by <strong>the</strong> TSO us<strong>in</strong>g parameters <strong>in</strong> figure 3 accord<strong>in</strong>g to tables 3.1 and 3.2.3) Each TSO shall def<strong>in</strong>e and make publicly available while respect<strong>in</strong>g <strong>the</strong> provisions ofArticle 4(3) def<strong>in</strong><strong>in</strong>g <strong>the</strong> pre-fault and post-fault conditions <strong>for</strong> <strong>the</strong> fault-ride-throughcapability <strong>in</strong> terms of:- conditions <strong>for</strong> <strong>the</strong> calculation of <strong>the</strong> pre-fault m<strong>in</strong>imum short circuit capacity at <strong>the</strong>Connection Po<strong>in</strong>t;- conditions <strong>for</strong> pre-fault active and Reactive Power operat<strong>in</strong>g po<strong>in</strong>t of <strong>the</strong> PowerGenerat<strong>in</strong>g Module at <strong>the</strong> Connection Po<strong>in</strong>t and Voltage at <strong>the</strong> Connection Po<strong>in</strong>t;and- conditions <strong>for</strong> <strong>the</strong> calculation of <strong>the</strong> post-fault m<strong>in</strong>imum short circuit capacity at <strong>the</strong>Connection Po<strong>in</strong>t.4) Each Relevant Network Operator shall provide on request by <strong>the</strong> Power Generat<strong>in</strong>gFacility Owner <strong>the</strong> pre-fault and post-fault conditions to be considered <strong>for</strong> fault-ridethroughcapability as an outcome of <strong>the</strong> calculations at <strong>the</strong> Connection Po<strong>in</strong>t as def<strong>in</strong>ed<strong>in</strong> Article 9 (3) (a) po<strong>in</strong>t 3) regard<strong>in</strong>g:- pre-fault m<strong>in</strong>imum short circuit capacity at each Connection Po<strong>in</strong>t expressed <strong>in</strong>MVA;ENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


- pre-fault operat<strong>in</strong>g po<strong>in</strong>t of <strong>the</strong> Power Generat<strong>in</strong>g Module expressed <strong>in</strong> ActivePower output and Reactive Power output at <strong>the</strong> Connection Po<strong>in</strong>t and Voltage at<strong>the</strong> Connection Po<strong>in</strong>t; and- post-fault m<strong>in</strong>imum short circuit capacity at each Connection Po<strong>in</strong>t expressed <strong>in</strong>MVA.Alternatively generic values <strong>for</strong> <strong>the</strong> above conditions derived from typical cases may beprovided by <strong>the</strong> Relevant Network Operator.U/p.u.1.0U rec2U rec1U clearU ret0 t clear t rec1 t rec2 t rec3t/secFigure 3 – Fault-ride-through profile of a Power Generat<strong>in</strong>g Module. The diagramrepresents <strong>the</strong> lower limit of a voltage-aga<strong>in</strong>st-time profile by <strong>the</strong> Voltage at <strong>the</strong>Connection Po<strong>in</strong>t, expressed by <strong>the</strong> ratio of its actual value and its nom<strong>in</strong>al value <strong>in</strong> perunit be<strong>for</strong>e, dur<strong>in</strong>g and after a fault. U ret is <strong>the</strong> reta<strong>in</strong>ed Voltage at <strong>the</strong> Connection Po<strong>in</strong>tDur<strong>in</strong>g a fault, t clear is <strong>the</strong> <strong>in</strong>stant when <strong>the</strong> fault has been cleared. U rec1 , U rec2 , t rec1 , t rec2and t rec3 specify certa<strong>in</strong> po<strong>in</strong>ts of lower limits of Voltage recovery after fault clearance.Voltage parameters [pu]Time parameters [seconds]U ret : 0.05 – 0.3 t clear : 0.14 – 0.25U clear : 0.7 – 0.9 t rec1 : t clearU rec1 : U clear t rec2 : t rec1 – 0.7U rec2 : 0.85 – 0.9 and ≥ U clear t rec3 : t rec2 – 1.5Table 3.1 – Parameters <strong>for</strong> figure 3 <strong>for</strong> fault-ride-through capability of SynchronousPower Generat<strong>in</strong>g Modules.`21 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


Voltage parameters [pu]Time parameters [seconds]U ret : 0.05 – 0.15 t clear : 0.14 – 0.25U clear : U ret – 0.15 t rec1 : t clearU rec1 : U clear t rec2 : t rec1U rec2 : 0.85 t rec3 : 1.5 – 3.0`22 | P a g eTable 3.2 – Parameters <strong>for</strong> figure 3 <strong>for</strong> fault-ride-through capability of Power ParkModules.5) The Power Generat<strong>in</strong>g Module shall be capable of stay<strong>in</strong>g connected to <strong>the</strong> Network andcont<strong>in</strong>ue stable operation when <strong>the</strong> actual course of <strong>the</strong> phase-to-phase Voltages on <strong>the</strong>Network Voltage level at <strong>the</strong> Connection Po<strong>in</strong>t dur<strong>in</strong>g a symmetrical fault, given <strong>the</strong> prefaultand post-fault conditions accord<strong>in</strong>g to Article 9(3) (a) po<strong>in</strong>ts 3) and 4), rema<strong>in</strong>sabove <strong>the</strong> lower limit def<strong>in</strong>ed <strong>in</strong> Article 9(3) (a) po<strong>in</strong>t 2), unless <strong>the</strong> protection scheme<strong>for</strong> <strong>in</strong>ternal electrical faults requires <strong>the</strong> disconnection of <strong>the</strong> Power Generat<strong>in</strong>g Modulefrom <strong>the</strong> Network. The protection schemes and sett<strong>in</strong>gs <strong>for</strong> <strong>in</strong>ternal electrical faults shallbe designed not to jeopardize fault-ride-through per<strong>for</strong>mance.6) While still respect<strong>in</strong>g Article 9(3) (a) po<strong>in</strong>t 5), undervoltage protection (ei<strong>the</strong>r fault-ridethroughcapability or m<strong>in</strong>imum Voltage def<strong>in</strong>ed at <strong>the</strong> connection po<strong>in</strong>t Voltage) shall beset by <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner to <strong>the</strong> widest possible technical capability of<strong>the</strong> Power Generat<strong>in</strong>g Module unless <strong>the</strong> Relevant Network Operator requires less widesett<strong>in</strong>gs accord<strong>in</strong>g to Article 9(5) (b). The sett<strong>in</strong>gs shall be justified by <strong>the</strong> PowerGenerat<strong>in</strong>g Facility Owner <strong>in</strong> accordance with this pr<strong>in</strong>ciple.7) Fault-ride-through capabilities <strong>in</strong> case of asymmetrical faults shall be def<strong>in</strong>ed by eachTSO while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3).4. Type B Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirement referr<strong>in</strong>g to <strong>system</strong>restoration:a) With regard to capability of reconnection after an <strong>in</strong>cidental disconnection due to a Networkdisturbance, <strong>the</strong> Relevant TSO shall adopt a decision while respect<strong>in</strong>g <strong>the</strong> provisions ofArticle 4(3) def<strong>in</strong><strong>in</strong>g <strong>the</strong> conditions under which a Power Generat<strong>in</strong>g Module shall becapable of reconnect<strong>in</strong>g to <strong>the</strong> Network after an <strong>in</strong>cidental disconnection has taken placedue to a Network disturbance. Installation of automatic reconnection <strong>system</strong>s shall besubject to prior authorization by <strong>the</strong> Relevant Network Operator subject to reconnectionconditions specified by <strong>the</strong> Relevant TSO.5. Type B Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g general <strong>system</strong> <strong>management</strong>requirements:a) With regard to control schemes and sett<strong>in</strong>gs1) While respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3), schemes and sett<strong>in</strong>gs of <strong>the</strong> differentcontrol devices of <strong>the</strong> Power Generat<strong>in</strong>g Module relevant <strong>for</strong> transmission <strong>system</strong>ENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


stability and to enable emergency actions shall be coord<strong>in</strong>ated and agreed between <strong>the</strong>Relevant TSO, <strong>the</strong> Relevant Network Operator and <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner.2) While respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3), any changes to <strong>the</strong> schemes and sett<strong>in</strong>gsof <strong>the</strong> different control devices of <strong>the</strong> Power Generat<strong>in</strong>g Module, relevant <strong>for</strong>transmission <strong>system</strong> stability and to enable emergency actions, shall be coord<strong>in</strong>ated andagreed between <strong>the</strong> Relevant TSO, <strong>the</strong> Relevant Network Operator and <strong>the</strong> PowerGenerat<strong>in</strong>g Facility Owner, especially if <strong>the</strong>y concern <strong>the</strong> circumstances referred tounder Article 9(5) (a) po<strong>in</strong>t 1).b) With regard to electrical protection schemes and sett<strong>in</strong>gs:1) The Relevant Network Operator shall def<strong>in</strong>e <strong>the</strong> schemes and sett<strong>in</strong>gs necessary toprotect <strong>the</strong> Network tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> characteristics of <strong>the</strong> Power Generat<strong>in</strong>gModule. While respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3), protection schemes relevant <strong>for</strong><strong>the</strong> Power Generat<strong>in</strong>g Module and <strong>the</strong> Network and sett<strong>in</strong>gs relevant <strong>for</strong> <strong>the</strong> PowerGenerat<strong>in</strong>g Module shall be coord<strong>in</strong>ated and agreed between <strong>the</strong> Relevant NetworkOperator and <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner. The protection schemes and sett<strong>in</strong>gs<strong>for</strong> <strong>in</strong>ternal electrical faults shall be designed not to jeopardize <strong>the</strong> per<strong>for</strong>mance of aPower Generat<strong>in</strong>g Module accord<strong>in</strong>g to this Network Code requirements o<strong>the</strong>rwise.2) Electrical protection of <strong>the</strong> Power Generat<strong>in</strong>g Module shall take precedence overoperational controls tak<strong>in</strong>g <strong>in</strong>to account <strong>system</strong> security, health and safety of staff and<strong>the</strong> public and mitigation of <strong>the</strong> damage to <strong>the</strong> Power Generat<strong>in</strong>g Module.3) Protection schemes can protect aga<strong>in</strong>st <strong>the</strong> follow<strong>in</strong>g aspects:- external and <strong>in</strong>ternal short circuit;- asymmetric load (Negative Phase Sequence);- stator and rotor overload;- over-/underexcitation;- over-/undervoltage at <strong>the</strong> Connection Po<strong>in</strong>t;- over-/undervoltage at <strong>the</strong> Alternator term<strong>in</strong>als;- <strong>in</strong>ter-area oscillations;- <strong>in</strong>rush Current;- asynchronous operation (pole slip);- protection aga<strong>in</strong>st <strong>in</strong>admissible shaft torsions (<strong>for</strong> example, subsynchronousresonance);- Power Generat<strong>in</strong>g Module l<strong>in</strong>e protection;- unit trans<strong>for</strong>mer protection;- backup schemes aga<strong>in</strong>st protection and switchgear malfunction;- overflux<strong>in</strong>g (U/f);- <strong>in</strong>verse power;- rate of change of Frequency; and- neutral Voltage displacement.4) While respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3), any changes to <strong>the</strong> protection schemesrelevant <strong>for</strong> <strong>the</strong> Power Generat<strong>in</strong>g Module and <strong>the</strong> Network and to <strong>the</strong> sett<strong>in</strong>g relevant<strong>for</strong> <strong>the</strong> Power Generat<strong>in</strong>g Module shall be agreed between <strong>the</strong> Network Operator and<strong>the</strong> Power Generat<strong>in</strong>g Facility Owner and be concluded prior to <strong>the</strong> <strong>in</strong>troduction ofchanges.`23 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


c) With regard to priority rank<strong>in</strong>g of protection and control, <strong>the</strong> Power Generat<strong>in</strong>g FacilityOwner shall organize its protections and control devices <strong>in</strong> compliance with <strong>the</strong> follow<strong>in</strong>gpriority rank<strong>in</strong>g, organized <strong>in</strong> decreas<strong>in</strong>g order of importance:- Network <strong>system</strong> and Power Generat<strong>in</strong>g Module protection;- Syn<strong>the</strong>tic Inertia, if applicable;- Frequency control (Active Power adjustment);- Power Restriction; and- Power gradient constra<strong>in</strong>t.d) With regard to <strong>in</strong><strong>for</strong>mation exchange:1) Power Generat<strong>in</strong>g Facilities shall be capable of exchang<strong>in</strong>g <strong>in</strong><strong>for</strong>mation between <strong>the</strong>Power Generat<strong>in</strong>g Facility Owner and <strong>the</strong> Relevant Network Operator and/or <strong>the</strong>Relevant TSO <strong>in</strong> real time or periodically with time stamp<strong>in</strong>g as def<strong>in</strong>ed by <strong>the</strong> RelevantNetwork Operator and/or <strong>the</strong> Relevant TSO while respect<strong>in</strong>g <strong>the</strong> provisions of Article4(3).2) The Relevant Network Operator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO shall def<strong>in</strong>e whilerespect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) <strong>the</strong> contents of <strong>in</strong><strong>for</strong>mation exchanges and <strong>the</strong>precise list and time of data to be facilitated.Article 10GENERAL REQUIREMENTS FOR TYPE C POWER GENERATING MODULES1. In addition to fulfill<strong>in</strong>g <strong>the</strong> requirements listed <strong>in</strong> Articles 8 and 9, except <strong>for</strong> Article 8(1) (f) andArticle 9(2) (a), Type C Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> requirements <strong>in</strong> this Article.2. Type C Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirements referr<strong>in</strong>g to Frequencystability:a) With regard to Active Power controllability and control range, <strong>the</strong> Power Generat<strong>in</strong>g Modulecontrol <strong>system</strong> shall be capable of adjust<strong>in</strong>g an Active Power Setpo<strong>in</strong>t as <strong>in</strong>structed by <strong>the</strong>Relevant Network Operator or <strong>the</strong> Relevant TSO to <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner. Itshall be capable of implement<strong>in</strong>g <strong>the</strong> Setpo<strong>in</strong>t with<strong>in</strong> a period specified <strong>in</strong> <strong>the</strong> aboveInstruction and with<strong>in</strong> a tolerance def<strong>in</strong>ed by <strong>the</strong> Relevant Network Operator or <strong>the</strong>Relevant TSO (subject to <strong>the</strong> availability of <strong>the</strong> prime mover resource). Manual, localmeasures shall be possible <strong>in</strong> <strong>the</strong> case that any automatic remote control devices are out ofservice.b) In addition to Article 8(1) (c) <strong>the</strong> follow<strong>in</strong>g shall apply accumulatively with regard to LimitedFrequency Sensitive Mode – Underfrequency (LFSM-U):1) The Power Generat<strong>in</strong>g Module shall be capable of activat<strong>in</strong>g <strong>the</strong> provision of ActivePower Frequency Response accord<strong>in</strong>g to figure 4 at a Frequency threshold between and<strong>in</strong>clud<strong>in</strong>g 49.8 Hz and 49.5 Hz with a Droop <strong>in</strong> a range of 2 – 12 %. In <strong>the</strong> LFSM-U mode<strong>the</strong> Power Generat<strong>in</strong>g Module shall be capable of provid<strong>in</strong>g a power <strong>in</strong>crease up to itsMaximum Capacity. The actual delivery of Active Power Frequency Response <strong>in</strong> LFSM-Umode depends on <strong>the</strong> operat<strong>in</strong>g and ambient conditions of <strong>the</strong> Power Generat<strong>in</strong>g`24 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


Module when this response is triggered, <strong>in</strong> particular limitations on operation nearMaximum Capacity at low frequencies accord<strong>in</strong>g to Article 8(1) (e) and available primary<strong>energy</strong> sources. The actual Frequency threshold and Droop sett<strong>in</strong>gs shall be determ<strong>in</strong>edby <strong>the</strong> Relevant TSO. The Active Power Frequency Response shall be activated as fast astechnically feasible with an <strong>in</strong>itial delay that shall be as short as possible and reasonablyjustified by <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner to <strong>the</strong> Relevant TSO if greater than 2seconds.• Synchronous Power Generat<strong>in</strong>g Modules:P ref is <strong>the</strong> Maximum CapacityPP ref• Power Park Modules:P ref is <strong>the</strong> actual Active Power output at <strong>the</strong> moment<strong>the</strong> LFSM-O threshold is reached or <strong>the</strong> MaximumCapacity , as def<strong>in</strong>ed by <strong>the</strong> Relevant TSO, whilerespect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3)s 2f 1f nff nFigure 4: Active Power Frequency Response capability of Power Generat<strong>in</strong>g Modules <strong>in</strong>LFSM-U. P ref is <strong>the</strong> reference Active Power to which P is related and may be def<strong>in</strong>eddifferently <strong>for</strong> Synchronous Power Generat<strong>in</strong>g Modules and Power Park Modules. P is<strong>the</strong> change <strong>in</strong> Active Power output from <strong>the</strong> Power Generat<strong>in</strong>g Module. f n is <strong>the</strong> nom<strong>in</strong>alFrequency (50 Hz) <strong>in</strong> <strong>the</strong> Network and f is <strong>the</strong> Frequency change <strong>in</strong> <strong>the</strong> Network. Atunderfrequencies where f is below f 1 <strong>the</strong> Power Generat<strong>in</strong>g Module has to provide apositive Active Power output change accord<strong>in</strong>g to <strong>the</strong> Droop S 2 .2) Stable operation of <strong>the</strong> Power Generat<strong>in</strong>g Module dur<strong>in</strong>g LFSM-U operation shall beensured. The LFSM-U reference Active Power shall be <strong>the</strong> Active Power output at <strong>the</strong>moment of activation of LFSM-U and shall not be changed unless triggered by frequencyrestoration action.c) In addition to Article 10(2) (b) <strong>the</strong> follow<strong>in</strong>g shall apply accumulatively, when operat<strong>in</strong>g <strong>in</strong>Frequency Sensitive Mode (FSM):1) The Power Generat<strong>in</strong>g Module shall be capable of provid<strong>in</strong>g Active Power FrequencyResponse with respect to figure 5 and <strong>in</strong> accordance with <strong>the</strong> parameters specified byeach TSO with<strong>in</strong> <strong>the</strong> ranges shown <strong>in</strong> table 4.2) In case of overfrequency <strong>the</strong> Active Power Frequency Response is limited by <strong>the</strong>M<strong>in</strong>imum Regulat<strong>in</strong>g Level.3) In case of underfrequency <strong>the</strong> Active Power Frequency Response is limited by MaximumCapacity. The actual delivery of Active Power Frequency Response depends on <strong>the</strong>operat<strong>in</strong>g and ambient conditions of <strong>the</strong> Power Generat<strong>in</strong>g Module when this response`25 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


is triggered, <strong>in</strong> particular limitations on operation near Maximum Capacity at lowfrequencies accord<strong>in</strong>g to Article 8(1) (e) and available primary <strong>energy</strong> sources.PP maxPP1maxs 1ff nP1PmaxFigure 5: Active Power Frequency Response capability of Power Generat<strong>in</strong>g Modules <strong>in</strong>FSM illustrat<strong>in</strong>g <strong>the</strong> case of zero deadband and <strong>in</strong>sensitivity. P max is <strong>the</strong> MaximumCapacity to which P is related. P is <strong>the</strong> change <strong>in</strong> Active Power output from <strong>the</strong> PowerGenerat<strong>in</strong>g Module. f n is <strong>the</strong> nom<strong>in</strong>al Frequency (50 Hz) <strong>in</strong> <strong>the</strong> Network and f is <strong>the</strong>Frequency deviation <strong>in</strong> <strong>the</strong> Network.ParametersRangesP1Active Power range related to Maximum Capacity 1.5 – 10 %PmaxFrequency Response InsensitivityFrequency Response Deadbandf iffni10 – 30 mHz0.02 – 0.06 %0 – 500 mHzDroop 2 – 12 %s 1Table 4: Parameters <strong>for</strong> Active Power Frequency Response <strong>in</strong> FSM (explanation <strong>for</strong> figure5)`26 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


4) The Frequency Response Deadband of Frequency deviation and Droop are selected by<strong>the</strong> TSO and must be able to be reselected subsequently (without requir<strong>in</strong>g to be onl<strong>in</strong>eor remote) with<strong>in</strong> <strong>the</strong> given frames <strong>in</strong> <strong>the</strong> table 4.5) As a result of a frequency step change, <strong>the</strong> Power Generat<strong>in</strong>g Module shall be capable ofactivat<strong>in</strong>g full Active Power Frequency Response, at or above <strong>the</strong> full l<strong>in</strong>e accord<strong>in</strong>g tofigure 6 <strong>in</strong> accordance with <strong>the</strong> parameters specified by each TSO (aim<strong>in</strong>g at avoid<strong>in</strong>gActive Power oscillations <strong>for</strong> <strong>the</strong> Power Generat<strong>in</strong>g Module) with<strong>in</strong> <strong>the</strong> ranges accord<strong>in</strong>gto table 5. The comb<strong>in</strong>ation of choice of <strong>the</strong> parameters accord<strong>in</strong>g to table 5 shall take<strong>in</strong>to account possible technology dependent limitations. The <strong>in</strong>itial delay of activationshall be as short as possible and reasonably justified by <strong>the</strong> Power Generat<strong>in</strong>g FacilityOwner to <strong>the</strong> Relevant TSO, by provid<strong>in</strong>g technical evidence <strong>for</strong> why a longer time isneeded, if greater than 2 seconds or a shorter time if specified by <strong>the</strong> Relevant TSOwhile respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) <strong>for</strong> generation technologies withoutInertia.PP maxPP1maxt 1t 2tsFigure 6: Active Power Frequency Response capability. P max is <strong>the</strong> Maximum Capacity towhich P is related. P is <strong>the</strong> change <strong>in</strong> Active Power output from <strong>the</strong> Power Generat<strong>in</strong>gModule. The Power Generat<strong>in</strong>g Modules have to provide Active Power Output P up to<strong>the</strong> po<strong>in</strong>t P 1 <strong>in</strong> accordance with <strong>the</strong> times t 1 and t 2 with <strong>the</strong> values of P 1 , t 1 and t 2 be<strong>in</strong>gspecified by <strong>the</strong> Relevant TSO accord<strong>in</strong>g to Table 5. t 1 is <strong>the</strong> <strong>in</strong>itial delay. t 2 is <strong>the</strong> time <strong>for</strong>full activation.6) The Power Generat<strong>in</strong>g Module shall be capable of provid<strong>in</strong>g full Active Power FrequencyResponse <strong>for</strong> a period specified by <strong>the</strong> TSOs, consider<strong>in</strong>g <strong>the</strong> technical feasibility, <strong>for</strong>each Synchronous Area between 15 m<strong>in</strong> and 30 m<strong>in</strong>, consider<strong>in</strong>g <strong>the</strong> Active Powerheadroom and primary <strong>energy</strong> source of <strong>the</strong> Power Generat<strong>in</strong>g Module.7) As long as a Frequency deviation cont<strong>in</strong>ues Active Power control shall not have anyadverse impact on <strong>the</strong> Frequency response with<strong>in</strong> <strong>the</strong> time limits of Article 10(2) (c)po<strong>in</strong>t 6).`27 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


ParametersRanges or valuesActive Power range related to Maximum Capacity (FrequencyP1response range) 1.5 – 10 %PmaxMaximum admissible <strong>in</strong>itial delay unless justified o<strong>the</strong>rwise <strong>for</strong>generation technologies with InertiaMaximum admissible <strong>in</strong>itial delay unless justified o<strong>the</strong>rwise <strong>for</strong>generation technologies without InertiaMaximum admissible choice of full activation time t 2, unlesslonger activation times are admitted by <strong>the</strong> Relevant TSO due to<strong>system</strong> stability reasonst 1t 12 secondsas specified by<strong>the</strong> Relevant TSOwhile respect<strong>in</strong>g<strong>the</strong> provisions ofArticle 4(3)30 secondsTable 5: Parameters <strong>for</strong> full activation of Active Power Frequency Response resultedfrom Frequency step change (explanation <strong>for</strong> figure 6).d) With regard to Frequency restoration control, <strong>the</strong> Power Generat<strong>in</strong>g Module shall providefunctionalities compliant to specifications def<strong>in</strong>ed by <strong>the</strong> Relevant TSO while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3), aim<strong>in</strong>g at restor<strong>in</strong>g Frequency to its nom<strong>in</strong>al value and/ orma<strong>in</strong>ta<strong>in</strong> power exchange flows between control areas at <strong>the</strong>ir scheduled values.e) With regard to disconnection due to underfrequency, any Power Generat<strong>in</strong>g Facility be<strong>in</strong>gcapable of act<strong>in</strong>g as a load except <strong>for</strong> auxiliary supply, <strong>in</strong>clud<strong>in</strong>g hydro Pump-Storage PowerGenerat<strong>in</strong>g Facilities, shall be capable of disconnect<strong>in</strong>g its load <strong>in</strong> case of underfrequency.f) With regard to real-time monitor<strong>in</strong>g of FSM:1) To monitor <strong>the</strong> operation of Active Power Frequency Response <strong>the</strong> communication<strong>in</strong>terface shall be equipped to transfer on-l<strong>in</strong>e from <strong>the</strong> Power Generat<strong>in</strong>g Facility to <strong>the</strong>Network control centre of <strong>the</strong> Relevant Network Operator and/or <strong>the</strong> Relevant TSO onrequest by <strong>the</strong> Relevant Network Operator and/or <strong>the</strong> Relevant TSO at least <strong>the</strong>follow<strong>in</strong>g signals:- status signal of FSM (on/off);- scheduled Active Power output;- actual value of <strong>the</strong> Active Power output;- actual parameter sett<strong>in</strong>gs <strong>for</strong> Active Power Frequency Response; and- Droop and dead band.2) The Relevant Network Operator and <strong>the</strong> Relevant TSO shall def<strong>in</strong>e while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3) additional signals to be provided by <strong>the</strong> Power Generat<strong>in</strong>gFacility <strong>for</strong> monitor<strong>in</strong>g and/or record<strong>in</strong>g devices <strong>in</strong> order to verify <strong>the</strong> per<strong>for</strong>mance of`28 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


<strong>the</strong> Active Power Frequency Response provision of participat<strong>in</strong>g Power Generat<strong>in</strong>gModules.3. Type C Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirements referr<strong>in</strong>g to Voltagestability:a) The Relevant Network Operator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO shall have <strong>the</strong> right tospecify while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) Voltages at <strong>the</strong> Connection Po<strong>in</strong>t atwhich a Power Generat<strong>in</strong>g Module shall be capable of automatic disconnection. The termsand sett<strong>in</strong>gs <strong>for</strong> this automatic disconnection shall be def<strong>in</strong>ed by <strong>the</strong> Relevant NetworkOperator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO while respect<strong>in</strong>g <strong>the</strong> provisions of Article4(3).4. Type C Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirements referr<strong>in</strong>g to robustnessof Power Generat<strong>in</strong>g Modulesa) In case of power oscillations, Steady-state Stability of a Power Generat<strong>in</strong>g Module isrequired when operat<strong>in</strong>g at any operat<strong>in</strong>g po<strong>in</strong>t of <strong>the</strong> P-Q-Capability Diagram. A PowerGenerat<strong>in</strong>g Module shall be capable of stay<strong>in</strong>g connected to <strong>the</strong> Network and operat<strong>in</strong>gwithout power reduction notwithstand<strong>in</strong>g <strong>the</strong> provisions of Article 8(1) (e), as long asVoltage and Frequency rema<strong>in</strong> with<strong>in</strong> <strong>the</strong> admissible limits pursuant to this Network Code.b) S<strong>in</strong>gle-phase or three-phase auto-reclosures on meshed Network l<strong>in</strong>es, if applicable to thisNetwork, shall be withstood by Power Generat<strong>in</strong>g Modules without tripp<strong>in</strong>g. Details of thiscapability shall be subject to coord<strong>in</strong>ation and agreements on protection schemes andsett<strong>in</strong>gs accord<strong>in</strong>g to Article 9(5) (b).5. Type C Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirements referr<strong>in</strong>g to <strong>system</strong>restoration:a) With regard to Black Start Capability:1) Black Start Capability is not mandatory. If <strong>the</strong> Relevant TSO deems <strong>system</strong> security to beat risk due to a lack of Black Start Capability <strong>in</strong> a Control Area, <strong>the</strong> Relevant TSO shallhave <strong>the</strong> right to obta<strong>in</strong> a quote <strong>for</strong> Black Start Capability from Power Generat<strong>in</strong>g FacilityOwners.2) A Power Generat<strong>in</strong>g Module with a Black Start Capability shall be able to start from shutdown with<strong>in</strong> a timeframe decided by <strong>the</strong> Relevant Network Operator <strong>in</strong> coord<strong>in</strong>ationwith <strong>the</strong> Relevant TSO while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3), without anyexternal <strong>energy</strong> supply. The Power Generat<strong>in</strong>g Module shall be able to synchronisewith<strong>in</strong> <strong>the</strong> Frequency limits def<strong>in</strong>ed <strong>in</strong> Article 8(1) and Voltage limits def<strong>in</strong>ed by <strong>the</strong>Relevant Network Operator or def<strong>in</strong>ed by Article 11(2) where applicable.3) The Power Generat<strong>in</strong>g Module Voltage regulation shall be capable of regulat<strong>in</strong>g loadconnections caus<strong>in</strong>g dips of Voltage automatically.The Power Generat<strong>in</strong>g Module shall:- be capable of regulat<strong>in</strong>g load connections <strong>in</strong> block load;- control Frequency <strong>in</strong> case of overfrequency and underfrequency with<strong>in</strong> <strong>the</strong> wholeActive Power output range between M<strong>in</strong>imum Regulat<strong>in</strong>g Level and MaximumCapacity as well as at houseload level;`29 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


`30 | P a g e- be capable of parallel operation of a few Power Generat<strong>in</strong>g Modules with<strong>in</strong> oneisland; and- control Voltage automatically dur<strong>in</strong>g <strong>the</strong> <strong>system</strong> restoration phase.b) With regard to capability to take part <strong>in</strong> Island Operation:1) The capability to take part <strong>in</strong> Island Operation, if required by <strong>the</strong> Relevant NetworkOperator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO while respect<strong>in</strong>g <strong>the</strong> provisions ofArticle 4(3), shall be possible with<strong>in</strong> <strong>the</strong> Frequency limits def<strong>in</strong>ed <strong>in</strong> Article 8(1) andVoltage limits accord<strong>in</strong>g to Article 10(3) or Article 11(2) where applicable.2) If required, <strong>the</strong> Power Generat<strong>in</strong>g Module shall be able to operate <strong>in</strong> FSM dur<strong>in</strong>g IslandOperation, as def<strong>in</strong>ed <strong>in</strong> Article 10(2) (b). In <strong>the</strong> case of a power surplus, it shall bepossible to reduce <strong>the</strong> Active Power Output of <strong>the</strong> Power Generat<strong>in</strong>g Module from itsprevious operat<strong>in</strong>g po<strong>in</strong>t to any new operat<strong>in</strong>g po<strong>in</strong>t with<strong>in</strong> <strong>the</strong> P-Q-Capability Diagramas much as <strong>in</strong>herently technically feasible, but at least a Active Power output reductionto 55 % of its Maximum Capacity shall be possible.3) Detection of change from <strong>in</strong>terconnected <strong>system</strong> operation to Island Operation shall notrely solely on <strong>the</strong> Network Operator’s switchgear position signals. The detection methodshall be agreed between <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner and <strong>the</strong> Relevant NetworkOperator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO while respect<strong>in</strong>g <strong>the</strong> provisions ofArticle 4(3).c) With regard to quick re-synchronization capability:1) Quick re-synchronization capability is required <strong>in</strong> case of disconnection of <strong>the</strong> PowerGenerat<strong>in</strong>g Module from <strong>the</strong> Network <strong>in</strong> l<strong>in</strong>e with <strong>the</strong> protection strategy agreedbetween <strong>the</strong> Relevant Network Operator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO and <strong>the</strong>Power Generation Facility Owner <strong>in</strong> <strong>the</strong> event of disturbances to <strong>the</strong> <strong>system</strong>.2) The Power Generat<strong>in</strong>g Module whose m<strong>in</strong>imum re-synchronization time after itsdisconnection from any external power supply exceeds 15 m<strong>in</strong>utes shall be designed <strong>for</strong>tripp<strong>in</strong>g to houseload from any operat<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> its P-Q-Capability Diagram. Foridentify<strong>in</strong>g houseload operation any Network Operator’s switchgear position signals maybe used only as additional <strong>in</strong><strong>for</strong>mation which cannot be solely relied on.3) Power Generat<strong>in</strong>g Modules shall be capable of cont<strong>in</strong>u<strong>in</strong>g operation follow<strong>in</strong>g tripp<strong>in</strong>gto houseload, irrespective of any auxiliary connection to <strong>the</strong> external Network. Them<strong>in</strong>imum operation time shall be def<strong>in</strong>ed by <strong>the</strong> Relevant Network Operator <strong>in</strong>coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO tak<strong>in</strong>g <strong>in</strong>to consideration <strong>the</strong> specific characteristicsof <strong>the</strong> prime mover technology .6. Type C Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g general <strong>system</strong> <strong>management</strong>requirements:a) With regard to loss of angular stability or loss of control, a Power Generat<strong>in</strong>g Module shallbe capable of disconnect<strong>in</strong>g automatically from <strong>the</strong> Network <strong>in</strong> order to supportpreservation of <strong>system</strong> security and/or to prevent damage from <strong>the</strong> Power Generat<strong>in</strong>gModule. The Power Generat<strong>in</strong>g Facility Owner and <strong>the</strong> Relevant Network Operator <strong>in</strong>coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO shall agree on <strong>the</strong> <strong>criteria</strong> to detect loss of angularstability or loss of control.b) With regard to <strong>in</strong>strumentation:ENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


1) Power Generat<strong>in</strong>g Facilities shall be equipped with a facility to provide fault record<strong>in</strong>gand dynamic <strong>system</strong> behaviour monitor<strong>in</strong>g of <strong>the</strong> follow<strong>in</strong>g parameters:- Voltage;- Active Power;- Reactive Power; and- Frequency.The Relevant Network Operator shall have <strong>the</strong> right to def<strong>in</strong>e while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3) quality of supply parameters to be complied with provided areasonable prior notice is given.2) While respect<strong>in</strong>g <strong>the</strong> provisions of Article 4 (3), <strong>the</strong> sett<strong>in</strong>gs of <strong>the</strong> fault record<strong>in</strong>gequipment, <strong>in</strong>clud<strong>in</strong>g trigger<strong>in</strong>g <strong>criteria</strong> and <strong>the</strong> sampl<strong>in</strong>g rates shall be agreed between<strong>the</strong> Power Generat<strong>in</strong>g Facility Owner and <strong>the</strong> Relevant Network Operator <strong>in</strong>coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO.3) The dynamic <strong>system</strong> behaviour monitor<strong>in</strong>g shall <strong>in</strong>clude an oscillation trigger, specifiedby <strong>the</strong> Relevant Network Operator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO, detect<strong>in</strong>gpoorly damped power oscillations.4) The facilities <strong>for</strong> quality of supply and dynamic <strong>system</strong> behaviour monitor<strong>in</strong>g shall<strong>in</strong>clude arrangements <strong>for</strong> <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner, <strong>the</strong> Relevant NetworkOperator and/or <strong>the</strong> Relevant TSO to access <strong>the</strong> <strong>in</strong><strong>for</strong>mation. While respect<strong>in</strong>g <strong>the</strong>provisions of Article 4 (3) <strong>the</strong> communications protocols <strong>for</strong> recorded data shall beagreed between <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner and <strong>the</strong> Relevant NetworkOperator and Relevant TSO.c) With regard to <strong>the</strong> simulation models:1) The Relevant Network Operator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO shall have <strong>the</strong>right to require while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) <strong>the</strong> Power Generat<strong>in</strong>gFacility Owner to provide simulation models, that shall properly reflect <strong>the</strong> behaviour of<strong>the</strong> Power Generat<strong>in</strong>g Module <strong>in</strong> both steady-state and dynamic simulations (50 Hzcomponent) and, where appropriate and justified, <strong>in</strong> electromagnetic transientsimulations.The decision shall <strong>in</strong>clude:- <strong>the</strong> <strong>for</strong>mat <strong>in</strong> which models shall be provided- <strong>the</strong> provision of documentation of models structure and block diagramsThe models shall be verified aga<strong>in</strong>st <strong>the</strong> results of compliance tests as of Title 4 Chapters2, 3 and 4. They shall <strong>the</strong>n be used <strong>for</strong> <strong>the</strong> purpose of verify<strong>in</strong>g <strong>the</strong> requirements of thisNetwork Code <strong>in</strong>clud<strong>in</strong>g but not limited to Compliance Simulations as of Title 4 Chapters5, 6 and 7 and <strong>for</strong> use <strong>in</strong> studies <strong>for</strong> cont<strong>in</strong>uous evaluation <strong>in</strong> <strong>system</strong> plann<strong>in</strong>g andoperation.2) For <strong>the</strong> purpose of dynamic simulations, <strong>the</strong> models provided shall conta<strong>in</strong> <strong>the</strong> follow<strong>in</strong>gsub-models, depend<strong>in</strong>g on <strong>the</strong> existence of <strong>the</strong> mentioned components:- Alternator and prime mover;- Speed and power control;`31 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


- Voltage control, <strong>in</strong>clud<strong>in</strong>g, if applicable, Power System Stabilizer (PSS) function andexcitation <strong>system</strong>;- Power Generat<strong>in</strong>g Module protection models as agreed between <strong>the</strong> RelevantNetwork Operator and <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner, while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3); and- Converter models <strong>for</strong> Power Park Modules.3) The Relevant Network Operator shall deliver to <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner anestimate of <strong>the</strong> m<strong>in</strong>imum and maximum short circuit capacity at <strong>the</strong> connection po<strong>in</strong>t,expressed <strong>in</strong> MVA, as an equivalent of <strong>the</strong> Network.4) The Relevant Network Operator or Relevant TSO shall have <strong>the</strong> right to require whilerespect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) Power Generat<strong>in</strong>g Module record<strong>in</strong>gs <strong>in</strong> order tocompare <strong>the</strong> response of <strong>the</strong> models with <strong>the</strong>se record<strong>in</strong>gs.d) With regard to <strong>the</strong> <strong>in</strong>stallation of devices <strong>for</strong> <strong>system</strong> operation and/or security, if <strong>the</strong>Relevant Network Operator or <strong>the</strong> Relevant TSO considers additional devices necessary tobe <strong>in</strong>stalled <strong>in</strong> a Power Generat<strong>in</strong>g Facility <strong>in</strong> order to preserve or restore <strong>system</strong> operationor security, <strong>the</strong> Relevant Network Operator or Relevant TSO and <strong>the</strong> Power Generat<strong>in</strong>gFacility Owner shall <strong>in</strong>vestigate this request and, while respect<strong>in</strong>g <strong>the</strong> provisions of Article4(3), agree on an appropriate solution .e) The Relevant Network Operator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO shall def<strong>in</strong>e whilerespect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) m<strong>in</strong>imum and maximum limits on rates of change ofActive Power output (ramp<strong>in</strong>g limits) <strong>in</strong> both up and down direction <strong>for</strong> a Power Generat<strong>in</strong>gModule tak<strong>in</strong>g <strong>in</strong>to consideration <strong>the</strong> specific characteristics of <strong>the</strong> prime mover technology.f) With regard to earth<strong>in</strong>g arrangement of <strong>the</strong> neutral-po<strong>in</strong>t at <strong>the</strong> Network side of step-uptrans<strong>for</strong>mers, it shall be <strong>in</strong> accordance with <strong>the</strong> specifications of <strong>the</strong> Relevant NetworkOperator.g) With regard to changes to, modernization of or replacement of equipment of PowerGenerat<strong>in</strong>g Modules, any Power Generat<strong>in</strong>g Facility Owner <strong>in</strong>tend<strong>in</strong>g to change plant andequipment of <strong>the</strong> Power Generat<strong>in</strong>g Module that may have an impact on <strong>the</strong> gridconnection and on <strong>the</strong> <strong>in</strong>teraction, such as turb<strong>in</strong>es, Alternators, converters, high-voltageequipment, protection and control <strong>system</strong>s (hardware and software), shall notify <strong>in</strong> advance(<strong>in</strong> accordance with agreed or decided national timescales) <strong>the</strong> Relevant Network Operator<strong>in</strong> case it is reasonable to <strong>for</strong>esee that <strong>the</strong>se <strong>in</strong>tended changes may be affected by <strong>the</strong>requirements of this Network Code and shall, while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3),agree on <strong>the</strong>se requirements be<strong>for</strong>e <strong>the</strong> proposals are implemented with <strong>the</strong> RelevantNetwork Operator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO. In case of modernisation orreplacement of equipment <strong>in</strong> exist<strong>in</strong>g Power Generat<strong>in</strong>g Modules <strong>the</strong> new equipment shallcomply with <strong>the</strong> respective requirements which are relevant to <strong>the</strong> planned work. Whilerespect<strong>in</strong>g <strong>the</strong> provisions of Article 4 (3), <strong>the</strong> use of exist<strong>in</strong>g spare components that do notcomply with <strong>the</strong> requirements has to be agreed with <strong>the</strong> Relevant Network Operator <strong>in</strong>coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO <strong>in</strong> each case.`32 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


Article 11GENERAL REQUIREMENTS FOR TYPE D POWER GENERATING MODULES1. In addition to fulfill<strong>in</strong>g <strong>the</strong> requirements listed <strong>in</strong> Articles 8, 9 and 10 unless referred too<strong>the</strong>rwise <strong>in</strong> this Article, except <strong>for</strong> Article 8(1) (f), (g), Article 9(2) (a) and Article 10(3) (a), TypeD Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> requirements <strong>in</strong> this Article.2. Type D Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirements referr<strong>in</strong>g to Voltagestability:a) With regard to Voltage ranges:1) While still respect<strong>in</strong>g <strong>the</strong> provisions accord<strong>in</strong>g to Articles 9(3) (a) and 11(3) (a), a PowerGenerat<strong>in</strong>g Module shall be capable of stay<strong>in</strong>g connected to <strong>the</strong> Network and operat<strong>in</strong>gwith<strong>in</strong> <strong>the</strong> ranges of <strong>the</strong> Network Voltage at <strong>the</strong> Connection Po<strong>in</strong>t, expressed by <strong>the</strong>Voltage at <strong>the</strong> Connection Po<strong>in</strong>t related to nom<strong>in</strong>al Voltage (per unit), and <strong>the</strong> timeperiods specified by tables 6.1 and 6.2.Synchronous Area Voltage Range Time period <strong>for</strong>operation0.85 pu – 0.90 pu 60 m<strong>in</strong>utes0.90 pu – 1.118 pu UnlimitedCont<strong>in</strong>ental EuropeNordic1.118 pu – 1.15 pu To be decided by eachTSO while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3),but not less than 20m<strong>in</strong>utes0.90 pu – 1.05 pu Unlimited1.05 pu – 1.10 pu 60 m<strong>in</strong>utesGreat Brita<strong>in</strong> 0.90 pu–1.10 pu UnlimitedIreland 0.90 pu – 1.118 pu Unlimited0.85 pu – 0.90 pu 30 m<strong>in</strong>utesBaltic0.90 pu – 1.12 pu Unlimited1.12 pu – 1.15 pu 20 m<strong>in</strong>utesTable 6.1: This table shows <strong>the</strong> m<strong>in</strong>imum time periods a Power Generat<strong>in</strong>g Module shallbe capable of operat<strong>in</strong>g <strong>for</strong> Voltages deviat<strong>in</strong>g from <strong>the</strong> nom<strong>in</strong>al value at <strong>the</strong> ConnectionPo<strong>in</strong>t without disconnect<strong>in</strong>g from <strong>the</strong> Network. (The Voltage base <strong>for</strong> pu values is from110 kV to 300 kV (exclud<strong>in</strong>g).)`33 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


Synchronous AreaVoltage RangeTime period <strong>for</strong>operation0.85 pu – 0.90 pu 60 m<strong>in</strong>utes0.90 pu – 1.05 pu UnlimitedCont<strong>in</strong>ental Europe1.05 pu – 1.0875 puTo be decided by eachTSO while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3),but not less than 60m<strong>in</strong>utes1.0875 pu – 1.10 pu 60 m<strong>in</strong>utesNordicGreat Brita<strong>in</strong>0.90 pu – 1.05 pu Unlimited1.05 pu – 1.10 pu 60 m<strong>in</strong>utes0.90 pu – 1.05 pu Unlimited1.05 pu – 1.10 pu 15 m<strong>in</strong>utesIreland 0.90 pu – 1.05 pu Unlimited0.88 pu – 0.90 pu 20 m<strong>in</strong>utesBaltic0.90 pu – 1.10 pu Unlimited1.10 pu – 1.15 pu 20 m<strong>in</strong>utes`34 | P a g eTable 6.2: This table shows <strong>the</strong> m<strong>in</strong>imum time periods a Power Generat<strong>in</strong>g Module shallbe capable of operat<strong>in</strong>g <strong>for</strong> Voltages deviat<strong>in</strong>g from <strong>the</strong> nom<strong>in</strong>al value at <strong>the</strong> ConnectionPo<strong>in</strong>t without disconnect<strong>in</strong>g from <strong>the</strong> Network. (The Voltage base <strong>for</strong> pu values is from300 kV to 400 kV.)2) While respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3), wider Voltage ranges or longer m<strong>in</strong>imumtimes <strong>for</strong> operation can be agreed between <strong>the</strong> Relevant Network Operator <strong>in</strong>coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO and <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner to ensure<strong>the</strong> best use of <strong>the</strong> technical capabilities of a Power Generat<strong>in</strong>g Module if needed topreserve or to restore <strong>system</strong> security. If wider Voltage ranges or longer m<strong>in</strong>imum times<strong>for</strong> operation are economically and technically feasible, <strong>the</strong> consent of <strong>the</strong> PowerGenerat<strong>in</strong>g Facility Owner shall not be unreasonably withheld.3) While still respect<strong>in</strong>g <strong>the</strong> provisions of Article 11(2) (a) po<strong>in</strong>t 1), <strong>the</strong> Relevant NetworkOperator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO shall have <strong>the</strong> right to specify whilerespect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) Voltages at <strong>the</strong> Connection Po<strong>in</strong>t at which aPower Generat<strong>in</strong>g Module shall be capable of automatic disconnection. The terms andsett<strong>in</strong>gs <strong>for</strong> automatic disconnection shall be agreed between <strong>the</strong> Relevant NetworkOperator and <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner, while respect<strong>in</strong>g <strong>the</strong> provisions ofArticle 4(3).ENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


3. Type D Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirements referr<strong>in</strong>g to robustnessof Power Generat<strong>in</strong>g Modules:a) With regard to fault-ride-through capability of Power Generat<strong>in</strong>g Modules:1) The voltage-aga<strong>in</strong>st-time-profile shall be def<strong>in</strong>ed by <strong>the</strong> TSO us<strong>in</strong>g parameters <strong>in</strong> figure 3accord<strong>in</strong>g to tables 7.1 and 7.2.2) Each TSO shall def<strong>in</strong>e and make publicly available while respect<strong>in</strong>g <strong>the</strong> provisions ofArticle 4(3) <strong>the</strong> pre-fault and post-fault conditions <strong>for</strong> <strong>the</strong> fault-ride-through capabilityaccord<strong>in</strong>g to Article 9(3) (a) po<strong>in</strong>t 3).Voltage parameters [pu]Time parameters [seconds]U ret : 0 t clear : 0.14 – 0.25U clear : 0.25 t rec1 : t clear – 0.45U rec1 : 0.5 – 0.7 t rec2 : t rec1 – 0.7U rec2 : 0.85 – 0.9 t rec3 : t rec2 – 1.5Table 7.1 – Parameters <strong>for</strong> figure 3 <strong>for</strong> fault-ride-through capability of SynchronousPower Generat<strong>in</strong>g Modules.Voltage parameters [pu]Time parameters [seconds]U ret : 0 t clear : 0.14 – 0.25U clear : U ret t rec1 : t clearU rec1 : U clear t rec2 : t rec1U rec2 : 0.85 t rec3 : 1.5 – 3.0Table 7.2 – Parameters <strong>for</strong> figure 3 <strong>for</strong> fault-ride-through capability of Power ParkModules.3) Each Relevant Network Operator shall provide on request by <strong>the</strong> Power Generat<strong>in</strong>gFacility Owner <strong>the</strong> pre-fault and post-fault conditions to be considered <strong>for</strong> fault-ridethroughcapability as an outcome of <strong>the</strong> calculations at <strong>the</strong> Connection Po<strong>in</strong>t as def<strong>in</strong>ed<strong>in</strong> Article 9 (3) (a) po<strong>in</strong>t 3) regard<strong>in</strong>g:- pre-fault m<strong>in</strong>imum short circuit capacity at each Connection Po<strong>in</strong>t expressed <strong>in</strong>MVA;`35 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


- pre-fault operat<strong>in</strong>g po<strong>in</strong>t of <strong>the</strong> Power Generat<strong>in</strong>g Module expressed <strong>in</strong> ActivePower output and Reactive Power output at <strong>the</strong> Connection Po<strong>in</strong>t and Voltage at<strong>the</strong> Connection Po<strong>in</strong>t; and- post-fault m<strong>in</strong>imum short circuit capacity at each Connection Po<strong>in</strong>t expressed <strong>in</strong>MVA.4) Fault-ride-through capabilities <strong>in</strong> case of asymmetrical faults shall be def<strong>in</strong>ed by eachTSO while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3).4. Type D Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g general <strong>system</strong> <strong>management</strong>requirements:a) With regard to synchronization, when start<strong>in</strong>g a Power Generat<strong>in</strong>g Module, synchronizationshall be per<strong>for</strong>med by <strong>the</strong> Power Generat<strong>in</strong>g Facility Owner after authorization by <strong>the</strong>Relevant Network Operator. The Power Generat<strong>in</strong>g Module shall be equipped with <strong>the</strong>necessary synchronization facilities. Synchronization of Power Generat<strong>in</strong>g Modules shall bepossible <strong>for</strong> frequencies with<strong>in</strong> <strong>the</strong> ranges set out <strong>in</strong> table 2. While respect<strong>in</strong>g <strong>the</strong> provisionsof Article 4(3), <strong>the</strong> Relevant Network Operator and <strong>the</strong> Power Generat<strong>in</strong>g Facility Ownershall agree on <strong>the</strong> sett<strong>in</strong>gs of synchronization devices to be concluded prior to operation of<strong>the</strong> Power Generat<strong>in</strong>g Module. An agreement shall cover <strong>the</strong> follow<strong>in</strong>g matters: Voltage,Frequency, phase angle range, phase sequence, deviation of Voltage and Frequency.Chapter 2REQUIREMENTS FOR SYNCHRONOUS POWER GENERATING MODULESArticle 12REQUIREMENTS FOR TYPE B SYNCHRONOUS POWER GENERATING MODULES1. In addition to fulfill<strong>in</strong>g <strong>the</strong> requirements listed <strong>in</strong> Articles 8 and 9, Type B Synchronous PowerGenerat<strong>in</strong>g Modules shall fulfil <strong>the</strong> requirements <strong>in</strong> this Article.2. Type B Synchronous Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirements referr<strong>in</strong>gto Voltage stability:a) With regard to Reactive Power capability <strong>the</strong> Relevant Network Operator shall have <strong>the</strong> rightto def<strong>in</strong>e while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) <strong>the</strong> capability of a SynchronousPower Generat<strong>in</strong>g Module to provide Reactive Power.b) With regard to <strong>the</strong> Voltage control <strong>system</strong>, a Synchronous Power Generat<strong>in</strong>g Module shallbe equipped with a permanent automatic excitation control <strong>system</strong> <strong>in</strong> order to provideconstant Alternator term<strong>in</strong>al Voltage at a selectable Setpo<strong>in</strong>t without <strong>in</strong>stability over <strong>the</strong>entire operat<strong>in</strong>g range of <strong>the</strong> Synchronous Power Generat<strong>in</strong>g Module.3. Type B Synchronous Power Generat<strong>in</strong>g Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirements referr<strong>in</strong>gto robustness of Power Generat<strong>in</strong>g Modules:`36 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


Chapter 3REQUIREMENTS FOR POWER PARK MODULESArticle 15REQUIREMENTS FOR TYPE B POWER PARK MODULES1. In addition to fulfill<strong>in</strong>g <strong>the</strong> general requirements listed <strong>in</strong> Articles 8 and 9, Type B Power ParkModules shall fulfil <strong>the</strong> requirements <strong>in</strong> this Article.2. Type B Power Park Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirement referr<strong>in</strong>g to Voltage stability:a) With regard to Reactive Power capability <strong>the</strong> Relevant Network Operator shall have <strong>the</strong> rightto def<strong>in</strong>e while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) <strong>the</strong> capability of a Power ParkModule to provide Reactive Power.b) The Relevant Network Operator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO shall have <strong>the</strong> right torequire while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) fast act<strong>in</strong>g additional reactive Current<strong>in</strong>jection at <strong>the</strong> Connection Po<strong>in</strong>t to <strong>the</strong> pre-fault reactive Current <strong>in</strong>jection <strong>in</strong> case ofsymmetrical (3-phase) faults:1) The Power Park Module shall be capable of activat<strong>in</strong>g this additional reactive Current<strong>in</strong>jection dur<strong>in</strong>g <strong>the</strong> period of faults. The Power Park Module shall be capable of ei<strong>the</strong>r:a. ensur<strong>in</strong>g <strong>the</strong> supply of <strong>the</strong> additional reactive Current at <strong>the</strong> Connection Po<strong>in</strong>taccord<strong>in</strong>g to fur<strong>the</strong>r specifications by <strong>the</strong> Relevant Network Operator <strong>in</strong>coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO of <strong>the</strong> magnitude of this Current, depend<strong>in</strong>gon <strong>the</strong> deviation of <strong>the</strong> Voltage at <strong>the</strong> Connection po<strong>in</strong>t from its nom<strong>in</strong>al value;orb. alternatively, measur<strong>in</strong>g Voltage deviations at <strong>the</strong> term<strong>in</strong>als of <strong>the</strong> <strong>in</strong>dividualunits of <strong>the</strong> Power Park Module and provid<strong>in</strong>g an additional reactive Current at<strong>the</strong> term<strong>in</strong>als of <strong>the</strong>se units accord<strong>in</strong>g to fur<strong>the</strong>r specifications by <strong>the</strong> RelevantNetwork Operator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO of <strong>the</strong> magnitude ofthis Current, depend<strong>in</strong>g on <strong>the</strong> deviation of <strong>the</strong> Voltage at units’ term<strong>in</strong>als fromits nom<strong>in</strong>al value.2) The Power Park Module (Article 15(2) (b) po<strong>in</strong>t 1) option a.) or <strong>the</strong> <strong>in</strong>dividual units of <strong>the</strong>Power Park Module (Article 15(2) (b) po<strong>in</strong>t 1) option b.) shall be capable of provid<strong>in</strong>g atleast 2/3 of <strong>the</strong> additional reactive Current with<strong>in</strong> a time period specified by <strong>the</strong>Relevant TSO, which shall not be less than 10 milliseconds. The target value of thisadditional reactive Current def<strong>in</strong>ed by Article 15(2) (b) po<strong>in</strong>t 1) shall be reached with anaccuracy of 10% with<strong>in</strong> 60 milliseconds from <strong>the</strong> moment <strong>the</strong> Voltage deviation hasoccurred as fur<strong>the</strong>r specified accord<strong>in</strong>g to Article 15(2) (b) po<strong>in</strong>t 1).3) The total reactive Current contribution shall be not more than 1 pu of <strong>the</strong> short termdynamic Current rat<strong>in</strong>g (cover<strong>in</strong>g up to 0.4 seconds) of <strong>the</strong> Power Park Module (Article`40 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


15(2) (b) po<strong>in</strong>t 1) option a.) or of <strong>the</strong> <strong>in</strong>dividual units of <strong>the</strong> Power Park Module (Article15(2) (b) po<strong>in</strong>t 1) option b.) tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> pre-fault reactive Current. Ifadditional real Current <strong>in</strong>jection is given priority over additional reactive Current<strong>in</strong>jection, <strong>the</strong> total Current contribution can be fur<strong>the</strong>r limited by <strong>the</strong> real Current basedon limit<strong>in</strong>g <strong>the</strong> apparent Current (vector addition of real and reactive Current) to 1 pu of<strong>the</strong> short term dynamic Current rat<strong>in</strong>g of <strong>the</strong> Power Park Module (Article 15(2) (b) po<strong>in</strong>t1) option a.) or <strong>the</strong> <strong>in</strong>dividual units of <strong>the</strong> Power Park Module (Article 15(2) (b) po<strong>in</strong>t 1)option b.).c) With regard to fast act<strong>in</strong>g additional reactive Current <strong>in</strong>jection <strong>in</strong> case of asymmetrical (1-phase or 2-phase) faults <strong>the</strong> Relevant Network Operator <strong>in</strong> coord<strong>in</strong>ation <strong>the</strong> Relevant TSOshall have <strong>the</strong> right to <strong>in</strong>troduce while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) a requirement<strong>for</strong> asymmetrical Current <strong>in</strong>jection.3. Type B Power Park Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirements referr<strong>in</strong>g to robustness ofPower Generat<strong>in</strong>g Modules:a) With regard to post fault Active Power recovery after fault-ride-through, <strong>the</strong> Relevant TSOshall specify while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) magnitude and time <strong>for</strong> ActivePower recovery <strong>the</strong> Power Park Module shall be capable of provid<strong>in</strong>g.`41 | P a g eArticle 16REQUIREMENTS FOR TYPE C POWER PARK MODULES1. In addition to fulfill<strong>in</strong>g <strong>the</strong> requirements listed <strong>in</strong> Articles 8, 9, 10 and 15, except <strong>for</strong> Article 8(1)(f), Article 9(2) (a), and Article 15(2) (a) unless referred to o<strong>the</strong>rwise <strong>in</strong> Article 16(3) (d) po<strong>in</strong>ts 3)and 4), Type C Power Park Modules shall fulfil <strong>the</strong> requirements <strong>in</strong> this Article.2. Type C Power Park Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirements referr<strong>in</strong>g to Frequencystability:a) With regard to <strong>the</strong> capability of provid<strong>in</strong>g Syn<strong>the</strong>tic Inertia to a low Frequency event:1) The Relevant TSO shall have <strong>the</strong> right to require while respect<strong>in</strong>g <strong>the</strong> provisions ofArticle 4(3), <strong>in</strong> co-operation with o<strong>the</strong>r TSOs <strong>in</strong> <strong>the</strong> relevant Synchronous Area, a PowerPark Module, which is not <strong>in</strong>herently capable of supply<strong>in</strong>g additional Active Power to <strong>the</strong>Network by its Inertia and which is greater than a MW size to be specified by <strong>the</strong>Relevant TSO, to <strong>in</strong>stall a feature <strong>in</strong> <strong>the</strong> control <strong>system</strong> which operates <strong>the</strong> Power ParkModule so as to supply additional Active Power to <strong>the</strong> Network <strong>in</strong> order to limit <strong>the</strong> rateof change of Frequency follow<strong>in</strong>g a sudden loss of <strong>in</strong>feed.2) The operat<strong>in</strong>g pr<strong>in</strong>ciple of this control <strong>system</strong> and <strong>the</strong> associated per<strong>for</strong>manceparameters shall be def<strong>in</strong>ed by <strong>the</strong> Relevant TSO while respect<strong>in</strong>g <strong>the</strong> provisions ofArticle 4(3).3. Type C Power Park Modules shall fulfil <strong>the</strong> follow<strong>in</strong>g requirements referr<strong>in</strong>g to Voltage stability:a) With regard to Reactive Power Capability, <strong>for</strong> Power Park Modules where <strong>the</strong> ConnectionPo<strong>in</strong>t is not at <strong>the</strong> location of <strong>the</strong> high-voltage term<strong>in</strong>als of its step-up trans<strong>for</strong>mer nor at <strong>the</strong>term<strong>in</strong>als of <strong>the</strong> high-voltage l<strong>in</strong>e or cable to <strong>the</strong> Connection Po<strong>in</strong>t at <strong>the</strong> Power ParkENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


Module, if no step-up trans<strong>for</strong>mer exists, supplementary Reactive Power may be required by<strong>the</strong> Relevant Network Operator while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) to compensate<strong>for</strong> <strong>the</strong> Reactive Power demand of <strong>the</strong> high-voltage l<strong>in</strong>e or cable between <strong>the</strong>se two po<strong>in</strong>tsfrom <strong>the</strong> responsible owner of this l<strong>in</strong>e or cable.b) With regard to Reactive Power capability at Maximum Capacity:1) The Relevant Network Operator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO shall def<strong>in</strong>e whilerespect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) <strong>the</strong> Reactive Power provision capabilityrequirements <strong>in</strong> <strong>the</strong> context of vary<strong>in</strong>g Voltage. For do<strong>in</strong>g so, it shall def<strong>in</strong>e a U-Q/P max -profile that shall take any shape with<strong>in</strong> <strong>the</strong> boundaries of which <strong>the</strong> Power Park Moduleshall be capable of provid<strong>in</strong>g Reactive Power at its Maximum Capacity.2) The U-Q/P max -profile is def<strong>in</strong>ed by each Relevant Network Operator <strong>in</strong> coord<strong>in</strong>ation with<strong>the</strong> Relevant TSO while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) <strong>in</strong> con<strong>for</strong>mity with <strong>the</strong>follow<strong>in</strong>g pr<strong>in</strong>ciples:- <strong>the</strong> U-Q/P max -profile shall not exceed <strong>the</strong> U-Q/P max -profile envelope, represented by<strong>the</strong> <strong>in</strong>ner envelope <strong>in</strong> figure 8, its shape does not need to be rectangular;- <strong>the</strong> dimensions of <strong>the</strong> U-Q/P max -profile envelope (Q/P max range and Voltage range)are def<strong>in</strong>ed <strong>for</strong> each Synchronous Area <strong>in</strong> table 9; and- <strong>the</strong> position of <strong>the</strong> U-Q/P max -profile envelope with<strong>in</strong> <strong>the</strong> limits of <strong>the</strong> fixed outerenvelope <strong>in</strong> figure 8.Figure 8 – U-Q/P max -profile of a Power Park Module. The diagram represents boundariesof a U-Q/P max -profile by <strong>the</strong> Voltage at <strong>the</strong> Connection Po<strong>in</strong>t, expressed by <strong>the</strong> ratio of itsactual value and its nom<strong>in</strong>al value <strong>in</strong> per unit, aga<strong>in</strong>st <strong>the</strong> ratio of <strong>the</strong> Reactive Power (Q)and <strong>the</strong> Maximum Capacity (P max ). The position, size and shape of <strong>the</strong> <strong>in</strong>ner envelope are<strong>in</strong>dicative.`42 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


Synchronous AreaMaximum range ofQ/P maxMaximum range of steadystateVoltage level <strong>in</strong> PUCont<strong>in</strong>ental Europe 0.75 0.225Nordic 0.95 0.150Great Brita<strong>in</strong> 0.66 0.100Ireland 0.66 0.218Baltic States 0.80 0.220Table 9: Parameters <strong>for</strong> <strong>the</strong> <strong>in</strong>ner envelope <strong>in</strong> figure 83) The Reactive Power provision capability requirement applies at <strong>the</strong> Connection Po<strong>in</strong>t.For profile shapes o<strong>the</strong>r than rectangular, <strong>the</strong> Voltage range represents <strong>the</strong> highest andlowest values. The full Reactive Power range is <strong>the</strong>re<strong>for</strong>e not expected to be availableacross <strong>the</strong> range of steady-state Voltages.c) With regard to Reactive Power capability below Maximum Capacity:1) The Relevant Network Operator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO shall def<strong>in</strong>e whilerespect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) <strong>the</strong> Reactive Power provision capabilityrequirements. For do<strong>in</strong>g so, it shall def<strong>in</strong>e a P-Q/P max -profile that shall take any shapewith<strong>in</strong> <strong>the</strong> boundaries of which <strong>the</strong> Power Park Module shall be capable of provid<strong>in</strong>gReactive Power below Maximum Capacity.2) The P-Q/P max -profile is def<strong>in</strong>ed by each Relevant Network Operator <strong>in</strong> coord<strong>in</strong>ation with<strong>the</strong> Relevant TSO while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3), <strong>in</strong> con<strong>for</strong>mity with <strong>the</strong>follow<strong>in</strong>g pr<strong>in</strong>ciples:- <strong>the</strong> P-Q/P max -profile shall not exceed <strong>the</strong> P-Q/P max -profile envelope, represented by<strong>the</strong> <strong>in</strong>ner envelope <strong>in</strong> figure 9;- <strong>the</strong> Q/P max range of <strong>the</strong> P-Q/P max -profile envelope is def<strong>in</strong>ed <strong>for</strong> each SynchronousArea <strong>in</strong> table 9;- <strong>the</strong> Active Power range of <strong>the</strong> P-Q/P max -profile envelope at zero Reactive Power shallbe 1 pu;- <strong>the</strong> P-Q/P max -profile can be of any shape and shall <strong>in</strong>clude conditions <strong>for</strong> ReactivePower capability at zero Active Power; and- <strong>the</strong> position of <strong>the</strong> P-Q/P max -profile envelope with<strong>in</strong> <strong>the</strong> limits of <strong>the</strong> fixed outerenvelope <strong>in</strong> figure 9.3) When operat<strong>in</strong>g at an Active Power output below <strong>the</strong> Maximum Capacity (P


Figure 9 - P-Q/P max -profile of a Power Park Module. The diagram represents boundariesof a P-Q/P max -profile at <strong>the</strong> Connection Po<strong>in</strong>t by <strong>the</strong> Active Power, expressed by <strong>the</strong> ratioof its actual value and <strong>the</strong> Maximum Capacity <strong>in</strong> per unit, aga<strong>in</strong>st <strong>the</strong> ratio of <strong>the</strong>Reactive Power (Q) and <strong>the</strong> Maximum Capacity (P max ). The position, size and shape of <strong>the</strong><strong>in</strong>ner envelope are <strong>in</strong>dicative.4) The Power Park Module shall be capable of mov<strong>in</strong>g to any operat<strong>in</strong>g po<strong>in</strong>t with<strong>in</strong> its P-Q/P max profile <strong>in</strong> appropriate timescales to target values requested by <strong>the</strong> RelevantNetwork Operator.d) With regard to Reactive Power control modes:1) The Power Park Module shall be capable of provid<strong>in</strong>g Reactive Power automatically byei<strong>the</strong>r Voltage Control mode, Reactive Power Control mode or Power Factor Controlmode.2) For <strong>the</strong> purposes of Voltage Control mode, <strong>the</strong> Power Park Module shall be capable ofcontribut<strong>in</strong>g to Voltage control at <strong>the</strong> Connection Po<strong>in</strong>t by provision of Reactive Powerexchange with <strong>the</strong> Network with a Setpo<strong>in</strong>t Voltage cover<strong>in</strong>g at least 0.95 to 1.05 pu <strong>in</strong>steps no greater than 0.01 pu with a Slope with a range of at least 2 to 7 % <strong>in</strong> steps nogreater than 0.5 %. The Reactive Power output shall be zero when <strong>the</strong> grid Voltage valueat <strong>the</strong> Connection Po<strong>in</strong>t equals <strong>the</strong> Voltage Setpo<strong>in</strong>t.The Setpo<strong>in</strong>t may be operated with or without a deadband selectable <strong>in</strong> a range fromzero to +-5 % of nom<strong>in</strong>al Network Voltage <strong>in</strong> steps no greater than 0.5 %.Follow<strong>in</strong>g a step change <strong>in</strong> Voltage, <strong>the</strong> Power Park Module shall be capable of achiev<strong>in</strong>g90 % of <strong>the</strong> change <strong>in</strong> Reactive Power output with<strong>in</strong> a time t 1 to be specified by RelevantNetwork operator while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) <strong>in</strong> <strong>the</strong> range of 1 - 5seconds and settle at <strong>the</strong> value def<strong>in</strong>ed by <strong>the</strong> operat<strong>in</strong>g Slope with<strong>in</strong> a time t 2 to bespecified by Relevant Network Operator while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) <strong>in</strong><strong>the</strong> range of 5 - 60 seconds, with a steady-state reactive tolerance no greater than 5 % of<strong>the</strong> maximum Reactive Power.`44 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


3) For <strong>the</strong> purposes of Reactive Power Control mode, <strong>the</strong> Power Park Module shall becapable of sett<strong>in</strong>g <strong>the</strong> Reactive Power Setpo<strong>in</strong>t anywhere <strong>in</strong> <strong>the</strong> Reactive Power range,def<strong>in</strong>ed by Article 15(2) (a) and by Article 16(3) (a) and (b), with sett<strong>in</strong>g steps no greaterthan 5 Mvar or 5 % (whichever is smaller) of full Reactive Power, controll<strong>in</strong>g <strong>the</strong> ReactivePower at <strong>the</strong> Connection Po<strong>in</strong>t to an accuracy with<strong>in</strong> +-5 Mvar or +-5 % (whichever issmaller) of <strong>the</strong> full Reactive Power.4) For <strong>the</strong> purposes of Power Factor Control mode, <strong>the</strong> Power Park Module shall becapable of controll<strong>in</strong>g <strong>the</strong> Power Factor at <strong>the</strong> Connection Po<strong>in</strong>t with<strong>in</strong> <strong>the</strong> requiredReactive Power range, def<strong>in</strong>ed by <strong>the</strong> Relevant Network Operator accord<strong>in</strong>g to Article15(2) (a) or def<strong>in</strong>ed by Article 16(3) (a) and (b), with a target Power Factor <strong>in</strong> steps nogreater than 0.01. The Relevant Network Operator shall def<strong>in</strong>e while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3) <strong>the</strong> target Power Factor value and <strong>the</strong> tolerance expressed <strong>in</strong>Mvar or % on <strong>the</strong> Reactive Power value issued from conversion of Power Factor value,with<strong>in</strong> a period of time, follow<strong>in</strong>g a sudden change of Active Power output.5) The Relevant Network Operator <strong>in</strong> coord<strong>in</strong>ation with <strong>the</strong> Relevant TSO shall def<strong>in</strong>e whilerespect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3) which of <strong>the</strong> above three reactive power controlmode options and associated Setpo<strong>in</strong>ts shall apply and fur<strong>the</strong>r equipment to make <strong>the</strong>adjustment of <strong>the</strong> relevant Setpo<strong>in</strong>t operable remotely.e) With regard to priority to Active or Reactive Power contribution, <strong>the</strong> Relevant TSO shalldef<strong>in</strong>e while respect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3), whe<strong>the</strong>r Active Power contribution orReactive Power contribution has priority dur<strong>in</strong>g faults <strong>for</strong> which fault-ride-through capabilityis required. If priority is given to Active Power contribution, its provision shall be establishedno later than 150 ms from <strong>the</strong> fault <strong>in</strong>ception.f) With regard to power oscillations damp<strong>in</strong>g control, if required by <strong>the</strong> Relevant TSO, whilerespect<strong>in</strong>g <strong>the</strong> provisions of Article 4(3), a Power Park Module shall be capable ofcontribut<strong>in</strong>g to damp<strong>in</strong>g power oscillations. The voltage and reactive power controlcharacteristics of Power Park Modules shall not adversely affect <strong>the</strong> damp<strong>in</strong>g of poweroscillations.Article 17REQUIREMENTS FOR TYPE D POWER PARK MODULESType D Power Park Modules shall fulfil <strong>the</strong> requirements listed <strong>in</strong> Articles 8, 9, 10, 11, 15 and 16,except <strong>for</strong> Article 8(1) (f), Article 9(2) (a), Article 10(3) (a), and Article 15(2) (a).`45 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


Connection Po<strong>in</strong>t related to nom<strong>in</strong>al Voltage (per unit), and with<strong>in</strong> <strong>the</strong> time periods specified bytable 10.Synchronous AreaVoltage RangeTime period <strong>for</strong>operation0.85 pu – 0.90 pu 60 m<strong>in</strong>utes0.9 pu – 1.118 pu* UnlimitedCont<strong>in</strong>ental Europe1.118 pu – 1.15 pu*To be decided by eachTSO while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3),but not less than 20m<strong>in</strong>utes0.90 pu – 1.05 pu** Unlimited1.05 pu – 1.0875 pu**To be def<strong>in</strong>ed by eachTSO while respect<strong>in</strong>g <strong>the</strong>provisions of Article 4(3),but not less than 60m<strong>in</strong>utes1.0875 pu – 1.10 pu** 60 m<strong>in</strong>utesNordic0.90 pu – 1.05 pu Unlimited1.05 pu – 1.10 pu 60 m<strong>in</strong>utes0.90 pu – 1.10 pu* UnlimitedGreat Brita<strong>in</strong>0.90 pu – 1.05 pu** Unlimited1.05 pu – 1.10 pu** 15 m<strong>in</strong>utesIreland 0.90 pu – 1.10 pu Unlimited0.85 pu – 0.90 pu* 30 m<strong>in</strong>utes0.90 pu – 1.12 pu* UnlimitedBaltic1.12 pu – 1.15 pu* 20 m<strong>in</strong>utes0.88 pu – 0.90 pu** 20 m<strong>in</strong>utes* The Voltage base <strong>for</strong> pu values is below 300 kV.** The Voltage base <strong>for</strong> pu values is from 300 kV to 400 kV.0.90 pu – 1.10 pu** Unlimited1.10 pu – 1.15 pu** 20 m<strong>in</strong>utes`47 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


Table 10: This table shows <strong>the</strong> m<strong>in</strong>imum period an Offshore Power Park Module shall be capableof operat<strong>in</strong>g <strong>for</strong> different Voltage ranges deviat<strong>in</strong>g from a nom<strong>in</strong>al value without disconnect<strong>in</strong>g.2. The Voltage stability requirements def<strong>in</strong>ed respectively <strong>in</strong> Article 15(2) (b) and (c) as well as <strong>in</strong>Article 16(3) (a), (c), (d), (e) and (f) shall apply to any Offshore Power Park Module.3. The Reactive Power capability at Maximum Capacity as def<strong>in</strong>ed <strong>in</strong> Article 16(3) (b) shall apply toany Offshore Power Park Module, except <strong>for</strong> table 9, which shall be replaced by table 11.Synchronous Area Range of Q/P max Maximum range of steadystateVoltage level <strong>in</strong> PUCont<strong>in</strong>ental Europe 0.75 0.225Nordic 0.95 0.150Great Brita<strong>in</strong>0 *0.33 ** 0.100Ireland 0.66 0.218Baltic States 0.8 0.22* ) at <strong>the</strong> Offshore Connection Po<strong>in</strong>t <strong>for</strong> configuration 1** ) at <strong>the</strong> Offshore Connection Po<strong>in</strong>t <strong>for</strong> configuration 2Table 11: Parameters <strong>for</strong> figure 8Article 21ROBUSTNESS OF POWER GENERATING MODULES REQUIREMENTS APPLICABLE TO OFFSHOREPOWER PARK MODULES1. The robustness of Power Generat<strong>in</strong>g Modules requirements as def<strong>in</strong>ed <strong>in</strong> Article 10(4) (a) and(c), and Article 15 (3) shall apply to any Offshore Power Park Module.2. The fault-ride-through capability requirements as def<strong>in</strong>ed <strong>in</strong> Articles 9(3) (a) and 11(3) (a) shallapply to any Offshore Power Park Module.Article 22SYSTEM RESTORATION REQUIREMENTS APPLICABLE TO OFFSHORE POWER PARK MODULESThe <strong>system</strong> restoration requirements def<strong>in</strong>ed respectively <strong>in</strong> Articles 9(4) and 10(5) shall apply toany Offshore Power Park Module.`48 | P a g eENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 <strong>in</strong>fo@entsoe.eu • www.entsoe.euENTSO-E AISBL • Avenue Cortenbergh 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51


. .25 avril 2008 JOURNAL OFFICIEL DE LA RÉPUBLIQUE FRANÇAISE Texte 8 sur 228Décrets, arrêtés, circulairesTEXTES GÉNÉRAUXMINISTÈRE DE L’ÉCOLOGIE, DE L’ÉNERGIE, DU DÉVELOPPEMENTDURABLE ET DE L’AMÉNAGEMENT DU TERRITOIREArrêté du 23 avril 2008 relatif aux prescriptions techniques de conception et de fonctionnementpour le raccordement à un réseau public de distribution d’électricité en basse tension ou enmoyenne tension d’une <strong>in</strong>stallation de production d’énergie électriqueNOR : DEVE0808815ALe m<strong>in</strong>istre d’Etat, m<strong>in</strong>istre de l’écologie, de l’énergie, du développement durable et de l’aménagement duterritoire,Vu le décret n o 2000-877 du 7 septembre 2000 relatif à l’autorisation d’exploiter les <strong>in</strong>stallations deproduction d’électricité, notamment son article 1 er ;Vu le décret n o 2001-410 du 10 mai 2001 relatif aux conditions d’achat de l’électricité produite par desproducteurs bénéficiant de l’obligation d’achat, notamment son article 9 ter ;Vu le décret n o 2006-1278 du 18 octobre 2006 relatif à la compatibilité électromagnétique des équipementsélectriques et électroniques, notamment son article 3 ;Vu le décret n o 2007-1280 du 28 août 2007 relatif à la consistance des ouvrages de branchement etd’extension des raccordements aux réseaux publics d’électricité, notamment son article 2 ;Vu le décret n o 2008-386 du 23 avril 2008 relatif aux precriptions techniques générales de conception et defonctionnement pour le raccordement d’<strong>in</strong>stallations de production aux réseaux publics d’électricité ;Vu l’avis du comité technique de l’électricité en date du 25 septembre 2007 ;Vu l’avis du Conseil supérieur de l’énergie en date du 27 novembre 2007 ;Vu l’avis de la Commission de régulation de l’énergie en date du 28 février 2008,Arrête :Art. 1 er .−Le présent arrêté fixe les dispositions constructives et organisationnelles que doivent respecter les<strong>in</strong>stallations de production d’énergie électrique pour leur raccordement au réseau public de distributiond’électricité dans les doma<strong>in</strong>es de tension BT et HTA, à l’exclusion du doma<strong>in</strong>e de tension HTB. Cesdispositions s’appliquent aux <strong>in</strong>stallations de production qui livrent en permanence, ou par <strong>in</strong>termittence, toutou partie de leur production à un réseau public de distribution d’électricité, ou qui sont couplées à ce réseau enétant susceptibles de lui livrer de l’énergie.Pour l’application des dispositions du présent arrêté, « P max » désigne la puissance <strong>in</strong>stallée déf<strong>in</strong>ie àl’article 1 er du décret du 7 septembre 2000 susvisé. Par convention, la puissance P max est la puissance activepour les <strong>in</strong>stallations de production raccordées en HTA et la puissance apparente pour les <strong>in</strong>stallations deproduction raccordées en BT.Art. 2. − I.–1 o Les prescriptions du présent arrêté s’appliquent aux <strong>in</strong>stallations de production devant fairel’objet d’un premier raccordement a<strong>in</strong>si qu’aux <strong>in</strong>stallations de production existantes subissant une modificationsubstantielle dans les conditions déf<strong>in</strong>ies ci-après.Constituent, notamment, une modification substantielle de l’<strong>in</strong>stallation :– toute modification qui a pour effet de majorer de 10 % ou plus, la puissance P max, à elle seule ou ens’ajoutant à de précédentes augmentations de puissance <strong>in</strong>tervenues depuis le raccordement <strong>in</strong>itial ;– les <strong>in</strong>vestissements de rénovation mentionnés à l’article 9 ter du décret du 10 mai 2001 susvisé ;2 o Les prescriptions de l’arrêté s’appliquent à l’ensemble de l’<strong>in</strong>stallation de production modifiée lorsque :a) La modification substantielle a pour but ou conséquence de majorer de 50 % ou plus, la puissance P max, àelle seule ou en s’ajoutant à de précédentes augmentations de puissance <strong>in</strong>tervenues depuis le raccordement<strong>in</strong>itial ;b) La modification substantielle consiste en les <strong>in</strong>vestissements de rénovation mentionnés au I-1 ;3 o Dans les autres cas de modification substantielle que ceux visés au I-2, les prescriptions des articles 3, 4,16 et 17 de l’arrêté sont applicables à la totalité de l’<strong>in</strong>stallation de production et ses autres prescriptions sontapplicables uniquement aux parties nouvelles ou modifiées de l’<strong>in</strong>stallation de production.


. .25 avril 2008 JOURNAL OFFICIEL DE LA RÉPUBLIQUE FRANÇAISE Texte 8 sur 228II. – Sans préjudice des dispositions du I, les prescriptions fixées au chapitre II du présent arrêtés’appliquent dans le cas général et celles fixées au chapitre III dans le cas particulier où l’<strong>in</strong>stallation deproduction est située dans une zone du territoire non <strong>in</strong>terconnectée au réseau métropolita<strong>in</strong> cont<strong>in</strong>ental.CHAPITRE I erEtude et tension de raccordementArt. 3. − Après en avoir attesté l’exactitude, le producteur communique au gestionnaire du réseau public dedistribution d’électricité les caractéristiques techniques de son <strong>in</strong>stallation de production qui sont nécessaires àla déf<strong>in</strong>ition du raccordement a<strong>in</strong>si que, à la demande du gestionnaire, les éléments justificatifs de cettecertification. Les éléments de base à fournir sont précisés dans la documentation technique de référence dugestionnaire de réseau.L’attestation précitée porte a m<strong>in</strong>ima sur :– l’aptitude de l’<strong>in</strong>stallation de production à fonctionner dans les conditions normales de tension (c’est-à-direpour une tension au po<strong>in</strong>t de livraison ne s’écartant pas de la tension contractuelle de plus ou de mo<strong>in</strong>s de5 %) et de fréquence (c’est-à-dire pour une fréquence comprise entre 49,5 Hz et 50,5 Hz) rencontrées surle réseau public de distribution d’électricité et sans limitation de durée ;– l’aptitude de l’<strong>in</strong>stallation de production à rester en fonctionnement lorsque la fréquence ou la tension surle réseau public de distribution d’électricité atte<strong>in</strong>t des valeurs exceptionnelles et pendant des duréeslimitées ;– la con<strong>for</strong>mité de l’<strong>in</strong>stallation de production avec les obligations réglementaires et les normes relatives à lacompatibilité électromagnétique des équipements électriques et électroniques, en vigueur.Sur la base des renseignements visés au premier al<strong>in</strong>éa et con<strong>for</strong>mément aux méthodes, aux hypothèses desûreté, qui concernent notamment le schéma normal d’alimentation et la surcharge temporaire admissible suiteà une <strong>in</strong>disponibilité d’éléments du réseau public de distribution d’électricité et aux caractéristiques de cedernier, qui sont mentionnées dans sa documentation technique de référence, le gestionnaire du réseau publicde distribution d’électricité effectue une étude des conditions techniques du raccordement.Le raccordement de l’<strong>in</strong>stallation de production doit être compatible avec les prescriptions du présent arrêté,avec les autres obligations réglementaires auxquelles le gestionnaire du réseau public de distributiond’électricité est lui-même soumis et avec les autres engagements contractuels auxquels ce dernier a souscrit,notamment en matière de qualité de l’électricité. A cette f<strong>in</strong>, l’étude identifie les éventuelles contra<strong>in</strong>tes que leraccordement de l’<strong>in</strong>stallation de production est susceptible de faire peser, notamment sur :– l’<strong>in</strong>tensité maximale admissible dans les ouvrages du réseau public de distribution d’électricité ;– le pouvoir de coupure des disjoncteurs, la tenue <strong>the</strong>rmique et la tenue aux ef<strong>for</strong>ts électrodynamiques desouvrages du réseau public de distribution d’électricité a<strong>in</strong>si que, d’une façon générale, sur lefonctionnement des dispositifs de protection de ce réseau ;– le pouvoir de coupure des disjoncteurs, la tenue <strong>the</strong>rmique et la tenue aux ef<strong>for</strong>ts électrodynamiques desouvrages du poste de livraison de l’<strong>in</strong>stallation de production à raccorder ;– le pouvoir de coupure des disjoncteurs, la tenue <strong>the</strong>rmique et la tenue aux ef<strong>for</strong>ts électrodynamiques desouvrages des postes de livraison des autres utilisateurs du réseau public de distribution d’électricité déjàraccordés ;– le niveau de la tension au po<strong>in</strong>t de livraison de l’<strong>in</strong>stallation de production ;– le niveau de la tension aux po<strong>in</strong>ts de livraison des autres utilisateurs du réseau public de distributiond’électricité déjà raccordés, y compris les postes HTA/BT ;– le fonctionnement du plan de protection du réseau public de distribution d’électricité ;– le fonctionnement de la transmission des signaux tarifaires.Sur la base de son étude, et suite à une concertation préalable, le gestionnaire du réseau public dedistribution d’électricité propose au producteur une solution de raccordement respectant les prescriptions duprésent arrêté. Cette solution peut comporter des modalités techniques de raccordement et des adaptationstechniques du réseau public de distribution d’électricité et du réseau public de transport d’électricité à effectuerpréalablement à ce raccordement. Elle peut également être subordonnée à des adaptations techniques del’<strong>in</strong>stallation de production à raccorder et à des conditions à respecter pour son exploitation. Dans tous les cas,cette solution précise au producteur dans la convention de raccordement les éléments qui lui sont nécessairespour adapter l’<strong>in</strong>stallation de production, y compris ses divers dispositifs de protection. Le réglage de cesderniers est précisé dans la convention d’exploitation.Art. 4. − I. – La tension de raccordement de référence est déterm<strong>in</strong>ée en fonction de la puissance P maxcon<strong>for</strong>mément aux limites figurant dans le tableau ci-après :DOMAINE DE TENSION PUISSANCE P max LIMITEBT monophasé. 18 kVA


. .25 avril 2008 JOURNAL OFFICIEL DE LA RÉPUBLIQUE FRANÇAISE Texte 8 sur 228DOMAINE DE TENSION PUISSANCE P max LIMITEBT triphasé. 250 kVAHTA. 12 MWII. − Des raccordements dérogatoires aux doma<strong>in</strong>es de tension de raccordement de référence de ce tableaupeuvent être effectués sous réserve du respect des conditions fixées aux III à VI ci-après et des autresprescriptions du présent arrêté.III. − Pour une <strong>in</strong>stallation de production qui n’est pas située dans une zone du territoire non <strong>in</strong>terconnectéeau réseau métropolita<strong>in</strong> cont<strong>in</strong>ental, un producteur peut solliciter, à titre dérogatoire et exceptionnel, unraccordement en HTA si la puissance P maxde l’<strong>in</strong>stallation est comprise entre 12 MW et 17 MW. Legestionnaire du réseau public de distribution d’électricité n’est tenu d’y donner une suite favorable que dans lecas où, au vu des résultats de l’étude mentionnée à l’article 3, le raccordement s’avère possible sur un départdirect depuis le poste source au regard des prescriptions du présent arrêté.Lorsqu’un tel raccordement est effectué en HTA dans le cadre des prescriptions du présent arrêté et non enHTB con<strong>for</strong>mément aux prescriptions de raccordement propres à ce dernier doma<strong>in</strong>e de tension, ceraccordement est réputé s’effectuer à la tension de raccordement qualifiée d’« <strong>in</strong>férieure au doma<strong>in</strong>e de tensionde raccordement de référence » au sens des dispositions de l’article 2 du décret du 28 août 2007 susvisé.IV. − Aucune <strong>in</strong>stallation de production ne peut être raccordée à un réseau public de distributiond’électricité en BT monophasée lorsque sa puissance P maxexcède 18 kVA.V. − Aucune <strong>in</strong>stallation de production ne peut être raccordée à un réseau public de distribution d’électricitéen BT lorsque sa puissance P maxexcède 250 kVA.VI. − Aucune <strong>in</strong>stallation de production ne peut être raccordée à un réseau public de distributiond’électricité en HTA lorsque sa puissance P maxexcède 17 MW dans le cas général ou 12 MW lorsquel’<strong>in</strong>stallation est située dans une zone du territoire non <strong>in</strong>terconnectée au réseau métropolita<strong>in</strong> cont<strong>in</strong>ental. Ces<strong>in</strong>stallations de production doivent être raccordées à un réseau public d’électricité disposant du doma<strong>in</strong>e detension HTB dans le cadre des prescriptions propres à ce doma<strong>in</strong>e de tension.CHAPITRE IIPrescriptions techniques applicables dans le cas généralSection 1Sécurité des personnes et des biensArt. 5. − I. – L’<strong>in</strong>stallation de production doit être mise à la terre con<strong>for</strong>mément aux prescriptions duguide C 15-400 dans les conditions suivantes :Lorsqu’elle est couplée au réseau public de distribution d’électricité, l’<strong>in</strong>stallation de production bénéficie durégime de neutre établi par ce réseau et doit respecter les prescriptions suivantes :a) Installation de production raccordée au réseau public de distribution d’électricité BT : de manièregénérale, le neutre du réseau public de distribution d’électricité BT ne doit pas être relié à la terre dansl’<strong>in</strong>stallation de production. Toutefois, si le réseau le permet, la connexion du neutre du réseau public dedistribution d’électricité BT à la terre dans l’<strong>in</strong>stallation de production est possible, après accord dugestionnaire du réseau public de distribution d’électricité ;b) Installation de production raccordée au réseau public de distribution d’électricité HTA : aucun régime deneutre HTA ne doit être créé (même par un générateur homopolaire) dans l’<strong>in</strong>stallation de production.II. − Toute <strong>in</strong>stallation de production doit disposer par conception d’une fonction de protection permettantde la séparer automatiquement du réseau public de distribution d’électricité en cas d’apparition, sur cette<strong>in</strong>stallation de production, de l’un ou plusieurs des défauts explicités ci-après :a) Dans le cas d’un raccordement en HTA, défaut entre phases HTA et défaut HTA à la terre, selon lesdispositions de la norme NFC 13-100 ;b) Dans le cas d’un raccordement en BT, défaut entre conducteurs, selon les dispositions des normes NFC14-100 et NFC 15-100.Art. 6. − Le raccordement de l’<strong>in</strong>stallation de production ne doit pas entraîner, en situation de défaut, dedépassement du courant de court-circuit au-delà de la limite que les matériels HTA ou BT du réseau public dedistribution d’électricité peuvent supporter. La vérification de cette condition est faite par le gestionnaire duréseau public de distribution d’électricité en appliquant les méthodes données dans les publications de laCommission électrotechnique <strong>in</strong>ternationale (CEI 60-909 et ses différentes parties) avec des temps de courtcircuitsupérieurs ou égaux à 250 ms.


. .25 avril 2008 JOURNAL OFFICIEL DE LA RÉPUBLIQUE FRANÇAISE Texte 8 sur 228Art. 7. − I. – Toute <strong>in</strong>stallation de production doit disposer, par conception, d’une fonction de protection,dite « protection de découplage », permettant de séparer automatiquement l’<strong>in</strong>stallation de production du réseaupublic de distribution d’électricité en cas d’apparition sur ce dernier de l’un ou plusieurs simultanément desdéfauts suivants :a) Défaut HTA à la terre ;b) Défaut entre phases pour la HTA ;c) Défaut entre conducteurs pour la BT ;d) Création d’un sous-réseau séparé ;e) Tout défaut autre que les défauts susmentionnés survenant pendant le régime spécial d’exploitation<strong>in</strong>stauré lors de travaux sous tension effectués sur le réseau aérien HTA.II. − Les prescriptions techniques fonctionnelles m<strong>in</strong>imales de la fonction de protection visée au I sontcon<strong>for</strong>mes à la documentation technique de référence du gestionnaire du réseau public de distributiond’électricité et au guide C 15-400. Elles sont communiquées au producteur par le gestionnaire précité. Cesprescriptions prennent en compte les différents régimes d’exploitation du réseau public de distributiond’électricité, y compris le régime spécial d’exploitation <strong>in</strong>stauré pour les travaux sous tension effectués sur leréseau aérien HTA.III. − La fonction de protection visée au I ne doit pas <strong>in</strong>terférer avec le fonctionnement normal desprotections et automatismes <strong>in</strong>stallés par le gestionnaire du réseau public de distribution d’électricité. En outre,les seuils des phénomènes qui la déclenchent doivent être coordonnés avec ceux du dispositif de protection dugestionnaire du réseau public de distribution d’électricité de manière à respecter l’aptitude de l’<strong>in</strong>stallation deproduction à poursuivre son fonctionnement en cas d’atte<strong>in</strong>te des valeurs extrêmes de fréquence et de tensiondu réseau (régime exceptionnel) qui sont précisées aux articles 11 à 14. Toutefois, le réglage des seuils dedéclenchement de la fonction de protection pourra être adapté à la demande du gestionnaire du réseau dedistribution d’électricité en cas de présence d’automatismes de réenclenchement sur le réseau public dedistribution d’électricité (réseau aérien).Art. 8. − Aucun des dispositifs de protection de l’<strong>in</strong>stallation de production, y compris les éventuelsdispositifs <strong>in</strong>ternes des divers équipements parties prenantes à cette <strong>in</strong>stallation, ne doit, par sa conception ouson réglage :a) Perturber le fonctionnement normal des dispositifs de protection du réseau public de distributiond’électricité mis en œuvre par le gestionnaire de celui-ci ;b) Etre activé dans des conditions mo<strong>in</strong>s sévères que celles qui déclenchent la fonction de protection dedécouplage visée à l’article précédent.Section 2Doma<strong>in</strong>e de fonctionnement de l’<strong>in</strong>stallationArt. 9. − Les <strong>in</strong>stallations de production raccordées en basse tension ne doivent pas absorber de puissanceréactive.Art. 10. − Toute <strong>in</strong>stallation de production raccordée au réseau public de distribution d’électricité HTA doitpouvoir fournir ou absorber, au po<strong>in</strong>t de livraison, les puissances réactives m<strong>in</strong>imales fixées comme ci-après :a) Lorsque la tension au po<strong>in</strong>t de livraison est égale à la tension contractuelle plus ou mo<strong>in</strong>s 5 %,l’<strong>in</strong>stallation de production qui délivre la puissance P max doit pouvoir également, sans limitation de durée,fournir une puissance réactive au mo<strong>in</strong>s égale à 0,4 × P maxou absorber une puissance réactive au mo<strong>in</strong>s égaleà 0,35 × P max;b) Lorsque la tension au po<strong>in</strong>t de livraison s’écarte de la tension contractuelle comme il est dit à l’article 13,l’<strong>in</strong>stallation de production doit pouvoir moduler sa production ou sa consommation de puissance réactive dansles limites d’un doma<strong>in</strong>e de fonctionnement m<strong>in</strong>imal déf<strong>in</strong>i dans la documentation technique de référence dugestionnaire du réseau public de distribution d’électricité sous la <strong>for</strong>me d’un diagramme [U, Q].Toutefois, lorsque la capacité de l’<strong>in</strong>stallation de production à fournir ou à absorber de la puissance réactiven’est acquise, en totalité ou pour partie, que par l’<strong>in</strong>termédiaire de l’adjonction d’équipements accessoires, soità l’<strong>in</strong>térieur du site de l’<strong>in</strong>stallation de production, soit, à titre exceptionnel, en complément des équipementsexistants du réseau public de distribution d’électricité, l’<strong>in</strong>stallation de production peut être <strong>in</strong>itialementraccordée sans ces équipements accessoires, dès lors que l’étude mentionnée à l’article 3 démontre que ceux-c<strong>in</strong>e sont pas immédiatement nécessaires. Cette dérogation est subordonnée à l’engagement du producteur àpourvoir ultérieurement à l’adjonction des équipements accessoires susmentionnés à la demande, assortie d’unpréavis, du gestionnaire du réseau public de distribution d’électricité. Cet engagement, les cas pouvantnécessiter sa mise en œuvre, a<strong>in</strong>si que le préavis précité doivent figurer dans la convention de raccordement.Dans tous les cas, la puissance réactive réellement fournie ou absorbée par l’<strong>in</strong>stallation de production dansles limites mentionnées aux a et b et le mode de régulation sont déterm<strong>in</strong>és par le gestionnaire du réseau dedistribution d’électricité con<strong>for</strong>mément aux pr<strong>in</strong>cipes mentionnés dans sa documentation technique de référenceen fonction des impératifs de gestion du réseau. Les dispositions du présent al<strong>in</strong>éa sont précisées en tant que debeso<strong>in</strong> dans les conventions de raccordement et d’exploitation.


. .25 avril 2008 JOURNAL OFFICIEL DE LA RÉPUBLIQUE FRANÇAISE Texte 8 sur 228Art. 11. − I. – Toute <strong>in</strong>stallation de production dont la puissance P maxest supérieure ou égale à 5 MW doitrester en fonctionnement lorsque la fréquence du réseau public de distribution d’électricité prend des valeursexceptionnelles, dans les conditions de durée et de perte maximale de puissance fixées dans le tableau ci-après :PLAGE DE FRÉQUENCEDURÉE MINIMALE DE FONCTIONNEMENTPERTE MAXIMALE DE PUISSANCE(pourcentage)Entre 49,5 Hz et 49 Hz. 5 heures 10Entre 49 Hz et 48 Hz. 3 m<strong>in</strong>utes 10Entre 48 Hz et 47,5 Hz. 3 m<strong>in</strong>utes 15Entre 47,5 Hz et 47 Hz. 20 secondes 20Entre 50,5 Hz et 51 Hz. 60 m<strong>in</strong>utes 10Entre 51 Hz et 51,5 Hz. 15 m<strong>in</strong>utes selon IIEntre 51,5 Hz et 52 Hz. 20 secondes selon IIEn outre, lorsque la fréquence excède 52 Hz, le producteur peut, de sa propre <strong>in</strong>itiative, déconnecterl’<strong>in</strong>stallation de production du réseau public de distribution d’électricité. S’il décide de la ma<strong>in</strong>tenir connectée,il doit s’assurer au préalable qu’elle est capable de supporter des excursions de fréquence entre 52 Hz et 55 Hzpendant au mo<strong>in</strong>s soixante secondes.II. − Toute <strong>in</strong>stallation de production visée par les dispositions du I doit être dotée d’un système decontrôle-commande permettant de réduire sa puissance lorsque la fréquence dépasse un seuil réglable entre50,5 Hz et 52 Hz. La per<strong>for</strong>mance de ce contrôle-commande a<strong>in</strong>si que le réglage du seuil précité sont convenusentre le producteur et le gestionnaire du réseau public de distribution d’électricité dans le respect desprescriptions détaillées dans la documentation technique de référence de ce gestionnaire et sont mentionnésdans les conventions de raccordement et d’exploitation.Art. 12. − Toute <strong>in</strong>stallation de production doit rester en fonctionnement pendant au mo<strong>in</strong>s v<strong>in</strong>gt m<strong>in</strong>utes,sans perte de puissance supérieure à 5 %, lorsque la tension (U) au po<strong>in</strong>t de livraison de l’<strong>in</strong>stallation deproduction s’écarte de la tension contractuelle (Uc) de la façon suivante :0,9 U c U 0,95 U cou1,05 U c U 1,1U c .Art. 13. − Lorsque, simultanément, la tension U s’écarte de U ccomme il est dit à l’article 12 et un régimeexceptionnel de fréquence apparaît, la durée m<strong>in</strong>imale de fonctionnement de toute <strong>in</strong>stallation de productiondont la puissance P maxest supérieure ou égale à 5 MW, est la plus petite des valeurs de durée fixées à l’articleprécédent et dans le tableau de l’article 11. En outre, les pertes maximales de puissance admissibles secumulent.Art. 14. − Toute <strong>in</strong>stallation de production dont la puissance P maxest supérieure ou égale à 5 MW doitrester en fonctionnement lors de l’apparition, au po<strong>in</strong>t de livraison de l’<strong>in</strong>stallation de production, d’un creuxde tension HTA déf<strong>in</strong>i comme ci-dessous.Creux de tension sur réseau HTA


. .25 avril 2008 JOURNAL OFFICIEL DE LA RÉPUBLIQUE FRANÇAISE Texte 8 sur 228Nota. – Au delà de 2 500 ms, la tension au po<strong>in</strong>t de livraison est réputée rejo<strong>in</strong>dre au mo<strong>in</strong>s le niveau 0,95 U c en mo<strong>in</strong>sde v<strong>in</strong>gt m<strong>in</strong>utes.Section 3Prescriptions diversesArt. 15. − Les obligations du producteur résultant des dispositions de l’article 3 du décret du 18 octobre 2006susvisé sont réputées satisfaites, pour ce qui concerne le raccordement de toute <strong>in</strong>stallation de production auréseau public de distribution d’électricité, lorsque les perturbations provoquées par celle-ci restent dans leslimites fixées ci-après.I. – Raccordement au réseau BT.Fluctuation de tension. – Le niveau de contribution de l’<strong>in</strong>stallation de production au papillotement longuedurée (Plt) doit être limité au po<strong>in</strong>t de livraison à 1.II. – Raccordement au réseau HTA.Harmoniques. – Pour toute <strong>in</strong>stallation de production dont la puissance P maxest supérieure ou égale à100 kW, les courants harmoniques <strong>in</strong>jectés sur le réseau public de distribution d’électricité sont limités, pourchaque harmonique de rang n, à la valeur, exprimée en ampère :où U c , la valeur de la tension contractuelle, est exprimée en V, P max est exprimée en W et où la valeur de k n , enfonction du rang n de l’harmonique, est donnée dans le tableau ci-dessous :RANGS IMPAIRS k nRANGS PAIRS k n3 4 % 2 2 %5 et 7 5 % 4 1 %9 2 % 4 0,5 %11 et 13 3 % 13 2 %Déséquilibre. – La contribution au taux de déséquilibre en tension au po<strong>in</strong>t de livraison de toute <strong>in</strong>stallationde production dont la charge monophasée équivalente est supérieure à 500 kVA est <strong>in</strong>férieure ou égale à 1 %.


. .25 avril 2008 JOURNAL OFFICIEL DE LA RÉPUBLIQUE FRANÇAISE Texte 8 sur 228Fluctuation de tension. – Le niveau de contribution de l’<strong>in</strong>stallation de production au papillotement doit êtrelimité au po<strong>in</strong>t de livraison à 0,35 en Pst et à 0,25 en Plt. Toutefois, des limites supérieures peuvent êtreadmissibles en fonction des caractéristiques locales du réseau public de distribution d’électricité dans les casspécifiés dans la documentation technique de référence du gestionnaire de ce réseau.Les prescriptions du présent II sont établies sur la base d’une puissance de court-circuit m<strong>in</strong>imale deréférence de 40 MVA au po<strong>in</strong>t de livraison HTA. Si la puissance de court-circuit effectivement mise àdisposition par le gestionnaire du réseau public de distribution d’électricité est <strong>in</strong>férieure, les limites desperturbations de tension produites par le producteur sont multipliées par le rapport entre la puissance de courtcircuitde référence (40 MVA) et la puissance de court-circuit effectivement fournie.Art. 16. − Le couplage et le découplage des <strong>in</strong>stallations de production au réseau public de distributiond’électricité doivent se faire selon les modalités de la convention d’exploitation dans le respect desprescriptions du présent article.Sur le réseau HTA, les vitesses des prises en charge et des cessations de charge qui résultent de l’actionvolontaire du producteur ne doivent pas dépasser 4 MW/m<strong>in</strong>ute.Les à-coups de tension au po<strong>in</strong>t de livraison dus à l’<strong>in</strong>stallation de production, consécutivement par exempleaux opérations de couplage et de découplage ou à la mise sous tension de l’<strong>in</strong>stallation, ne doivent pas dépasser5 %. Cette limite est établie sur la base d’une puissance de court-circuit m<strong>in</strong>imale de référence de 40 MVA aupo<strong>in</strong>t de raccordement HTA. Si la puissance de court-circuit effectivement mise à disposition du producteur parle gestionnaire du réseau public de distribution d’électricité est <strong>in</strong>férieure à 40 MVA, la limite précitée de 5 %est multipliée par un coefficient égal au rapport entre la puissance de court-circuit de référence (40 MVA) et lapuissance de court-circuit fournie.Art. 17. − I. – Si la puissance P maxde l’<strong>in</strong>stallation de production n’est pas marg<strong>in</strong>ale en terme de gestion etde conduite du réseau public de distribution d’électricité suivant la déf<strong>in</strong>ition donnée au II, le producteur doit,con<strong>for</strong>mément aux préconisations détaillées dans la documentation technique de référence du gestionnaire de ceréseau et selon des modalités précisées dans les conventions de raccordement et d’exploitation :– relier l’<strong>in</strong>stallation de production au centre de conduite du gestionnaire du réseau public de distributiond’électricité dans le but d’échanger des <strong>in</strong><strong>for</strong>mations et des demandes d’action d’exploitation relativesnotamment à la gestion des puissances active et réactive de l’<strong>in</strong>stallation de production, de ses connexionset déconnexions du réseau public de distribution d’électricité et de la valeur de la tension au po<strong>in</strong>t delivraison. Les <strong>in</strong><strong>for</strong>mations et demandes d’action précitées sont précisées dans les conventions deraccordement et d’exploitation ;– communiquer au gestionnaire du réseau public de distribution d’électricité le programme defonctionnement de l’<strong>in</strong>stallation de production ; le contenu de ce programme, sa fréquence de mise à jouret le préavis avec lequel ces <strong>in</strong><strong>for</strong>mations sont transmises au gestionnaire du réseau public de distributiond’électricité sont déterm<strong>in</strong>és par accord entre les deux parties et sont mentionnés dans la conventiond’exploitation.II. − Il est considéré que la puissance P maxd’une <strong>in</strong>stallation de production n’est pas marg<strong>in</strong>ale si l’une aumo<strong>in</strong>s des conditions ci-après est remplie :– l’<strong>in</strong>stallation de production est raccordée au réseau public de distribution d’électricité par un départ HTAdirect depuis le poste source et sa puissance P max atte<strong>in</strong>t au mo<strong>in</strong>s 25 % de la puissance nom<strong>in</strong>ale dutrans<strong>for</strong>mateur HTB/HTA auquel il est prévu de relier le départ HTA précité ;– l’<strong>in</strong>stallation de production est raccordée au réseau public de distribution d’électricité par un départ HTAdesservant d’autres utilisateurs et sa puissance P maxatte<strong>in</strong>t au mo<strong>in</strong>s 25 % de la puissance de la chargemoyenne de ce départ HTA, cette charge moyenne étant calculée à partir du constat effectué sur les troisannées précédant celle de la demande du raccordement de l’<strong>in</strong>stallation de production ;– la puissance P max est supérieure ou égale à 5 MW.CHAPITRE IIIPrescriptions techniques particulières applicables aux <strong>in</strong>stallations de productionsituées dans une zone du territoire non <strong>in</strong>terconnectée au réseau métropolita<strong>in</strong> cont<strong>in</strong>entalArt. 18. − Les dispositions du présent chapitre a<strong>in</strong>si que celles du chapitre II, à l’exception des articles 11et 13, s’appliquent au raccordement de toute <strong>in</strong>stallation de production située dans une zone du territoire non<strong>in</strong>terconnectée au réseau métropolita<strong>in</strong> cont<strong>in</strong>ental.Toutefois, pour l’application des dispositions du III de l’article 7, le réglage des seuils de déclenchement dela fonction de protection doit être adapté en fonction des valeurs extrêmes de la fréquence pouvant êtrerencontrées sur le réseau public de distribution d’électricité telles qu’elles sont fixées à l’article 19. Ce réglagedoit également être adapté à la demande du gestionnaire du réseau public de distribution d’électricité en cas deprésence d’automatismes de réenclenchement sur le réseau public de distribution d’électricité (réseau aérien)a<strong>in</strong>si qu’en cas de participation de l’<strong>in</strong>stallation de production à la reconstitution du réseau public dedistribution d’électricité.De même, pour l’application des dispositions des articles 14 et 17, les critères relatifs à la puissance P max quiy figurent sont à remplacer par le critère relatif à la puissance P maxmentionné au I de l’article 19.


. .25 avril 2008 JOURNAL OFFICIEL DE LA RÉPUBLIQUE FRANÇAISE Texte 8 sur 228Art. 19. − I. – Toute <strong>in</strong>stallation de production dont la puissance P maxatte<strong>in</strong>t au mo<strong>in</strong>s 1 % de la puissancem<strong>in</strong>imale transitant sur le réseau public de distribution d’électricité, cette puissance m<strong>in</strong>imale correspondant àla valeur moyenne des m<strong>in</strong>ima constatés pendant les trois années précédant le raccordement de l’<strong>in</strong>stallation deproduction, doit fonctionner sans limitation de durée dans la plage de fréquence de 48 Hz à 52 Hz.II. – Toute <strong>in</strong>stallation de production visée par les dispositions du I doit rester en fonctionnement lorsque lafréquence du réseau public de distribution d’électricité prend des valeurs exceptionnelles, dans les conditions dedurée et de perte maximale de puissance fixées dans le tableau ci-après :PLAGE DE FRÉQUENCEDURÉE MINIMALE DE FONCTIONNEMENTPERTE MAXIMALE DE PUISSANCE(pourcentage)Entre 48 Hz et 47 Hz. 3 m<strong>in</strong>utes 10Entre 47 Hz et 46 Hz. 60 secondes 15Fréquence <strong>in</strong>férieure à 46 Hz. 0,4 seconde 20Entre 52 Hz et 53 Hz. 5 secondes 20En outre, lorsque la fréquence excède 53 Hz, le producteur ne doit pas, de sa propre <strong>in</strong>itiative, ma<strong>in</strong>tenirl’<strong>in</strong>stallation de production connectée au réseau public de distribution d’électricité.Art. 20. − Lorsque, simultanément, la tension U s’écarte de U ccomme il est dit à l’article 12 et un régimeexceptionnel de fréquence apparaît, la durée m<strong>in</strong>imale de fonctionnement de toute <strong>in</strong>stallation de productionvisée par les dispositions du I de l’article 19, est la plus petite des valeurs de durée fixées à l’article 12 et dansle tableau de l’article 19. En outre, les pertes maximales de puissance admissibles se cumulent.Art. 21. − Toute <strong>in</strong>stallation de production visée par les dispositions du I de l’article 19, à l’exception decelles mettant en œuvre de l’énergie fatale telles les fermes éoliennes, les <strong>in</strong>stallations photovoltaïques, lescentrales hydrauliques « fil de l’eau », doit, par conception, disposer d’une capacité de réglage de la puissanceactive d’une amplitude correspondant au mo<strong>in</strong>s à 20 % de la puissance P max et être équipée d’un régulateur quiajuste la puissance fournie en fonction de l’écart entre la valeur réelle de la fréquence et sa valeur de consigne.Les per<strong>for</strong>mances de ce régulateur sont spécifiées dans la documentation technique de référence du gestionnairedu réseau public de distribution d’électricité et précisées dans la convention de raccordement.Toute <strong>in</strong>stallation de production visée par les dispositions de l’al<strong>in</strong>éa précédent doit ma<strong>in</strong>tenir en permanenceà la disposition du gestionnaire du réseau public de distribution d’électricité une marge de puissance active,dite « réserve primaire », en plus ou en mo<strong>in</strong>s, correspondant à 10 % de la puissance P max.Art. 22. − Toute <strong>in</strong>stallation de production visée par les dispositions du I de l’article 19 et mettant enœuvre de l’énergie fatale à caractère aléatoire telles les fermes éoliennes et les <strong>in</strong>stallations photovoltaïquespeut être déconnectée du réseau public de distribution d’électricité à la demande du gestionnaire de ce réseaulorsque ce dernier constate que la somme des puissances actives <strong>in</strong>jectées par de telles <strong>in</strong>stallations atte<strong>in</strong>t 30 %de la puissance active totale transitant sur le réseau. Les circonstances dans lesquelles ces déconnectionspeuvent être demandées sont précisées dans la convention de raccordement et les modalités selon lesquelleselles sont effectuées le sont dans la convention d’exploitation.Art. 23. − Pour les réseaux publics de distribution d’électricité dont la fréquence nom<strong>in</strong>ale est différente de50 Hz, les dispositions du présent chapitre faisant <strong>in</strong>tervenir la fréquence sont adaptées en conséquence.CHAPITRE IVDispositions f<strong>in</strong>ales et transitoiresArt. 24. − I. – Les dispositions du présent arrêté s’appliquent à toute <strong>in</strong>stallation de production devant fairel’objet d’un premier raccordement à un réseau public de distribution d’électricité dès lors que le gestionnaire dece réseau n’a pas transmis au producteur, pour ce raccordement, d’offre de raccordement antérieurement au25 avril 2008. Elles s’appliquent également aux <strong>in</strong>stallations de production existantes subissant unemodification substantielle dès lors que le gestionnaire du réseau public de distribution d’électricité n’a pastransmis au producteur, pour cette modification, d’offre de raccordement antérieurement à cette même date.II. – Pour toute <strong>in</strong>stallation de production visée par les dispositions de l’article 11, lorsque l’offre deraccordement a été transmise au producteur au plus tard le 30 septembre 2009, le tableau de cet article estremplacé par le tableau ci-après :PLAGE DE FRÉQUENCEDURÉE MINIMALE DE FONCTIONNEMENTPERTE MAXIMALE DE PUISSANCE(pourcentage)Entre 49,5 Hz et 49 Hz. 5 heures 10


. .25 avril 2008 JOURNAL OFFICIEL DE LA RÉPUBLIQUE FRANÇAISE Texte 8 sur 228PLAGE DE FRÉQUENCEDURÉE MINIMALE DE FONCTIONNEMENTPERTE MAXIMALE DE PUISSANCE(pourcentage)Entre 49 Hz et 48,5 Hz. 3 m<strong>in</strong>utes 10Entre 48,5 Hz et 48 Hz. 3 m<strong>in</strong>utes 15Entre 48 Hz et 47,5 Hz. 3 m<strong>in</strong>utes 20Entre 50,5 Hz et 51 Hz. 60 m<strong>in</strong>utes 50Entre 51 Hz et 51,5 Hz. 15 m<strong>in</strong>utes selon IIEn outre, pour ces <strong>in</strong>stallations, le seuil de 52 Hz mentionné dans le dernier al<strong>in</strong>éa du I de l’article 11 etdans son II est remplacé par le seuil de 51,5 Hz.III. – Pour toute <strong>in</strong>stallation de production visée par les dispositions de l’article 14, lorsque l’offre deraccordement a été transmise au producteur au plus tard le 30 septembre 2009, le creux de tension HTA àconsidérer est celui déf<strong>in</strong>i comme ci-après :Creux de tension sur réseau HTA(mesure provisoire jusqu’au 30 septembre 2009)Nota. – Au-delà de 2 500 ms, la tension au po<strong>in</strong>t de livraison est réputée rejo<strong>in</strong>dre au mo<strong>in</strong>s le niveau 0,95 U c en mo<strong>in</strong>sde v<strong>in</strong>gt m<strong>in</strong>utes.Art. 25. − Les arrêtés ci-après sont abrogés sauf en tant qu’ils concernent des demandes de raccordement etdes modifications substantielles pour lesquelles le gestionnaire du réseau public de distribution d’électricitéconcerné a transmis au pétitionnaire une offre de raccordement antérieurement au 25 avril 2008 :– l’arrêté du 17 mars 2003 relatif aux prescriptions techniques de conception et de fonctionnement pour leraccordement à un réseau public de distribution d’une <strong>in</strong>stallation de production d’énergie électrique ;– l’arrêté du 22 avril 2003 modifiant l’arrêté du 17 mars 2003 relatif aux prescriptions techniques deconception et de fonctionnement pour le raccordement à un réseau public de distribution d’une <strong>in</strong>stallationde production d’énergie électrique ;– l’arrêté du 27 octobre 2006 modifiant l’arrêté du 17 mars 2003 modifié relatif aux prescriptions techniquesde conception et de fonctionnement pour le raccordement à un réseau public de distribution d’une<strong>in</strong>stallation de production d’énergie électrique.Art. 26. − Le directeur de la demande et des marchés énergétiques est chargé de l’exécution du présentarrêté, qui sera publié au Journal officiel de la République française.Fait à Paris, le 23 avril 2008.


. .25 avril 2008 JOURNAL OFFICIEL DE LA RÉPUBLIQUE FRANÇAISE Texte 8 sur 228Pour le m<strong>in</strong>istre et par délégation :Le directeur de la demandeet des marchés énergétiques,P. ABADIE


MINISTÈRE DE L’ÉCOLOGIE, DE L’ÉNERGIE,DU DÉVELOPPEMENT DURABLE ET DE LA MERen charge des Technologies Vertes et des Négociations sur le ClimatCahier des charges de l’appel d’offres n° 332689-2010-FRportant sur des <strong>in</strong>stallations éoliennes terrestresde production d’électricitéen Corse, Guadeloupe, Guyane, Mart<strong>in</strong>ique, à La Réunion,à Sa<strong>in</strong>t-Barthélemy et à Sa<strong>in</strong>t-Mart<strong>in</strong>1 Contexte et objet de l’appel d’offresLe m<strong>in</strong>istre d’Etat, m<strong>in</strong>istre de l’Ecologie, de l’Energie, duDéveloppement durable et de la Mer a présenté le 17 novembre 2008 leplan de développement des énergies renouvelables de la France issu duGrenelle de l’Environnement. Celui-ci vise à augmenter de 20 millionsde tonnes équivalent pétrole (Mtep) la production annuelle d’énergiesrenouvelables pour porter la part des énergies renouvelables à au mo<strong>in</strong>s23 % de la consommation d’énergie f<strong>in</strong>ale d’ici à 2020. Cet objectif aété <strong>in</strong>scrit dans la loi n°2009-967 du 3 août 2009 de programmationrelative à la mise en œuvre du Grenelle de l’environnement. L’article 56 de cette loi fixe parailleurs des orientations spécifiques particulièrement ambitieuses pour les collectivitésd’outre-mer. En effet, notamment pour les collectivités visées par le présent appel d’offres,celles-ci sont appelées à parvenir à l’autonomie énergétique, en atteignant, dès 2020, unobjectif de 50 % au m<strong>in</strong>imum d’énergies renouvelables dans la consommation f<strong>in</strong>ale età développer les technologies de stockage de l’énergie et de gestion du réseau pour augmenterla part de la production d’énergie renouvelable <strong>in</strong>termittente af<strong>in</strong> de con<strong>for</strong>ter l’autonomieénergétique.Le rapport de programmation pluriannuelle des <strong>in</strong>vestissements de production d’électricitépour la période 2009-2020, remis en ju<strong>in</strong> 2009 au Parlement, prévoit le développement de19 000 MW d’éolien terrestre en France (métropole et DOM) à l’horizon 2020, contre environ4 500 MW raccordés au réseau à f<strong>in</strong> 2009. A f<strong>in</strong> 2009, des <strong>in</strong>stallations éoliennes cumulantenviron 60 MW de puissance <strong>in</strong>stallée étaient raccordées au réseau dans les zones non<strong>in</strong>terconnectées au territoire métropolita<strong>in</strong>. Depuis 2008, le parc éolien a très peu évolué dansces zones.Concernant les perspectives de développement de l’éolien, le rapport de programmationpluriannuelle des <strong>in</strong>vestissements souligne l’importance d’assurer une bonne <strong>in</strong>tégration del’électricité <strong>in</strong>termittente dans les réseaux électriques. Cet enjeu revêt une grande importancepour les zones non <strong>in</strong>terconnectées au territoire métropolita<strong>in</strong>, qui présentent des faiblessesparticulières étant donné la taille et les sources limitées de leur parc de production électrique.En vue de l’atte<strong>in</strong>te des objectifs fixés par l’article 56 de la loi n°2009-967 du 3 août 2009 deprogrammation relative à la mise en œuvre du Grenelle de l’environnement, a<strong>in</strong>si que parl’arrêté du 15 décembre 2009 relatif à la programmation pluriannuelle des <strong>in</strong>vestissements de1/43


production d'électricité, et en application des dispositions de l’article 8 de la loi n°2000-108du 10 février 2000 relative à la modernisation et au développement du service public del’électricité, le m<strong>in</strong>istre d’Etat a décidé de lancer des appels d’offres, portant sur laconstruction d’<strong>in</strong>stallations éoliennes terrestres équipées de dispositifs de stockage d’énergieélectrique et de prévision de production dans les régions de Corse, Guadeloupe, Guyane,Mart<strong>in</strong>ique, La Réunion et les collectivités de Sa<strong>in</strong>t-Barthélemy et Sa<strong>in</strong>t-Mart<strong>in</strong>. Ces appelsd’offres visent à :- d’une part, relancer la dynamique du développement des <strong>in</strong>stallations éoliennesterrestres dans les départements et collectivités d’outre-mer et en Corse af<strong>in</strong>d’atte<strong>in</strong>dre les objectifs fixés dans la loi de programmation relative à la mise en œuvredu Grenelle de l’environnement ;- d’autre part, faire émerger des technologies permettant de réduire l’impact des<strong>in</strong>stallations éoliennes sur le réseau électrique, af<strong>in</strong> de rendre possible uneaugmentation significative de la part des énergies renouvelables <strong>in</strong>termittentes dans laproduction d’électricité de ces territoires, actuellement limitée à 30%.Le présent cahier des charges déf<strong>in</strong>it les règles applicables au premier appel d’offres qui seralancé en 2010 et qui portera sur l’<strong>in</strong>stallation d’une capacité maximale de 95 MW, répartie en5 tranches comme suit :- tranche 1 : dans le département de la Guadeloupe et les collectivités de Sa<strong>in</strong>t-Barthélemy et Sa<strong>in</strong>t-Mart<strong>in</strong>, au plus 3 projets ne pouvant dépasser une capacité<strong>in</strong>stallée cumulée de 20 MW ;- tranche 2 : dans le département de la Mart<strong>in</strong>ique, au plus 3 projets ne pouvant dépasserune capacité <strong>in</strong>stallée cumulée de 20 MW ;- tranche 3 : dans le département de La Réunion, au plus 3 projets ne pouvant dépasserune capacité <strong>in</strong>stallée cumulée de 20 MW ;- tranche 4 : dans le département de la Guyane, un projet ne pouvant dépasser unecapacité <strong>in</strong>stallée de 15 MW ;- tranche 5 : dans les départements de la Corse, au plus 3 projets ne pouvant dépasserune capacité <strong>in</strong>stallée cumulée de 20 MW.Les <strong>in</strong>stallations objet du présent appel d’offres, sous réserve du respect des conditions dudispositif de garantie de production telles que spécifiées à l’annexe 3 du cahier des charges,ne sont pas considérées comme mettant en oeuvre de l’énergie fatale et aléatoire au sens del’article 22 de l’arrêté du 23 avril 2008 relatif aux prescriptions techniques de conception etde fonctionnement pour le raccordement à un réseau public de distribution d'électricité enbasse tension ou en moyenne tension d'une <strong>in</strong>stallation de production d'énergie électrique.Les <strong>in</strong>stallations objet du présent appel d’offres ne respectant pas les conditions du dispositifde garantie de la production déf<strong>in</strong>ies à l’annexe 3 du cahier des charges feront l’objet dessanctions prévues au paragraphe 6.2.Peut participer à cet appel d’offres toute personne exploitant ou désirant construire etexploiter une <strong>in</strong>stallation de production, sous réserve des dispositions des articles L.2224-32et L.2224-33 du code général des collectivités territoriales.En application du décret n°2002-1434 du 4 décembre 2002 modifié, la Commission derégulation de l’énergie (CRE) est chargée de la mise en oeuvre de la procédure d’appel2/43


d’offres : sur la base des conditions déf<strong>in</strong>ies par le m<strong>in</strong>istre chargé de l’énergie, elle proposeun projet de cahier des charges, que le m<strong>in</strong>istre peut modifier avant de l’arrêter. Elle répondaux questions éventuelles des candidats, reçoit, <strong>in</strong>struit et note les dossiers de candidature,puis donne un avis motivé sur le choix qu’envisage d’arrêter le m<strong>in</strong>istre.Il est rappelé que le fait pour un candidat d’être retenu dans le cadre du présent appel d’offresne préjuge en rien du bon aboutissement des autres procédures adm<strong>in</strong>istratives qu’il luiappartient de conduire et, en particulier, de celles dest<strong>in</strong>ées à obtenir toutes les autorisationsnécessaires relatives, notamment, à la con<strong>for</strong>mité technique des <strong>in</strong>stallations et à la protectionde l’environnement.2 Dispositions adm<strong>in</strong>istratives2.1 Formes de l’offreUne offre doit respecter les dispositions du présent cahier des charges, con<strong>for</strong>mément auxparagraphes 2, 3 et 4 et au <strong>for</strong>mulaire de candidature jo<strong>in</strong>t en annexe 1 ; toutes les<strong>in</strong><strong>for</strong>mations, la documentation et les pièces justificatives requises pour un projet, dont la listefigure en annexe 2, doivent être fournies au <strong>for</strong>mat demandé et en français. L’absence d’unepièce 1 entraîne le rejet du dossier concerné, con<strong>for</strong>mément au paragraphe 2.8.Le candidat qui présente plus d’une offre doit réaliser autant de dossiers de candidature qued’offres et les adresser sous enveloppes séparées.En plus de la copie papier demandée, le candidat doit fournir, sur CD-ROM, le <strong>for</strong>mulaireélectronique de candidature dûment rempli a<strong>in</strong>si qu’une reproduction au <strong>for</strong>mat « pdf » de sondossier de candidature. Le <strong>for</strong>mulaire électronique de candidature est à télécharger sur le site<strong>in</strong>ternet de la CRE (www.cre.fr). L’ensemble du <strong>for</strong>mulaire de l’annexe 1 doit être imprimédirectement à partir de ce <strong>for</strong>mulaire électronique.Le candidat est <strong>in</strong><strong>for</strong>mé qu’il n’aura droit à aucune <strong>in</strong>demnité pour les frais qu’il a pu engagerpour participer au présent appel d’offres et à l’élaboration de son dossier.2.2 Exploitation du moyen de productionCon<strong>for</strong>mément aux dispositions de l’article 8 de la loi n°2000-108 du 10 février 2000, lecandidat, s’il est retenu, devra exploiter lui-même l’<strong>in</strong>stallation.2.3 Engagement de mise en service du candidatCon<strong>for</strong>mément à l’article 7 du décret n°2002-1434 du 4 décembre 2002, la remise d’une offrevaut engagement du candidat à mettre en service l’<strong>in</strong>stallation. En conséquence, le candidatn’est pas autorisé à proposer des offres sur lesquelles porte une condition d’exclusion. Le caséchéant, de telles offres seront rejetées.Con<strong>for</strong>mément à ce même article, l’absence de mise en service de l’<strong>in</strong>stallation dans le délaiprévu pourra faire l’objet des sanctions prévues à l’article 41 de la loi du 10 février 2000.1 Une pièce envoyée après la date limite d’envoi ou non con<strong>for</strong>me aux spécifications du cahier des charges estconsidérée comme absente du dossier3/43


Annexe 3 : Conditions du dispositif de garantie de la production électriqueLes zones concernées par le présent appel d’offres sont des territoires <strong>in</strong>sulaires pour lesquels la questionde l’<strong>in</strong>termittence de la production des <strong>in</strong>stallations éoliennes et de la variation de la puissance disponibleà court terme est un enjeu important pour la gestion du système électrique. Une dim<strong>in</strong>ution del’<strong>in</strong>termittence des moyens de production éolienne n’est possible que si le projet <strong>in</strong>tègre une dimension deprévision de production, associée à des dispositifs permettant la mise en œuvre de services système(régulation de fréquence, tenue de la tension, etc.), par exemple grâce à un stockage de l’énergie produite.Chaque <strong>in</strong>stallation éolienne devra <strong>in</strong>tégrer un dispositif de garantie d’<strong>in</strong>jection de l’électricité produite.Ce dispositif devra respecter les exigences énoncées ci-après. Son dimensionnement devra être optimiséde sorte à m<strong>in</strong>imiser les coûts de production.Le respect de ces exigences permettra aux projets de s’affranchir des dispositions applicables aux<strong>in</strong>stallations mettant en œuvre de l’énergie fatale à caractère aléatoire prévues par l’article 22 de l’arrêtédu 23 avril 2008 relatif aux prescriptions techniques de conception et de fonctionnement pour leraccordement à un réseau public de distribution d’électricité en basse tension ou en moyenne tensiond’une <strong>in</strong>stallation de production d’énergie électrique.a. Prévisions de productionPour dim<strong>in</strong>uer l’<strong>in</strong>termittence des moyens de production éolienne, le candidat proposant l’<strong>in</strong>stallationéolienne doit mettre en place un système de prévision de la production éolienne basée sur les données devent disponibles dans la zone concernée.Le producteur doit fournir au gestionnaire du système électrique, 3 jours à l’avance (J-3), avec correctionà J-1 un gabarit de puissance qu’il prévoit d’<strong>in</strong>jecter sur le réseau sur une durée de 24 heures, avec despériodes stables d’au mo<strong>in</strong>s 30 m<strong>in</strong>utes. La prévision devra être donnée pour chacune des tranches d’aumo<strong>in</strong>s 30 m<strong>in</strong>utes de la période couverte par la prévision.Une prédiction à 3 heures, en complément de celle à J-1 (par pas de 30 mn) pourra être proposée pouraff<strong>in</strong>er la dynamique de prédiction.La variation de la puissance réalisée par rapport au gabarit à J-1 doit rester <strong>in</strong>férieure à plus ou mo<strong>in</strong>s25 % de la puissance maximale de l’<strong>in</strong>stallation pendant la première année d’exploitation de l’<strong>in</strong>stallationéolienne, 20 % pendant la deuxième année d’opération, puis 15 % pendant toutes les années suivantes.L’écart par rapport au gabarit prévisionnel peut être géré par un moyen de stockage dimensionné enconséquence ou par une limitation de la puissance produite.b. Variation de la puissanceLe système de prévision de production déf<strong>in</strong>i au (a) doit permettre la stabilité de la puissance électriquedélivrée par l’<strong>in</strong>stallation éolienne sur une durée égale à celle déterm<strong>in</strong>ée pour la prévision de production.Il n’<strong>in</strong>clut pas les phases de démarrage et d’arrêt prévus de l’<strong>in</strong>stallation éolienne.Lors des montées ou des baisses de la puissance produite liées au passage d’une tranche du gabarit depuissance à la suivante (passage des valeurs P1 à P2, puis P2 à P3, etc. dans le schéma ci-dessous),l’<strong>in</strong>stallation éolienne doit respecter les vitesses de variation de la puissance suivantes :- augmentation de la puissance : vitesse de variation correspondant à un passage de 0 à Pmax en untemps réglable entre 30 s et 5 m<strong>in</strong> ;- dim<strong>in</strong>ution de la puissance : vitesse de variation correspondant à un passage de Pmax à 0 en untemps réglable entre 1 m<strong>in</strong> et 10 m<strong>in</strong>.26/43


En fonction du retour d’expérience, le gestionnaire du système électrique pourra être amené à demanderau producteur de faire évoluer ces réglages, à l’<strong>in</strong>térieur des plages mentionnées ci-dessus.P_éolP1P2P3TTTtc. Tenue en fréquence et en tensionLes conditions de tenue en tension et en fréquence que doit respecter l’<strong>in</strong>stallation sont déf<strong>in</strong>ies auchapitre III de l’arrêté du 23 avril 2008 relatif aux prescriptions techniques de conception et defonctionnement pour le raccordement à un réseau public de distribution d’électricité en basse tension ouen moyenne tension d’une <strong>in</strong>stallation de production d’énergie électrique ou, le cas échéant, au chapitre IIIde l’arrêté du 4 juillet 2003 relatif aux prescriptions techniques de conception et de fonctionnement pourle raccordement au réseau public de transport d'une <strong>in</strong>stallation de production d'énergie électrique, et dansla documentation technique de référence (dite « référentiel technique ») du gestionnaire du systèmeélectrique concerné.Les conditions (i) et (ii) suivantes sont liées et doivent être appréhendées conjo<strong>in</strong>tement.i. Réserve primaire de puissanceEtant donné le caractère <strong>in</strong>sulaire des systèmes électriques des territoires concernés par le présent appeld’offres, ceux-ci peuvent se montrer plus fragiles que les réseaux métropolita<strong>in</strong>s <strong>in</strong>terconnectés. Les<strong>in</strong>stallations éoliennes doivent contribuer à la stabilité du système électrique af<strong>in</strong> d’éviter des coupuresd’électricité générales.La chute de fréquence du réseau au-delà de la bande morte des régulations des groupes de productionclassiques (cf. graphe ci-après) est un événement révélateur du beso<strong>in</strong> en puissance active du systèmeélectrique pour éviter des coupures par délestage fréquencemétrique.A<strong>in</strong>si le fonctionnement avec une réserve primaire effectivement disponible égale à 10 % de la puissancede raccordement de l’<strong>in</strong>stallation éolienne doit être assuré. La durée pendant laquelle cette réserveprimaire peut être délivrée au réseau doit être d’au mo<strong>in</strong>s 15 m<strong>in</strong>. Cette règle s’applique comme suit :- lorsque l’<strong>in</strong>stallation éolienne produit entre 0 % et 90 % <strong>in</strong>clus de sa puissance de raccordement,elle doit fonctionner avec une réserve primaire de 10 % ;- lorsque l’<strong>in</strong>stallation éolienne produit plus de 90 % de sa puissance de raccordement, elle doitfonctionner avec une réserve primaire égale à la différence entre la puissance de raccordement etla puissance réalisée, comprise entre 10 % (exclus) à 0 % (<strong>in</strong>clus). Une réserve primaire de 0 %correspond au fonctionnement à la puissance de raccordement.27/43


ii. Conditions d’appel de la puissance de réserveEtant donné les exigences du paragraphe (i) ci-dessus, un fonctionnement en régulation primaire defréquence doit être prévu.PmaxPEn bleu, caractéristique sans bande morteEn rouge, caractéristique avec bande mortePc = puissance de consigne (puissance à 50 Hz)PcF (Hz)La puissance <strong>in</strong>stantanée (puissance de fonctionnement à 50 Hz en régime stable) doit correspondre à lapuissance prévue dans le programme prévisionnel transmis à J-1 au gestionnaire du système électrique.Le statisme du dispositif de régulation de fréquence (asservissement de la puissance fournie au réseau à lavaleur de la fréquence) doit pouvoir être réglé entre 5 et 10 %. La valeur à mettre en œuvre à un <strong>in</strong>stantdonné, fonction du système <strong>in</strong>sulaire considéré, est précisée par le gestionnaire du système électriqueconcerné.La bande morte du dispositif de régulation de la fréquence ne doit pas être supérieure à 0,4 Hz, centrée surla valeur de 50 Hz.Lorsqu’elle est sollicitée, la réserve primaire doit être dégagée dans un <strong>in</strong>tervalle de temps <strong>in</strong>férieur à0,5 s.iii. Régulation de la tension49,80 50,20L’<strong>in</strong>stallation éolienne doit participer à la tenue de la tension au po<strong>in</strong>t de raccordement. A cette f<strong>in</strong>, elledevra être équipée d’un dispositif asservissant la valeur de la puissance réactive à la valeur de la tensionmesurée au po<strong>in</strong>t de livraison, selon le pr<strong>in</strong>cipe <strong>in</strong>diqué dans le schéma ci-dessous.28/43


GRID CONNECTION CODE FOR RENEWABLE POWERPLANTS (RPPs) CONNECTED TO THE ELECTRICITYTRANSMISSION SYSTEM (TS) OR THE DISTRIBUTIONSYSTEM (DS) IN SOUTH AFRICAVersion 2.6November 2012


This document is approved by <strong>the</strong> National Energy Regulatorof South Africa (NERSA)Issued by:RSA Grid Code SecretariatContact: Mr. B. Magoro or Mr. T. KhozaEskom Transmission DivisionP.O Box 103, Germiston 1400Tell: +27 (0)11 871 2774 / 2368Fax: +27 (0)86 663 8418Email: magorotb@eskom.co.za or<strong>the</strong>mba.khoza@eskom.co.zaPage 2Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


1. Grid Connection Code Basis1.1 Legislation(1) The legal basis <strong>for</strong> this grid connection code is specified <strong>in</strong> terms of <strong>the</strong> ElectricityRegulation Act (Act 4 of 2006), as amended.1.2 Handl<strong>in</strong>g of Non-compliances and Deviations(1) Amendments, derogations or exemptions shall be processed as specified <strong>in</strong> <strong>the</strong> RSAGrid Code, as amended.2. Objectives(1) The primary objective of this grid connection code is to specify m<strong>in</strong>imum technical anddesign grid connection requirements <strong>for</strong> Renewable Power Plants (RPPs) connected to orseek<strong>in</strong>g connection to <strong>the</strong> South African electricity transmission <strong>system</strong> (TS) or distribution<strong>system</strong> (DS).(2) This document shall be used toge<strong>the</strong>r with o<strong>the</strong>r applicable requirements of <strong>the</strong> code (i.e.<strong>the</strong> Grid Code, <strong>the</strong> Distribution Code and <strong>the</strong> Schedul<strong>in</strong>g and Dispatch Rules), as compliance<strong>criteria</strong> <strong>for</strong> RPPs connected to <strong>the</strong> TS and <strong>the</strong> DS.3. Scope(1) The grid connection requirements <strong>in</strong> this code shall apply to all RPPs connected orseek<strong>in</strong>g connection to <strong>the</strong> TS or DS, <strong>the</strong> SO, as well as to <strong>the</strong> respective electrical NetworkService Providers (NSPs).(2) This grid connection code shall, at m<strong>in</strong>imum, apply to <strong>the</strong> follow<strong>in</strong>g RPP technologies:(a) Photovoltaic(b) Concentrated Solar Power(c) Small Hydro(d) Landfill gas(e) Biomass(f) Biogas(g) W<strong>in</strong>dPage 5Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(3) All <strong>the</strong>rmal and hydro units shall also comply with <strong>the</strong> design requirements specified <strong>in</strong><strong>the</strong> SA Grid Code (specifically section 3.1. of <strong>the</strong> Network Code). This RPP grid connectioncode shall take precedence whenever <strong>the</strong>re is a conflict between this code and o<strong>the</strong>r codes.(4) Unless o<strong>the</strong>rwise stated, <strong>the</strong> requirements <strong>in</strong> this grid connection code shall applyequally to all RPP technologies and categories.(5) The RPP shall, <strong>for</strong> duration of its generation licence issued by National Energy Regulatorof South Africa (NERSA), comply with <strong>the</strong> provisions of this grid connection code and all o<strong>the</strong>rapplicable codes, rules and regulations approved by NERSA.(6) Where <strong>the</strong>re has been a replacement of or a major modification to an exist<strong>in</strong>g RPP, <strong>the</strong>RPP shall be required to demonstrate compliance to <strong>the</strong>se requirements be<strong>for</strong>e be<strong>in</strong>g allowedto operate commercially.(7) Compliance with this grid connection code shall be applicable to <strong>the</strong> RPP depend<strong>in</strong>g onits rated power and, where <strong>in</strong>dicated, <strong>the</strong> nom<strong>in</strong>al voltage at <strong>the</strong> POC. Accord<strong>in</strong>gly, RPPs aregrouped <strong>in</strong>to <strong>the</strong> follow<strong>in</strong>g three categories:(a) Category A: 0 – 1 MVA (Only LV connected RPPs)This category <strong>in</strong>cludes RPPs with rated power of less than 1 MVA and connected to <strong>the</strong>LV voltage (typically called 'small or micro turb<strong>in</strong>es'). This category shall fur<strong>the</strong>r bedivided <strong>in</strong>to 3 sub-categories:(i) Category A1: 0 - 13.8 kVAThis sub-category <strong>in</strong>cludes RPPs of Category A with rated power <strong>in</strong> <strong>the</strong> range of0 to 13.8 kVA.(ii) Category A2: 13.8 kVA – 100 kVAThis sub-category <strong>in</strong>cludes RPPs of Category A with rated power <strong>in</strong> <strong>the</strong> rangegreater than 13.8 kVA but less than 100 kVA.(iii) Category A3: 100 kVA – 1 MVAThis sub-category <strong>in</strong>cludes RPPs of Category A with rated power <strong>in</strong> <strong>the</strong> range100 kVA but less than 1 MVA.Note: RPPs with a rated power greater than 4.6 kVA must be balanced three-phase.(b) Category B: 1 MVA – 20 MVA and RPPs less than 1 MVA connected to <strong>the</strong> MVPage 6Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


This category <strong>in</strong>cludes RPPs with rated power <strong>in</strong> <strong>the</strong> range equal or greater than 1 MVAbut less 20 MVA and RPPs with rated power less than 1 MVA connected to <strong>the</strong> MV.(c) Category C: 20 MVA or higherThis category <strong>in</strong>cludes RPPs with rated power equal to or greater than 20 MVA.(8) The requirements of this grid connection code are organized accord<strong>in</strong>g to above def<strong>in</strong>edcategories. Unless o<strong>the</strong>rwise stated, requirements <strong>in</strong> this grid connection code shall applyequally to all categories of RPPs.(9) Compliance with this and o<strong>the</strong>r codes requirements will depend on <strong>the</strong> <strong>in</strong>teractionbetween <strong>the</strong> RPP and <strong>the</strong> grid to which it is connected. The NSP shall supply <strong>the</strong> RPPGenerator with a reasonable detail of <strong>the</strong>ir TS or DS that is sufficient to allow an accurateanalysis of <strong>the</strong> <strong>in</strong>teraction between <strong>the</strong> RPP and <strong>the</strong> NIPS, <strong>in</strong>clud<strong>in</strong>g o<strong>the</strong>r generationfacilities.4. Def<strong>in</strong>itions and Abbreviations(1) Unless o<strong>the</strong>rwise <strong>in</strong>dicated, words and term<strong>in</strong>ology <strong>in</strong> this document shall have <strong>the</strong> samemean<strong>in</strong>g as those <strong>in</strong> <strong>the</strong> codes. The follow<strong>in</strong>g def<strong>in</strong>itions and abbreviations are used <strong>in</strong> thisdocument.Active Power Curtailment Set-po<strong>in</strong>tThe limit set by <strong>the</strong> SO, NSP or <strong>the</strong>ir agent <strong>for</strong> <strong>the</strong> amount of active power that <strong>the</strong> RPP ispermitted to generate. This <strong>in</strong>struction may be issued manually or automatically via a telecontrolfacility. The manner of apply<strong>in</strong>g <strong>the</strong> limitation shall be agreed between <strong>the</strong> parties.Available Active PowerThe amount of active power (MW), measured at <strong>the</strong> POC, that <strong>the</strong> RPP could produce basedon plant availability as well as current renewable primary <strong>energy</strong> conditions (e.g. w<strong>in</strong>d speed,solar radiation).CodeThe Distribution Code, <strong>the</strong> Transmission Grid Code or any o<strong>the</strong>r Code, approved by NERSA.Connection AgreementAs def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Code,Communication Gateway EquipmentAs def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Code,Page 7Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


Curtailed Active PowerThe amount of Active Power that <strong>the</strong> RPP is permitted to generate by <strong>the</strong> SO, NSP or <strong>the</strong>iragent subject to network or <strong>system</strong> constra<strong>in</strong>s.Distribution System (DS)As def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> CodeDistributorAs def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> CodeDroopA percentage of <strong>the</strong> frequency change required <strong>for</strong> an RPP to move from no-load to ratedpower or from rated power to no-load.Extra High Voltage (EHV)The set of nom<strong>in</strong>al voltage levels greater than 220 kV.Frequency controlThe control of active power with a view to stabilis<strong>in</strong>g frequency of <strong>the</strong> NIPS.GeneratorAs def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> CodeHigh voltage (HV)The set of nom<strong>in</strong>al voltage levels greater than 33 KV up to and <strong>in</strong>clud<strong>in</strong>g 220 kV.Low voltage (LV)Nom<strong>in</strong>al voltage levels up to and <strong>in</strong>clud<strong>in</strong>g 1 kV.Medium voltage (MV)The set of nom<strong>in</strong>al voltage levels greater than 1 kV up to and <strong>in</strong>clud<strong>in</strong>g 33 kV.National Energy Regulator of South Africa (NERSA)The legal entity established <strong>in</strong> terms of <strong>the</strong> National Energy Regulator Act, 2004 (Act 40 of2004), as amended.National Interconnected Power Systems (NIPS)The electrical network compris<strong>in</strong>g components that have a measurable <strong>in</strong>fluence on eacho<strong>the</strong>r as <strong>the</strong>y are operat<strong>in</strong>g as one <strong>system</strong>, this <strong>in</strong>cludes:Page 8Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


• <strong>the</strong> TS;• <strong>the</strong> DS;• assets connected to <strong>the</strong> TS and DS;• power stations connected to <strong>the</strong> TS and DS;• <strong>in</strong>ternational <strong>in</strong>terconnectors;• <strong>the</strong> control area <strong>for</strong> which <strong>the</strong> SO is responsible.National Transmission Company (NTC)As def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> CodeNetwork Service Provider (NSP)As def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> CodeNom<strong>in</strong>al voltageThe voltage <strong>for</strong> which a network is def<strong>in</strong>ed and to which operational measurements arereferred.ParticipantsAs def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Code,Po<strong>in</strong>t of Common Coupl<strong>in</strong>g (PCC)As def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Code,Po<strong>in</strong>t of Connection (POC)As def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> CodePower QualityCharacteristics of <strong>the</strong> electricity at a given po<strong>in</strong>t on an electrical <strong>system</strong>, evaluated aga<strong>in</strong>st aset of reference technical parameters. These characteristics <strong>in</strong>clude:• voltage or current quality, i.e. regulation (magnitude), harmonic distortions, flicker,unbalance;• voltage events, i.e. voltage dips, voltage swells, voltage transients;• (supply) <strong>in</strong>terruptions;• frequency of supply.Rated power (of <strong>the</strong> RPP)The highest active power measured at <strong>the</strong> POC, which <strong>the</strong> RPP is designed to cont<strong>in</strong>uouslysupply.Page 9Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


Rated w<strong>in</strong>d speedThe average w<strong>in</strong>d speed at which a w<strong>in</strong>d power plant achieves its rated power. The averagerenewable speed is calculated as <strong>the</strong> average value of renewable speeds measured at hubheight over a period of 10 m<strong>in</strong>utes.Renewable Power Plant (RPP)One or more unit(s) and associated equipment, with a stated rated power, which has beenconnected to <strong>the</strong> same POC and operat<strong>in</strong>g as a s<strong>in</strong>gle power plant.Notes:It is <strong>the</strong>re<strong>for</strong>e <strong>the</strong> entire RPP that shall be designed to achieve requirements of this code at<strong>the</strong> POC. A RPP has only one POC.In this code, <strong>the</strong> term RPP is used as <strong>the</strong> umbrella term <strong>for</strong> a unit or a <strong>system</strong> of generat<strong>in</strong>gunits produc<strong>in</strong>g electricity based on a primary renewable <strong>energy</strong> source (e.g. w<strong>in</strong>d, sun,water, biomass etc.). A RPP can use different k<strong>in</strong>ds of primary <strong>energy</strong> source. If a RPPconsists of a homogeneous type of generat<strong>in</strong>g units it can be named as follows:• <strong>PV</strong> Power Plant (<strong>PV</strong>PP)A s<strong>in</strong>gle photovoltaic panel or a group of several photovoltaic panels with associatedequipment operat<strong>in</strong>g as a power plant.• Concentrated Solar Power Plant (CSPP)A group of aggregates to concentrate <strong>the</strong> solar radiation and convert <strong>the</strong> concentratedpower to drive a turb<strong>in</strong>e or a group of several turb<strong>in</strong>es with associated equipmentoperat<strong>in</strong>g as a power plant.• Small Hydro Power Plant (SHPP)A s<strong>in</strong>gle hydraulic driven turb<strong>in</strong>e or a group of several hydraulic driven turb<strong>in</strong>es withassociated equipment operat<strong>in</strong>g as a power plant.• Landfill Gas Power Plant (LGPP)A s<strong>in</strong>gle turb<strong>in</strong>e or a group of several turb<strong>in</strong>es driven by landfill gas with associatedequipment operat<strong>in</strong>g as a power plant.• Biomass Power Plant (BMPP)A s<strong>in</strong>gle turb<strong>in</strong>e or a group of several turb<strong>in</strong>es driven by biomass as fuel withassociated equipment operat<strong>in</strong>g as a power plant.• Biogas Power Plant (BGPP)Page 10Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


A s<strong>in</strong>gle turb<strong>in</strong>e or a group of several turb<strong>in</strong>es driven by biogas as fuel with associatedequipment operat<strong>in</strong>g as a power plant.• W<strong>in</strong>d Power Plant (WPP)A s<strong>in</strong>gle turb<strong>in</strong>e or a group of several turb<strong>in</strong>es driven by w<strong>in</strong>d as fuel with associatedequipment operat<strong>in</strong>g as a power plant. This is also referred to as a w<strong>in</strong>d <strong>energy</strong> facility(WEF)Renewable Power Plant (RPP) ControllerA set of control functions that make it possible to control <strong>the</strong> RPP at <strong>the</strong> POC. The set ofcontrol functions shall <strong>for</strong>ma part of <strong>the</strong> RPP.RPP GeneratorMeans a legal entity that is licensed to develop and operate a RPP.System Operator (SO)As def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> CodeTransmission Network Service Provider (TNSP)As def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> CodeTransmission System (TS)As def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> CodeUnit / Generation facilityAs def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> CodeVoltage QualitySubset of power quality referr<strong>in</strong>g to steady-state voltage quality, i.e. voltage regulation(magnitude), voltage harmonics, voltage flicker, voltage unbalance, voltage dips. The currentdrawn from or <strong>in</strong>jected <strong>in</strong>to <strong>the</strong> POC is <strong>the</strong> driv<strong>in</strong>g factor <strong>for</strong> voltage quality deviations.Voltage Ride Through (VRT) CapabilityCapability of <strong>the</strong> RPP to stay connected to <strong>the</strong> network and keep operat<strong>in</strong>g follow<strong>in</strong>g voltagedips or surges caused by short-circuits or disturbances on any or all phases <strong>in</strong> <strong>the</strong> TS or DS.5. Tolerance of Frequency and Voltage DeviationsPage 11Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(1) The RPP shall be able to withstand frequency and voltage deviations at <strong>the</strong> POC undernormal and abnormal operat<strong>in</strong>g conditions described <strong>in</strong> this grid connection code whilereduc<strong>in</strong>g <strong>the</strong> active power as little as possible.(2) The RPP shall be able to support network frequency and voltage stability <strong>in</strong> l<strong>in</strong>e with <strong>the</strong>requirements of this grid connection code.(3) Normal operat<strong>in</strong>g conditions and abnormal operat<strong>in</strong>g conditions are described <strong>in</strong> section5.1 and section 5.2, respectively.5.1 Normal Operat<strong>in</strong>g Conditions(1) Unless o<strong>the</strong>rwise stated, requirements <strong>in</strong> this section shall apply to all categories ofRPPs.(2) RPPs of Category A shall be designed to be capable of operat<strong>in</strong>g with<strong>in</strong> <strong>the</strong> voltagerange of -15% to +10% around <strong>the</strong> nom<strong>in</strong>al voltage at <strong>the</strong> POC. The actual operat<strong>in</strong>g voltagediffers from location to location, and this shall be decided by <strong>the</strong> NSP <strong>in</strong> consultation with <strong>the</strong>affected customers (<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> RPP generator), and implemented by <strong>the</strong> RPP generator.(3) RPPs of Category B and C shall be designed to be capable of operat<strong>in</strong>g with<strong>in</strong> <strong>the</strong>voltage range of ±10% around <strong>the</strong> nom<strong>in</strong>al voltage at <strong>the</strong> POC. The actual operat<strong>in</strong>g voltagediffers from location to location, and this shall be decided by <strong>the</strong> NSP <strong>in</strong> consultation with <strong>the</strong>affected customers (<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> RPP generator), and implemented by <strong>the</strong> RPP generator.(4) The nom<strong>in</strong>al frequency of <strong>the</strong> National Integrated Power System (NIPS) is 50 Hz and isnormally controlled with<strong>in</strong> <strong>the</strong> limits as def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Grid Code. The RPP shall be designedto be capable of operat<strong>in</strong>g <strong>for</strong> <strong>the</strong> m<strong>in</strong>imum operat<strong>in</strong>g range illustrated <strong>in</strong> Figures 1 (totalcumulative over <strong>the</strong> life of <strong>the</strong> RPP) and Figure 2 (dur<strong>in</strong>g a <strong>system</strong> frequency disturbance).(5) When <strong>the</strong> frequency on <strong>the</strong> NIPS is higher than 52 Hz <strong>for</strong> longer than 4 seconds, <strong>the</strong>RPP shall be disconnected from <strong>the</strong> grid.(6) When <strong>the</strong> frequency on <strong>the</strong> NIPS is less than 47.0 Hz <strong>for</strong> longer than 200ms, <strong>the</strong> RPPmay be disconnected.(7) The RPP shall rema<strong>in</strong> connected to <strong>the</strong> NIPS dur<strong>in</strong>g rate of change of frequency ofvalues up to and <strong>in</strong>clud<strong>in</strong>g 1.5 Hz per second, provided <strong>the</strong> network frequency is still with<strong>in</strong><strong>the</strong> m<strong>in</strong>imum operat<strong>in</strong>g range <strong>in</strong>dicated <strong>in</strong> Figures 1 and 2.Page 12Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


SystemFrequency[Hz]5352H2Nom<strong>in</strong>al[50 Hz]5150494847H1MINIMUM OPERATING RANGE FOR RPPsL1L2L3L4Cont<strong>in</strong>uousOperat<strong>in</strong>g range(49.0 Hz to 51.0Hz)46200ms0.001 0.01 0.1 1 10 100 1000 10000Time (M<strong>in</strong>utes)Figure 1: M<strong>in</strong>imum frequency operat<strong>in</strong>g range <strong>for</strong> RPP (Cumulative over <strong>the</strong> life of <strong>the</strong>RPP)80m<strong>in</strong>5251Frequency[Hz]5049MINIMUM OPERATING RANGE FOR RPPsCont<strong>in</strong>uousoperat<strong>in</strong>g range(49.0 Hz to 51.0 Hz)484746200ms4 6600.1 1 10 100 1000Duration of <strong>the</strong> <strong>in</strong>cident, SecondsFigure 2: M<strong>in</strong>imum frequency operat<strong>in</strong>g range of a RPP (dur<strong>in</strong>g a <strong>system</strong> frequencydisturbance)5.1.1 Synchronis<strong>in</strong>g to <strong>the</strong> NIPS(1) RPPs of Category A shall only be allowed to connect to <strong>the</strong> NIPS, at <strong>the</strong> earliest, 60seconds after:(a) The voltage at <strong>the</strong> POC is <strong>in</strong> <strong>the</strong> range -15% to +10% around <strong>the</strong> nom<strong>in</strong>al voltage,Page 13Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(b) Frequency <strong>in</strong> <strong>the</strong> NIPS is with<strong>in</strong> <strong>the</strong> range of 49.0Hz and 50.2Hz, or o<strong>the</strong>rwise asagreed with <strong>the</strong> SO.(2) RPPs of Category B and C shall only be allowed to connect to <strong>the</strong> NIPS, at <strong>the</strong> earliest, 3seconds after:(a) (<strong>for</strong> TS connected RPPs), <strong>the</strong> voltage at <strong>the</strong> POC is with<strong>in</strong> ±5% around <strong>the</strong> nom<strong>in</strong>alvoltage,(b) (<strong>for</strong> DS connected RPPs), <strong>the</strong> voltage at <strong>the</strong> POC is with<strong>in</strong> ±10% around <strong>the</strong>nom<strong>in</strong>al voltage,(c) frequency <strong>in</strong> <strong>the</strong> NIPS is with<strong>in</strong> <strong>the</strong> range of 49.0Hz and 50.2Hz, or o<strong>the</strong>rwise asagreed with <strong>the</strong> SO.5.2 Abnormal Operat<strong>in</strong>g Conditions(1) The RPP shall be designed to withstand sudden phase jumps of up to 40° at <strong>the</strong> POCwithout disconnect<strong>in</strong>g or reduc<strong>in</strong>g its output. The RPP shall after a settl<strong>in</strong>g period resumenormal production not later than 5 sec after <strong>the</strong> operat<strong>in</strong>g conditions <strong>in</strong> <strong>the</strong> POC have revertedto <strong>the</strong> normal operat<strong>in</strong>g conditions.5.2.1 Tolerance to sudden voltage drops and peaks(a) RPPs of Category A1 and A2(1) RPPs of Categories A1 and A2 shall be designed to withstand and fulfil, at <strong>the</strong> POC,voltage ride through conditions illustrated <strong>in</strong> Figure 3 below.Page 14Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


Figure 3: Voltage Ride Through Capability <strong>for</strong> <strong>the</strong> RPPs of Category A1 and A2(2) In addition, <strong>the</strong> maximum disconnection times <strong>for</strong> RPPs of Category A1 and A2 is given<strong>in</strong> Table 1 below.Table 1: Maximum disconnection times <strong>for</strong> RPPs of Categories A1 and A2.Voltage range(at <strong>the</strong> POC)V < 50 %Maximum trip time[Seconds]0,2 s50 % ≤ V < 85 % 2 s85 % ≤ V ≤ 110 % Cont<strong>in</strong>uous operation110 % < V < 120 % 2 s120 % ≤ V 0,16 s(b) RPPs of Categories A3, B and C(1) RPPs of Categories A3, B and C shall be designed to withstand and fulfil, at <strong>the</strong> POC,voltage conditions described <strong>in</strong> this section and illustrated <strong>in</strong> Figures 4 and 5 below.(2) The RPP shall be designed to withstand voltage drops and peaks, as illustrated <strong>in</strong> Figure4 and supply or absorb reactive current as illustrated <strong>in</strong> Figure 5 without disconnect<strong>in</strong>g.(3) The RPP shall be able to withstand voltage drops to zero, measured at <strong>the</strong> POC, <strong>for</strong> am<strong>in</strong>imum period of 0.150 seconds without disconnect<strong>in</strong>g, as shown <strong>in</strong> Figure 4.Page 15Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(4) The RPP shall be able to withstand voltage peaks up to 120% of <strong>the</strong> nom<strong>in</strong>al voltage,measured at <strong>the</strong> POC, <strong>for</strong> a m<strong>in</strong>imum period of 2 seconds without disconnect<strong>in</strong>g, as shown <strong>in</strong>Figure 4.(5) Figure 4 shall apply to all types of faults (symmetrical and asymmetrical i.e. one-, two- orthree-phase faults) and <strong>the</strong> bold l<strong>in</strong>e shall represent <strong>the</strong> m<strong>in</strong>imum voltage of all <strong>the</strong> phases.Figure 4: Voltage Ride Through Capability <strong>for</strong> <strong>the</strong> RPPs of Category A3, B and C(6) If <strong>the</strong> voltage (U) reverts to area A dur<strong>in</strong>g a fault sequence, subsequent voltage dropsshall be regarded as a new fault condition. If several successive fault sequences occur with<strong>in</strong>area B and evolve <strong>in</strong>to area C, disconnection is allowed, see Figure 4.(7) In connection with symmetrical fault sequences <strong>in</strong> areas B and D of Figure 4, <strong>the</strong> RPPshall have <strong>the</strong> capability of controll<strong>in</strong>g <strong>the</strong> reactive power, as illustrated <strong>in</strong> Figure 5. Thefollow<strong>in</strong>g requirements shall be complied with:(a) Area A: The RPP shall stay connected to <strong>the</strong> network and uphold normal production.(b) Area B: The RPP shall stay connected to <strong>the</strong> network. In addition, <strong>the</strong> RPP shallprovide maximum voltage support by supply<strong>in</strong>g a controlled amount of reactive current soas to ensure that <strong>the</strong> RPP helps to stabilise <strong>the</strong> voltage, see Figure 5.(c) Area C (Figure 4): Disconnect<strong>in</strong>g <strong>the</strong> RPP is allowed.(d) Area D: The RPP shall stay connected to <strong>the</strong> network and provide maximum voltagesupport by absorb<strong>in</strong>g a controlled amount of reactive current so as to ensure that <strong>the</strong> RPPhelps to stabilise <strong>the</strong> voltage with<strong>in</strong> <strong>the</strong> design capability offered by <strong>the</strong> RPP, see Figure 5.Page 16Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(e) Area E (Figure 5): Once <strong>the</strong> voltage at <strong>the</strong> POC is below 20%, <strong>the</strong> RPP shallcont<strong>in</strong>ue to supply reactive current with<strong>in</strong> its technical design limitations so as to ensurethat <strong>the</strong> RPP helps to stabilise <strong>the</strong> voltage. Disconnection is only allowed after conditionsof Figure 4 have been fulfilled.(8) Control shall follow Figure 5 so that <strong>the</strong> reactive power follows <strong>the</strong> control characteristicwith a tolerance of ±20% after 100 ms.(9) The supply of reactive power has first priority <strong>in</strong> area B, while <strong>the</strong> supply of active powerhas second priority. If possible, active power shall be ma<strong>in</strong>ta<strong>in</strong>ed dur<strong>in</strong>g voltage drops, but areduction <strong>in</strong> active power with<strong>in</strong> <strong>the</strong> RPP's design specifications is acceptable.Figure 5: Requirements <strong>for</strong> Reactive Power Support, I Q , dur<strong>in</strong>g voltage drops orpeaks at <strong>the</strong> POCPage 17Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


6. Frequency Response(1) In case of frequency deviations <strong>in</strong> <strong>the</strong> NIPS, RPPs shall be designed to be capable toprovide power-frequency response <strong>in</strong> order to stabilise <strong>the</strong> grid frequency. The meter<strong>in</strong>gaccuracy <strong>for</strong> <strong>the</strong> grid frequency shall be at least ±10mHz.6.1 Power-frequency response curve <strong>for</strong> RPPs of Category A(1) This subsection applies to category A RPPs.(2) Dur<strong>in</strong>g high frequency operat<strong>in</strong>g conditions, RPPs shall be able to provide mandatoryactive power reduction requirement <strong>in</strong> order to stabilise <strong>the</strong> frequency <strong>in</strong> accordance withFigure 6 below. The meter<strong>in</strong>g accuracy <strong>for</strong> <strong>the</strong> grid frequency shall be ± 10 mHz or better.(3) When <strong>the</strong> frequency on <strong>the</strong> NIPS exceeds 50.5 Hz, <strong>the</strong> RPP shall reduce <strong>the</strong> activepower as a function of <strong>the</strong> change <strong>in</strong> frequency as illustrated <strong>in</strong> Figure 6 below.(4) Once <strong>the</strong> frequency exceed 52Hz <strong>for</strong> longer than 4 seconds <strong>the</strong> RPP shall be tripped toprotect <strong>the</strong> NIPS.Figure 6: Power curtailment dur<strong>in</strong>g over-frequency <strong>for</strong> Category A RPPs6.2 Power-frequency response curve <strong>for</strong> RPPs of Categories B & C(1) This subsection applies to RPPs of category B and C.Page 18Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(2) RPPs shall be designed to be capable to provide power-frequency response asillustrated <strong>in</strong> Figure 7.(3) Except <strong>for</strong> <strong>the</strong> mandatory high frequency response (above 50.5 Hz), <strong>the</strong> RPP shall notper<strong>for</strong>m any frequency response function (i.e. <strong>the</strong>re shall be no P Delta , dead-band and controlbandfunctions implement) without hav<strong>in</strong>g entered <strong>in</strong>to a specific agreement with <strong>the</strong> SO.(4) It shall be possible to set <strong>the</strong> frequency response control function <strong>for</strong> all frequency po<strong>in</strong>tsshown <strong>in</strong> Figure 7. It shall be possible to set <strong>the</strong> frequencies f m<strong>in</strong> , f max , as well as f 1 to f 6 to anyvalue <strong>in</strong> <strong>the</strong> range of 47 - 52 Hz with a m<strong>in</strong>imum accuracy of 10 mHz.(5) The purpose of frequency po<strong>in</strong>ts f 1 to f 4 is to <strong>for</strong>m a dead band and a control band <strong>for</strong> <strong>for</strong>RPPs contracted <strong>for</strong> primary frequency response. The purpose of frequency po<strong>in</strong>ts f 4 to f 6 isto supply mandatory critical power/frequency response.(6) The RPP shall be equipped with <strong>the</strong> frequency control droop sett<strong>in</strong>gs as illustrated <strong>in</strong>figure 7. Each droop sett<strong>in</strong>g shall be adjustable between 0% and 10%. The actual droopsett<strong>in</strong>g shall be as agreed with <strong>the</strong> SO.(7) The SO shall decide and advise <strong>the</strong> RPP generator (directly or through its agent) on <strong>the</strong>droop sett<strong>in</strong>gs required to per<strong>for</strong>m control between <strong>the</strong> various frequency po<strong>in</strong>ts.(8) If <strong>the</strong> active power from <strong>the</strong> RPP is regulated downward below <strong>the</strong> unit’s design limit P m<strong>in</strong> ,shutt<strong>in</strong>g-down of <strong>in</strong>dividual RPP units is allowed.(9) The RPP (with <strong>the</strong> exception of RPP<strong>PV</strong>) shall be designed with <strong>the</strong> capability of provid<strong>in</strong>ga P Delta of not less than 3% of P available. P Delta is <strong>the</strong> setpo<strong>in</strong>t to which <strong>the</strong> available active powerhas been reduced <strong>in</strong> order to provide frequency stabilisation (primary frequency response) <strong>in</strong><strong>the</strong> case of fall<strong>in</strong>g grid frequency.(10) It shall be possible to activate and deactivate <strong>the</strong> frequency response control function <strong>in</strong><strong>the</strong> <strong>in</strong>terval from f m<strong>in</strong> to f max .(11) If <strong>the</strong> frequency control setpo<strong>in</strong>t (P Delta ) is to be changed, such change shall becommenced with<strong>in</strong> two seconds and completed no later than 10 seconds after receipt of anorder to change <strong>the</strong> setpo<strong>in</strong>t.(12) The accuracy of <strong>the</strong> control per<strong>for</strong>med (i.e. change <strong>in</strong> active power output) and of <strong>the</strong>setpo<strong>in</strong>t shall not deviate by more than ±2% of <strong>the</strong> setpo<strong>in</strong>t value or by ±0.5% of <strong>the</strong> ratedpower, depend<strong>in</strong>g on which yields <strong>the</strong> highest tolerance.Page 19Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


Figure 7: Frequency response requirement <strong>for</strong> RPPs of category B and C(13) The default sett<strong>in</strong>gs <strong>for</strong> f m<strong>in</strong> , f max , f 4, f 5 and f 6 shall be as shown <strong>in</strong> Table 2, unlesso<strong>the</strong>rwise agreed upon between <strong>the</strong> SO and <strong>the</strong> RPP generator. Sett<strong>in</strong>gs <strong>for</strong> f 1 , f 2 and f 3 shallbe as agreed with <strong>the</strong> SO.Table 2: Frequency Default Sett<strong>in</strong>gsParameter Magnitude (Hz.)f m<strong>in</strong> 47f max 52f 1f 2f 3f 4 50.5f 5 52f 6 50.2As agreed with SOAs agreed with SOAs agreed with SO6.3 Procedure <strong>for</strong> sett<strong>in</strong>g and chang<strong>in</strong>g <strong>the</strong> power-frequency response curves <strong>for</strong>RPPs of Categories B & C(1) The SO or its agent shall give <strong>the</strong> RPP generator a m<strong>in</strong>imum of 2 weeks if changes toany of <strong>the</strong> frequency response parameters (i.e. f 1 to f 6 ) are required. The RPP generator shallPage 20Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


confirm with <strong>the</strong> SO or its agent that requested changes have been implemented with<strong>in</strong> twoweeks of receiv<strong>in</strong>g <strong>the</strong> SO’s request.7. Reactive Power Capabilities7.1 RPPs of Category A(1) RPPs of category A shall be designed with <strong>the</strong> capability to supply rated power (MW) <strong>for</strong>power factors rang<strong>in</strong>g between 0.95 lagg<strong>in</strong>g and 0.95 lead<strong>in</strong>g, available from 20% of ratedpower, measured at <strong>the</strong> POC.(2) The RPP shall be designed to operate accord<strong>in</strong>g to a power factor characteristic curve,which will be determ<strong>in</strong>ed by <strong>the</strong> NSP or <strong>the</strong> SO.(3) The default power factor sett<strong>in</strong>g shall be unity power factor, unless o<strong>the</strong>rwise specifiedby <strong>the</strong> NSP or <strong>the</strong> SO.7.2 RPPs of Category B(1) RPPs of category B shall be designed with <strong>the</strong> capability to operate <strong>in</strong> a voltage (V),power factor or reactive power (Q or Mvar) control modes as described <strong>in</strong> section 8 below.The actual operat<strong>in</strong>g mode (V, power factor or Q control) as well as <strong>the</strong> operat<strong>in</strong>g po<strong>in</strong>t shallbe agreed with <strong>the</strong> NSP.(2) RPPs shall be designed to supply rated power (MW) <strong>for</strong> power factors rang<strong>in</strong>g between0.975 lagg<strong>in</strong>g and 0.975 lead<strong>in</strong>g, available from 20% of rated power, measured at <strong>the</strong> POC.This is illustrated <strong>in</strong> Figure 8 below.(3) In addition <strong>the</strong> RPP shall be designed <strong>in</strong> such a way that <strong>the</strong> operat<strong>in</strong>g po<strong>in</strong>t can lieanywhere with<strong>in</strong> <strong>the</strong> hatched area <strong>in</strong> Figure 8 & 9.(4) With regard to Figure 8, po<strong>in</strong>t A is equivalent (<strong>in</strong> MVar) to –5% rated MW output andpo<strong>in</strong>t B is equivalent (<strong>in</strong> MVar) to 5% rated MW output, and po<strong>in</strong>t C is equivalent (<strong>in</strong> MW) to5% rated MW output.Page 21Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


+Figure 8: Reactive power requirements <strong>for</strong> RPPs of category BFigure 9: Requirements <strong>for</strong> voltage control range <strong>for</strong> RPPs of category B.7.3 RPPs of Category C(1) RPPs of category C shall be designed with <strong>the</strong> capability to operate <strong>in</strong> a voltage, powerfactor or, reactive power (Q or Mvar) control modes. The actual control operat<strong>in</strong>g mode(V, power factor or Q control) as well as operat<strong>in</strong>g po<strong>in</strong>t shall be agreed with <strong>the</strong> NSP.(2) The RPP shall be designed to supply rated power output (MW) <strong>for</strong> power factors rang<strong>in</strong>gbetween 0.95 lagg<strong>in</strong>g and 0.95 lead<strong>in</strong>g available from 20% of rated power measured at<strong>the</strong> POC. This is illustrated <strong>in</strong> Figure 10 below.Page 22Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(3) The RPP shall be designed <strong>in</strong> such a way that <strong>the</strong> operat<strong>in</strong>g po<strong>in</strong>t can lie anywhere with<strong>in</strong><strong>the</strong> hatched area <strong>in</strong> Figure 10 & 11.(4) With reference to Figure 10, po<strong>in</strong>t A is equivalent (<strong>in</strong> MVar) to –5% rated MW output andpo<strong>in</strong>t B is equivalent (<strong>in</strong> MVar) to 5% rated MW output, and po<strong>in</strong>t C is equivalent (<strong>in</strong> MW)to 5% rated MW output.+Figure 10: Reactive power requirements <strong>for</strong> RPPs of category CFigure 11: Requirements <strong>for</strong> voltage control range <strong>for</strong> RPPs of category CPage 23Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


8. Reactive Power and Voltage Control Functions(1) The follow<strong>in</strong>g requirements shall apply to RPPs of category B and C.(2) The RPP shall be equipped with reactive power control functions capable of controll<strong>in</strong>g<strong>the</strong> reactive power supplied by <strong>the</strong> RPP at <strong>the</strong> POC as well as a voltage control functioncapable of controll<strong>in</strong>g <strong>the</strong> voltage at <strong>the</strong> POC via orders us<strong>in</strong>g setpo<strong>in</strong>ts and gradients.(3) The reactive power and voltage control functions are mutually exclusive, which meansthat only one of <strong>the</strong> three functions mentioned below can be activated at a time.(a) Voltage control(b) Power Factor control(c) Q control(4) The control function and applied parameter sett<strong>in</strong>gs <strong>for</strong> reactive power and voltagecontrol functions shall be determ<strong>in</strong>ed by <strong>the</strong> NSP <strong>in</strong> collaboration with <strong>the</strong> SO, andimplemented by <strong>the</strong> RPP generator. The agreed control functions shall be documented <strong>in</strong> <strong>the</strong>operat<strong>in</strong>g agreement.8.1 Reactive power (Q) Control(1) Q control is a control function controll<strong>in</strong>g <strong>the</strong> reactive power supply and absorption at <strong>the</strong>POC <strong>in</strong>dependently of <strong>the</strong> active power and <strong>the</strong> voltage. This control function is illustrated <strong>in</strong>Figure 12 as a vertical l<strong>in</strong>e.(2) If <strong>the</strong> Q control setpo<strong>in</strong>t is to be changed by <strong>the</strong> NSP, SO or <strong>the</strong>ir agent, <strong>the</strong> RPPgenerator shall update its echo analog set po<strong>in</strong>t value <strong>in</strong> response to <strong>the</strong> new value with<strong>in</strong> twoseconds. The RPP shall respond to <strong>the</strong> new set po<strong>in</strong>t with<strong>in</strong> 30 seconds after receipt of anorder to change <strong>the</strong> setpo<strong>in</strong>t.(3) The accuracy of <strong>the</strong> control per<strong>for</strong>med and of <strong>the</strong> setpo<strong>in</strong>t shall not deviate by more than±2% of <strong>the</strong> setpo<strong>in</strong>t value or by ±0.5% of maximum reactive power, depend<strong>in</strong>g on whichyields <strong>the</strong> highest tolerance.(4) The RPP shall be able to receive a Q setpo<strong>in</strong>t with an accuracy of at least 1kVar.Page 24Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


Figure 12: Reactive power control functions <strong>for</strong> <strong>the</strong> RPP8.2 Power Factor Control(1) Power Factor Control is a control function controll<strong>in</strong>g <strong>the</strong> reactive power proportionally to<strong>the</strong> active power at <strong>the</strong> POC. This is illustrated <strong>in</strong> Figure 12 by a l<strong>in</strong>e with a constant gradient.(2) If <strong>the</strong> power factor setpo<strong>in</strong>t is to be changed by <strong>the</strong> NSP, SO or <strong>the</strong>ir agent, <strong>the</strong> RPPshall update its echo analog set po<strong>in</strong>t value to <strong>in</strong> response to <strong>the</strong> new value with<strong>in</strong> twoseconds. The RPP shall respond to <strong>the</strong> new set po<strong>in</strong>t with<strong>in</strong> 30 seconds after receipt of anorder to change <strong>the</strong> setpo<strong>in</strong>t.(3) The accuracy of <strong>the</strong> control per<strong>for</strong>med and of <strong>the</strong> setpo<strong>in</strong>t shall not deviate by more than±0.02.8.3 Voltage Control(1) Voltage control is a control function controll<strong>in</strong>g <strong>the</strong> voltage at <strong>the</strong> POC.(2) If <strong>the</strong> voltage setpo<strong>in</strong>t is to be changed, such change shall be commenced with<strong>in</strong> twoseconds and completed no later than 30 seconds after receipt of an order to change <strong>the</strong>setpo<strong>in</strong>t.(3) The accuracy of <strong>the</strong> voltage setpo<strong>in</strong>t shall be with<strong>in</strong> ±0.5% of nom<strong>in</strong>al voltage, and <strong>the</strong>accuracy of <strong>the</strong> control per<strong>for</strong>med shall not deviate by more than ±2% of <strong>the</strong> required <strong>in</strong>jectionor absorption of reactive power accord<strong>in</strong>g to droop characteristics as def<strong>in</strong>ed <strong>in</strong> Figure 13.Page 25Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(4) The <strong>in</strong>dividual RPP shall be able to per<strong>for</strong>m <strong>the</strong> control with<strong>in</strong> its dynamic range andvoltage limit with <strong>the</strong> droop configured as shown <strong>in</strong> Figure 13. In this context, droop is <strong>the</strong>voltage change (p.u.) caused by a change <strong>in</strong> reactive power (p.u.).(5) When <strong>the</strong> voltage control has reached <strong>the</strong> RPP’s dynamic design limits, <strong>the</strong> controlfunction shall await possible overall control from <strong>the</strong> tap changer or o<strong>the</strong>r voltage controlfunctions.(6) Overall voltage coord<strong>in</strong>ation shall be handled by <strong>the</strong> NSP <strong>in</strong> collaboration with <strong>the</strong> SO.Figure 13: Voltage control <strong>for</strong> <strong>the</strong> RPP9. Power Quality(1) The follow<strong>in</strong>g requirements shall apply to all categories of RPPs.(2) Power quality and voltage regulation impact shall be monitored at <strong>the</strong> POC and shall<strong>in</strong>clude an assessment of <strong>the</strong> impact on power quality from <strong>the</strong> RPP concern<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>gdisturbances at <strong>the</strong> POC:(a) voltage fluctuations:(i) rapid voltage changes(ii) flicker(b) high-frequency currents and voltages:(i) harmonicsPage 26Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(c)(d)(ii) <strong>in</strong>ter-harmonics(iii) disturbances greater than 2 kHz.unbalanced currents and voltages:(i) deviation <strong>in</strong> magnitude between three phases(ii) deviation <strong>in</strong> angle separation from 120° between three phases.RPP will generally follow <strong>the</strong> supply network frequency:(i) Any attempt by <strong>the</strong> RPP to change <strong>the</strong> supply frequency may result <strong>in</strong> severedistortion of <strong>the</strong> voltage at <strong>the</strong> POC, PCC and o<strong>the</strong>r po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> network.(3) Power quality and voltage regulation impact shall be monitored at <strong>the</strong> POC.(4) Voltage and current quality distortion levels emitted by <strong>the</strong> RPP at <strong>the</strong> POC shall notexceed <strong>the</strong> apportioned limits as determ<strong>in</strong>ed by <strong>the</strong> relevant NSP. The calculation of <strong>the</strong>seemission levels shall be based on <strong>in</strong>ternational and local specifications. The allocation shallbe fair and transparent.(5) The RPP generator shall ensure that <strong>the</strong> RPP is designed, configured and implemented<strong>in</strong> such a way that <strong>the</strong> specified emission limit values are not exceeded.(6) The maximum allowable voltage change at <strong>the</strong> POC after a switch<strong>in</strong>g operation by <strong>the</strong>RPP (e.g. of a compensation devices) shall not be greater than 2%.(7) The RPP can assume that <strong>the</strong> network harmonic impedance at <strong>the</strong> POC will be less than3 times <strong>the</strong> base harmonic impedance <strong>for</strong> <strong>the</strong> range of reference fault levels at <strong>the</strong> POC, i.e.<strong>the</strong> network harmonic impedance shall not exceed a harmonic impedance of:Z h 3* V 2( ) = * hwhere h is <strong>the</strong> harmonic number, V is <strong>the</strong> nom<strong>in</strong>al voltage <strong>in</strong> kV, and S is <strong>the</strong> fault level <strong>in</strong>MVA.10. Protection and Fault levelsS(1) Unless o<strong>the</strong>rwise stated, requirements <strong>in</strong> this section apply to all categories of RPPs.(2) Protection functions shall be available to protect <strong>the</strong> RPP and to ensure a stable TS andDS.(3) The RPP generator shall ensure that a RPP is dimensioned and equipped with <strong>the</strong>necessary protection functions so that <strong>the</strong> RPP is protected aga<strong>in</strong>st damage due to faults and<strong>in</strong>cidents <strong>in</strong> <strong>the</strong> TS and DS.Page 27Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(4) The RPP of category A shall be equipped with effective detection of islanded operation <strong>in</strong>all <strong>system</strong> configurations and capability to shut down generation of power <strong>in</strong> such conditionwith<strong>in</strong> 0.2 seconds. Islanded operation with part of <strong>the</strong> TS or DS is not permitted unlessspecifically agreed with <strong>the</strong> NSP(5) The RPP of category B and C shall be equipped with effective detection of islandedoperation <strong>in</strong> all <strong>system</strong> configurations and capability to shut down generation of power <strong>in</strong> suchcondition with<strong>in</strong> 2 seconds. Islanded operation with part of <strong>the</strong> TS or DS is not permittedunless specifically agreed with <strong>the</strong> NSP.(6) The NSP or <strong>the</strong> SO may request that <strong>the</strong> set values <strong>for</strong> protection functions be changedfollow<strong>in</strong>g commission<strong>in</strong>g if it is deemed to be of importance to <strong>the</strong> operation of <strong>the</strong> TS and DS.However, such change shall not result <strong>in</strong> <strong>the</strong> RPP be<strong>in</strong>g exposed to negative impacts from<strong>the</strong> TS and DS ly<strong>in</strong>g outside of <strong>the</strong> design requirements.(7) The NSP shall <strong>in</strong><strong>for</strong>m <strong>the</strong> RPP generator of <strong>the</strong> highest and lowest short-circuit currentthat can be expected at <strong>the</strong> POC as well as any o<strong>the</strong>r <strong>in</strong><strong>for</strong>mation about <strong>the</strong> TS and DS asmay be necessary to def<strong>in</strong>e <strong>the</strong> RPP's protection functions.11. Active Power Constra<strong>in</strong>t Functions(1) This section shall apply to RPPs of categories A3, B & C(2) For <strong>system</strong> security reasons it may be necessary <strong>for</strong> <strong>the</strong> SO, NSP or <strong>the</strong>ir agent to curtail<strong>the</strong> RPP active power output.(3) The RPP generator shall be capable of:(a) operat<strong>in</strong>g <strong>the</strong> RPP at a reduced level if active power has been curtailed by <strong>the</strong> SO,NSP or <strong>the</strong>ir agent <strong>for</strong> network or <strong>system</strong> security reasons.(b) receiv<strong>in</strong>g a telemetered MW Curtailment set-po<strong>in</strong>t sent from <strong>the</strong> SO, NSP or <strong>the</strong>iragent. If ano<strong>the</strong>r operator is implement<strong>in</strong>g power curtailment, this shall be <strong>in</strong>agreement with all <strong>the</strong> parties <strong>in</strong>volved.(4) The RPP shall be equipped with constra<strong>in</strong>t functions, i.e. supplementary active powercontrol functions. The constra<strong>in</strong>t functions are used to avoid imbalances <strong>in</strong> <strong>the</strong> NIPS oroverload<strong>in</strong>g of <strong>the</strong> TS and DS <strong>in</strong> connection with <strong>the</strong> reconfiguration of <strong>the</strong> TS and DS <strong>in</strong>critical or unstable situations or <strong>the</strong> like, as illustrated <strong>in</strong> Figure 14.Page 28Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(5) Activation of <strong>the</strong> active power constra<strong>in</strong>t functions shall be agreed with <strong>the</strong> SO or NSP.The required constra<strong>in</strong>t functions are as follows:(a) Absolute production constra<strong>in</strong>t(b) Delta production constra<strong>in</strong>t(c) Power gradient constra<strong>in</strong>t(6) The required constra<strong>in</strong>t functions are described <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g sections.11.1 Absolute Production Constra<strong>in</strong>t(1) An Absolute Production Constra<strong>in</strong>t is used to constra<strong>in</strong> <strong>the</strong> output active power from <strong>the</strong>RPP to a predef<strong>in</strong>ed power MW limit at <strong>the</strong> POC. This is typically used to protect <strong>the</strong> TS andDS aga<strong>in</strong>st overload<strong>in</strong>g.(2) If <strong>the</strong> setpo<strong>in</strong>t <strong>for</strong> <strong>the</strong> Absolute Production Constra<strong>in</strong>t is to be changed, such change shallbe commenced with<strong>in</strong> two seconds and completed not later than 30 seconds after receipt ofan order to change <strong>the</strong> setpo<strong>in</strong>t.(3) The accuracy of <strong>the</strong> control per<strong>for</strong>med and of <strong>the</strong> setpo<strong>in</strong>t shall not deviate by more than±2% of <strong>the</strong> setpo<strong>in</strong>t value or by ±0.5% of <strong>the</strong> rated power, depend<strong>in</strong>g on which yields <strong>the</strong>highest tolerance.11.2 Delta Production Constra<strong>in</strong>t(1) A Delta Production Constra<strong>in</strong>t is used to constra<strong>in</strong> <strong>the</strong> active power from <strong>the</strong> RPP to arequired constant value <strong>in</strong> proportion to <strong>the</strong> possible active power.(2) A Delta Production Constra<strong>in</strong>t is typically used to establish a control reserve <strong>for</strong> controlpurposes <strong>in</strong> connection with frequency control.(3) If <strong>the</strong> setpo<strong>in</strong>t <strong>for</strong> <strong>the</strong> Delta Production Constra<strong>in</strong>t is to be changed, such change shall becommenced with<strong>in</strong> two seconds and completed no later than 30 seconds after receipt of anorder to change <strong>the</strong> setpo<strong>in</strong>t.(4) The accuracy of <strong>the</strong> control per<strong>for</strong>med and of <strong>the</strong> setpo<strong>in</strong>t shall not deviate by more than±2% of <strong>the</strong> setpo<strong>in</strong>t value or by ±0.5% of <strong>the</strong> rated power, depend<strong>in</strong>g on which yields <strong>the</strong>highest tolerance.11.3 Power Gradient Constra<strong>in</strong>t(1) A Power Gradient Constra<strong>in</strong>t is used to limit <strong>the</strong> maximum ramp rates by which <strong>the</strong> activepower can be changed <strong>in</strong> <strong>the</strong> event of changes <strong>in</strong> primary renewable <strong>energy</strong> supply or <strong>the</strong>Page 29Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


setpo<strong>in</strong>ts <strong>for</strong> <strong>the</strong> RPP. A Power Gradient Constra<strong>in</strong>t is typically used <strong>for</strong> reasons of <strong>system</strong>operation to prevent changes <strong>in</strong> active power from impact<strong>in</strong>g <strong>the</strong> stability TS or <strong>the</strong> DS.(2) If <strong>the</strong> setpo<strong>in</strong>t <strong>for</strong> <strong>the</strong> Power Gradient Constra<strong>in</strong>t is to be changed, such change shall becommenced with<strong>in</strong> two seconds and completed no later than 30 seconds after receipt of anorder to change <strong>the</strong> setpo<strong>in</strong>t.(3) The accuracy of <strong>the</strong> control per<strong>for</strong>med and of <strong>the</strong> setpo<strong>in</strong>t shall not deviate by more than±2% of <strong>the</strong> setpo<strong>in</strong>t value or by ±0.5% of <strong>the</strong> rated power, depend<strong>in</strong>g on which yields <strong>the</strong>highest tolerance.(4) The active power constra<strong>in</strong>t functions are illustrated on Figure 14.Figure 14: Active power control functions <strong>for</strong> a Renewable Power Plant12. Control Function Requirements(1) RPPs shall be equipped with <strong>the</strong> control functions specified <strong>in</strong> Table 3. The purposeof <strong>the</strong> various control functions is to ensure overall control and monitor<strong>in</strong>g of <strong>the</strong> RPP’sgeneration.(2) The RPP control <strong>system</strong> shall be capable of controll<strong>in</strong>g <strong>the</strong> ramp rate of its activepower output with a maximum MW per m<strong>in</strong>ute ramp rate set by SO or NSP.(3) These ramp rate sett<strong>in</strong>gs shall be applicable <strong>for</strong> all ranges of operation <strong>in</strong>clud<strong>in</strong>gpositive ramp rate dur<strong>in</strong>g start up, positive ramp rate only dur<strong>in</strong>g normal operation andnegative ramp rate dur<strong>in</strong>g controlled shut down. They shall not apply to frequencyregulation.Page 30Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(4) The RPP generator shall not per<strong>for</strong>m any frequency response or voltage controlfunctions without hav<strong>in</strong>g entered <strong>in</strong>to a specific agreement to this effect with <strong>the</strong> NSP.(5) The specifications and regulation functions specified shall comply with <strong>the</strong><strong>in</strong>ternational standard IEC 61400-25-2Table 3: Control functions required <strong>for</strong> RPPsControl function Category A3 Category B Category CFrequency control X X XAbsolute production constra<strong>in</strong>t X X XDelta production constra<strong>in</strong>t - X XPower gradient constra<strong>in</strong>t - X XQ control - X XPower factor control X X XVoltage control - X X13. Signals, Communications & Control(1) All signals shall be made available at <strong>the</strong> POC by <strong>the</strong> RPP generator.(2) Requirements <strong>for</strong> <strong>the</strong> exchange of signals between RPPs of category A and <strong>the</strong> NSP orSO shall be limited to a start and stop signals.(3) Requirements <strong>for</strong> <strong>the</strong> exchange of signals between RPPs of category B and C, and <strong>the</strong>NSP, SO or <strong>the</strong>ir agent are described <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g sections.13.1 Signals from <strong>the</strong> RPP available at <strong>the</strong> POC(1) This section shall apply to RPPs of category B and C.(2) Signals from <strong>the</strong> RPP to <strong>the</strong> SO or NSP or <strong>the</strong>ir agent shall be broken up <strong>in</strong>to a numberof logical groups depend<strong>in</strong>g on functionality.(3) The follow<strong>in</strong>g signal list groups shall apply:(a) Signals List #1 – GeneralPage 31Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


In addition, RPPs shall be required to provide certa<strong>in</strong> signals from Signals Lists 2, 3, 4and 5. These lists relate to:(b) Signals List #2 - RPP Availability Estimate;(c) Signals List #3 - RPP MW Curtailment Data;(d) Signals List #4 - Frequency Response System Sett<strong>in</strong>gs;(e) Signals List #5 - RPP Meteorological Data.13.1.1 Signals List #1 – General(1) The RPP generator shall make <strong>the</strong> follow<strong>in</strong>g signals available at a SO or NSP designatedcommunication gateway equipment located at <strong>the</strong> RPP site:(a) Actual sent-out (MW) at <strong>the</strong> POC(b) Active Power Ramp rate of <strong>the</strong> entire RPP(c) Reactive Power Import/Export (+/-Mvar) at <strong>the</strong> POC(d) Reactive power range upper and lower limits(e) Power Factor(f) Voltage output(g) Echo MW set po<strong>in</strong>t(h) Echo Mvar set po<strong>in</strong>t(i) Echo Voltage set po<strong>in</strong>t13.1.2 Signals List #2 – RPP Availability Estimates(1) RPP generator shall make available <strong>the</strong> follow<strong>in</strong>g signals at a SO or NSP designatedcommunication gateway equipment located at <strong>the</strong> RPP site:(a) Available MW and <strong>for</strong>ecast MW <strong>for</strong> <strong>the</strong> next 6 hours updated hourly on <strong>the</strong> hour.(b) Available Mvar and <strong>for</strong>ecast Mvar <strong>for</strong> <strong>the</strong> next 6 hours updated hourly on <strong>the</strong> hour.13.1.3 Signals List #3 – RPP MW Curtailment Data(1) The RPP generator shall make <strong>the</strong> follow<strong>in</strong>g signals available at a designatedcommunication gateway equipment located at <strong>the</strong> RPP site:(a) RPP MW Curtailment facility status <strong>in</strong>dication (ON/OFF) as a double bit po<strong>in</strong>t. This isa controllable po<strong>in</strong>t which is set on or off by <strong>the</strong> SO. When set “On” <strong>the</strong> RPP shall<strong>the</strong>n clarify and <strong>in</strong>itiate <strong>the</strong> curtailment based on <strong>the</strong> curtailment set po<strong>in</strong>t value below.Page 32Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(b) Curtailment <strong>in</strong> progress digital feedback. This s<strong>in</strong>gle bit po<strong>in</strong>t will be set high by <strong>the</strong>RPP while <strong>the</strong> facility is <strong>in</strong> <strong>the</strong> process of curtail<strong>in</strong>g its output.(c) RPP MW Curtailment Set-po<strong>in</strong>t value (MW- feedback).(2) In <strong>the</strong> event of a curtailment, <strong>the</strong> SO will pulse <strong>the</strong> curtailment set po<strong>in</strong>t value down. TheRPP response to <strong>the</strong> changed curtailment value will be echoed by chang<strong>in</strong>g <strong>the</strong>correspond<strong>in</strong>g echo MW value. This will provide feedback that <strong>the</strong> RPP is respond<strong>in</strong>g to <strong>the</strong>curtailment request.13.1.4 Signals List #4 – Frequency Response System Sett<strong>in</strong>gs(1) The RPP generator shall make <strong>the</strong> follow<strong>in</strong>g signals available at a SO or NSPdesignated communication gateway equipment located at <strong>the</strong> RPP site:(a) Frequency Response System mode status <strong>in</strong>dication (ON/OFF) as a double bit po<strong>in</strong>t13.1.5 Signals List #5 – RPP Meteorological Data.(1) RPP generator shall make <strong>the</strong> follow<strong>in</strong>g signals available at a SO or NSP designatedcommunication gateway equipment located at <strong>the</strong> RPP site:(a) W<strong>in</strong>d speed (with<strong>in</strong> 75% of <strong>the</strong> hub height) – measured signal <strong>in</strong> meters/second (<strong>for</strong>WPP only)(b) W<strong>in</strong>d direction with<strong>in</strong> 75% of <strong>the</strong> hub height) – measured signal <strong>in</strong> degrees from truenorth(0-359) (<strong>for</strong> WPP only)(c) Air temperature- measured signal <strong>in</strong> degrees centigrade (-20 to 50);(d) Air pressure- measured signal <strong>in</strong> millibar (800 to 1400).(e) Air density (<strong>for</strong> WPP only)(f) Solar radiation (<strong>for</strong> <strong>PV</strong>PP only)(2) The meteorological data signals shall be provided by a dedicated Meteorological Mastlocated at <strong>the</strong> RPP site or, where possible and preferable to do so, data from a means of <strong>the</strong>same or better accuracy.(3) Energy resource conversion data <strong>for</strong> <strong>the</strong> facility (e.g. MW/ w<strong>in</strong>d speed) <strong>for</strong> <strong>the</strong> variousresource <strong>in</strong>puts to enable <strong>the</strong> SO to derive a graph of <strong>the</strong> full range of <strong>the</strong> facilities outputcapabilities. An update will be sent to <strong>the</strong> SO follow<strong>in</strong>g any changes <strong>in</strong> <strong>the</strong> output capability of<strong>the</strong> facility.(4) For RPP where <strong>the</strong> units are widely dispersed over a large geographical area and ra<strong>the</strong>rdifferent wea<strong>the</strong>r patterns are expected <strong>for</strong> different sections of <strong>the</strong> RPP, <strong>the</strong> meteorologicalPage 33Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


data shall be provided from a number of <strong>in</strong>dividual Meteorological Masts, or where possibleand preferable to do so, data from a source of <strong>the</strong> same or better reliability <strong>for</strong> groups of units.It is expected that units with<strong>in</strong> an <strong>in</strong>dividual group shall demonstrate a high degree ofcorrelation <strong>in</strong> Active Power output at any given time. The actual signals required shall bespecified by <strong>the</strong> SO. There shall be at least one Meteorological Mast <strong>for</strong> every 10x10 squarekm area of <strong>the</strong> facility13.2 Update Rates(1) Signals shall be updated at <strong>the</strong> follow<strong>in</strong>g rates:(a) Analog Signals at a rate of 2 seconds.(b) Digital Signals at <strong>the</strong> rate of 1 second.(c) Meteorological data once a m<strong>in</strong>ute13.3 Control Signals Sent from SO to <strong>the</strong> RPPs(1) The control signals described below shall be sent from SO to <strong>the</strong> RPP. The RPP shall becapable of receiv<strong>in</strong>g <strong>the</strong>se signals and act<strong>in</strong>g accord<strong>in</strong>gly.13.3.1 Active-Power Control(1) An Active-Power Control set-po<strong>in</strong>t signal shall be sent by SO to <strong>the</strong> RPP control <strong>system</strong>.This set-po<strong>in</strong>t shall def<strong>in</strong>e <strong>the</strong> maximum Active Power output permitted from <strong>the</strong> RPP. TheRPP control <strong>system</strong> shall be capable of receiv<strong>in</strong>g this signal and act<strong>in</strong>g accord<strong>in</strong>gly to achieve<strong>the</strong> desired change <strong>in</strong> Active Power output. See (a) <strong>in</strong> Figure 15 below(2) This value is controlled by raise or lower pulses.(3) The RPP generator shall make it possible <strong>for</strong> <strong>the</strong> SO to remotely enable/disable <strong>the</strong>Active-Power control function <strong>in</strong> <strong>the</strong> RPP control <strong>system</strong>.13.3.2 Connection Po<strong>in</strong>t CB Trip facility(1) A facility shall be provided by <strong>the</strong> NSP to facilitate <strong>the</strong> disconnection of <strong>the</strong> RPP. It shallbe possible <strong>for</strong> SO, NSP or <strong>the</strong>ir agent to send a trip signal to <strong>the</strong> circuit breaker at <strong>the</strong> HVside of <strong>the</strong> POC. This is currently implemented via <strong>the</strong> breaker shown as (b) <strong>in</strong> Figure 15below.13.4 MW Forecast(1) This section applies only to RPPs of category B and C.Page 34Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(2) The RPP generator shall have <strong>the</strong> capability to produce and submit to <strong>the</strong> SO <strong>the</strong> dayaheadand week-ahead hourly MW production <strong>for</strong>ecast.(3) The <strong>for</strong>ecasts shall be provided by RPP generator. These <strong>for</strong>ecasts shall be provided by10:00 a.m. on a daily basis <strong>for</strong> <strong>the</strong> follow<strong>in</strong>g 24 hours and 7 days <strong>for</strong> each 1 hour time-period,by means of an electronic <strong>in</strong>terface <strong>in</strong> accordance with <strong>the</strong> reasonable requirements of SO’sdata <strong>system</strong>.13.5 RPP MW availability declaration(1) The RPP generator shall submit RPP MW availability declarations whenever changes <strong>in</strong>MW availability occur or are predicted to occur. These declarations shall be submitted bymeans of an electronic <strong>in</strong>terface <strong>in</strong> accordance with <strong>the</strong> requirements of SO’s data <strong>system</strong>.13.6 Data Communications Specifications(1) The RPP shall have external communication gateway equipment that can communicatewith a m<strong>in</strong>imum of three simultaneous SCADA Masters, <strong>in</strong>dependently from what is done<strong>in</strong>side <strong>the</strong> RPP.(2) The location of <strong>the</strong> communication gateway equipment shall be agreed between affectedparticipants <strong>in</strong> <strong>the</strong> connection agreement.(3) The necessary communications l<strong>in</strong>ks, communications protocol and <strong>the</strong> requirement <strong>for</strong>analogue or digital signals shall be specified by <strong>the</strong> SO as appropriate be<strong>for</strong>e a connectionagreement is signed between <strong>the</strong> RPP generator and <strong>the</strong> Distributor or TNSP.(4) Active Power Curtailment or Voltage Regulation facilities at <strong>the</strong> RPP shall be tested oncea month. It is essential that facilities exist to allow <strong>the</strong> test<strong>in</strong>g of <strong>the</strong> functionality withouttripp<strong>in</strong>g <strong>the</strong> actual equipment.(5) Where signals or <strong>in</strong>dications required to be provided by <strong>the</strong> RPP generator becomeunavailable or do not comply with applicable standards due to failure of <strong>the</strong> RPP equipment orany o<strong>the</strong>r reason under <strong>the</strong> control of <strong>the</strong> RPP, <strong>the</strong> RPP generator shall restore or correct <strong>the</strong>signals and/or <strong>in</strong>dications with<strong>in</strong> 24 hours.Page 35Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


Sierra (W<strong>in</strong>d)(b)Avail Fore120 105120 100120 90120 80120 70120 60(e)StopP Mode97 MWQ Mode30 Mvar100 30NRNR(f)(a)Curtail0 MW10NR100301355(c)Voltage401 kV400Q Mode Limits : -40 : 40 MvarWea<strong>the</strong>r5.5 m/s35 °22 C875 mB(f)(d)Muldr 18010Bacch 12020Figure 15: Example of one l<strong>in</strong>e Human Mach<strong>in</strong>e Interface layout14. Test<strong>in</strong>g and Compliance Monitor<strong>in</strong>g(1) All RPP generators shall demonstrate compliance to all applicable requirementsspecified <strong>in</strong> this grid connection code and any o<strong>the</strong>r applicable code or standard approved byNERSA, as applicable, be<strong>for</strong>e be<strong>in</strong>g allowed to connect to <strong>the</strong> DS or <strong>the</strong> TS and operatecommercially.(2) The RPP generator shall review, and confirm to <strong>the</strong> SO and NERSA, compliance by <strong>the</strong>RPP with every requirements of this code.(3) The RPP generator shall conduct tests or studies to demonstrate that <strong>the</strong> RPP complieswith each of <strong>the</strong> requirements of this code.(4) The RPP generator shall cont<strong>in</strong>uously monitor its compliance <strong>in</strong> all material respects withall <strong>the</strong> connection conditions of this code.(5) Each RPP generator shall submit to <strong>the</strong> SO a detailed test procedure, emphasis<strong>in</strong>g<strong>system</strong> impact, <strong>for</strong> each relevant part of this code prior to every test.Page 36Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(6) If RPP generator determ<strong>in</strong>es, from tests or o<strong>the</strong>rwise, that <strong>the</strong> RPP is not comply<strong>in</strong>g withone or more sections of this code, <strong>the</strong>n <strong>the</strong> RPP Generator shall (with<strong>in</strong> 1 hour of be<strong>in</strong>gaware):(a) notify <strong>the</strong> SO of that fact(b) advise <strong>the</strong> SO of <strong>the</strong> remedial steps it proposes to take to ensure that <strong>the</strong> relevantRPP can comply with this code and <strong>the</strong> proposed timetable <strong>for</strong> implement<strong>in</strong>g thosesteps(c) diligently take such remedial action to ensure that <strong>the</strong> relevant RPP can complywith this code; <strong>the</strong> RPP generator shall regularly report <strong>in</strong> writ<strong>in</strong>g to <strong>the</strong> SO on itsprogress <strong>in</strong> implement<strong>in</strong>g <strong>the</strong> remedial action, and(d) after tak<strong>in</strong>g remedial action as described above, demonstrate to <strong>the</strong> reasonablesatisfaction of <strong>the</strong> SO that <strong>the</strong> relevant RPP is <strong>the</strong>n comply<strong>in</strong>g with this code.(7) The SO may issue an <strong>in</strong>struction requir<strong>in</strong>g <strong>the</strong> RPP generator to carry out a test todemonstrate that <strong>the</strong> relevant RPP complies with <strong>the</strong> code requirements. A RPP generatormay not refuse such an <strong>in</strong>struction, provided it is issued timeously and <strong>the</strong>re are reasonablegrounds <strong>for</strong> suspect<strong>in</strong>g non-compliance.(8) The RPP generator shall keep records relat<strong>in</strong>g to <strong>the</strong> compliance of <strong>the</strong> RPP with eachsection of this grid connection code, or any o<strong>the</strong>r code applicable to that RPP, sett<strong>in</strong>g outsuch <strong>in</strong><strong>for</strong>mation that <strong>the</strong> SO reasonably requires <strong>for</strong> assess<strong>in</strong>g power <strong>system</strong> per<strong>for</strong>mance,<strong>in</strong>clud<strong>in</strong>g actual RPP per<strong>for</strong>mance dur<strong>in</strong>g abnormal conditions. Records shall be kept <strong>for</strong> am<strong>in</strong>imum of 5 years (unless o<strong>the</strong>rwise specified <strong>in</strong> <strong>the</strong> code) commenc<strong>in</strong>g from <strong>the</strong> date <strong>the</strong><strong>in</strong><strong>for</strong>mation was created.15. Report<strong>in</strong>g to NERSA(1) The RPP generator shall design <strong>the</strong> <strong>system</strong> and ma<strong>in</strong>ta<strong>in</strong> records so that <strong>the</strong> follow<strong>in</strong>g<strong>in</strong><strong>for</strong>mation can be provided to <strong>the</strong> NERSA on a monthly basis <strong>in</strong> an electronic spread sheet<strong>for</strong>mat:(a) Non-renewable/supplementary fuel used by <strong>the</strong> power plant as outl<strong>in</strong>ed underSupplementary Fuel Specification schedule of <strong>the</strong> PPA dur<strong>in</strong>g <strong>the</strong> month.(b) Day ahead <strong>for</strong>ecast output <strong>energy</strong> to <strong>the</strong> grid and hourly availability as specified <strong>in</strong>13.4 and 13.5 above.(c) Actual hourly availability and output <strong>energy</strong> to <strong>the</strong> grid that occurred and <strong>the</strong>average primary resource <strong>for</strong> that hour (i.e. W<strong>in</strong>d speed <strong>for</strong> w<strong>in</strong>d generators andsolar radiation <strong>for</strong> solar generation)(d) Actual hourly electricity imports from all sources as applicable.(e) Direct monthly emissions per unit of electricity generated by <strong>the</strong> RPP (tCO2/kWh).Page 37Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


(f) Any curtailed <strong>energy</strong> dur<strong>in</strong>g <strong>the</strong> month.(2) These reports are to be submitted be<strong>for</strong>e <strong>the</strong> 15 th of <strong>the</strong> follow<strong>in</strong>g month toIPSreports@nersa.org.za(3) These reports should also <strong>in</strong>clude details of <strong>in</strong>cidents relat<strong>in</strong>g any unavailability of <strong>the</strong>network which prevented <strong>the</strong> RPP from generat<strong>in</strong>g and any <strong>in</strong>cidents where <strong>the</strong>ir right to selfdispatchwas imp<strong>in</strong>ged upon where <strong>the</strong> PPA gives <strong>the</strong>m a right to self-dispatch.16. Provision of Data and Electrical Dynamic SimulationModels(1) The SO, Distributors and TNSPs require suitable and accurate dynamic models, <strong>in</strong> <strong>the</strong>template specified by <strong>the</strong> request<strong>in</strong>g party apply<strong>in</strong>g <strong>for</strong> a connection to <strong>the</strong> DS or TS, <strong>in</strong> orderto assess reliably <strong>the</strong> impact of <strong>the</strong> RPP proposed <strong>in</strong>stallation on <strong>the</strong> dynamic per<strong>for</strong>manceand security and stability of <strong>the</strong> power <strong>system</strong>.(2) The required dynamic models must operate under RMS and EMT simulation to replicate<strong>the</strong> per<strong>for</strong>mance of <strong>the</strong> RPP facility or <strong>in</strong>dividual units <strong>for</strong> analysis of <strong>the</strong> follow<strong>in</strong>g networkaspects:(a) RPP impact on network voltage stability(b) RPP impact on QOS at POC(c) RPP switch<strong>in</strong>g transients impact on network per<strong>for</strong>mance(d) RPP impact on breakers TRV (Transient Recovery Voltage)(e) RPP impact on network <strong>in</strong>sulation co-ord<strong>in</strong>ation requirements(f) RPP impact on network protection co-ord<strong>in</strong>ation(g) RPP FRT (Fault Ride Through) capability <strong>for</strong> different types of faults and positions(h) RPP response to various <strong>system</strong> phenomena such as:(i) switch<strong>in</strong>g on <strong>the</strong> network(ii) power sw<strong>in</strong>gs(iii) small signal <strong>in</strong>stabilities(3) RPP data exchange shall be a time-based process.(a) First stage (dur<strong>in</strong>g <strong>the</strong> application <strong>for</strong> connection)(i)The follow<strong>in</strong>g <strong>in</strong><strong>for</strong>mation shall be submitted by <strong>the</strong> RPP generator to <strong>the</strong>SO and Distributor or TNSP, as applicable:• Physical location of <strong>the</strong> RPP (<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> GPS coord<strong>in</strong>ates)• Site PlanPage 38Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


• Number of w<strong>in</strong>d turb<strong>in</strong>es or units to be connected• MW output per turb<strong>in</strong>e or unit• Initial phase MW value• F<strong>in</strong>al phase MW value and timel<strong>in</strong>es• Any o<strong>the</strong>r <strong>in</strong><strong>for</strong>mation that <strong>the</strong> service provider may reasonably require(ii)For <strong>the</strong> detailed RPP design, <strong>the</strong> NSP shall make available to <strong>the</strong> RPPgenerator or its agent at least <strong>the</strong> follow<strong>in</strong>g <strong>in</strong><strong>for</strong>mation:• Po<strong>in</strong>t of Connection and <strong>the</strong> Po<strong>in</strong>t of Common Coupl<strong>in</strong>g <strong>in</strong>clud<strong>in</strong>g <strong>the</strong>nom<strong>in</strong>al voltages,• Expected fault levels• The network service provider’s connection between <strong>the</strong> Po<strong>in</strong>t ofconnection and <strong>the</strong> RPP,• The busbar layout of <strong>the</strong> PCC and POC substations,• The portion of <strong>the</strong> network service provider’s grid that will allowaccurate and sufficient studies to design <strong>the</strong> RPP to meet <strong>the</strong> GridCode. This <strong>in</strong><strong>for</strong>mation shall <strong>in</strong>clude:,o Positive and zero sequence parameters of <strong>the</strong> relevant networkservice provider’s transmission and distribution, trans<strong>for</strong>mers,reactors, capacitors and o<strong>the</strong>r relevant equipmento The connection of <strong>the</strong> various l<strong>in</strong>es trans<strong>for</strong>mers, reactors andcapacitors etc.(b) Second stage (after detailed RPP designs have been completed but be<strong>for</strong>ecommission<strong>in</strong>g <strong>the</strong> RPP).(i)Dur<strong>in</strong>g this stage, <strong>the</strong> RPP generator shall provide <strong>in</strong><strong>for</strong>mation on:• Selected RPP technology data.• Fault ride through capability and harmonic studies test report• Generic test model and dynamic modell<strong>in</strong>g data per w<strong>in</strong>d turb<strong>in</strong>e orunit as from <strong>the</strong> type approval and tests result(c) Third stage (after commission<strong>in</strong>g and optimisation of <strong>the</strong> RPP)(i)Dur<strong>in</strong>g this stage, <strong>the</strong> RPP generator is compelled to provide <strong>in</strong><strong>for</strong>mationon:Page 39Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


• A validated RPP electrical dynamic simulation model us<strong>in</strong>gcommission<strong>in</strong>g test data and measurements• Test measurement data <strong>in</strong> <strong>the</strong> <strong>for</strong>mat agreed between <strong>the</strong> RPPgenerator and <strong>the</strong> Distributor, NTC or SO, as applicable.(4) The dynamic modell<strong>in</strong>g data shall be provided <strong>in</strong> a <strong>for</strong>mat as may be agreed between <strong>the</strong>RPP generator and <strong>the</strong> Distributor, NTC or SO, as applicable.(5) In addition, <strong>the</strong> RPP Generator shall provide <strong>the</strong> SO with operational data as prescribed<strong>in</strong> Appendix 8.Page 40Grid Connection Code <strong>for</strong> RPPs <strong>in</strong> South Africa Version 2.6 – November 2012


N O R M A I T A L I A N A C E INorma ItalianaData PubblicazioneCEI 0-21 2011-12TitoloRegola tecnica di riferimento per la connessione di Utenti attivi epassivi alle reti BT delle imprese distributrici di energia elettricaTitleReference technical rules <strong>for</strong> <strong>the</strong> connection of active and passive users to<strong>the</strong> LV electrical UtilitiesSommarioLa presente Norma CEI è stata elaborata da un Gruppo di lavoro specialistico del CEI.Essa è stata elaborata di concerto con l'Autorità per l'energia elettrica e il gas (AEEG) ed esplicita le regoletecniche di connessione alle reti di distribuzione di energia elettrica <strong>in</strong> BassaTensione (BT) su tutto ilterritorio nazionale: ciò a seguito della liberalizzazione del mercato <strong>in</strong>terno per l'energia che oggi presentaun non trascurabile numero di Imprese <strong>in</strong> concessione per la distribuzione suddetta.La presente Norma <strong>for</strong>nisce le prescrizioni di riferimento per la corretta connessione degli impianti degliUtenti tenendo conto delle caratteristiche funzionali, elettriche e gestionali della maggior parte delle reti <strong>in</strong>BT italiane. Le prescrizioni tengono conto sia delle esigenze della distribuzione dell'energia elettrica e dellasicurezza funzionale delle reti, sia delle esigenze degli Utenti che dovranno essere connessi a questeultime.Tutti i Distributori, nel <strong>for</strong>mulare <strong>in</strong> dettaglio ai loro Utenti le prescrizioni di connessione, attenendosi allapresente Norma, mettono <strong>in</strong> pratica un comportamento uni<strong>for</strong>me, trasparente e non discrim<strong>in</strong>atorio sulterritorio nazionale.Le prescrizioni della presente Norma sono f<strong>in</strong>alizzate alla connessione alle reti di distribuzione purché gliimpianti dei relativi Utenti siano con<strong>for</strong>mi ad essa.La presente Norma si applica alle nuove utenze e parzialmente anche alle esistenti: le regole per questeultime sono fissate dall'AEEG.Allo scopo di acquisire esperienza sull'applicazione di alcuni paragrafi particolarmente <strong>in</strong>novativi dellapresente Norma è previsto che entr<strong>in</strong>o <strong>in</strong> vigore <strong>in</strong> date scaglionate successive alla pubblicazione di essa(si veda la Prefazione Nazionale).© CEI COMITATO ELETTROTECNICO ITALIANO - Milano 2011. Riproduzione vietataTutti i diritti sono riservati. Nessuna parte del presente Documento può essere riprodotta, messa <strong>in</strong> rete o diffusacon un mezzo qualsiasi senza il consenso scritto del CEI. Concessione per utente s<strong>in</strong>golo. Le Norme CEI sonorevisionate, quando necessario, con la pubblicazione sia di nuove edizioni sia di varianti. È importante pertantoche gli utenti delle stesse si accert<strong>in</strong>o di essere <strong>in</strong> possesso dell’ultima edizione o variante.


NORMA TECNICA CEI 0-21:2011-121 Oggetto e scopo della NormaParte 1 – Oggetto, scopo e def<strong>in</strong>izioniLa presente Norma ha lo scopo di def<strong>in</strong>ire i criteri tecnici per la connessione degli Utenti allereti elettriche di distribuzione con tensione nom<strong>in</strong>ale <strong>in</strong> corrente alternata f<strong>in</strong>o a 1 kVcompreso. 1)Inoltre, per gli Utenti attivi, la presente Norma ha lo scopo di:def<strong>in</strong>ire l’avviamento, l’esercizio ed il distacco dell’impianto di produzione;evitare che gli impianti di produzione possano funzionare <strong>in</strong> isola su porzioni di reti BT delDistributore; def<strong>in</strong>ire alcune prescrizioni relative agli impianti di produzione funzionanti <strong>in</strong> servizioisolato sulla rete <strong>in</strong>terna del Produttore. Le suddette prescrizioni non riguardano laconnessione dell’impianto di produzione alla rete del Distributore e pertanto non risultanorilevanti ai f<strong>in</strong>i della predetta connessione.Le soluzioni tecniche <strong>in</strong>dicate nel presente documento rappresentano lo stato dell’arteattualmente praticabile. Soluzioni alternative rispetto a quelle qui <strong>in</strong>dicate, <strong>in</strong> grado diottenere le stesse prestazioni richieste <strong>in</strong> term<strong>in</strong>i di affidabilità e di sicurezza, possono esseresottoposte al CEI ed eventualmente recepite nella presente Norma su proposta di un appositoorgano tecnico <strong>in</strong> accordo con l’Autorità per l’Energia Elettrica e il Gas (nel seguito AEEG).Gli impianti oggetto della presente Norma devono essere costruiti a regola d’arte e a tal f<strong>in</strong>e èsufficiente la rispondenza alle norme del Comitato Elettrotecnico Italiano (CEI). I riferimenti atutte le norme CEI nel presente testo devono essere <strong>in</strong>tesi <strong>in</strong> tal senso.Nel seguito, ove viene <strong>in</strong>dicato un riferimento a una delibera dell’AEEG, tale riferimento è<strong>in</strong>teso alla data di pubblicazione della presente Norma.2 Campo di applicazioneLa presente Norma si applica a tutte le reti delle imprese distributrici di energia elettrica.La presente Norma si applica agli impianti elettrici degli Utenti dei servizi di distribuzione e diconnessione alle reti di distribuzione, nel seguito denom<strong>in</strong>ati Utenti della rete (Utenti). GliUtenti della rete sono i soggetti titolari di:impianti di utilizzazione (Utenti passivi) connessi alle reti BT di distribuzione dell’energiaelettrica, tra cui anche, impianti dest<strong>in</strong>ati all’alimentazione di veicoli elettrici (stazioni di carica batterie perveicoli elettrici); impianti dest<strong>in</strong>ati all’alimentazione di impianti di illum<strong>in</strong>azione pubblica (impianti<strong>in</strong>sistenti <strong>in</strong> tutto o <strong>in</strong> parte su suolo pubblico); impianti temporanei/provvisori (<strong>for</strong>niture per cantieri, circhi, ecc.);impianti di produzione (Utenti attivi) connessi alle reti di distribuzione dell’energia elettricariguardanti <strong>in</strong>stallazioni fisse, mobili o trasportabili, che convertono ogni <strong>for</strong>ma di energiautile <strong>in</strong> energia elettrica, collegati <strong>in</strong> parallelo alle reti BT del Distributore <strong>in</strong> modocont<strong>in</strong>uativo, di breve durata, oppure funzionanti <strong>in</strong> isola su una rete del produttore 2) ;reti di distribuzione nell’ambito della realizzazione e del mantenimento della connessionetra reti di distribuzione.1) Le prescrizioni della presente Norma si applicano sia alle connessioni monofase, sia alle connessioni trifase.2) Per impianti con potenza di generazione <strong>in</strong>feriore a 1 kW, valgono le sole prescrizioni relative agli impiantipassivi.6


NORMA TECNICA CEI 0-21:2011-12Quando a seguito dell’<strong>in</strong>tervento delle protezioni SPI viene aperto il dispositivo di <strong>in</strong>terfaccia odel generatore, deve essere previsto un tempo di attesa di almeno 180 s decorrentidall’istante <strong>in</strong> cui i parametri elettrici controllati dalle suddette protezioni hanno ripreso i valor<strong>in</strong>om<strong>in</strong>ali, prima di azionare nuovamente <strong>in</strong> chiusura il dispositivo di <strong>in</strong>terfaccia o delgeneratore.8.4.1.3 Impianti di produzione <strong>in</strong>direttamente connessiIn impianti di produzione con generatori statici, il collegamento alla rete e la riconnessione, aseguito d’<strong>in</strong>tervento delle protezioni di <strong>in</strong>terfaccia, può avvenire esclusivamente qualora latensione sia compresa tra l’85 % e il 110 % del valore nom<strong>in</strong>ale e la frequenza di rete si trovientro un range prefissato (ad esempio tra 49,95 Hz e 50,05) 41) per una durata m<strong>in</strong>ima di300 secondi. L’impianto deve effettuare il parallelo con la rete automaticamente aumentandol’erogazione di potenza da vuoto alla massima potenza erogabile <strong>in</strong> modo graduale con ungradiente positivo massimo non superiore al 20 % al m<strong>in</strong>uto della potenza massima.In caso di comandi manuali <strong>in</strong> loco (ad esempio, per motivi di manutenzione ord<strong>in</strong>aria ostraord<strong>in</strong>aria) è possibile derogare alle disposizioni di ricollegamento descritte nel presenteparagrafo relativamente all’attesa dei 300 s.8.4.2 Funzionamento di breve durata <strong>in</strong> paralleloIl funzionamento di breve durata <strong>in</strong> parallelo alla rete BT del Distributore è consentito perqualsiasi impianto di produzione, statico o rotante, anche privo del SPI, purché la durata delparallelo non ecceda, tramite relè temporizzatore, 30 s per gli impianti trifase e 10 s per quellimonofase. Trascorso tale tempo, la condizione di parallelo deve essere <strong>in</strong>terrotta.Il suddetto relè deve qu<strong>in</strong>di: avviarsi al momento di <strong>in</strong>izio del funzionamento breve <strong>in</strong> parallelo; separare l’impianto di produzione dalla rete alla f<strong>in</strong>e del tempo di ritardo.Qualora il generatore preveda la necessità di funzionamento <strong>in</strong> parallelo alla rete superiore a30 s ma <strong>in</strong>feriore a 30 m<strong>in</strong>uti (ad esempio per prove periodiche di generatori di emergenza),deve essere prevista una protezione di <strong>in</strong>terfaccia che agisca sull’<strong>in</strong>terruttore del generatorecon le regolazioni <strong>in</strong>dicate nella Tabella 7.Protezione Soglia di <strong>in</strong>tervento Tempo di <strong>in</strong>terventoMassima tensione (59) 1,15 Vn Senza ritardo <strong>in</strong>tenzionaleM<strong>in</strong>ima tensione (27) 0,7 Vn 0,4 sMassima frequenza (81 >) 50,3 Hz Senza ritardo <strong>in</strong>tenzionaleM<strong>in</strong>ima frequenza (81


NORMA TECNICA CEI 0-21:2011-12Per il criterio di protezione della rete <strong>in</strong> isola, <strong>in</strong> mancanza di altre prescrizioni, si consiglianole seguenti funzioni che devono azionare il dispositivo del generatore.Protezione Soglia di <strong>in</strong>tervento Tempo di <strong>in</strong>terventoMassima tensione (59) 1,1 Vn Senza ritardo <strong>in</strong>tenzionale – 0,1 sM<strong>in</strong>ima tensione (27) 0,8 Vn 5 sMassima frequenza (81 >) 52 Hz 1 sM<strong>in</strong>ima frequenza (81


NORMA TECNICA CEI 0-21:2011-12Per evitare <strong>in</strong>terruzioni del servizio durante il cambio di assetto della rete, previo accordo trail Distributore e l’Utente, è ammesso il parallelo transitorio fra l’alimentazione di riserva (ades. gruppi elettrogeni) e la rete, realizzabile unicamente con un sistema automatico cheverifichi che la durata del funzionamento <strong>in</strong> parallelo delle diverse alimentazioni avvenga allecondizioni previste <strong>in</strong> 8.4.2.Nel caso <strong>in</strong> cui l’Utente sia dotato di gruppi statici di cont<strong>in</strong>uità per servizi non <strong>in</strong>terrompibili diun certo rilievo (trifase di potenza complessiva superiore a 10 kW), si deve evitare che taliapparecchiature possano, anche transitoriamente, mantenere la rete, <strong>in</strong> tensione. Laseparazione di tali apparecchiature dalla rete deve essere garantita da un dispositivo di<strong>in</strong>terfaccia capace di assicurare il sezionamento rispetto alla rete 42) .8.4.4 Funzionamento cont<strong>in</strong>uativo <strong>in</strong> parallelo alla rete del distributore8.4.4.1 Requisiti costruttivi dei generatori: immissione di corrente cont<strong>in</strong>uaGli impianti di produzione <strong>in</strong>direttamente connessi devono prevedere un sistema per limitare,a regime, l’immissione <strong>in</strong> rete di correnti con componenti cont<strong>in</strong>ue superiori allo 0,5 % dellacorrente nom<strong>in</strong>ale e superare le prove <strong>in</strong>dicate <strong>in</strong> Allegato B. Il rispetto del suddetto requisitopuò essere realizzato con: un tras<strong>for</strong>matore operante alla frequenza di rete, oppure una funzione di protezione sensibile alla componente cont<strong>in</strong>ua della corrente immessa <strong>in</strong>rete.La funzione di protezione deve <strong>in</strong>tervenire sul DDG separando l’<strong>in</strong>verter dalla rete: <strong>in</strong> 200 ms se la componente cont<strong>in</strong>ua supera 1 A; <strong>in</strong> 1 s se la componente cont<strong>in</strong>ua supera lo 0,5 % della corrente nom<strong>in</strong>ale dell’<strong>in</strong>verter.8.4.4.2 Requisiti costruttivi dei generatori/impianti: immissione di potenza reattivaIl funzionamento <strong>in</strong> parallelo alla rete BT del Distributore è consentito agli impianti diproduzione, trifase e/o monofase, realizzati con una o più delle seguenti tipologie:a) macch<strong>in</strong>a rotante as<strong>in</strong>crona non autoeccitata f<strong>in</strong>o a 6 kW, macch<strong>in</strong>a rotante s<strong>in</strong>crona f<strong>in</strong>oa 6 kW, <strong>in</strong>verter <strong>in</strong> impianti di potenza complessiva f<strong>in</strong>o a 3 kW, purché <strong>in</strong> grado difunzionare con fattore di potenza istantaneo compreso tra cos = 0,98 <strong>in</strong> assorbimento direattivo e cos = 0,98 <strong>in</strong> erogazione di reattivo;b) macch<strong>in</strong>a rotante s<strong>in</strong>crona di potenza superiore a 6 kW, purché <strong>in</strong> grado di funzionare confattore di potenza istantaneo regolabile compreso tra cos = 0,98 <strong>in</strong> assorbimento direattivo e cos = 0,9 <strong>in</strong> erogazione di reattivo.c) macch<strong>in</strong>a rotante as<strong>in</strong>crona non autoeccitata di potenza superiore a 6 kW, purché <strong>in</strong>grado di funzionare con fattore di potenza istantaneo regolabile compreso tra cos = 0,98<strong>in</strong> assorbimento di reattivo e cos = 0,98 <strong>in</strong> erogazione di reattivo;d) <strong>in</strong>verter <strong>in</strong> impianti di potenza complessiva superiore a 3 kW e f<strong>in</strong>o a 6 kW, purché <strong>in</strong>grado di funzionare con fattore di potenza istantaneo regolabile compreso tra cos = 0,95<strong>in</strong> assorbimento di reattivo e cos = 0,95 <strong>in</strong> erogazione di reattivo;e) <strong>in</strong>verter <strong>in</strong> impianto di potenza complessiva superiore a 6 kW, purché <strong>in</strong> grado difunzionare con fattore di potenza istantaneo regolabile compreso tra cos = 0,90 <strong>in</strong>assorbimento di reattivo e cos = 0,90 <strong>in</strong> erogazione di reattivo.42) Come noto, ai f<strong>in</strong>i del sezionamento, non sono ammessi dispositivi di tipo statico. La necessità di un dispositivodi <strong>in</strong>terfaccia si ha allorché l’UPS (e/o CPS) sia dotato di ramo di bypass, oppure abbia lo stadio di conversionec.a/c.c <strong>in</strong> grado di rialimentare la rete a monte con batteria(e).55


NORMA TECNICA CEI 0-21:2011-12I limiti di potenza di cui sopra sono da <strong>in</strong>tendersi riferiti al complesso dei generatori present<strong>in</strong>ell’impianto 43) .Per gli <strong>in</strong>verter <strong>in</strong> impianti di cui alla lettera e), il suddetto requisito è esplicitato nella Figura13 <strong>in</strong> cui sono rappresentate una capability triangolare ed una capability rettangolare.Nei punti di funzionamento compresi entro la capability triangolare (zona tratteggiata <strong>in</strong> Figura13), si assume convenzionalmente che l’impianto eroghi/assorba potenza reattiva con loscopo di limitare le sovratensioni/sottotensioni causate dalla propria immissione di potenzaattiva.Nei punti di funzionamento compresi tra la capability triangolare e quella rettangolare (zona asfondo grigio <strong>in</strong> Figura 13), si assume convenzionalmente che l’impianto eroghi/assorbapotenza reattiva con lo scopo di <strong>for</strong>nire un servizio di rete.Per gli <strong>in</strong>verter <strong>in</strong> impianti di cui alla lettera d), la capability dell’<strong>in</strong>verter deve essere <strong>in</strong> gradodi scambiare potenza reattiva secondo quanto riportato <strong>in</strong> E.2.Le suddette tipologie possono essere <strong>in</strong>tegrate <strong>in</strong> un unico sistema di produzione (ad es.macch<strong>in</strong>a rotante collegata direttamente o tramite <strong>in</strong>verter alla rete).La normale condizione di funzionamento delle macch<strong>in</strong>e prevede la sola <strong>in</strong>iezione di potenzaattiva (cos = 1); il funzionamento ad un fattore di potenza diverso da 1 può essere richiestodal Distributore qualora esigenze di esercizio della rete di distribuzione lo richiedano.Il funzionamento a fattore di potenza diverso da 1 deve essere possibile, sia con logiche eleggi di controllo locali, sia con logiche e leggi di controllo che prevedano segnali di controlloda remoto (queste ultime solo per impianti di potenza complessiva superiore a 6 kW). Lelogiche di controllo locale e le logiche di controllo da remoto sono def<strong>in</strong>ite nell’Allegato E.Le funzioni del sistema di comunicazione/regolazione sono descritte nell’Allegato D.cos = 0,9(assorbimento/<strong>in</strong>duttivo)P/Pn [%]100cos = 0,9(erogazione/capacitivo)Capability “rettangolare”Per ogni P = Pn, |Q| = 0,4843 PnCapability “triangolare”Per ogni P = Pn, |Q| = 0,4843 P‐ 48,43 0 + 48,43 Q/Pn [%](‐Q m<strong>in</strong> ) (+Q max )Figura 13 - Curve di capability “triangolare” e “rettangolare”,valide per <strong>in</strong>verter <strong>in</strong> impianti di potenza complessiva superiore a 6 kW43) I limiti di potenza <strong>in</strong>dicati possono essere ottenuti anche con dispositivi aggiuntivi esterni ai generatori. Lemodalità realizzative di tale soluzione sono da concordare con il Distributore.56


NORMA TECNICA CEI 0-21:2011-128.4.4.3 Condizioni per il funzionamento <strong>in</strong> parallelo con la rete di distribuzioneIl funzionamento di un impianto di produzione <strong>in</strong> parallelo alla rete del Distributore èsubord<strong>in</strong>ato a precise condizioni, tra le quali <strong>in</strong> particolare quelle di seguito elencate:il funzionamento <strong>in</strong> parallelo non deve causare perturbazioni al servizio sulla rete delDistributore, al f<strong>in</strong>e di preservare il livello di qualità del servizio <strong>in</strong>dicato dalla NormaCEI EN 50160; il funzionamento <strong>in</strong> parallelo deve <strong>in</strong>terrompersi senza ritardo <strong>in</strong>tenzionale edautomaticamente agendo sul DDI tramite il SPI: <strong>in</strong> assenza di alimentazione della rete di distribuzione; <strong>in</strong> caso di guasto al sistema di protezione di <strong>in</strong>terfaccia; qualora i valori di tensione e frequenza della rete non siano compresi entro i valori diregolazione riportati nella Tabella 8 di 8.6.2.1.Si sottol<strong>in</strong>ea che <strong>in</strong> particolari situazioni di carico della rete del Distributore, l’<strong>in</strong>tervento delSPI e la conseguente apertura del DDI potrebbero non avvenire <strong>in</strong> caso di mancanzadell'alimentazione di rete o di guasti sulla rete. Pertanto, l’Utente attivo deve mettere <strong>in</strong> attotutti gli accorgimenti necessari alla salvaguardia dei propri impianti, <strong>in</strong> funzione dellecaratteristiche degli stessi, che devono resistere alle sollecitazioni conseguenti ad eventualirichiusure degli organi di manovra del Distributore, tipicamente richiusure rapide tripolarieffettuate da <strong>in</strong>terruttori sulla rete MT, e che possano trovare i generatori <strong>in</strong> discordanza difase con la tensione di rete.8.5 Servizi di reteAllo scopo di evitare degrado nella qualità del servizio prestata della rete di distribuzione (sia<strong>in</strong> Bassa sia, <strong>in</strong>direttamente, <strong>in</strong> Media tensione), nonché di consentire il sicuro esercizio dellarete di trasmissione <strong>in</strong> presenza di <strong>in</strong>genti quantità di generazione distribuita, gli Utenti Attivicon generatori dest<strong>in</strong>ati a funzionare permanentemente <strong>in</strong> parallelo con la rete sono tenuti alrispetto delle seguenti prescrizioni. Tali prescrizioni risultano anche f<strong>in</strong>alizzate, <strong>in</strong> prospettiva,al rispetto del disposto del DM 5 maggio 2011 (art. 11 comma 3).8.5.1 Insensibilità agli abbassamenti di tensioneLe prescrizioni di cui al presente paragrafo sono f<strong>in</strong>alizzate, <strong>in</strong> prospettiva, al rispetto deldisposto del DM 5 maggio 2011 (art. 11 comma 3 lettera a); esse si applicano esclusivamenteai generatori statici.Per evitare che si verifichi l’<strong>in</strong>debita separazione dalla rete <strong>in</strong> occasione di buchi di tensione,l’impianto di produzione con potenza complessiva superiore a 6 kW deve essere <strong>in</strong> grado disoddisfare opportuni requisiti funzionali, che <strong>in</strong> letteratura <strong>in</strong>ternazionale sono <strong>in</strong>dicati conl’acronimo LVFRT (Low Voltage Fault Ride Through). I requisiti sono rappresentatigraficamente nella Figura 14.57


NORMA TECNICA CEI 0-21:2011-12Funzionamento normale.Riprist<strong>in</strong>o P/Q entro 200 msdall'istante <strong>in</strong> cui ilgeneratore rientra <strong>in</strong>questa banda di tensioneFigura 14 - Requisiti per LVFRTIn particolare devono essere soddisfatti i seguenti requisiti funzionali:nella zona tratteggiata il generatore non deve disconnettersi dalla rete. In questa zona èconsentito <strong>in</strong>terrompere temporaneamente l’erogazione della potenza attiva e reattivaerogata prima dell’<strong>in</strong>sorgenza del guasto;nella zona sottostante (grigio) il generatore può scollegarsi dalla rete; entro 200 ms dal riprist<strong>in</strong>o di un livello di tensione di rete compreso entro + 10 % e – 15 %della tensione nom<strong>in</strong>ale, il generatore deve riprendere l’erogazione della potenza attiva ereattiva immessa <strong>in</strong> rete prima della <strong>in</strong>sorgenza del guasto, con una tolleranza massimadel ± 10 % della potenza nom<strong>in</strong>ale del generatore (qualora la tensione si riprist<strong>in</strong>i marimanga nella fascia tra 85 % e 90 %, è ammessa una riduzione della potenza erogata <strong>in</strong>base ai limiti della corrente massima erogabile dal generatore).Le verifiche di rispondenza dei convertitori statici ai requisiti di immunità agli abbassamenti ditensione si effettuano secondo le modalità riportate nell’Allegato B, sezione B.1.NOTA La figura non comprende zone di funzionamento a tensione superiore al 110 % di Un: si ricorda tuttavia chei generatori, per rispettare le prescrizioni di cui al paragrafo 8.5.2, potrebbero dover operare transitoriamente contensione f<strong>in</strong>o al 115 % di Un.8.5.2 Partecipazione al controllo della tensioneLe prescrizioni di cui al presente paragrafo sono f<strong>in</strong>alizzate, <strong>in</strong> prospettiva, al rispetto deldisposto del DM 5 maggio 2011 (art. 11 comma 3 lettera d). Esse si applicano secondo lemodalità e restrizioni specificate di seguito ai generatori statici e ai generatori s<strong>in</strong>cronidirettamente connessi, di potenza nom<strong>in</strong>ale superiore a 3 kW.La presenza dei generatori lungo le l<strong>in</strong>ee BT è potenzialmente <strong>in</strong> grado di <strong>in</strong>nalzare latensione nel punto di connessione oltre i valori consentiti dalla Norma CEI EN 50160. TaleNorma prescrive che la media del valore efficace della tensione calcolata su 10 m<strong>in</strong> nonpossa superare il 110 % di Un; al momento, non sono dati limiti su <strong>in</strong>tervalli temporali piùristretti.58


NORMA TECNICA CEI 0-21:2011-12Al f<strong>in</strong>e di rispettare i limiti suesposti anche <strong>in</strong> presenza di molteplici unità di generazione, ènecessario che:a) per valori di tensione superiori al 115 % di U n per più di 0,2 s, le unità di GD sianodistaccate dalla rete (compito assolto dalla regolazione 59.S2 del SPI);b) quando il valore medio della tensione misurato su una f<strong>in</strong>estra temporale di 10 m<strong>in</strong> <strong>in</strong>modalità a media mobile supera il 110 % di Un, le unità di GD siano distaccate dalla reteentro 3 s (compito assolto dalla regolazione 59.S1 del SPI);c) oltre alle funzioni di distacco assolte dal SPI e previa richiesta del Distributore(<strong>for</strong>malizzata nel Regolamento di Esercizio), le unità GD per valori della tensione di reteprossimi al 110 % di U n dovranno contribuire alla limitazione della tensione misurata aimorsetti di uscita tramite assorbimento di potenza reattiva (comportamento <strong>in</strong>duttivo),secondo le logiche di controllo locale contenute nell’Allegato E.Le sopraccitate prescrizioni sono riferite alla tensione come misurata ai morsetti di macch<strong>in</strong>a;esse consentono di realizzare una logica locale di regolazione della tensione.In presenza di un opportuno sistema di comunicazione, le unità di GD utilizzate <strong>in</strong> impianti ditaglia complessiva superiore a 6 kW, potranno essere asservite a una regolazionecentralizzata. Esse dovranno operare secondo le logiche specificate nell’Allegato E e i segnaliesterni di regolazione e controllo remoto che verranno erogati a cura del Distributore secondoquanto stabilito nell’Allegato D. In questi casi le unità di GD dovranno esser <strong>in</strong> grado diassorbire potenza reattiva (comportamento <strong>in</strong>duttivo) <strong>in</strong> prossimità del 110 % di U n e erogarepotenza reattiva (comportamento capacitivo) <strong>in</strong> prossimità del 90 % di U n .Le prescrizioni di cui al punto c), nel caso di generatori s<strong>in</strong>croni direttamente connessi,devono essere attuate qualora compatibili con i limiti di tensione ammessi dalle macch<strong>in</strong>e.8.5.3 Limitazione della potenza attiva generataLe prescrizioni di cui al presente paragrafo sono anche f<strong>in</strong>alizzate, <strong>in</strong> prospettiva, al rispettodel disposto del DM 5 maggio 2011 (art. 11 comma 3 lettera e). La limitazione di potenzaattiva <strong>in</strong>iettata <strong>in</strong> rete può essere attuata: <strong>in</strong> maniera automatica, per valori di tensione prossimi al 110 % di U n (8.5.3.1); <strong>in</strong> maniera automatica <strong>in</strong> caso di transitori di frequenza orig<strong>in</strong>atisi sulla rete ditrasmissione (8.5.3.2); su comando esterno proveniente dal Distributore (8.5.3.3).8.5.3.1 Limitazione della potenza attiva per valori di tensione prossimi al 110 % di UnCon riferimento al comma c) del paragrafo 8.5.2, è cioè al f<strong>in</strong>e di evitare il distacco delgeneratore dalla rete, è possibile da parte del produttore prevedere la limitazione automaticadella potenza attiva <strong>in</strong>iettata <strong>in</strong> funzione della tensione, secondo la logica e le modalità diattivazione contenute nell’Allegato F.8.5.3.2 Limitazione della potenza attiva per transitori di frequenza orig<strong>in</strong>atisi sullarete di trasmissioneIn presenza di transitori di frequenza sulla rete di trasmissione, è necessario che le unità GDattu<strong>in</strong>o una opportuna regolazione locale della potenza attiva, secondo quanto specificatonell’Allegato F. Le presenti prescrizioni si applicano ai generatori statici.8.5.3.3 Limitazione della potenza attiva su comando esterno proveniente dalDistributoreIn presenza di un opportuno sistema di comunicazione, le unità di GD di potenza nom<strong>in</strong>ale<strong>in</strong>stallata superiore a 6 kW potranno essere asservite a una logica centralizzata delDistributore di riduzione della potenza attiva, e dovranno operare secondo i segnali specificat<strong>in</strong>ell’Allegato F. I segnali, trasmessi alle unità GD dal Distributore, potranno essere legati arichieste da parte del TSO.59


NORMA TECNICA CEI 0-21:2011-12Il servizio di rete sarà oggetto di regolamentazione da parte dell’AEEG.8.6 Sistemi di protezione8.6.1 Sistema di protezione generaleIl sistema di protezione generale deve essere quello <strong>in</strong>dicato per gli Utenti passivi.8.6.2 Sistema di protezione di <strong>in</strong>terfacciaLe prescrizioni di cui al presente paragrafo sono f<strong>in</strong>alizzate, <strong>in</strong> prospettiva, al rispetto deldisposto del DM 5 maggio 2011 (art. 11 comma 3 lettera b, lettera c e lettera f).Si premette che se il sistema di protezione di <strong>in</strong>terfaccia è <strong>in</strong>stallato sul lato BT di un’utenzaconnessa alla rete MT, si applica la Norma CEI 0-16.Il sistema di protezione di <strong>in</strong>terfaccia (SPI), agendo sul DDI, realizza le f<strong>in</strong>alità di cui <strong>in</strong>8.2.2.1, prevedendo le seguenti funzioni:protezione di massima/m<strong>in</strong>ima frequenza;protezione di massima/m<strong>in</strong>ima tensione;capacità di ricevere segnali su protocollo serie CEI EN 61850 44) f<strong>in</strong>alizzati a presenza rete dati (per abilitazione soglie di frequenza); comando di tele scatto.Il protocollo IEC 61850 deve essere certificato di livello A da ente esterno ISO 9000 oISO 17025.Per i sistemi trifase, le protezioni: di massima/m<strong>in</strong>ima tensione devono avere <strong>in</strong> <strong>in</strong>gresso grandezze proporzionali alle tretensioni BT concatenate; di massima/m<strong>in</strong>ima frequenza devono avere <strong>in</strong> <strong>in</strong>gresso grandezze proporzionali almenoad una tensione concatenata BT.Il SPI deve essere realizzato secondo le caratteristiche riportate <strong>in</strong> A1 e A2 e verificatosecondo le modalità previste <strong>in</strong> A3; l’attivazione di qualsiasi funzione di protezione devedeterm<strong>in</strong>are l’apertura del dispositivo di <strong>in</strong>terfaccia DDI.Le regolazioni delle protezioni avvengono sotto la responsabilità dell’Utente secondo le<strong>in</strong>dicazioni della presente Norma.Tenendo conto dei valori di regolazione e dei tempi di <strong>in</strong>tervento normalmente <strong>in</strong>dicati, pertutti i tipi di guasto sulla rete del Distributore, si ha generalmente l’<strong>in</strong>tervento del relè difrequenza, mentre i relè di tensione assolvono una funzione prevalentemente di r<strong>in</strong>calzo.Il sistema di protezione di <strong>in</strong>terfaccia deve essere realizzato tramite: un dispositivo dedicato (relè di protezione) per impianti di produzione con potenzacomplessiva superiore a 6 kW; un dispositivo <strong>in</strong>tegrato nell’apparato di conversione statica oppure un dispositivodedicato (relè di protezione) per impianti di produzione con potenza f<strong>in</strong>o a 6 kW.Le prescrizioni per le relative prove dell’SPI devono essere con<strong>for</strong>mi a quanto riportato <strong>in</strong> A4.44) La def<strong>in</strong>izione dei segnali su protocollo standard serie CEI EN 61850 è allo studio, e sarà oggettodell’Allegato D. Questi segnali, trasmessi dal Distributore ed uguali per tutti gli utenti attivi, potranno essereutilizzati direttamente dalla PI oppure “convertiti” <strong>in</strong> contatti puliti purché siano rispettati i tempi di <strong>in</strong>tervento<strong>in</strong>dicati nella presente norma.60


NORMA TECNICA CEI 0-21:2011-12Il sistema di protezione di <strong>in</strong>terfaccia deve essere verificabile durante il suo funzionamento: secondo quanto <strong>in</strong>dicato <strong>in</strong> A4, per il dispositivo dedicato (relè di protezione); secondo quanto <strong>in</strong>dicato <strong>in</strong> A.4.4, per il dispositivo <strong>in</strong>tegrato (autotest).8.6.2.1 Regolazioni del sistema di protezione di <strong>in</strong>terfacciaLe regolazioni del SPI sono riportate nella seguente Tabella 8.ProtezioneSoglia di<strong>in</strong>terventoTempo di <strong>in</strong>tervento(tempo <strong>in</strong>tercorrente tra l’istante di <strong>in</strong>iziodella condizione anomala rilevata dallaprotezione e l’emissione del comando discatto)Massima tensione (59.S1, misura a media mobilesu 10 m<strong>in</strong>,<strong>in</strong> accordo a CEI EN 61000-4-30)1,10 Vn 3 sMassima tensione (59.S2) 1,15 Vn 0,2 sM<strong>in</strong>ima tensione (27.S1)** 0,85 Vn 0,4 sM<strong>in</strong>ima tensione (27.S2)*** 0,4 Vn 0,2 sMassima frequenza (81>.S1)* 50,5 Hz 0,1 sM<strong>in</strong>ima frequenza (81.S2) 51,5 Hz 0,1 s ÷ 5 sM<strong>in</strong>ima frequenza (81S1 e 81 45) .Le regolazioni possono essere riassunte mediante uno schema logico del funzionamento delSPI, illustrato nella Figura 15. Tale schema logico contiene anche l’<strong>in</strong>dicazione dei segnali diteledistacco e di presenza rete comunicazione.Le eventuali protezioni (<strong>in</strong>tegrate oppure esterne) del generatore statico alla rete devonoessere coord<strong>in</strong>ate con le protezioni di <strong>in</strong>terfaccia e qu<strong>in</strong>di devono consentire il funzionamentodel generatore nei campi di tensione e frequenza impostati nella protezione di <strong>in</strong>terfaccia,come specificati nel regolamento di esercizio.45) Detta disabilitazione può avere un impatto sulla qualità del servizio <strong>for</strong>nita dalla rete del Distributore poichépuò comportare una m<strong>in</strong>ore probabilità di successo delle procedure di richiusura automatica nonché di selezioneautomatica del tronco guasto nei casi di significativa presenza di Utenti attivi connessi alla rete.61


NORMA TECNICA CEI 0-21:2011-12Per i generatori tradizionali, le eventuali protezioni del generatore che <strong>in</strong>terferiscono con icampi di regolazione della protezione di <strong>in</strong>terfaccia, devono essere riportate nel regolamentodi esercizio.Lo stato logico del “segnale locale” di cui <strong>in</strong> Figura 15 è def<strong>in</strong>ito, prima della connessione, nelregolamento di esercizio stabilito tra il Distributore e l’Utente attivo.Teledistacco1,10 Vn0 TT = 3 sMisura V0,40 Vn0 TT = 0,2 s1,15 Vn0,85 Vn0 TT = 0,4 sORScattoDDI81.S247,5 - 51,5 Hz81.S149,5 - 50,5 HzSegnalecomunicazioneANDComando SegnalelocaleFigura 15 - Schema logico funzionale del SPI8.6.2.2 Esclusione temporanea del SPISe il sistema di protezione di <strong>in</strong>terfaccia è realizzata tramite dispositivo dedicato (relèesterno), il SPI può essere escluso temporaneamente solo <strong>in</strong> una delle seguenti condizioniparticolari di esercizio: l’impianto dell’Utente attivo è "<strong>in</strong> isola" e il dispositivo generale o qualsiasi altrodispositivo posto tra la rete di distribuzione e il dispositivo di <strong>in</strong>terfaccia, che impedisce(con dispositivi di <strong>in</strong>terblocco elettrici e/o meccanici) il parallelo dell’impianto diproduzione con la rete di distribuzione, siano bloccati <strong>in</strong> posizione di aperto; tutti i gruppi di generazione sono disattivati fuori servizio e scollegati.L'esclusione deve essere realizzata mediante un contatto chiuso con dispositivo delgeneratore aperto, posto <strong>in</strong> parallelo al contatto di scatto delle protezioni di <strong>in</strong>terfaccia. Sesono presenti più generatori e un unico dispositivo di <strong>in</strong>terfaccia, i contatti discordi dovrannoessere posti <strong>in</strong> serie tra loro aff<strong>in</strong>ché l'esclusione di detto dispositivo avvenga solo quandotutti i generatori sono disattivati. Nel caso siano presenti più <strong>in</strong>terruttori di <strong>in</strong>terfaccia,l’apertura dell’<strong>in</strong>terruttore di ciascun generatore deve escludere il rispettivo SPI.Si noti che per quanto previsto al punto 8.4.2 (funzionamento di breve durata <strong>in</strong> parallelo), gli<strong>in</strong>terblocchi devono essere disattivati.62


NORMA TECNICA CEI 0-21:2011-12Allegato B(normativo)Prove sugli <strong>in</strong>verter per impianti <strong>in</strong>direttamente connessiB.1 Prove sull’<strong>in</strong>verterLe prove sull’<strong>in</strong>verter devono essere eseguite presso un laboratorio accreditato EA secondola Norma ISO 17025.Il dispositivo dovrà essere dotato di marcatura CE. Inoltre, lo stesso dovrà aver superato conesito positivo le seguenti prove (tra parentesi è <strong>in</strong>dicata la norma CEI di riferimento per leprove):a) limiti di emissione armonica, per la classe A (CEI EN 61000-3-2 o CEI EN 61000-3-12);esse dovranno essere ripetute <strong>in</strong> 3 sessioni (al 33 %, 66 % e 100 % della potenzanom<strong>in</strong>ale);b) per dispositivi con correnti di fase superiori a 75 A è possibile effettuare le prove diemissione armonica, con gli stessi criteri previsti dalla CEI EN 61000-3-12;c) limiti delle fluttuazioni di tensione e flicker (CEI EN 61000-3-3 o CEI EN 61000-3-11);esse dovranno essere ripetute <strong>in</strong> 3 sessioni (al 33 %, 66 % e 100 % della potenzanom<strong>in</strong>ale);d) condizioni di connessione, riconnessione ed erogazione graduale della potenza (vedi8.4.1.3), come di seguito descritto <strong>in</strong> B.1.1;e) erogazione della potenza reattiva (vedi 8.4.4.2 e 8.5.2), come descritto <strong>in</strong> B.1.2;f) limitazione della potenza attiva (vedi 8.5.3), come descritto <strong>in</strong> B.1.3;g) verifica della componente c.c. della corrente di uscita (vedi 8.4.4.2), come descritto <strong>in</strong>B.1.4;h) verifica della <strong>in</strong>sensibilità agli abbassamenti di tensione di cui <strong>in</strong> 8.5.1 (LVFRT), comedescritto <strong>in</strong> B.1.5;i) verifica dell’assenza di danneggiamenti <strong>in</strong> caso di richiusura automatica da parte delDistributore (vedi 8.4.4.3 e 8.6.2.1), come di seguito descritto <strong>in</strong> B.1.6.Le prove di cui ai punti a), b), c), g) dovranno essere eseguite sul dispositivo nelle condizionidi riferimento della Tabella 14 e Tabella 15. Le restanti prove potranno essere eseguite solonelle condizioni di cui alla Tabella 14.Gli <strong>in</strong>verter devono essere con<strong>for</strong>mi alla Norma CEI EN 61000-6-3 (ambiente residenziale) <strong>in</strong>quanto direttamente connessi alla rete di bassa tensione del Distributore.Grandezza di <strong>in</strong>fluenzaValore di riferimentoTemperatura ambiente 20 °C 2 °CPressione atmosferica96 10 kPaUmidità relativa 65 %Posizione apparecchiaturaFrequenzaSecondo quanto dichiarato del costruttore50 HzForma d’onda della tensione di riferimento Con<strong>for</strong>me alla CEI EN 50160Tabella 14 – Condizioni di riferimento85


NORMA TECNICA CEI 0-21:2011-12Grandezza di <strong>in</strong>fluenzaValore di riferimentoTemperatura ambiente -10 °C e +55 °CPressione atmosferica96 10 kPaUmidità relativa 65 %Posizione apparecchiaturaFrequenzaSecondo quanto dichiarato dal costruttore50 HzForma d’onda della tensione di riferimento Con<strong>for</strong>me alla CEI EN 50160Tabella 15 – Condizioni di riferimentoQualora i requisiti di cui ai punti a), b), c), g) precedenti siano rispettati <strong>in</strong> un campo ditemperatura dichiarato dal Costruttore diverso da quello <strong>in</strong>dicato <strong>in</strong> Tabella 15, il Costruttoredeve impedire il funzionamento del dispositivo al di fuori del campo di funzionamentodichiarato. Questa funzionalità deve essere verificata mediante apposita prova.B.1.1 Condizioni di connessione, riconnessione ed erogazione graduale dellapotenzaB.1.1.1 Verifica delle condizioni di connessione e riconnessioneAl f<strong>in</strong>e di prevenire perturbazioni alla rete, il parallelo dei generatori di qualsiasi tipo deveavvenire SOLO quando frequenza e tensione rilevate ai morsetti di uscita 60) permangonoall’<strong>in</strong>terno dei seguenti limiti per un tempo m<strong>in</strong>imo di 300 s: tensione compresa tra l’85 % ed il 110 % di Un; frequenza compresa tra 49,95 Hz e50,05 Hz (regolazione di default, campo di regolazione nei limiti delle protezioni 81.S2, rispettivamente).Inoltre l’erogazione di potenza per impianti di produzione <strong>in</strong>direttamente connessi deveessere graduale, con un transitorio dalle condizioni <strong>in</strong>iziali di “vuoto” <strong>in</strong> corrispondenzadell’istante di parallelo, al valore di potenza disponibile con un gradiente positivo massimonon superiore al 20 % al m<strong>in</strong>uto della potenza massima.La verifica della rispondenza a questi requisiti prevede di utilizzare il circuito di Figura 21.Rete <strong>in</strong> correntealternataSorgente <strong>in</strong>correntecont<strong>in</strong>uaInverterAnalizzatorediReteNOTA Il circuito di prova illustrato è relativo a sistemi monofase; per sistemi trifase si dovrà prevedere un circuitoequivalente di tipo trifase.Figura 21 - Circuito di prova delle condizioni di connessionea) Si effettui l’accensione dell’<strong>in</strong>verter rispettivamente con tensione c.a. <strong>in</strong>feriore all’85 % esuperiore al 110 % del valore nom<strong>in</strong>ale U n (mentre la frequenza deve essere compresa tra49,95 Hz e 50,05 Hz), verificando che l’unità non abiliti il parallelo con la rete - assenza dierogazione della potenza letta dall’analizzatore di rete.60) Ovvero al punto di connessione dell’impianto per i sistemi dotati di SPI esterno.86


NORMA TECNICA CEI 0-21:2011-12b) Trascorsi almeno 300 s dall’istante di <strong>in</strong>izio della prova di cui al punto a), si verifichi ilpermanere dello stato di “aperto”, ovvero assenza di erogazione di potenza <strong>in</strong> uscita. Aquesto punto si può riportare la tensione U all’<strong>in</strong>terno dei limiti - 85 % U n < U < 110% U n -e al contempo disabilitare l’<strong>in</strong>verter. In queste condizioni si proceda poi al riarmo,verificando che il parallelo con la rete e l’<strong>in</strong>izio della erogazione di potenza non avvengaprima che siano trascorsi almeno 180 s dall’istante di attivazione del convertitore.c) Si ripeta la prova con tensione U - 85 % U n < U < 110 % U n - e frequenza rispettivamente<strong>in</strong>feriore a 49,95 Hz e superiore a 50,05 Hz, verificando che l’unità non abiliti il parallelocon la rete - assenza di erogazione della potenza letta dall’analizzatore di rete.d) Trascorsi almeno 300 s dall’istante di <strong>in</strong>izio della prova di cui al punto c), si verifichi ilpermanere dello stato di “aperto”, ovvero assenza di erogazione di potenza <strong>in</strong> uscita. Aquesto punto si può riportare la frequenza f all’<strong>in</strong>terno dei limiti - 49,95 Hz < f < 50,05 Hz -e al contempo disabilitare l’<strong>in</strong>verter. In queste condizioni si proceda poi al riarmo,verificando che il parallelo con la rete e l’<strong>in</strong>izio della erogazione di potenza non avvengaprima che siano trascorsi almeno 180 s dall’istante di attivazione del convertitore.La prova può essere effettuata alternativamente con un simulatore di rete <strong>in</strong> grado dimodificare i parametri di frequenza e tensione disponibili ai morsetti di uscita dell’<strong>in</strong>verter,oppure direttamente sulla rete elettrica. In questo caso per effettuare la prima fase dellaprova a), c)), è consentito regolare i parametri di frequenza e tensione che controllano lecondizioni di parallelo <strong>in</strong> modo che siano al di fuori dei valori attuali della frequenza etensione di rete. Per verificare il tempo m<strong>in</strong>imo di ritardo alla connessione si riporteranno poidurante la prova i valori rispettivamente dei limiti di U ammessa e di f a quelli di default (85 %U n < U < 110 % U n ; 47,5 Hz < f < 50,05 Hz). In ogni caso la sorgente di alimentazione c.c.deve essere impostata per erogare una potenza pari alla potenza nom<strong>in</strong>ale c.c. dell’<strong>in</strong>verter.B.1.1.2 Verifica della erogazione graduale della potenza attivaLa verifica della erogazione graduale con rampa di salita da “vuoto” al valore nom<strong>in</strong>ale <strong>in</strong>almeno 300 s si effettua registrando durante le sequenze di test b) e d) con l’analizzatore direte i parametri di uscita all’<strong>in</strong>verter con una cadenza di un campione pari al valore medioogni 200 ms (5 campioni/s). I campioni registrati a partire dall’istante <strong>in</strong> cui l’<strong>in</strong>verter <strong>in</strong>izial’erogazione di potenza, riportati su un grafico, dovranno essere tutti al di sotto della curvalimite P < 0,333 % P n /s.B.1.2 Erogazione della potenza reattivaB.1.2.1 Verifica dei requisiti costruttivi: capability erogazione della potenza reattivaCome stabilito <strong>in</strong> 8.4.4.2 i convertitori statici utilizzati <strong>in</strong> impianti di potenza complessivasuperiore a 3 kW predisposti per applicazioni <strong>in</strong> regime di funzionamento cont<strong>in</strong>uativo <strong>in</strong>parallelo alla rete del Distributore, devono poter funzionare con fattore di potenza diverso da1. Lo scambio di potenza reattiva con la rete può avvenire su richiesta del Distributore neiseguenti casi:qualora ci siano esigenze di gestione della rete, <strong>in</strong> particolare al f<strong>in</strong>e di contribuire allalimitazione della tensione ai morsetti di uscita o sulla l<strong>in</strong>ea BT su cui sono eventualmentecollegate anche altre sorgenti di GD; con lo scopo di <strong>for</strong>nire un servizio di rete; requisito applicabile solo per impianti di potenzacomplessiva superiore a 6 kW ed alle condizioni che saranno oggetto di regolamentazioneda parte dell’AEEG.Le prove di cui al presente paragrafo hanno lo scopo di verificare la “capability” di erogazionedella potenza reattiva dei convertitori statici al variare della potenza attiva, aff<strong>in</strong>ché siagarantito il rispetto dei requisiti costruttivi m<strong>in</strong>imi stabiliti <strong>in</strong> 8.4.4.2, almeno pari a:a) per tutti gli <strong>in</strong>verter <strong>in</strong> impianti di potenza complessiva superiore a 3 kW e f<strong>in</strong>o a 6 kW, un fattore di potenza istantaneo compreso tra cos = 0,95 <strong>in</strong> assorbimento di reattivo(comportamento <strong>in</strong>duttivo) e cos = 0,95 <strong>in</strong> erogazione di reattivo (comportamentocapacitivo);87


NORMA TECNICA CEI 0-21:2011-12b) per tutti gli <strong>in</strong>verter <strong>in</strong> impianti di potenza complessiva superiore a 6 kW, un fattore di potenza istantaneo compreso tra cos = 0,90 <strong>in</strong> assorbimento di reattivo(comportamento <strong>in</strong>duttivo) e cos = 0,90 <strong>in</strong> erogazione di reattivo (comportamentocapacitivo), secondo la curva di capability “triangolare” riportata <strong>in</strong> Figura 22. In talcaso lo scambio di reattivo è f<strong>in</strong>alizzato alla limitazione della sovratensione osottotensione di rete causata dalla propria immissione di potenza attiva; assorbimento o erogazione di una potenza reattiva f<strong>in</strong>o al 48,43 % della potenza attivanom<strong>in</strong>ale, per qualsiasi valore istantaneo della potenza attiva erogata, secondo lacurva di capability “rettangolare” riportata <strong>in</strong> Figura 22, f<strong>in</strong>alizzata alla <strong>for</strong>nitura di unservizio di rete richiesto dal Distributore, alle condizioni oggetto di regolamentazioneda parte dell’AEEG.Ai f<strong>in</strong>i della presente prova (requisiti m<strong>in</strong>imi), il costruttore dovrà <strong>in</strong>dicare ed impostare laregolazione di potenza reattiva massima disponibile al variare della potenza attiva erogata,con il f<strong>in</strong>e di rendere possibile una caratterizzazione delle massime capability del sistema diconversione (potendo macch<strong>in</strong>e di taglia <strong>in</strong>feriore essere utilizzate anche su impianti conpotenza complessiva superiore a 6 kW).Figura 22 - Curve di capability “triangolare” e “rettangolare”, per <strong>in</strong>verter <strong>in</strong> impianti dipotenza complessiva superiore a 6 kWB.1.2.2 Modalità di esecuzione e registrazione della prova.Con riferimento al circuito di prova di Figura 21, sono date le prescrizioni seguenti. Il convertitore deve essere impostato aff<strong>in</strong>ché possa rispettivamente assorbire(comportamento <strong>in</strong>duttivo) ed erogare (comportamento capacitivo) la massima potenzareattiva disponibile a ciascun livello della potenza attiva erogata <strong>in</strong> base alla propriacapability.Si regoli a questo punto la sorgente c.c. <strong>in</strong> modo tale che il convertitore possa erogare <strong>in</strong>sequenza una potenza attiva compresa nei 10 <strong>in</strong>tervalli [0-10] %; [10-20] %; ...; [90-100]% della potenza nom<strong>in</strong>ale (valori medi ad 1 m<strong>in</strong> calcolati sulla base dei valori misurati allafrequenza fondamentale su f<strong>in</strong>estra di 200 ms).88


NORMA TECNICA CEI 0-21:2011-12Per ognuno dei 10 livelli di potenza attiva si dovranno registrare almeno 3 valori dellapotenza reattiva <strong>in</strong>duttiva e 3 per quella capacitiva, come valori medi ad 1 m<strong>in</strong> calcolatisulla base delle misure alla frequenza fondamentale su f<strong>in</strong>estra di 200 ms. In aggiunta alle misure ai valori limite di impostazione della potenza reattiva, si dovrannoregistrare i valori misurati impostando la potenza reattiva erogata a 0 (cos = 1).La capability massima <strong>in</strong> assorbimento (Qm<strong>in</strong>) ed erogazione (Qmax) di potenza reattivarisultante dalla sequenza di misure di cui sopra e quella per Q = 0 deve essere documentata<strong>in</strong> <strong>for</strong>ma tabulare riportando, per ogni livello di potenza attiva erogata compreso tra 0 % e 100 %della potenza nom<strong>in</strong>ale, il corrispondente livello della potenza reattiva assorbita (e erogata),espresso sia <strong>in</strong> valore assoluto che <strong>in</strong> term<strong>in</strong>i di cos. La prova si <strong>in</strong>tende superata con esitopositivo secondo le condizioni espresse <strong>in</strong> B.1.2.2.1 o B.1.2.2.2.B.1.2.2.1 Inverter <strong>in</strong> impianti di potenza complessiva superiore a 3 kW e f<strong>in</strong>o a 6 kWIl valore del fattore di potenza istantaneo risultante <strong>in</strong> ciascuno dei 10 punti di misura è pari o<strong>in</strong>feriore a 0,95 sia <strong>in</strong> modalità di assorbimento (comportamento <strong>in</strong>duttivo) che di erogazione(comportamento capacitivo) della potenza reattiva.B.1.2.2.2 Inverter <strong>in</strong> impianti di potenza complessiva superiore a 6 kWIl valore della potenza reattiva assorbita (comportamento <strong>in</strong>duttivo) ed erogata(comportamento capacitivo) risultante <strong>in</strong> ciascuno dei 10 punti di misura è almeno pari <strong>in</strong>valore assoluto al 48,43 % della potenza attiva nom<strong>in</strong>ale del convertitore.Power-B<strong>in</strong> Potenza attiva [W] Potenza reattiva [VAr] Power Factor (cos) Potenza DC [W]0 % - 10 %10 % - 20 %20 % - 30 %30 % - 40 %40 % - 50 %50 % - 60 %60 % - 70 %70 % - 80 %80 % - 90 %90 % - 100 % (*)Tabella 16 – Assorbimento di potenza reattiva <strong>in</strong>duttivaPower-B<strong>in</strong> Potenza attiva [W] Potenza reattiva [VAr] Power Factor (cos) Potenza DC [W]0 % - 10 %10 % - 20 %20 % - 30 %30 % - 40 %40 % - 50 %50 % - 60 %60 % - 70 %70 % - 80 %80 % - 90 %90 % - 100 % (*)Tabella 17 – Erogazione di potenza reattiva capacitiva89


NORMA TECNICA CEI 0-21:2011-12Power-B<strong>in</strong> Potenza attiva [W] Potenza reattiva [VAr] Power Factor (cos) Potenza DC [W]0 % - 10 %10 % - 20 %20 % - 30 %30 % - 40 %40 % - 50 %50 % - 60 %60 % - 70 %70 % - 80 %80 % - 90 %90 % - 100 % (*)Tabella 18 – Erogazione di potenza reattiva con set po<strong>in</strong>t Q = 0(*) Verificare che il requisito m<strong>in</strong>imo di cos sia sostenuto stabilmente ad equilibrio termico raggiunto.Il Test Report dovrà riportare i risultati delle misure della potenza reattiva massima assorbita(Qm<strong>in</strong>) ed erogata (Qmax) dal convertitore anche <strong>in</strong> <strong>for</strong>ma di grafico P(Q) <strong>in</strong> funzione dellapotenza attiva immessa <strong>in</strong> rete. Si vedano gli esempi riportati <strong>in</strong> Figura 23 (<strong>in</strong>verter <strong>in</strong> impiantif<strong>in</strong>o a 6 kW) e Figura 24 (<strong>in</strong>verter per impianti di taglia superiore a 6 kW).Potenza attiva <strong>in</strong> funzione della potenza attiva nom<strong>in</strong>ale P/Pn [%]100908070605040‐60 ‐40 ‐20 0 20 40 60Potenza reattiva <strong>in</strong> funzione della potenza attiva nom<strong>in</strong>ale Q/Pn [%]Figura 23 - Esempio di Grafico P(Q). Massima potenza reattiva <strong>in</strong>duttiva e capacitivaerogata <strong>in</strong> funzione della potenza attiva (qui è rappresentato il caso di un <strong>in</strong>verter dipotenza superiore a 6kW, che deve poter assorbire o erogare a qualsiasi livello dipotenza attiva una potenza reattiva pari almeno al 48,43 % della potenza attivanom<strong>in</strong>ale, Qm<strong>in</strong>/P n = 48,43 % P n )90


NORMA TECNICA CEI 0-21:2011-12B.1.2.3 Erogazione di potenza reattiva secondo un livello assegnatoLe unità di GD devono partecipare al controllo della tensione di rete. Per <strong>in</strong>verter utilizzati <strong>in</strong>impianti di potenza complessiva superiore a 6 kW è prevista la possibilità di attuare unastrategia centralizzata di controllo tramite segnale di regolazione da remoto, erogato dalDistributore.Le prove oggetto di questo paragrafo sono obbligatorie solo per <strong>in</strong>verter utilizzati <strong>in</strong> impianti dipotenza superiore a 6 kW, ma su richiesta del costruttore possono essere effettuate edocumentate anche per convertitori di taglia <strong>in</strong>feriore.Scopo della prova è verificare la capacità del sistema di controllo del convertitore di eseguireil comando di regolazione del livello di potenza reattiva tra i limiti massimi di capability(capability “rettangolare”, secondo la def<strong>in</strong>izione data <strong>in</strong> 8.4.4.2 e riportata <strong>in</strong> Figura 22) sia <strong>in</strong>assorbimento che <strong>in</strong> erogazione della potenza reattiva e di verificare l’accuratezza dellaregolazione.In assenza di un protocollo def<strong>in</strong>ito per lo scambio dei comandi di regolazione, è facoltà delcostruttore di stabilire le modalità con cui eseguire i comandi di impostazione del punto dilavoro della potenza reattiva, sia per quanto riguarda il segnale fisico (analogico, suprotocollo seriale, ecc.) che per il parametro di regolazione adottato (impostazione secondoun valore assoluto di potenza reattiva Q, oppure come valore del cos).B.1.2.3.1 Modalità di esecuzione della prova e registrazione dei risultati (ipotesi diregolazione tramite Q)Impostare la sorgente c.c. aff<strong>in</strong>ché l’<strong>in</strong>verter eroghi circa il 50 % della potenza attivanom<strong>in</strong>ale Pn.Utilizzando le modalità ed il parametro di controllo stabilito dal costruttore, variare lapotenza reattiva erogata dal convertitore passando dal valore massimo <strong>in</strong>duttivo (almenopari a Qm<strong>in</strong> ≤ - 0,4843 P n ) direttamente a zero (Q = 0), per poi passare da zero al valoremassimo capacitivo (pari a Qmax ≥ + 0,4843 P n ). Mantenere ciascuno dei 3 set-po<strong>in</strong>t limite per un tempo di 180 s. Calcolare i valori medi ad 1 m<strong>in</strong>uto della potenza reattiva sulla base dei valori misurati suuna f<strong>in</strong>estra di 200 ms alla frequenza fondamentale. Il calcolo del valore su media di 1m<strong>in</strong>uto deve partire dai campioni rilevati dopo 30 s dall’istante <strong>in</strong> cui si è <strong>in</strong>viato ilcomando del nuovo set-po<strong>in</strong>t di regolazione della potenza reattiva, questo per assicurareche il sistema abbia raggiunto lo stato stazionario.La prova si <strong>in</strong>tende superata con successo se lo scostamento massimo tra il livello assegnatoed il valore attuale misurato per la potenza reattiva è pari a: ∆Q ≤ ± 2,5 % della potenza attiva nom<strong>in</strong>ale del convertitore (impostazione diretta dellivello di potenza reattiva) ∆cos ≤ ± 0,01 (impostazione tramite fattore di potenza)La prova dovrà essere documentata sia <strong>in</strong> <strong>for</strong>ma tabellare che grafica, come riportato negliesempi di Tabella 19 e di Figura 33.Tabella 19 – Misura dell’accuratezza della regolazione della potenza reattiva <strong>in</strong> basead un comando esternoSet po<strong>in</strong>t Potenza reattivaQ/P n [%]-Q m<strong>in</strong> - 48,430 0Potenza reattiva misurataQ/P n [%]Deviazione rispetto a setpo<strong>in</strong>t∆Q/P n [%]+Q max + 48,4391


NORMA TECNICA CEI 0-21:2011-1250Potenza reattiva <strong>in</strong> funzione della potenza attiva nom<strong>in</strong>aleQ/Pn [%]403020100‐10‐20‐30‐40‐50Set‐po<strong>in</strong>t potenza reattivaPotenza reattiva erogata dall’<strong>in</strong>verter(media 0,2s)Valori potenza reattiva media a 1m<strong>in</strong>50 100 150 200 250 300 350Tempo [s]Figura 25 - Misura della potenza reattiva erogata <strong>in</strong> base ad un comando esterno,verifica di accuratezzaB.1.2.4 Tempo di risposta ad una variazione a grad<strong>in</strong>o del livello assegnatoAd <strong>in</strong>tegrazione dei requisiti oggetto delle prove di cui al paragrafo B.1.2.3, relativi al controllodella tensione di rete tramite erogazione di potenza reattiva, è necessario non solo verificarel’accuratezza del sistema di controllo dei convertitori, ma anche il tempo di risposta deglistessi quando sia applicata una variazione a grad<strong>in</strong>o del livello di potenza reattiva richiestadal comando esterno.Come per i requisiti di cui al paragrafo precedente, anche <strong>in</strong> questo caso le prove sonorichieste agli <strong>in</strong>verter utilizzati <strong>in</strong> impianti di potenza complessiva superiore a 6 kW, chedovranno poter attuare anche una strategia centralizzata di controllo tramite segnale diregolazione da remoto, emesso dal Distributore. Rimane comunque facoltà del costruttore dieffettuare volontariamente le prove anche per <strong>in</strong>verter di taglia <strong>in</strong>feriore.Lo scopo della prova è di misurare il tempo di risposta dell’<strong>in</strong>verter ad un grad<strong>in</strong>o applicato alcomando di erogazione della potenza reattiva, passando da un livello ad un altro livello con lemodalità descritte di seguito ed illustrate <strong>in</strong> Figura 26. Dai risultati delle prove di capability di cui al paragrafo B.1.2.1, si rilev<strong>in</strong>o i valori + Qmaxe – Qm<strong>in</strong> della potenza reattiva capacitiva e <strong>in</strong>duttiva massima erogabile dal convertitorerispettivamente al 50 % ed al 100 % della potenza attiva nom<strong>in</strong>ale. Si riport<strong>in</strong>o <strong>in</strong> un grafico analogo a quello esemplare di Figura 26 i valori misurati comemedie a 0,2 s della potenza reattiva durante l’esecuzione di comandi di regolazione dellapotenza reattiva con variazioni a grad<strong>in</strong>o, quando l’<strong>in</strong>verter eroga rispettivamente unapotenza attiva pari al 50 % (Prova 1) ed il 100 % della potenza attiva nom<strong>in</strong>ale P n (Prova 2).92


NORMA TECNICA CEI 0-21:2011-12+QmaxSet‐po<strong>in</strong>t potenza reattiva0Prova 1: P = 50 % PnProva 2: P = Pn1Tr23Set‐po<strong>in</strong>tPotenza reattiva erogatadall’<strong>in</strong> verter (media 0,2s)Tr = tempo di diassestamentoQ entro ± ±5 5 % Pn del delvalore assegnato‐Qm<strong>in</strong>Tolleranza Toll. ± 5 % del ±5 % val. Pn assegn.0 2 4 6 8Tempo [m<strong>in</strong>]Figura 26 - Misura del tempo di risposta a variazioni a grad<strong>in</strong>o del set-po<strong>in</strong>t assegnatoper la potenza reattivaSi rilevi il tempo di risposta (Tr = tempo di assestamento nel grafico di Figura 26), cheequivale all’<strong>in</strong>tervallo di tempo che <strong>in</strong>tercorre dall’istante di applicazione del nuovo setpo<strong>in</strong>tall’istante <strong>in</strong> cui la potenza reattiva raggiunge un valore all’<strong>in</strong>terno di un <strong>in</strong>tervallocompreso entro una banda di ± 5 %del nuovo valore assegnato. Come riportato <strong>in</strong> Figura 26 il tempo di risposta deve essere rilevato <strong>in</strong> corrispondenza diuna variazione del set-po<strong>in</strong>t da zero a – Qm<strong>in</strong> (passo 1), da –Qm<strong>in</strong> a + Qmax (passo 2) eda + Qmax a zero (passo 3).I valori del tempo di risposta dovranno essere documentati nel test report, che dovrà anche<strong>in</strong>dicare i valori di + Qmax, - Qm<strong>in</strong>, della tensione c.a. di prova ed il metodo utilizzato per<strong>in</strong>viare il comando di controllo del set-po<strong>in</strong>t della potenza reattiva.La prova è superata se il tempo di risposta massimo rilevato è <strong>in</strong>feriore a 10 secondi <strong>in</strong> tuttele condizioni di misura.B.1.2.5 Erogazione automatica di potenza reattiva secondo una curva caratteristicacos = f(P)Tutti i convertitori statici <strong>in</strong> impianti di potenza complessiva superiore a 3 kW devono poterassorbire potenza reattiva <strong>in</strong> modo automatico ed autonomo (logica di controllo locale)secondo una curva caratteristica del fattore di potenza/della potenza attiva = f(P).La prova ha come scopo di verificare che il convertitore segua la modalità di erogazioneautomatica della potenza reattiva secondo la curva caratteristica standard cos = f(P)riportata <strong>in</strong> E.2, secondo il metodo a).La curva standard è def<strong>in</strong>ita univocamente dall’<strong>in</strong>terpolazione l<strong>in</strong>eare dei tre punticaratteristici:A: P = 0,2 P n ; cos = 1B: P = 0,5 P n ; cos = 1C: P = P n ; cos = cos_max93


NORMA TECNICA CEI 0-21:2011-12ove cos_max è pari rispettivamente a 0,95 (<strong>in</strong>duttivo) per macch<strong>in</strong>e f<strong>in</strong>o a 6 kW e 0,90(<strong>in</strong>duttivo) per convertitori di taglia superiore a 6 kW.La regolazione secondo la curva caratteristica viene abilitata quando la tensione rilevata aimorsetti di uscita supera il valore “critico” di lock-<strong>in</strong> (per es. impostato a V = 1,05 V n , si vedasempre il paragrafo E.2).Il valore di tensione di lock-<strong>in</strong> che abilita la modalità di erogazione automatica della potenzareattiva e che durante le prove deve essere impostato a 1,05 V n (impostazione di “default”anche per la produzione di serie), deve essere regolabile tra V n e 1,1 V n con <strong>in</strong>tervalli di0,01 V n .È a cura del Distributore specificare nel regolamento di esercizio il valore richiesto per latensione di lock-<strong>in</strong>.cos0,9 (0,95*)Curva caratteristica standard1Induttivo Capacitivo0,2A0,3 0,4 0,5B0,6 0,7 0,8 0.9 1max deviazione Δcos = ± 0,01P/PnNessuna regolazione(cos = ± 0,98)0,9 (0,95*)C(*) cos_max dipende dalla potenza complessiva <strong>in</strong>stallata(0,95 f<strong>in</strong>o a 66kW; kW, 0,90 oltre 6kW) 6 Figura 27 - Curva caratteristica standard cos = f(P)Si ricorda che il tempo di assestamento massimo al nuovo valore di potenza reattiva sullacurva caratteristica deve essere regolato automaticamente dall’<strong>in</strong>verter entro 10 s (si vedanoa questo proposito le prove sul tempo di risposta di cui <strong>in</strong> B.1.2.4).La modalità di regolazione automatica viene disabilitata quando:la potenza attiva P erogata rientra sotto il 50 % di P n (punto B), def<strong>in</strong>ito come lock-out <strong>in</strong>potenza, <strong>in</strong>dipendente dalla tensione ai morsetti, oppure:la tensione letta ai morsetti di uscita del convertitore scende al di sotto del limite di lockout,da impostare ad un valore di default pari a V n , ma che deve essere regolabilenell’<strong>in</strong>tervallo compreso tra 0,9 V n e V n con <strong>in</strong>tervalli di 0,01 V n .94


NORMA TECNICA CEI 0-21:2011-12B.1.2.5.1 Verifica di rispondenza alle modalità di applicazione della curva standarddi erogazioneIn base a quanto stabilito <strong>in</strong> E.2, con riferimento alla Figura 27, per la verifica di rispondenzaalle modalità di applicazione della curva standard di erogazione si proceda come di seguito.A. Si colleghi il convertitore come <strong>in</strong>dicato nel circuito di prova di Figura 21 (collegamentodiretto alla rete c.a., purché regolabile da 0,9 V n f<strong>in</strong>o a 1,1 V n , oppure tramite unsimulatore di rete).B. Si abiliti la funzione di regolazione secondo la curva “standard” agendo sulconvertitore <strong>in</strong> base alle <strong>in</strong>dicazioni <strong>for</strong>nite dal costruttore.C. Si imposti la sorgente c.c. <strong>in</strong> modo che la potenza attiva erogata dal convertitore siapari al 20 % della potenza nom<strong>in</strong>ale P = 0,2 P n (punto A), con tensione ai morsetti diuscita pari a Vn o comunque non superiore a 1,04 V n (nell’ipotesi che il parametro dilock-<strong>in</strong> sia impostato a 1,05 V n , ovvero nel punto medio del campo di regolazionestabilito <strong>in</strong> E.2).D. Si misuri la potenza attiva, la potenza reattiva ed il fattore di potenza cos comemedie a 0,2 s, riportando questi valori <strong>in</strong> una tabella (vedi Tabella 18) e <strong>in</strong> un graficoanalogo a quello di Figura 27.E. Si ripeta la misura di cui al punto d) precedente aumentando la potenza attiva erogataa scaglioni del 10 % della potenza nom<strong>in</strong>ale, dal 20 % P n f<strong>in</strong>o al 60 % P n . Si verifichi alcontempo che durante queste prove la tensione c.a. ai morsetti di uscita non superi ilvalore limite V = 1,04 V n .F. Si trascrivano nella Tabella 18 i valori della potenza attiva, potenza reattiva e del cosrilevati durante le misure effettuate ai 5 livelli di potenza attiva erogata dal 20 % al60 % della potenza nom<strong>in</strong>ale. In queste condizioni, essendo la tensione c.a. aimorsetti di uscita <strong>in</strong>feriore a 1,05 V n , l’<strong>in</strong>verter NON deve abilitare l’erogazione dellapotenza reattiva.G. A questo punto, con potenza c.a. erogata sempre pari all’ultimo livello raggiunto <strong>in</strong>precedenza (P = 0,6 P n ), si aumenti la tensione di rete (o del simulatore), aff<strong>in</strong>chéquesta sia leggermente superiore (2 V) al limite “critico” V = 1,05 V n .H. Si ripeta la misura di cui al punto d) precedente aumentando la potenza attiva erogataa scaglioni del 10 % della potenza nom<strong>in</strong>ale, dal 60 % P n f<strong>in</strong>o al 100 % P n (semprecon tensione c.a. letta ai morsetti di uscita superiore a V = 1,05 V n ).I. Si trascrivano nella tabella i valori della potenza attiva, potenza reattiva e del cosrilevati durante le misure effettuate ai 5 livelli di potenza attiva erogata dal 60 % al100 % della potenza nom<strong>in</strong>ale. In queste condizioni, essendo la tensione c.a. aimorsetti di uscita superiore a 1,05 V n , l’<strong>in</strong>verter deve attivare l’erogazione dellapotenza reattiva seguendo la curva caratteristica standard.J. Con <strong>in</strong>verter <strong>in</strong> piena erogazione di potenza attiva, tensione c.a. di uscita superiore al105 % V n e qu<strong>in</strong>di potenza reattiva erogata pari al limite massimo (cos = 0,95 ovvero0,90 per potenze superiori a 6kW <strong>in</strong> assorbimento di reattivo), si riduca la tensionec.a. portandola al valore nom<strong>in</strong>ale, verificando che la potenza reattiva rimangaagganciata al valore limite massimo. Questo serve a verificare che, una volta superatoil valore di tensione “critico” di Lock-In, l’<strong>in</strong>verter permane <strong>in</strong> modalità di erogazionedella potenza reattiva secondo la curva caratteristica standard, mantenendo questocomportamento per tutti i valori di tensione di uscita superiori alla soglia di Lock-Out(soglia di default impostata a V n ).95


NORMA TECNICA CEI 0-21:2011-12Per ciascun punto di lavoro, lo scostamento massimo del cos rispetto al valore previsto <strong>in</strong>base alla curva caratteristica standard deve essere <strong>in</strong>feriore a ∆cos_max ≤ ± 0,01.P/P n [%] P [W] Q [VAr]cosmisuratocosatteso∆ cos20 %30 %40 %50 %60 %70 %80 %90 %100 %Tabella 20 – verifiche di erogazione della potenza reattiva secondo la curvacaratteristica standard cos=f(P)NOTA Il Distributore può prescrivere curve caratteristiche diverse da quella standard <strong>in</strong> base alla tipologia di rete,al carico e alla potenza immessa. Tuttavia la curva caratteristica cos = f(P) è, di norma, univocamente def<strong>in</strong>itacome spezzata poligonale passante per i tre punti A, B e C di cui alla Figura 27.Per questo motivo il costruttore, oltre a pre-impostare di fabbrica il sistema di controllo <strong>in</strong> base alla curva“standard” oggetto di verifica tramite prove di tipo oggetto del presente paragrafo, dovrà parametrizzare la curva diregolazione <strong>in</strong> modo da renderla regolabile variando i soli 3 punti A, B e C.Di conseguenza il metodo di regolazione cosiddetto a “cos fisso” di cui <strong>in</strong> E.2.1 (curva di tipo b)), non necessita diverifica, <strong>in</strong> quanto derivabile dalla curva caratteristica cos = f(P) impostando i parametri di regolazione comesegue:A = B: P = 0,05; cos = 1C: P = Pn; cos = cos_maxB.1.2.6 Erogazione automatica di potenza reattiva secondo una curva caratteristicaQ=f(V)Secondo quanto stabilito <strong>in</strong> 8.4.4.2, tutti i convertitori statici <strong>in</strong> impianti di potenzacomplessiva superiore a 6 kW devono poter assorbire o erogare potenza reattiva <strong>in</strong> modoautomatico ed autonomo (logica di controllo locale) secondo la curva caratteristica Q = f(V)riportata a titolo esemplificativo <strong>in</strong> E.2 (Figura 28).La prova ha come scopo di verificare che il convertitore segua la modalità di erogazioneautomatica della potenza reattiva secondo la curva caratteristica standard Q = f(V) riportata <strong>in</strong>E.2, secondo il metodo c).Essendo il funzionamento secondo questo criterio di regolazione assimilato ad un servizio direte erogato dall’Utente Attivo su richiesta del Distributore, vale quanto di seguito specificato.L’attivazione è subord<strong>in</strong>ata alla disponibilità di una opportuna regolamentazione stabilita daAEEG (modalità di attivazione e di esercizio; condizioni economiche).L’attivazione dovrà avvenire dietro richiesta del Distributore, <strong>in</strong> occasione della emissione delRegolamento di Esercizio. Il Distributore dovrà altresì specificare i valori dei parametri checaratterizzano univocamente la curva, ovvero: V1i, V2i, V1s e V1s, nonché il valore di lock-<strong>in</strong>di potenza attiva (valore di default P = 0,2 P n ).96


NORMA TECNICA CEI 0-21:2011-12I parametri V1i, V2i, V1s e V1s devono poter essere impostati nel campo 0,9÷1,1 Vn conpasso 0,01 Vn. Al f<strong>in</strong>e di facilitare l’esecuzione delle prove di tipo, è stato stabilitoconvenzionalmente di impostare i parametri caratterizzanti come segue:V1s =1,08 V n ; V2s = 1,1 V nV1i =0.92 V n ; V2i = 0.9 V nnonché il valore di lock-<strong>in</strong> di potenza attiva (valore di default = 0,2 P n ).B.1.2.6.1 Verifica di rispondenza alle modalità di applicazione della curvacaratteristica Q=f(V)In base a quanto stabilito <strong>in</strong> E.2, con riferimento alla Figura 28, per la verifica di rispondenzaalle modalità di applicazione della curva caratteristica Q=f(V) si procede come di seguito.A. Si colleghi il convertitore come <strong>in</strong>dicato nel circuito di prova di Figura 20 tramite unsimulatore di rete;B. Si abiliti la funzione di regolazione secondo la curva “standard” di cui alla Figura 28,agendo sul convertitore <strong>in</strong> base alle <strong>in</strong>dicazioni <strong>for</strong>nite dal costruttore.C. Si imposti il simulatore <strong>in</strong> modo che la tensione letta ai morsetti di uscita delconvertitore sia pari a 1,07 V n e la sorgente c.c. <strong>in</strong> modo che la potenza attiva erogata<strong>in</strong> uscita sia <strong>in</strong>feriore a 0,2 P n (qu<strong>in</strong>di <strong>in</strong>feriore al valore di Lock-In che abilita laregolazione secondo la curva Q(V)).D. Si misuri la potenza attiva e la potenza reattiva come medie a 0,2 sec, riportandoquesti valori <strong>in</strong> una tabella (vedi Tabella 20) e <strong>in</strong> un grafico analogo a quello diFigura 28 per la potenza reattiva.E. Si ripeta la misura di cui al punto d) precedente aumentando la tensione di uscita(simulatore) a step di 1 V, dal valore <strong>in</strong>iziale pari a 1,07 V n f<strong>in</strong>o a 1,09 V n . In questecondizioni, essendo la potenza attiva erogata <strong>in</strong>feriore a 0,2 P n l’<strong>in</strong>verter NON deveabilitare l’erogazione della potenza reattiva.F. A questo punto, con tensione c.a. sempre pari a 1,09 V n , si aumenti la potenza attivaerogata agendo sulla sorgente c.c., aff<strong>in</strong>ché questa sia superiore (+10%) del limite diLock-In, qu<strong>in</strong>di portandola al valore di 0,3 P n .G. Si verifichi che, trascorsi non oltre 10 s dall’istante <strong>in</strong> cui la potenza attiva erogata hasuperato il limite di Lock-In, il generatore abiliti l’erogazione della potenza reattiva. Siriporti il valore della potenza attiva e di quella reattiva erogata nella Tabella 20 e nelgrafico, analogo a quello di Figura 28, che mette a confronto la curva attesa con quellarilevata sperimentalmente. In base alle impostazioni di default della curva standard, illivello atteso di potenza reattiva deve essere pari a -0,5 Qm<strong>in</strong> (a meno di unatolleranza pari a ∆Q ≤ ± 2,5 % P n )H. Si ripeta la misura di cui al punto d) precedente aumentando la potenza attiva erogataa scaglioni del 10 % della potenza nom<strong>in</strong>ale dal 30 % P n f<strong>in</strong>o al 100 % P n (sempre contensione c.a. letta ai morsetti di uscita tenuta al valore di V = 1,09 V n ).I. Si trascrivano nella tabella i valori della potenza attiva, potenza reattiva e tensionec.a. rilevati durante le misure effettuate agli 8 livelli di potenza attiva erogata dal 30 %al 100 % della potenza nom<strong>in</strong>ale. In queste condizioni, essendo la tensione c.a. aimorsetti di uscita pari 1,09 V n , l’<strong>in</strong>verter deve cont<strong>in</strong>uare ad erogare un livello dipotenza reattiva pari a -0,5 Qm<strong>in</strong> , seguendo la curva caratteristica standard.97


NORMA TECNICA CEI 0-21:2011-12J. A questo punto è possibile aumentare la tensione ai morsetti di uscita f<strong>in</strong>o a 1,1 V n perregistrare i valori corrispondenti della potenza attiva, che deve essere pari a P n (ultimopunto registrato al passo precedente) e della potenza reattiva, che deve raggiungerestabilmente il limite m<strong>in</strong>imo della capability pari a –Qm<strong>in</strong>.K. Con <strong>in</strong>verter <strong>in</strong> piena erogazione di potenza attiva, tensione c.a. di uscita pari al110 % V n e qu<strong>in</strong>di potenza reattiva erogata pari al limite massimo (-Qm<strong>in</strong>, <strong>in</strong>assorbimento di reattivo), si riduca la potenza attiva portandola prima al 10 % P n epoi, trascorsi almeno 30 sec, al di sotto del 5 % P n . Durante la sequenza si dovràverificare che la potenza reattiva rimanga al valore massimo/<strong>in</strong>duttivo (-Qm<strong>in</strong>)<strong>in</strong>corrispondenza del primo grad<strong>in</strong>o di potenza attiva 100 %--> 10 %, per scendere avalori prossimi a zero SOLO dopo aver effettuato il secondo scal<strong>in</strong>o dal 10 % P n ≤ 5% P n . Questo serve a verificare che, una volta superato il valore di potenza attiva diLock-In, l’<strong>in</strong>verter permane <strong>in</strong> modalità di erogazione della potenza reattiva secondo lacurva caratteristica standard, mantenendo questo comportamento per tutti i valori dipotenza attiva erogata <strong>in</strong> uscita superiori alla soglia di Lock-Out (soglia di defaultimpostata a 5 % P n ).Per ciascun punto di lavoro, lo scostamento massimo della potenza reattiva rispetto al valoreprevisto <strong>in</strong> base alle curve caratteristiche standard deve essere <strong>in</strong>feriore a ∆Q ≤ ± 2,5 % P n .VV max = 1,1 V nVV 1= 1,08 V nV 2sV 1sV 2sV 1s-Q maxQQmax-Q maxVV 1<strong>in</strong>Q rQ maxQV 1iV 2iV 2iFigura aV 2 = 0,92 V nV m<strong>in</strong>= 0,9 V nQ rFigura bFigura 28 - Curve caratteristiche standard Q = f(V)98


NORMA TECNICA CEI 0-21:2011-12P/P n [%]Set-po<strong>in</strong>tVac [V]Set-po<strong>in</strong>tP/P n [%]misurataVac [V]MisurataQ [VAr]misurataQ [Var]atteso∆ Q(≤ ± 2,5 %P n )< 20 % 1,07 V n ≈0 (< ± 2,5 % P n )< 20 % 1,09 V n ≈0 (< ± 2,5 % P n )


NORMA TECNICA CEI 0-21:2011-12B.1.3.1.1 Esecuzione delle prove Collegare l’oggetto <strong>in</strong> prova secondo le istruzioni <strong>for</strong>nite dal Costruttore.Fissare tutti i parametri della rete simulata ai rispettivi valori di normale esercizio.Portare tutti i parametri dell’oggetto <strong>in</strong> prova ai rispettivi valori di normale esercizio,tali che la potenza <strong>in</strong> c.a. <strong>in</strong> uscita all’<strong>in</strong>verter sia uguale alla potenza <strong>in</strong> c.a. massimaerogabile per la sequenza A, ovvero al 50 % nel caso della sequenza B.Eseguire le misure su 7 punti (il valore di frequenza dovrà avere una <strong>in</strong>certezza dimassimo ± 10 mHz) temporalmente conseguenti l’uno all’altro:1) f = 47,51 Hz (t 1 per la sequenza A, t’ 1 per la sequenza B)2) f =50 Hz + 0,2 Hz (t 2 per la sequenza A, t’ 2 per la sequenza B)3) f = 50 Hz + 0,40 Hz (t 3 per la sequenza A, t’ 3 per la sequenza B)4) f = 50 Hz + 0,60 Hz (t 4 per la sequenza A, t’ 4 per la sequenza B)5) f = 50 Hz + 1,49 Hz (t 5 per la sequenza A, t’ 5 per la sequenza B)6) f = 50 Hz + 0,10 Hz (t 6 per la sequenza A, t’ 6 per la sequenza B)A questo punto eseguire il passo 7. riportando la frequenza al valore nom<strong>in</strong>ale per laverifica delle condizioni di riprist<strong>in</strong>o graduale della erogazione massima (sequenza A),ovvero al 50 % della potenza massima (sequenza B):7) f = 50 Hz (t 7 per la sequenza A, t’ 7 per la sequenza B).B.1.3.1.2 Esiti delle proveI risultati devono essere riportati <strong>in</strong> una tabella e <strong>in</strong> base ad essi si deve estrapolarel’andamento su un grafico (con due curve rappresentanti rispettivamente la Sequenza A e laSequenza B, come riportato a titolo esemplificativo <strong>in</strong> figura 29). Sul grafico devono ancheessere rappresentati gli andamenti attesi per la Sequenza A e la Sequenza B.La prova si considererà superata se per le sequenze A e B sono soddisfatte entrambe lecondizioni di seguito riportate:per ciascuno dei 6 punti da t1 (t’1) a t6 (t’6) lo scostamento tra il valore atteso di potenzaattiva e quello misurato rientra all’<strong>in</strong>terno di una tolleranza pari a ± 2,5% P n , dove P n è lapotenza nom<strong>in</strong>ale dell’<strong>in</strong>verter;al ritorno della frequenza di rete al valore nom<strong>in</strong>ale (passo 7 delle sequenze riportate <strong>in</strong>B.1.3.1.1), l’<strong>in</strong>verter dovrà mantenere il livello m<strong>in</strong>imo di potenza raggiunto nella faseprecedente di aumento della frequenza per un tempo m<strong>in</strong>imo di attesa pari a 5 m<strong>in</strong>uti,term<strong>in</strong>ato il quale dovrà riprist<strong>in</strong>are l’erogazione <strong>in</strong> maniera graduale con un gradientepositivo massimo non superiore al 20 % al m<strong>in</strong>uto della potenza erogata primadell’aumento di frequenza (valore memorizzato).100


NORMA TECNICA CEI 0-21:2011-12Pi/Pn [%]Sequenza A100%50%t 1 t 2t 3t’1t’ 2t’3t4Sequenza Bt’ 40%t6 = t’6t5 = t’5t7 = t’747,5 50 50,1 50,2 50,3 50,4 50,6 51,5fFigura 29 - Curve di limitazione della potenza attiva rispetto alla frequenzaB.1.3.2 Limitazione della potenza attiva su comando esterno proveniente dalDistributoreLa capacità di ridurre la potenza attiva generata a seguito di segnale da remoto deve esseretestata concordando con il costruttore dell’<strong>in</strong>verter la modalità di ricezione e trattamento delsegnale.Sarà impiegata la procedura qui di seguito riportata. Si partirà impostando l’<strong>in</strong>verter <strong>in</strong> modo da produrre il 100 % della potenza nom<strong>in</strong>ale. Dopo 1 m<strong>in</strong>uto di funzionamento si richiederà di ridurre la potenza al 90 %. Si darà 1 m<strong>in</strong>uto di tempo all’<strong>in</strong>verter per eseguire il comando, dopodiché si misura ilvalore di potenza attiva (media su 1 m<strong>in</strong>uto). Lo scostamento rispetto al set po<strong>in</strong>t nelm<strong>in</strong>uto di misurazione dovrà essere di ± 2,5 % P n , perché la prova possa ritenersisuperata. Successivamente, si proseguirà richiedendo di ridurre la potenza di un ulteriore 10 %,rimanendo a quel valore per altri 2 m<strong>in</strong>uti, e così f<strong>in</strong>o a raggiungere il valore di 0 % P n .Nella misurazione relativa al set-po<strong>in</strong>t 10 % P n si verificherà <strong>in</strong> base alle prescrizion<strong>in</strong>ormative <strong>in</strong> Allegato F, e qu<strong>in</strong>di la potenza misurata dovrà rientrare nell’<strong>in</strong>tervallo tra 12,5 %P n e 0, perché la prova possa ritenersi superata.I risultati della prova dovranno essere riportati su una tabella simile alla seguente:101


NORMA TECNICA CEI 0-21:2011-12Set po<strong>in</strong>t P [P/P n ] Set po<strong>in</strong>t P [W] P misurata [W] Precisione100 %90 %80 %70 %60 %50 %40 %30 %20 %10 %0 %Tabella 22 – Verifiche di limitazione della potenza attiva su comando esternoInoltre, si dovrà riportate i risultati su un grafico contenente l’andamento del set-po<strong>in</strong>t,l’andamento dei valori delle potenze medie misurate, le tolleranze sui valori delle potenzemedie misurate rispetto ai set-po<strong>in</strong>t.Nel grafico esemplificativo seguente si può trovare <strong>in</strong> nero l’andamento dei set-po<strong>in</strong>t e <strong>in</strong>rosso i valori medi della potenza per ciascuna misura, che devono tutti rientrare entro le areegrigie di tolleranza perché il test possa considerarsi superato.102


NORMA TECNICA CEI 0-21:2011-12Figura 30 – Esempio di limitazione della potenza attiva <strong>in</strong> risposta a comando esternoB.1.4 Emissione di componente cont<strong>in</strong>ua nella corrente di uscitaB.1.4.1 Verifica della emissione di componente cont<strong>in</strong>uaLa prova deve essere eseguita come segue:1) La tensione di rete (o simulatore) deve essere <strong>in</strong>izialmente posta a un valore pari allatensione nom<strong>in</strong>ale ± 1 %, (frequenza pari a 50 ± 0,2 Hz). La distorsione totale di tensione(THD) deve essere <strong>in</strong>feriore al 2,5 % (ad <strong>in</strong>verter spento). Nel caso di utilizzo di unsimulatore, questo deve produrre una tensione s<strong>in</strong>usoidale con offset (componentecont<strong>in</strong>ua) trascurabile (< 0,1 %).2) La sorgente c.c. di <strong>in</strong>gresso deve essere regolata <strong>in</strong> modo che la tensione sia pari aquella nom<strong>in</strong>ale <strong>in</strong> MPPT dichiarata dal costruttore (o valore medio tra i valori MPPTm<strong>in</strong>imo e massimo, qualora il valore nom<strong>in</strong>ale non venga dichiarato) e la Potenza c.a. diuscita all’<strong>in</strong>verter, misurata <strong>in</strong> volt-ampere, risulti pari a (33 ± 5 %) del valore nom<strong>in</strong>aledichiarato dal costruttore.3) Si lasci il sistema operare nelle condizioni impostate al punto precedente per almeno 5m<strong>in</strong>uti o il tempo necessario aff<strong>in</strong>ché si stabilizzi la temperatura <strong>in</strong>terna al convertitore.103


NORMA TECNICA CEI 0-21:2011-124) A questo punto si misuri la componente cont<strong>in</strong>ua della corrente immessa <strong>in</strong> rete(frequenza < 1 Hz) su ciascuna delle fasi di uscita. La misura deve essere effettuatamediando la grandezza misurata su una f<strong>in</strong>estra temporale di massimo 1 sec,registrandone l’andamento per un periodo m<strong>in</strong>imo di 5 m<strong>in</strong>uti e acquisendo un numerom<strong>in</strong>imo di campioni pari al reciproco della f<strong>in</strong>estra temporale su cui è stata mediata lagrandezza (nel caso 1 sec, almeno 300 campioni). Con le stesse modalità si dovrannomisurare e registrare la corrente rms e la tensione rms di uscita dell’<strong>in</strong>verter.5) Ripetere i passi 2), 3) e 4) con il convertitore operante rispettivamente al (66 ± 5) %, e(100 ± 5) % della potenza nom<strong>in</strong>ale, misurata <strong>in</strong> volt-ampere.Per ciascun livello di potenza:a) Si effettui il calcolo del valore medio della corrente rms e della tensione rms su ciascunafase. Per ciascuna grandezza la media deve essere calcolata considerando tutti icampioni rilevati durante il periodo di misura.b) Si verifichi che il valore medio della corrente rms su ciascuna fase calcolato al punto a)sia entro il 5 % del valore impostato (rispettivamente al 33 %, 66 % e 100 % del valorenom<strong>in</strong>ale).c) Si verifichi che il valore medio della tensione rms su ciascuna fase calcolato al punto a)sia entro il 5 % del valore nom<strong>in</strong>ale.d) Si calcoli il valore medio della componente cont<strong>in</strong>ua della corrente su ciascuna fase. Lamedia dovrà essere calcolata considerando il modulo (senza segno) del valore di ciascuncampione registrato durante ciascun periodo di osservazione di 5 m<strong>in</strong>uti (sui 3 livelli dipotenza).e) Per ciascuna fase, si divida il valore medio della componente cont<strong>in</strong>ua calcolata al puntod) per il valore nom<strong>in</strong>ale della corrente di uscita del convertitore e si moltiplichi questorapporto per 100. I valori così calcolati rappresentano la percentuale di corrente cont<strong>in</strong>uaimmessa <strong>in</strong> rete per ciascuna fase, rispetto alla corrente nom<strong>in</strong>ale del convertitore.104


NORMA TECNICA CEI 0-21:2011-12La componente cont<strong>in</strong>ua misurata secondo questa procedura deve rientrare nei limitispecificati. A titolo <strong>in</strong>dicativo la Tabella 23 riporta un esempio di rappresentazionedell’esito delle prove.Livello di Potenza (% VA nom<strong>in</strong>ali) (33 ± 5) % (66 ± 5) % (100 ± 5) %WattVrmsArmsPFCosφc.c. (mA)c.c. (% In)Tabella 23 - Test Report - Misura della componente cont<strong>in</strong>ua (c.c.) immessa <strong>in</strong> reteRete <strong>in</strong> correntealternataSorgente<strong>in</strong> correntecont<strong>in</strong>uaInverterAnalizzatoredi reteNOTA Questo circuito di prova si applica ai sistemi monofase. Per sistemi trifase si dovrà prevedere un circuitoequivalente di tipo trifase.Figura 31 - Circuito di prova per la misura della componente cont<strong>in</strong>uaB.1.4.2 Verifica delle protezioni contro l’immissione di componente cont<strong>in</strong>uaLa prova deve essere eseguita come segue:1) L’<strong>in</strong>verter viene collegato ad un circuito di prova simile a quanto riportato <strong>in</strong> Figura 31.2) La tensione di rete (o simulatore) deve essere mantenuta entro un valore pari allatensione nom<strong>in</strong>ale ± 1 %, (frequenza pari a 50 ± 0,2 Hz). La distorsione totale di tensione(THD) deve essere <strong>in</strong>feriore al 2,5 % (ad <strong>in</strong>verter spento). Nel caso di utilizzo di unsimulatore, questo deve produrre una tensione s<strong>in</strong>usoidale con offset (componentecont<strong>in</strong>ua) trascurabile (< 0,1 %).3) La sorgente c.c. di <strong>in</strong>gresso deve essere regolata <strong>in</strong> modo che la tensione sia pari aquella nom<strong>in</strong>ale <strong>in</strong> MPPT dichiarata dal costruttore (o valore medio tra i valori MPPTm<strong>in</strong>imo e massimo, qualora il valore nom<strong>in</strong>ale non venga dichiarato) e la Potenza c.a. diuscita all’<strong>in</strong>verter, misurata <strong>in</strong> volt-ampere, risulti pari a (33 ± 5) % del valore nom<strong>in</strong>aledichiarato dal costruttore.4) La verifica dello spegnimento del convertitore, per superamento della prima soglia diprotezione Idc > (> 0,5% I n ), si effettua alternativamente come descritto ai punti a) e b):a) Attraverso una simulazione della deriva del controllo di simmetria del convertitore, conmodalità da concordare col costruttore e tale da <strong>in</strong>durre un offset sulla Idc superioreallo0,5 % della corrente nom<strong>in</strong>ale. Lo spegnimento deve avvenire entro 1 secondodall’istante di applicazione dell’offset.b) Nel dispositivo di misurazione della componente cont<strong>in</strong>ua (p.es. tras<strong>for</strong>matore dicorrente, o resistenza) viene impressa una corrente cont<strong>in</strong>ua superiore allo 0,5 %della corrente nom<strong>in</strong>ale. Lo spegnimento deve avvenire entro 1 secondo dall’istante diapplicazione della corrente di sbilanciamento.105


NORMA TECNICA CEI 0-21:2011-125) La verifica dello spegnimento del convertitore, per superamento della seconda soglia diprotezione Idc >> (>1 A), si effettua alternativamente come descritto ai punti c) nel caso laprotezione sia <strong>in</strong>tegrata nel sistema di controllo del convertitore, oppure d) per sistemi diprotezione esterni:c) Attraverso una simulazione del guasto, mediante misurazione, con modalità daconcordare col costruttore, bisogna accertare se un funzionamento dell’impiantoanomalo con la componente cont<strong>in</strong>ua della corrente immessa <strong>in</strong> rete superiore ad 1 A,porti allo spegnimento entro 0,2 secondi dall’istante di <strong>in</strong>nesco della condizione diguasto simulato.d) Nel dispositivo di misurazione della componente cont<strong>in</strong>ua (p.es. tras<strong>for</strong>matore dicorrente, o resistenza) viene impressa una corrente cont<strong>in</strong>ua superiore a 1 A. Lospegnimento deve avvenire entro 0,2 secondi dall’istante di applicazione dellacorrente di guasto.6) Ripetere i passi 2), 3) e 4) con il convertitore operante rispettivamente al (66 ± 5) %, e(100 ± 5) % della potenza nom<strong>in</strong>ale, misurata <strong>in</strong> VA.NOTA per la misurazione dei tempi di <strong>in</strong>tervento e la verifica dei livelli di corrente cont<strong>in</strong>ua di guasto (> 1 A c.c.) oderiva (> 0,5 % I n ) simulati come specificato ai paragrafi A.5.4 e A.5.5 è possibile utilizzare un analizzatore di retecon oscilloscopio <strong>in</strong>tegrato, oppure un oscilloscopio corredato di sonde di corrente adatte alla misurazione dicomponenti cont<strong>in</strong>ue.B.1.5 Verifica della <strong>in</strong>sensibilità agli abbassamenti di tensione (LVFRT capability)Queste prove hanno come scopo di verificare che il convertitore, qualora utilizzato <strong>in</strong> impiantidi potenza complessiva superiore a 6 kW, sia <strong>in</strong>sensibile agli abbassamenti di tensionesecondo il profilo tempo-ampiezza <strong>in</strong>dicato nella Figura 14.In particolare le prove dovranno verificare che siano soddisfatti i seguenti requisiti funzionali: nella zona tratteggiata il generatore non deve disconnettersi dalla rete. In questa zona èconsentito <strong>in</strong>terrompere temporaneamente l’erogazione della potenza attiva e reattivaerogata prima della <strong>in</strong>sorgenza del guasto. nella zona sottostante (grigio) il generatore può scollegarsi dalla rete. entro 200 ms dal riprist<strong>in</strong>o di un livello di tensione di rete compreso tra + 10 % e – 15 %della tensione nom<strong>in</strong>ale, il generatore deve riprendere l’erogazione della potenza attiva ereattiva immessa <strong>in</strong> rete prima della <strong>in</strong>sorgenza del guasto con una tolleranza massimadel ± 10 % della potenza nom<strong>in</strong>ale. Nella fascia tra 85 % e 90 % della tensione nom<strong>in</strong>aleè ammessa una riduzione della potenza erogata <strong>in</strong> base ai limiti della corrente massima diuscita dal generatore.Le verifiche di rispondenza ai requisiti di immunità agli abbassamenti di tensione si effettuanosecondo le sequenze di test riportate <strong>in</strong> Tabella 24, da eseguire con il generatore funzionanterispettivamente:a) tra il 10 % ed il 30 % della potenza nom<strong>in</strong>ale eb) al di sopra del 90 % della potenza nom<strong>in</strong>ale.Per ognuna delle sequenze a) e b) si lasci il sistema operare nelle condizioni impostate peralmeno 5 m<strong>in</strong>uti o il tempo necessario aff<strong>in</strong>ché si stabilizzi la temperatura <strong>in</strong>terna alconvertitore.La protezione di <strong>in</strong>terfaccia dovrà essere disabilitata oppure regolata al f<strong>in</strong>e di evitare scatti<strong>in</strong>tempestivi durante l’esecuzione della prova.Il sistema di simulazione del guasto deve produrre gli abbassamenti di tensione con profiloriportato <strong>in</strong> Tabella 24 e secondo la Figura 14 <strong>in</strong> condizioni di funzionamento a vuoto e quandocollegato al generatore <strong>in</strong> prova. Il risultato di ciascuna sequenza dovrà essere documentatocome segue:106


NORMA TECNICA CEI 0-21:2011-12Andamento temporale di potenza attiva P, potenza reattiva Q e tensioni di fase ai morsettidi uscita Vr, s, t, come valori rms a media mobile di un ciclo di rete e con aggiornamentoogni mezzo ciclo (10 ms), su una f<strong>in</strong>estra temporale che decorre da 100 ms primadell’<strong>in</strong>izio della prova e term<strong>in</strong>a almeno dopo 400 ms dalla f<strong>in</strong>e del transitorio di tensione(onde poter verificare il riprist<strong>in</strong>o della potenza attiva e reattiva). Il transitorio di tensionef<strong>in</strong>isce quando la tensione rientra oltre il 85 % del valore di tensione nom<strong>in</strong>ale.Nello stesso periodo di osservazione si dovranno riportare gli oscillogrammi delle tensionie delle correnti di fase (eventualmente con dettaglio <strong>in</strong>grandito dell’andamento durante ifronti di salita e discesa di tensione)Elenco proveAmpiezza residua della tensionefase-fase V/V nomDurata [ms] Forma(*)1 – guasto simmetrico trifase 0,05 ± 0,05 (V 1 /V nom ) 200 ± 202 – guasto simmetrico trifase 0,45 ± 0,05 (V 2 /V nom ) 400 ± 203 – guasto asimmetrico bifase 0,05 ± 0,05 (V 3 /V nom ) 200 ± 204 – guasto asimmetrico bifase 0,45 ± 0,05 (V 4 /V nom ) 400 ± 205 – guasto asimmetrico bifase <strong>in</strong> BT 0,05 ± 0,05 (V 5 /V nom ) 200 ± 206 – guasto asimmetrico bifase <strong>in</strong> BT 0,45 ± 0,05 (V 6 /V nom ) 400 ± 20* A presc<strong>in</strong>dere dal metodo utilizzato per simulare i transitori (simulatore o rete di impedenze), i fronti di discesa e disalita della tensione devono avere durata <strong>in</strong>feriore a 10msTabella 24 - Sequenze di test per verifica immunità agli abbassamenti temporanei ditensione. Le ampiezze, la durata e la <strong>for</strong>ma si riferiscono alle condizioni di test a vuoto.S RS 1Z1˜=Rete <strong>in</strong> c.a.(Z R )Z 2Generatore(P N )S 2Figura 32 - Esempio di circuito di prova per simulare gli abbassamenti temporanei ditensioneLe prove possono essere effettuate utilizzando ad esempio il circuito di prova riportato <strong>in</strong>Figura 32. Gli abbassamenti di tensione sono riprodotti da un circuito che simula uncortocircuito collegando le 3 oppure le 2 fasi a terra tramite una impedenza (Z 2 ), oppurecollegando le 3 o 2 fasi <strong>in</strong>sieme tramite la stessa impedenza. Gli <strong>in</strong>terruttori S 1 ed S 2 servonoa def<strong>in</strong>ire i profili temporali delle s<strong>in</strong>gole sequenze di prova.107


NORMA TECNICA CEI 0-21:2011-12Per il dimensionamento del circuito di prova valgono le seguenti considerazioni: L’impedenza Z 1 serve a limitare l’effetto del cortocircuito sulla rete elettrica che alimenta ilcircuito di prova (limitazione della corrente di cortocircuito). Il dimensionamento di Z 1 deveessere tale da consentire di avere una corrente massima di cortocircuito pari a 800 A perfase (<strong>in</strong> particolare nel caso peggiore, e cioè con tensione residua 5 % V n ). Un <strong>in</strong>terruttore di bypass S 1 viene solitamente impiegato per evitare il surriscaldamentodella impedenza serie Z 1 prima e dopo l’esecuzione di ciascuna sequenza. La caduta di tensione viene creata collegando a terra o verso un’altra fase l’impedenza Z 2tramite l’<strong>in</strong>terruttore S 2 . Il valore di Z 2 deve essere calcolato per produrre una tensione aisuoi capi pari ai valori di tensione residua specificati <strong>in</strong> Tabella 24 (condizioni a vuoto). Come rete c.a. si <strong>in</strong>tende rete trifase <strong>in</strong> bassa tensione. Non è consentito ai laboratori diprova allacciarsi direttamente a una l<strong>in</strong>ea pubblica BT. Sarà qu<strong>in</strong>di necessario che illaboratorio di prova disponga di allaccio MT e successivo tras<strong>for</strong>matore. La chiusura e apertura dell’<strong>in</strong>terruttore S 2 determ<strong>in</strong>a la durata degli eventi diabbassamento della tensione, pertanto il suo controllo deve essere accurato sia nellesimulazioni di guasti bifase che <strong>in</strong> quelli trifase. L’<strong>in</strong>terruttore può essere ad esempio uncontattore di calibro adeguato. In assenza di generatore, il circuito di prova deve garantire un <strong>in</strong>viluppo della tensionedurante la simulazione con<strong>for</strong>me al grafico di Figura 23. La durata del transitorio diabbassamento della tensione deve essere misurato dall’istante di chiusura a quello diriapertura dell’<strong>in</strong>terruttore S2. Le tolleranze tratteggiate <strong>in</strong> Figura 23 tengono conto degliscostamenti e ritardi nei tempi di chiusura e apertura del dispositivo e della pendenza didiscesa e salita della tensione. Eventuali scostamenti rispetto al grafico riportato sottovanno adeguatamente documentati e giustificati nel rapporto di prova.Figura 33 - Tolleranze di ampiezza e tempo per le sequenze di prova di abbassamentodella tensione di rete (VRT Test) (Fonte: norma IEC 61400-21)Sono ammessi circuiti di prova alternativi e <strong>in</strong> particolare i simulatori di rete (Figura 34).Qualora si utilizzi un simulatore di rete, quest’ultimo deve:1) garantire la possibilità di un controllo <strong>in</strong>dipendente <strong>in</strong> ampiezza e angolo di fase delle tretensioni2) essere <strong>for</strong>nito delle impedenze Z 1 , Z 2 e Z 3 , Z N regolabili <strong>in</strong> modo da riprodurre i parametritipici della rete.108


NORMA TECNICA CEI 0-21:2011-12Figura 34 - Utilizzo di simulatore di reteCon riferimento all’elenco delle prove riportate <strong>in</strong> Tabella 24, gli abbassamenti di tensione chesono oggetto di queste prove sono causati da guasti prodotti sulla l<strong>in</strong>ea di distribuzione <strong>in</strong>bassa, media o alta tensione. Le tipologie di guasto considerate sono tre:1) guasto simmetrico trifase (Tabella 24, Prove N. 1 e N.2)2) guasto asimmetrico bifase (Tabella 24, Prove N. 3 e N.4)Guasto <strong>in</strong> MT, che provoca <strong>in</strong> BT una variazione oltre che di ampiezza anche della relazionedi fase delle tensioni (il caso considerato prevede la presenza di un tras<strong>for</strong>matore Dy <strong>in</strong>cab<strong>in</strong>a secondaria).Durante il guasto asimmetrico bifase, l’ampiezza residua delle 3 tensioni e gli sfasamenti trale fasi dovranno essere con<strong>for</strong>mi ai valori riportati nella Tabella seguente109


NORMA TECNICA CEI 0-21:2011-12Prova N.V/V nomTensioni fase-terraAngoli di faseu 1 /u 1,nom u 2 /u 2,nom u 3 /u 3,nom φ u1 φ u2 φ u33 0,05 ± 0,05 0,87 ± 0,05 0,87 ± 0,05 0,05 ± 0,05 27° -147° 113°4 0,45 ± 0,05 0,90 ± 0,05 0,90 ± 0,05 0,45 ± 0,05 15° - 135° 115°cond. norm. 1 1 1 1 0° -120° 120°3) guasto asimmetrico bifase <strong>in</strong> BT (Tabella 24, Prove N. 5 e N.6)Queste alterazioni si propagano sulle l<strong>in</strong>ee di distribuzione <strong>in</strong> bassa tensione con valori diampiezza delle s<strong>in</strong>gole tensioni ed angolo di fase che sono dipendenti dalle caratteristiche deitras<strong>for</strong>matori presenti nella cab<strong>in</strong>a di distribuzione, <strong>in</strong> particolare gruppo vettoriale edimpedenza.Pertanto, al f<strong>in</strong>e di simulare correttamente gli effetti prodotti dall’<strong>in</strong>sorgenza dei guasti bifasesul lato bassa tensione della l<strong>in</strong>ea, occorre riprodurre tramite il simulatore le condizioni che siproducono sulle l<strong>in</strong>ee BT quando il guasto viene <strong>in</strong>dotto sulla tratta MT della l<strong>in</strong>ea didistribuzione, <strong>in</strong>cluse le alterazioni della relazione di fase <strong>in</strong> presenza di guasti asimmetricibifase.B.1.6 Verifica della <strong>in</strong>sensibilità alle richiusure automatiche <strong>in</strong> discordanza di faseQuesto tipo di test può essere eseguito secondo due modalità:1. con l’<strong>in</strong>verter connesso ad una rete simulata (B.1.6.1)2. con l’<strong>in</strong>verter connesso alla rete di distribuzione (B.1.6.2 e <strong>in</strong> alternativa B.1.6.3).Il generatore non deve danneggiarsi a seguito delle prove. Sono ammessi lo spegnimento e loscatto di eventuali protezioni.110


NORMA TECNICA CEI 0-21:2011-12B.1.6.1Test su rete simulata:Rete <strong>in</strong> c.a.(Z R )Simulatore di reteTensione di retesimulata(V R )Generatore(P N )Figura 35 - Circuito per la verifica della <strong>in</strong>sensibilità alla richiusura automatica <strong>in</strong>discordanza di fase tramite simulatore di reteCon riferimento allo schema riportato <strong>in</strong> Figura 35 – utilizzo di rete simulata: Il simulatore di rete dovrà essere <strong>in</strong> grado di produrre salti di fase della tensione aimorsetti di uscita dell’<strong>in</strong>verter rispettivamente di 90° e di 180°. Generatore: <strong>in</strong>verter <strong>in</strong> funzionamento alla potenza nom<strong>in</strong>ale con fattore di potenzaunitario (cos = 1) VR: tensione di rete simulataIl generatore va portato <strong>in</strong> funzionamento alla potenza nom<strong>in</strong>ale. Si lasci il sistema operarenelle condizioni impostate per almeno 5 m<strong>in</strong>uti o il tempo necessario aff<strong>in</strong>ché si stabilizzi latemperatura <strong>in</strong>terna al convertitore.Al term<strong>in</strong>e per periodo di stabilizzazione si dovranno effettuare <strong>in</strong> sequenza 2 prove,<strong>in</strong>ducendo un transitorio che produca repent<strong>in</strong>amente un angolo di sfasamento sulla tensionedi rete simulata VR pari a 180 ° ed a 90°.Nel test report vanno <strong>in</strong>dicati per ciascuna delle due sequenze di test: l’angolo fra la tensione prima e dopo il salto di fase, con uno strumento avente errore di 1°; la corrente del generatore su una f<strong>in</strong>estra temporale che decorre da 20 ms prima adalmeno 200 ms dopo il salto di fase della tensione di rete simulata.111


NORMA TECNICA CEI 0-21:2011-12B.1.6.2Test su rete di distribuzione tramite tras<strong>for</strong>matore di accoppiamento:Interruttore ocontattorecomandato<strong>in</strong>terbloccatoCBGeneratore (P N )Rete <strong>in</strong> c.a.(Z R )Tensione di reteVRTensione di rete90° e 180°VR'Tensione digeneratoreVGFigura 36 - Circuito per la verifica della <strong>in</strong>sensibilità alla richiusura automatica <strong>in</strong>discordanza di fase tramite tras<strong>for</strong>matore di accoppiamentoCon riferimento allo schema riportato <strong>in</strong> Figura 35 - circuito per la verifica della <strong>in</strong>sensibilitàalla richiusura automatica <strong>in</strong> discordanza di fase tramite simulatore di rete – utilizzo di untras<strong>for</strong>matore di accoppiamento: TR: tras<strong>for</strong>matore con colonne aperte, da configurare YYn o DYn <strong>in</strong> funzione della provada effettuare Generatore: <strong>in</strong>verter <strong>in</strong> funzionamento alla potenza nom<strong>in</strong>ale con fattore di potenzaunitario (cos = 1) Rc: carico resistivo zavorra, di potenza pari alla potenza nom<strong>in</strong>ale dell’<strong>in</strong>verter VR: tensione della rete di distribuzione VR’: tensione sfasata rispetto alla rete di distribuzione di 90° e 180° <strong>in</strong> funzione dellaprova da effettuare VG: tensione applicata al generatore.Il contattore CB è chiuso, il contattore CB’ è aperto.Il generatore va portato <strong>in</strong> funzionamento alla potenza nom<strong>in</strong>ale. Si lasci il sistema operarenelle condizioni impostate per almeno 5 m<strong>in</strong>uti o il tempo necessario aff<strong>in</strong>ché si stabilizzi latemperatura <strong>in</strong>terna al convertitore.Si verifichi che, per almeno 1 m<strong>in</strong>uto, la corrente attraverso l’<strong>in</strong>terruttore CB sia <strong>in</strong>feriore al2 %. Il valore misurato va riportato nel test report.Qu<strong>in</strong>di aprire il contattore CB e chiudere il contattore CB’, <strong>in</strong> modo coord<strong>in</strong>ato e istantaneo (ameno della differenza sui tempi di apertura e chiusura). La resistenza di zavorra attenua itransitori elettrici sull’uscita dell’<strong>in</strong>verter ed impedisce che l’<strong>in</strong>verter si scolleghi dalla rete.112


NORMA TECNICA CEI 0-21:2011-12Lo spegnimento del generatore o l’<strong>in</strong>tervento delle protezioni possono avvenire solo a valledella completa chiusura del contattore CB’.Vanno effettuate 2 prove, con angolo di sfasamento alla chiusura rispettivamente pari a 180°ed a 90°. A tal f<strong>in</strong>e il gruppo vettoriale del tras<strong>for</strong>matore TR va riconfigurato <strong>in</strong> modoopportuno.Nel test report vanno <strong>in</strong>dicati: l’angolo fra le 2 tensioni misurate con uno strumento avente errore di 1°; la corrente del generatore a seguito della chiusura, rilevata su una f<strong>in</strong>estra temporale chedecorre da 20 ms prima ad almeno 200 ms dopo il salto di fase della tensione di rete.B.1.6.3 Test su rete di distribuzione, simulazione della deriva di frequenzaCon riferimento allo schema riportato <strong>in</strong> Figura 37: CB: <strong>in</strong>terruttore comandato o contattore. Il potere di chiusura, per entrambi, deve essereadeguato. Il tempo di chiusura deve essere noto e stabile Generatore: <strong>in</strong>verter <strong>in</strong> funzionamento alla potenza nom<strong>in</strong>ale con fattore di potenzaunitario (cos = 1) Rc: carico resistivo zavorra, di potenza pari alla potenza nom<strong>in</strong>ale dell’<strong>in</strong>verter Zc: carico reattivo di deriva. Zc sarà dimensionato per assorbire una corrente reattiva diord<strong>in</strong>e pari all’1 % di quella nom<strong>in</strong>ale dell’<strong>in</strong>verter. Il valore effettivo, la natura capacitiva o<strong>in</strong>duttiva sarà comunque concordato con il costruttore dell’<strong>in</strong>verter e riportato nel testreport.VR: tensione della rete di distribuzioneVG: tensione del generatore <strong>in</strong> isola sul carico zavorra.Rete c.a.Figura 37 - Circuito per la verifica della <strong>in</strong>sensibilità alla richiusura automatica <strong>in</strong>discordanza di fase. Collegamento diretto alla rete di distribuzione e simulazione delladeriva di frequenzaIl generatore va portato <strong>in</strong> funzionamento alla potenza nom<strong>in</strong>ale. Si lasci il sistema operarenelle condizioni impostate per almeno 5 m<strong>in</strong>uti o il tempo necessario aff<strong>in</strong>ché si stabilizzi latemperatura <strong>in</strong>terna al convertitore.113


NORMA TECNICA CEI 0-21:2011-12Poiché il funzionamento <strong>in</strong> isola degli <strong>in</strong>verter per connessione alla rete non è previsto, perl’esecuzione di questa prova potrebbe essere necessario alterare alcuni parametri di controlloe regolazione.L’algoritmo MPPT va disabilitato.Per i generatori statici, qualsiasi protezione <strong>in</strong>terna contro la perdita di rete diversa da quelledescritte nella presente norma, per esepio basata sulla misura dell’impedenza, salto di fase,ecc., va esclusa, come pure le protezioni e i controlli <strong>in</strong> frequenza che possano distaccare ilgeneratore.Si verifichi che, per almeno 1 m<strong>in</strong>uto, la corrente attraverso l’<strong>in</strong>terruttore CB sia <strong>in</strong>feriore al 2%. Il valore misurato va riportato nel test report.A questo punto la frequenza dell’<strong>in</strong>verter deriva con d<strong>in</strong>amica dipendente dai parametri edalla tecnologia dell’<strong>in</strong>verter sottoposto al test. Il carico Zc contribuisce a rendere il sistema<strong>in</strong>stabile e potrebbe risultare non <strong>in</strong>dispensabile per l’esecuzione della prova.Il setup deve garantire che la deriva di frequenza sia sufficientemente lenta da permetterel’osservazione della differenza di fase tra rete e uscita dell’<strong>in</strong>verter attraverso un oscilloscopiocon misura a canali isolati.Vanno effettuate 2 prove, con angolo di sfasamento alla chiusura rispettivamente pari a 180°ed a 90°.Il generatore non deve danneggiarsi a seguito delle prove. Sono ammessi lo spegnimento e loscatto di eventuali protezioni.Nel test report vanno <strong>in</strong>dicati: l’angolo fra le 2 tensioni misurate con uno strumento avente errore di 1°; la corrente del generatore a seguito della chiusura, rilevata su una f<strong>in</strong>estra temporale chedecorre da 20 ms prima ad almeno 200 ms dopo il salto di fase della tensione di rete.114


phiphi absphi prodU m<strong>in</strong>iU maxiULes dispositions constructives que doit respecter l’<strong>in</strong>stallation sont détaillées ci-dessous.Phi représente le déphasage entre l’<strong>in</strong>tensité et la tension au po<strong>in</strong>t de livraison :- Phi abs correspond à la valeur m<strong>in</strong>imale requise, en absorption de puissance réactive. Cette valeurdoit être réglable entre 0° et 18° ;- Phi prod correspond à la valeur m<strong>in</strong>imale requise, en fourniture de puissance réactive. cette valeurdoit être réglable entre 0° et 26° ;U représente la tension au po<strong>in</strong>t de livraison et Un la tension en cas fonctionnement normal :- U m<strong>in</strong>i doit être réglable de Un × 95 % à Un × 102,5 % ;- U maxi doit être réglable de Un × 97,5 % à Un × 105 % ;- Umaxi –Um<strong>in</strong>i = Un × 2,5 %.d. MesuresL’énergie <strong>in</strong>jectée sera mesurée par des dispositifs de comptage classiques. Ces dispositifs de comptageenregistreront également les puissances moyennes par périodes de 10 m<strong>in</strong>utes (« puissance moyenne10 m<strong>in</strong> »).Les mesures de puissance <strong>in</strong>stantanée serviront de base pour déterm<strong>in</strong>er les écarts éventuels par rapportaux prévisions contractuelles à J-1.Les valeurs des puissances active et réactive <strong>in</strong>jectées au po<strong>in</strong>t de livraison feront l’objet de télémesurespar le gestionnaire du système électrique concerné. La période de rafraîchissement de ces télémesures nepourra être supérieure à 10 secondes.S’il le juge utile, le producteur pourra prévoir des télésignalisations à dest<strong>in</strong>ation du gestionnaire dusystème électrique concerné, af<strong>in</strong> d’<strong>in</strong><strong>for</strong>mer ce dernier de situations particulières de l’<strong>in</strong>stallationéolienne, comme par exemple l’état de charge du système de stockage d’énergie.29/43


Déf<strong>in</strong>itions relatives à l’annexe 3Puissance maximale (P_max) :Elle est exprimée en kW et uniquement déf<strong>in</strong>ie pour les <strong>in</strong>stallations de production. Cette puissance a été<strong>in</strong>troduite pour les études de raccordement par l’article premier de l’arrêté du 23 avril 2008 relatif auxprescriptions techniques de conception et de fonctionnement pour le raccordement à un réseau public dedistribution d’électricité en basse tension ou en moyenne tension d’une <strong>in</strong>stallation de productiond’énergie électrique : « Pour l’application des dispositions du présent arrêté, P_max désigne la puissance<strong>in</strong>stallée déf<strong>in</strong>ie à l’article 1er du décret du 7 septembre 2000 susvisé. Par convention, la puissanceP_max est la puissance active pour les <strong>in</strong>stallations de production raccordées en HTA et la puissanceapparente pour les <strong>in</strong>stallations de production raccordées en BT ».La puissance déclarée par le demandeur sur la fiche de collecte doit être identique avec celle déclarée autitre de l’<strong>in</strong>struction de la déclaration ou de l’autorisation d’exploiter telle que déf<strong>in</strong>ie à l’article premierdu décret 2000-877 du 7 septembre 2000 relatif à l’autorisation d’exploiter les <strong>in</strong>stallations de productiond’électricité : « Pour l’application du présent décret, la puissance <strong>in</strong>stallée d’une <strong>in</strong>stallation deproduction est déf<strong>in</strong>ie comme la somme des puissances unitaires maximales des mach<strong>in</strong>es électrogènessusceptibles de fonctionner simultanément dans un même établissement, identifié par son numérod’identité au répertoire national des entreprises et des établissements, tel que déf<strong>in</strong>i par décret du 14 mars1973 susvisé ».Comme le précise cet article, cette puissance est déterm<strong>in</strong>ée à partir des puissances des composantes del’<strong>in</strong>stallation de production et par conséquent ne prend pas en compte d’éventuelles consommations dusite.Puissance de raccordement (P_racc) :Elle désigne la capacité physique de transit du raccordement. Sauf stipulation contraire figurant auxconditions particulières de la convention de raccordement, pour chaque poste de livraison, le po<strong>in</strong>t deraccordement du poste de livraison au réseau public de distribution HTA est situé, sur chaque canalisationde raccordement, à la limite de concession déf<strong>in</strong>ie à l’article 3.1 de la convention de raccordement.30/43


Guida TecnicaCodificaRevisioneAllegato A. 70Pag<strong>in</strong>aN° 01 1 di 13REGOLAZIONE TECNICA DEI REQUISITI DI SISTEMA DELLAGENERAZIONE DISTRIBUITAStoria delle revisioni01 13/03/2012 Prima emissione


Guida TecnicaCodificaRevisioneAllegato A. 70Pag<strong>in</strong>aN° 01 2 di 13INDICE1. SCOPO........................................................................................................................... 32. CAMPO DI APPLICAZIONE ............................................................................................. 33. RIFERIMENTI ................................................................................................................. 44. DEFINIZIONI ................................................................................................................... 45. CAMPO DI FUNZIONAMENTO DEGLI IMPIANTI DI PRODUZIONE .................................... 56. TRASMISSIONE DEI DATI NECESSARI AI FINI DEL CONTROLLO DEL SEN .................... 67. REGOLAZIONI ................................................................................................................ 67.1. COMPORTAMENTO DEGLI IMPIANTI DI PRODUZIONE NEI TRANSITORI DIFREQUENZA .......................................................................................................... 67.1.1. RICONNESSIONE E REGOLAZIONE DELLA POTENZA ATTIVA IN FUNZIONEDELLA FREQUENZA ................................................................................. 67.1.2. AVVIAMENTO E AUMENTO GRADUALE DELLA POTENZA IMMESSA INRETE ....................................................................................................... 77.2. COMPORTAMENTO DEGLI IMPIANTI DI PRODUZIONE NEI TRANSITORI DITENSIONE ............................................................................................................. 77.2.1. INSENSIBILITA’ AGLI ABBASSAMENTI DI TENSIONE ................................... 88. COMPATIBILITA’ DELLE PROTEZIONI DEGLI IMPIANTI DI PRODUZIONE CON LEESIGENZE DI SISTEMA .................................................................................................. 88.1. IMPIANTI DI PRODUZIONE CONNESSI ALLA RETE MT ................................ 98.1.1. Regolazioni dei relè da adottare <strong>in</strong> via transitoria .......................................... 118.2. IMPIANTI DI PRODUZIONE CONNESSI ALLA RETE BT ............................... 129. APPENDICE 1 - Ulteriori accorgimenti riportati a titolo <strong>in</strong><strong>for</strong>mativo ..................................... 13


Guida TecnicaCodificaRevisioneAllegato A. 70Pag<strong>in</strong>aN° 01 3 di 131. SCOPOLa presente Guida regola i requisiti tecnici a cui gli impianti di produzione di energia elettricaconnessi alle reti di distribuzione MT e BT (nel seguito: GD) devono rispondere ai f<strong>in</strong>i dellasicurezza del sistema elettrico nazionale <strong>in</strong>terconnesso. In particolare, il presente documento ha loscopo di prescrivere i requisiti m<strong>in</strong>imi relativamente a:Campi di funzionamento <strong>in</strong> tensione e frequenzaControlloEsigenze di sistema per le protezioniRegolazioniLa presente Guida non riguarda la protezione contro l’elettrocuzione o danni ambientali chehanno precedenza sulla presente.2. CAMPO DI APPLICAZIONELe prescrizioni del presente allegato si applicano, secondo le modalità e i term<strong>in</strong>i di cui alladelibera dell’Autorità per l’energia elettrica e il gas 84/2012/r/eel, <strong>in</strong> particolare a:a) Impianti tradizionali, vale a dire impianti rotanti s<strong>in</strong>croni o as<strong>in</strong>croni connessi alla retesenza <strong>in</strong>terposizione di sistemi di raddrizzamento/<strong>in</strong>versione;b) Impianti di tutte le altre tipologie connessi alla rete mediante <strong>in</strong>terposizione di sistemi diraddrizzamento/<strong>in</strong>versione (<strong>in</strong>verter lato rete);1c) Le eventuali parti d’impianto nella titolarità delle imprese distributrici strumentali allaprotezione e controllo degli impianti <strong>PV</strong>.Gli obblighi <strong>in</strong><strong>for</strong>mativi previsti dal capitolo 6 si applicano a tutte le cab<strong>in</strong>e primarie di distribuzione,cui afferisca produzione.Le Imprese di Distribuzione sono tenute al rispetto dei requisiti descritti, alla vigilanzasull’applicazione degli stessi da parte di utenti connessi alle reti di distribuzione con potenzecomplessive per utente non <strong>in</strong>feriori a 1 kW; le predette Imprese, <strong>in</strong>oltre, sono tenute a nonadottare pratiche d’esercizio <strong>in</strong> contrasto con gli stessi.L’osservanza delle prescrizioni previste nel presente documento deve costituire condizioneessenziale per la connessione degli impianti alla rete.1 Gli impianti di cui <strong>in</strong> a) e b) sono attualmente <strong>in</strong>dicati nella normativa tecnica corrente rispettivamente con ilnome di generatori direttamente connessi e <strong>in</strong>direttamente connessi.


Guida TecnicaCodificaRevisioneAllegato A. 70Pag<strong>in</strong>aN° 01 5 di 13Utente attivo:Richiusura RapidaAutomaticaUtente che utilizza qualsiasi macch<strong>in</strong>ario (rotante o statico) che convertaogni <strong>for</strong>ma di energia utile <strong>in</strong> energia elettrica <strong>in</strong> corrente alternataprevisto per funzionare <strong>in</strong> parallelo (anche transitorio) con la rete.Richiusura degli <strong>in</strong>terruttori di l<strong>in</strong>ea aperti per <strong>in</strong>tervento delle protezioni.(RRA)5. CAMPO DI FUNZIONAMENTO DEGLI IMPIANTI DI PRODUZIONETutti gli impianti di produzione ed i relativi macch<strong>in</strong>ari ed apparecchiature devono essere progettati,costruiti ed eserciti per restare <strong>in</strong> parallelo anche <strong>in</strong> condizioni di emergenza e di riprist<strong>in</strong>o di rete.In particolare gli impianti, <strong>in</strong> ogni condizione di carico, devono essere <strong>in</strong> grado di rimanerepermanentemente connessi alla rete MT e BT per valori di tensione nel punto di consegna,compresi nel seguente <strong>in</strong>tervallo:85% Vn ≤ V ≤ 110% VnRiguardo all’esercizio <strong>in</strong> parallelo con la rete MT/BT <strong>in</strong> funzione della frequenza, l’impianto diproduzione deve essere <strong>in</strong> grado di rimanere connesso alla rete per un tempo <strong>in</strong>def<strong>in</strong>ito 2 , per valoridi frequenza compresi nel seguente <strong>in</strong>tervallo:47,5 Hz ≤ f ≤ 51,5 HzL’Utente Attivo deve garantire che tali <strong>in</strong>tervalli di funzionamento siano rispettati sia dalle protezionidi <strong>in</strong>terfaccia che dalle protezioni e regolazioni dell’impianto di produzione. L’Impresa diDistribuzione vigila sul rispetto di tali requisiti.Per soddisfare contemporaneamente le esigenze generali del Sistema Elettrico Nazionale, leesigenze delle Imprese di Distribuzione, nonché le esigenze degli utenti attivi (salvaguardia delmacch<strong>in</strong>ario di generazione)- e dei clienti f<strong>in</strong>ali (qualità del servizio) è necessario adottare logichedi funzionamento <strong>in</strong> grado di selezionare soglie e tempi di <strong>in</strong>tervento dei relè di frequenza sullabase di due diversi tipi di evento:• guasto locale• perturbazione di sistema con variazione transitoria della frequenza.Nel capitolo 8 viene descritta, sia per il livello MT che per quello BT, una soluzione funzionale dellelogiche di <strong>in</strong>tervento delle protezioni di m<strong>in</strong>ima e massima frequenza degli impianti di produzione,coerente con la prescrizione.2La specificazione ammette solo modeste eccezioni relative ai generatori direttamente connessi alle reti BT nellecondizioni precisate al paragrafo 8.2.


Guida TecnicaCodificaRevisioneAllegato A. 70Pag<strong>in</strong>aN° 01 6 di 136. TRASMISSIONE DEI DATI NECESSARI AI FINI DEL CONTROLLO DEL SENAi f<strong>in</strong>i del controllo del SEN, che presuppone la fedele conoscenza della GD <strong>in</strong> MT e BT sia <strong>in</strong> fasepredittiva che <strong>in</strong> tempo reale, risultano necessari al Gestore, per ogni cab<strong>in</strong>a primaria, sia datiprevisionali sia telemisure <strong>in</strong> tempo reale della potenza attiva e reattiva, differenziata peraggregato:caricogenerazione differenziata per fontetotale di cab<strong>in</strong>aLe predette <strong>in</strong><strong>for</strong>mazioni dovranno essere rese disponibili dall’Impresa di Distribuzione al Gestore.Le telemisure saranno rese disponibili ai sistemi SCADA del Gestore con le caratteristiche def<strong>in</strong>itedallo stesso.7. REGOLAZIONIIn caso di perturbazioni che siano causa di transitori di frequenza e/o di tensione, gli impiantidevono cont<strong>in</strong>uare a garantire il proprio sostegno al SEN nell’ambito dell’<strong>in</strong>tervallo difunzionamento richiesto al paragrafo 5.7.1. COMPORTAMENTO DEGLI IMPIANTI DI PRODUZIONE NEI TRANSITORI DIFREQUENZAPer il controllo dei transitori <strong>in</strong> frequenza, si richiede agli impianti di produzione statici connessi allereti MT e BT:• la capacità di ridurre la potenza immessa <strong>in</strong> rete <strong>in</strong> risposta ad una variazione della frequenzadel sistema al di sopra di una soglia predef<strong>in</strong>ita (regolazione della potenza <strong>in</strong> funzione dellasovrafrequenza);• l’<strong>in</strong>serimento graduale della potenza immessa <strong>in</strong> rete <strong>in</strong> modo da m<strong>in</strong>imizzare gli effetti sulsistema <strong>in</strong> caso di ripresa del servizio.• l’avviamento con l’aumento graduale della potenza immessa <strong>in</strong> rete.7.1.1. RICONNESSIONE E REGOLAZIONE DELLA POTENZA ATTIVA IN FUNZIONEDELLA FREQUENZADurante un transitorio di frequenza, detti impianti di produzione devono essere <strong>in</strong> grado di:a) non variare la potenza immessa <strong>in</strong> rete nei limiti previsti, per frequenze comprese tra 47,5 Hze 50,3 Hz, salvo che per motivi legati alla disponibilità della fonte primaria;b) ridurre la potenza immessa <strong>in</strong> rete <strong>in</strong> funzione dell’entità dello scarto di frequenza positivorispetto a 50 Hz per frequenze comprese tra 50,3 Hz e 51,5 Hz, secondo uno statismocompreso tra il 2% e il 5%; di norma verrà impostato un valore pari al 2,4%;c) non riconnettersi alla rete e non aumentare il livello di produzione m<strong>in</strong>imo raggiunto <strong>in</strong> casodi ridiscesa della frequenza dopo un aumento della stessa oltre il valore di 50,3 Hz (a menoche la frequenza non si attesti per almeno 5 m<strong>in</strong>uti primi ad un valore compreso tra 49.95 Hze 50,05 Hz per il cont<strong>in</strong>ente, e 49.9 e 50,1 per Sicilia e Sardegna), salvo diversa <strong>in</strong>dicazioneda parte del Gestore.


Guida TecnicaCodificaRevisioneAllegato A. 70Pag<strong>in</strong>aN° 01 7 di 13figura 1 – Regolazione della potenza attiva immessa <strong>in</strong> rete <strong>in</strong> funzione della frequenza7.1.2. AVVIAMENTO E AUMENTO GRADUALE DELLA POTENZA IMMESSA IN RETEL’avviamento di detti impianti deve essere condizionato ad una frequenza di rete stabilizzata equ<strong>in</strong>di non <strong>in</strong>feriore a 49,9 (49.95) Hz e non superiore a 50,1 (50.05) Hz per le isole (per ilCont<strong>in</strong>ente) .Nel caso <strong>in</strong> cui la riconnessione avvenga automaticamente, il sistema di controllo dell’impiantodovrà consentire la taratura di rientro <strong>in</strong> un <strong>in</strong>tervallo compreso tra 49 Hz e 51 Hz a step di 0.05Hz; dovrà <strong>in</strong>oltre essere selezionabile il tempo m<strong>in</strong>imo di permanenza <strong>in</strong> tale <strong>in</strong>tervalloselezionabile tra 0 e 900 secondi a step di 5 secondi.In tali condizioni la riconnessione deve avvenire aumentando gradualmente la potenza immessarispettando un gradiente positivo massimo non superiore al 20% al m<strong>in</strong>uto della potenza erogabile.Il Gestore è disponibile ad accettare soluzioni equivalenti, proposte dalle Imprese di distribuzionepurché tali da assicurare le stesse prestazioni di cui ai punti precedenti a livello di aggregato.7.2. COMPORTAMENTO DEGLI IMPIANTI DI PRODUZIONE NEI TRANSITORI DI TENSIONEA salvaguardia del sistema elettrico nazionale per evitare perdite <strong>in</strong>controllate di generazionedistribuita <strong>in</strong> concomitanza con guasti sulla rete AAT e AT, che causano abbassamenti di tensionesu aree, vengono prescritti due requisiti:• limiti di funzionamento coerenti con quanto <strong>in</strong>dicato nel paragrafo 5.• capacità dell’impianto di produzione di rimanere connesso alla rete, secondo una curva“tensione – durata” predef<strong>in</strong>ita (Low Voltage Fault Ride Through capability, LFVRT).


Guida TecnicaCodificaRevisioneAllegato A. 70Pag<strong>in</strong>aN° 01 8 di 137.2.1. INSENSIBILITA’ AGLI ABBASSAMENTI DI TENSIONEGli impianti di produzione statici connessi alle reti MT e BT di potenza nom<strong>in</strong>ale ≥ 6 kVA devonoessere <strong>in</strong> grado di non disconnettersi istantaneamente durante l’abbassamento di tensioneconseguente a un qualsiasi tipo di cortocircuito esterno, monofase o polifase (con e senza terra).In particolare deve essere garantita la connessione alla rete nella zona al di sopra e lungo i puntidella caratteristica (V - t) <strong>in</strong>dicata, dove la tensione V è la tensione ai morsetti dell’impianto diproduzione. I valori <strong>in</strong>dicati sono <strong>in</strong> percentuale della tensione nom<strong>in</strong>ale.Nell’<strong>in</strong>tervallo di durata dell’abbassamento di tensione l’impianto dovrà rimanere connesso allarete, anche se non garantirà il valore di potenza immessa nell’istante immediatamente precedenteal guasto. Al ristabilirsi delle normali condizioni di funzionamento 3 la potenza immessa <strong>in</strong> retedovrà tornare ad un valore prossimo a quello precedente il guasto, <strong>in</strong> un tempo non superiore a200 ms.figura 2 – LVRFT (tratta da norma CEI 0-21)8. COMPATIBILITA’ DELLE PROTEZIONI DEGLI IMPIANTI DI PRODUZIONE CON LEESIGENZE DI SISTEMALe protezioni di <strong>in</strong>terfaccia possono <strong>in</strong>terferire negativamente con il bilanciamento del sistemaelettrico nazionale. Per m<strong>in</strong>imizzare tali effetti le predette protezioni devono essere <strong>in</strong> grado digarantire:il distacco selettivo della GD soltanto per guasti sulle reti MT e/o BT;il mantenimento <strong>in</strong> servizio della GD per perturbazioni di sistema con variazione transitoriadella frequenza.3 Le normali condizioni sono quelle precedenti l’evento


Guida TecnicaCodificaRevisioneAllegato A. 70Pag<strong>in</strong>aN° 01 9 di 13Tali protezioni sono gestite dagli Utenti Attivi sotto la vigilanza ed il coord<strong>in</strong>amento dell’Impresa diDistribuzione. Esse devono operare <strong>in</strong> accordo con i criteri di selettività descritti nel seguito deldocumento, <strong>in</strong> modo da :• evitare danni ai generatori tradizionali dovuti a momenti torsionali provocati dalle richiusureimplementate su tale rete <strong>in</strong> caso di guasti sui collegamenti (per i soli impianti diproduzione tradizionali);• limitare la probabilità di creazione di isole di carico <strong>in</strong> caso di apertura del tronco <strong>in</strong> MT;• limitare i disturbi <strong>in</strong> tensione ad altri utenti <strong>in</strong> caso di funzionamento <strong>in</strong> isola.8.1. IMPIANTI DI PRODUZIONE CONNESSI ALLA RETE MTPer gli impianti di produzione connessi alle reti MT, <strong>in</strong> presenza di segnali logici <strong>in</strong>viati dall’Impresadi Distribuzione, è sufficiente implementare una regolazione opportuna delle quattro soglie giàattualmente previste nelle Regole Tecniche di Connessione [6].Per quanto riguarda le due soglie di massima frequenza, esse dovranno essere regolate come diseguito:- una soglia restrittiva a 50,3 Hz (con tempo 0,1 s)- una soglia permissiva a 51,5 Hz (con tempo 1,0 s)Per quanto riguarda le due soglie di m<strong>in</strong>ima frequenza, esse dovranno essere regolate come diseguito:- una soglia restrittiva a 49,7 Hz (con tempo 0,1 s)- una soglia permissiva a 47,5 Hz (con tempo 4,0 s).Le predette caratteristiche (presenza di due separate regolazioni selezionate da remoto)consentono che la protezione d’<strong>in</strong>terfaccia dell’impianto di produzione operi <strong>in</strong> maniera opportunacontemperando le esigenze locali con quelle di sistema.Infatti, una perturbazione di sistema (transitorio <strong>in</strong> sottofrequenza o sovra frequenza che <strong>in</strong>teressauna vasta rete funzionante <strong>in</strong> regime separato con carico o produzione eccedente) è un fenomenonormalmente caratterizzato da una variazione relativamente lenta del parametro frequenza e da unandamento delle tensioni di tipo simmetrico. Se il fenomeno si presenta con queste caratteristichela f<strong>in</strong>estra restrittiva di frequenza (49,7 – 50,3 Hz) dovrà rimanere <strong>in</strong>attiva ed il distacco degliimpianti dovrà essere affidato esclusivamente alla f<strong>in</strong>estra di frequenza larga (47,5 – 51,5 Hz).Viceversa, <strong>in</strong> caso di fenomeni locali (guasto, apertura dell’<strong>in</strong>terruttore di CP o di un IMS lungol<strong>in</strong>ea), l’Impresa di Distribuzione è <strong>in</strong> grado di comandare l’attivazione delle soglie restrittive,favorendo la disconnessione degli impianti di produzione connessi.In assenza di disponibilità dei segnali di commutazione da remoto, è necessario che gli Utenti Attivisi dot<strong>in</strong>o di un sistema di protezione, sempre basato su <strong>in</strong><strong>for</strong>mazioni locali, <strong>in</strong> grado di discrim<strong>in</strong>aretra eventi di sistema ed eventi localizzati nella della rete di distribuzione.Infatti, <strong>in</strong> caso di guasto locale (cortocircuito tra le fasi o guasto a terra nella rete MT dell’Impresadi Distribuzione), è possibile abilitare l’<strong>in</strong>tervento della f<strong>in</strong>estra di frequenza restrittiva (49,7 – 50,3Hz) correlandone l’attivazione con una delle seguenti funzioni di protezione:o massima tensione omopolare (59N) per il rilevamento dei guasti monofasi e polifasi con terra;


Guida TecnicaCodificaRevisioneAllegato A. 70Pag<strong>in</strong>aN° 01 10 di 13oomassima tensione di sequenza <strong>in</strong>versa (59INV) per il rilevamento dei guasti bifase isolati daterra;m<strong>in</strong>ima tensione di sequenza diretta (27DIR) per il rilevamento dei guasti trifase (e bifase)isolati da terra.La logica di questo sistema di protezione con relè di frequenza a sblocco voltmetrico (il codicenumerico assegnato a questa protezione è 81V) è esposta <strong>in</strong> Figura 3. In base ad essa il sistemadi protezione <strong>in</strong>stallato nell’impianto di produzione è <strong>in</strong> grado di riconoscere variazioni di frequenzaconseguenti all’apertura dell’<strong>in</strong>terruttore <strong>in</strong> Cab<strong>in</strong>a Primaria oppure all’apertura di IMS lungo l<strong>in</strong>ea<strong>in</strong> presenza di un guasto nella l<strong>in</strong>ea di connessione e di separarsi da essa <strong>in</strong> tempo breve, primadella eventuale manovra di richiusura automatica rapida, <strong>in</strong> modo da evitare un parallelo con larete con sfasamenti angolari troppo ampi. Eventuali relè di massima e m<strong>in</strong>ima frequenza diversi daquelli propri del sistema di protezione di <strong>in</strong>terfaccia (tipicamente quelli <strong>in</strong>tegrati nell’<strong>in</strong>verter),dovranno essere regolati <strong>in</strong> modo coerente con quanto sopra stabilito con f<strong>in</strong>estre di <strong>in</strong>tervento piùampie di quelle di tipo permissivo della protezione di <strong>in</strong>terfaccia o, a limite, uguali ad esse.ff < 47,5 Hzf > 51,5 HzScatto ritardato 4,0 sScatto ritardato 1 ,0 sf < 49,7 Hzf > 50,3 HzorVV0> Soglia&Scatto ritardato 0,1 sVi > SogliaorVd< SogliaFigura 3: Logica di funzionamento per attivazione soglie dei relè di frequenza a sblocco voltmetricoLe soluzioni tecniche per la discrim<strong>in</strong>azione degli eventi locali rispetto agli eventi di sistema basatesul rilievo di <strong>in</strong><strong>for</strong>mazioni legate alla tensione, e quelle prospettate nella norma CEI 0-16, cheutilizzano <strong>in</strong><strong>for</strong>mazioni provenienti da remoto possono essere utilmente comb<strong>in</strong>ate per aumentarel’affidabilità del sistema di protezione come illustrato <strong>in</strong> figura 4. In esso i segnali da remoto sonof<strong>in</strong>alizzati:a) all'abilitazione delle soglie di frequenza <strong>in</strong> parallelo all’azione esercitata dai relè ditensione [Vo>], [Vi>] e [Vd>] ;b) allo scatto diretto dell’<strong>in</strong>terruttore di <strong>in</strong>terfaccia (sistema di telescatto agente sul SPI).


Technical Guidel<strong>in</strong>eGenerat<strong>in</strong>g Plants Connected to <strong>the</strong>Medium-Voltage NetworkGuidel<strong>in</strong>e <strong>for</strong> generat<strong>in</strong>g plants’ connection to and paralleloperation with <strong>the</strong> medium-voltage networkJune 2008 issue


Technical Guidel<strong>in</strong>e „Generat<strong>in</strong>g plants connected to <strong>the</strong> medium-voltage network”IntroductionThe present guidel<strong>in</strong>e summarizes <strong>the</strong> essential aspects which have to be taken <strong>in</strong>to consideration<strong>for</strong> <strong>the</strong> connection of generat<strong>in</strong>g plants to <strong>the</strong> network operator’s medium-voltagenetwork. Thus, <strong>the</strong>y shall serve as a basis to <strong>the</strong> network operator and to <strong>the</strong> <strong>in</strong>staller <strong>in</strong> <strong>the</strong>plann<strong>in</strong>g and decision-mak<strong>in</strong>g process and provide important <strong>in</strong><strong>for</strong>mation on <strong>the</strong> plant operationto <strong>the</strong> observer.This guidel<strong>in</strong>e complements that <strong>for</strong> low voltage and high and extra-high voltage whichtakes <strong>the</strong> particular characteristics of <strong>the</strong> different voltage levels <strong>in</strong>dividually <strong>in</strong>to consideration.The dist<strong>in</strong>ction of <strong>the</strong> guidel<strong>in</strong>es <strong>in</strong>to voltage levels has turned out to be reasonable as<strong>the</strong> specific requirements are too disparate to be comb<strong>in</strong>ed with<strong>in</strong> one guidel<strong>in</strong>e.The present guidel<strong>in</strong>e constitutes <strong>the</strong> third revised version of <strong>the</strong> VDEW guidel<strong>in</strong>e on „Generat<strong>in</strong>gplants connected to <strong>the</strong> medium-voltage network“ („Eigenerzeugungsanlagen amMittelspannungsnetz“) and transposes <strong>the</strong> latter <strong>in</strong>to a BDEW guidel<strong>in</strong>e. For <strong>the</strong> revision,account has been taken of <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs obta<strong>in</strong>ed from <strong>the</strong> elaboration of <strong>the</strong> guidel<strong>in</strong>es on<strong>the</strong> connection of renewables-based plants to <strong>the</strong> high and extra-high voltage network, and<strong>the</strong> outl<strong>in</strong>e has been reorganized. Fur<strong>the</strong>rmore, <strong>the</strong> requirements under <strong>the</strong> Renewable EnergySources Act (Erneuerbare-Energien-Gesetz – EEG) have been adequately taken <strong>in</strong>toconsideration.Like at <strong>the</strong> high and extra-high voltage level, generat<strong>in</strong>g plants supply<strong>in</strong>g medium-voltagenetworks will have to make a contribution to network support <strong>in</strong> <strong>the</strong> future. There<strong>for</strong>e, <strong>in</strong><strong>the</strong> event of failures <strong>the</strong>y must not immediately be disconnected from <strong>the</strong> network as <strong>in</strong> <strong>the</strong>past and have also to make a contribution to voltage stability <strong>in</strong> <strong>the</strong> medium-voltage networkdur<strong>in</strong>g normal network operation. This has a direct impact on <strong>the</strong> plants’ design. Thepresent guidel<strong>in</strong>e summarizes <strong>the</strong> essential aspects which have to be taken <strong>in</strong>to consideration<strong>for</strong> <strong>the</strong> connection to <strong>the</strong> medium-voltage network so as to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> security andreliability of network operation <strong>in</strong> accordance with <strong>the</strong> provisions of <strong>the</strong> Energy Industry Act<strong>in</strong> <strong>the</strong> light of a grow<strong>in</strong>g share of dispersed generat<strong>in</strong>g plants, and to enable <strong>the</strong> limit valuesof voltage quality determ<strong>in</strong>ed <strong>in</strong> DIN EN 50160 to be observed.Naturally, this guidel<strong>in</strong>e can only refer to <strong>the</strong> plants’ usual conceptual design. For specialconstruction l<strong>in</strong>es, this guidel<strong>in</strong>e shall be applied analogously and by tak<strong>in</strong>g <strong>the</strong> given networkstructure <strong>in</strong>to consideration.


Technical Guidel<strong>in</strong>e „Generat<strong>in</strong>g plants connected to <strong>the</strong> medium-voltage network“As a matter of pr<strong>in</strong>ciple, <strong>the</strong> audio-frequency level caused by <strong>the</strong> operation of generat<strong>in</strong>gplants must not be reduced by more than 5 % at any po<strong>in</strong>t of <strong>the</strong> medium-voltage networkas compared to <strong>the</strong> operation without generat<strong>in</strong>g plants; consumption and generation <strong>in</strong>stallationsshall be taken <strong>in</strong>to consideration accord<strong>in</strong>g to <strong>the</strong>ir audio-frequency impedance.With this reduction of <strong>the</strong> audio-frequency level by generat<strong>in</strong>g plants, it is necessary to takeaccount of <strong>the</strong> fact that generat<strong>in</strong>g plants supply<strong>in</strong>g <strong>the</strong> network through static <strong>in</strong>verterswithout filter circuits do normally not cause a substantial reduction of <strong>the</strong> ripple-controllevel. Where filter circuits or compensat<strong>in</strong>g capacitors exist, it is necessary to exam<strong>in</strong>ewhe<strong>the</strong>r <strong>the</strong> short-circuit reactance of <strong>the</strong> customer trans<strong>for</strong>mer may give rise to a seriesresonance.Apart from <strong>the</strong> limitation of <strong>the</strong> level reduction, it is not allowed to generate <strong>in</strong>admissible <strong>in</strong>terferencevoltages. The follow<strong>in</strong>g rules shall apply <strong>in</strong> particular:• The <strong>in</strong>terference voltage caused by a generat<strong>in</strong>g plant whose frequency correspondsto <strong>the</strong> locally applied ripple-control frequency or is very close to it, must not exceed<strong>the</strong> value of 0.1 % U c.• The <strong>in</strong>terference voltage caused by a generat<strong>in</strong>g plant whose frequency lies at <strong>the</strong>ambient frequencies of +/- 100 Hz to <strong>the</strong> locally applied ripple-control frequency or <strong>in</strong>its immediate proximity, must not exceed a value of 0.3 % U c.These limit values as well as fur<strong>the</strong>r details are given <strong>in</strong> <strong>the</strong> guidel<strong>in</strong>es on audio-frequencycentralized ripple control („Tonfrequenz-Rundsteuerung“) 6 .Should a generat<strong>in</strong>g plant <strong>in</strong>admissibly impair <strong>the</strong> operation of <strong>the</strong> centralized ripple-controlfacilities, <strong>the</strong> operator of <strong>the</strong> generat<strong>in</strong>g plant shall take appropriate remedial measureseven if <strong>the</strong> impairment is noticed at a later date.2.5 Behaviour of generat<strong>in</strong>g plants connected to <strong>the</strong> network2.5.1 Pr<strong>in</strong>ciples of network supportDur<strong>in</strong>g network feed-<strong>in</strong>, generat<strong>in</strong>g plants must be capable of participat<strong>in</strong>g <strong>in</strong> voltage control.A dist<strong>in</strong>ction is made between steady-state voltage control and dynamic network support.© BDEW, June 2008 page 20/130


Technical Guidel<strong>in</strong>e „Generat<strong>in</strong>g plants connected to <strong>the</strong> medium-voltage network“2.5.1.1 Steady-state voltage controlSteady-state voltage control means voltage control with<strong>in</strong> <strong>the</strong> medium-voltage network undernormal operat<strong>in</strong>g conditions, where slow voltage changes <strong>in</strong> <strong>the</strong> distribution network arekept with<strong>in</strong> acceptable limits.If required by <strong>the</strong> network operator and to meet network requirements, generat<strong>in</strong>g plantsmust participate <strong>in</strong> steady-state voltage control with<strong>in</strong> <strong>the</strong> medium-voltage network.2.5.1.2 Dynamic network supportDynamic network support means voltage control <strong>in</strong> <strong>the</strong> event of voltage drops with<strong>in</strong> <strong>the</strong>high and extra-high voltage network with a view to avoid<strong>in</strong>g un<strong>in</strong>tentional disconnections oflarge feed-<strong>in</strong> power, and thus network collapse.In <strong>the</strong> light of <strong>the</strong> strong <strong>in</strong>crease <strong>in</strong> <strong>the</strong> number of generat<strong>in</strong>g plants to be connected to <strong>the</strong>medium-voltage network, <strong>the</strong> <strong>in</strong>tegration of <strong>the</strong>se plants <strong>in</strong>to <strong>the</strong> dynamic network supportscheme is becom<strong>in</strong>g ever more important. Consequently, <strong>the</strong>se generat<strong>in</strong>g plants must generallyparticipate <strong>in</strong> dynamic network support even if this is not required by <strong>the</strong> network operatorat <strong>the</strong> time of <strong>the</strong> plant’s connection to <strong>the</strong> network. That means that generat<strong>in</strong>gplants must be able <strong>in</strong> technical terms• not to disconnect from <strong>the</strong> network <strong>in</strong> <strong>the</strong> event of network faults,• to support <strong>the</strong> network voltage dur<strong>in</strong>g a network fault by feed<strong>in</strong>g a reactive current<strong>in</strong>to <strong>the</strong> network,• not to extract from <strong>the</strong> medium-voltage network after fault clearance more <strong>in</strong>ductivereactive power than prior to <strong>the</strong> occurrence of <strong>the</strong> fault.These requirements apply to all types of short circuits (i.e. to s<strong>in</strong>gle-phase, two-phase andthree-phase short circuits).Just like <strong>in</strong> <strong>the</strong> Transmission Code 2007 7 , a dist<strong>in</strong>ction is made <strong>in</strong> <strong>the</strong>se guidel<strong>in</strong>es betweentype-1 and type-2 generat<strong>in</strong>g plants with regard to <strong>the</strong>ir behaviour <strong>in</strong> <strong>the</strong> event of networkdisturbances. A type-1 generat<strong>in</strong>g unit exists if a synchronous generator is directly (onlythrough <strong>the</strong> generator trans<strong>for</strong>mer) connected to <strong>the</strong> network. All o<strong>the</strong>r plants are type-2generat<strong>in</strong>g units.6„Tonfrequenz-Rundsteuerung, Empfehlung zur Vermeidung unzulässiger Rückwirkungen“,3rd edition 1997, published by VDEW7 TransmissionCode 2007 „Network and System Rules of <strong>the</strong> German Transmission SystemOperators“, August 2007, published by VDN© BDEW, June 2008 page 21/130


Technical Guidel<strong>in</strong>e „Generat<strong>in</strong>g plants connected to <strong>the</strong> medium-voltage network“Concern<strong>in</strong>g type-1 plants, <strong>the</strong> Transmission Code 2007 is put more precisely <strong>in</strong> <strong>the</strong> follow<strong>in</strong>grespect:• If <strong>the</strong> voltage drops at values above <strong>the</strong> red border l<strong>in</strong>e <strong>in</strong> figure 2.5.1.2-1, generat<strong>in</strong>gplans must not be disconnected from <strong>the</strong> network.Grenzkurve SpannungsverlaufU/U cunterer Wert desSpannungsbandes100%70%45%15%0 150 700 1.5003.000Zeit <strong>in</strong> msZeitpunkt e<strong>in</strong>es Störungse<strong>in</strong>trittsFigure 2.5.1.2-1:Borderl<strong>in</strong>e of <strong>the</strong> voltage profile at <strong>the</strong> network connectionpo<strong>in</strong>t of a type-1 generat<strong>in</strong>g plantThe follow<strong>in</strong>g conditions shall apply to type-2 generat<strong>in</strong>g plants, tak<strong>in</strong>g <strong>the</strong> TransmissionCode 2007, Section 3.3.13.5, <strong>in</strong>to account:• Generat<strong>in</strong>g units must not disconnect from <strong>the</strong> network <strong>in</strong> <strong>the</strong> event of voltage dropsto 0 % U c of a duration of ≤ 150 ms.• Below <strong>the</strong> blue l<strong>in</strong>e shown <strong>in</strong> Figure 2.5.1.2-2, <strong>the</strong>re are no requirements say<strong>in</strong>g thatgenerat<strong>in</strong>g plants have to rema<strong>in</strong> connected to <strong>the</strong> network.© BDEW, June 2008 page 22/130


Technical Guidel<strong>in</strong>e „Generat<strong>in</strong>g plants connected to <strong>the</strong> medium-voltage network“Grenzkurven SpannungsverlaufGrenzl<strong>in</strong>ie 1U/U cGrenzl<strong>in</strong>ie 2unterer Wert desSpannungsbandes= 90% von U c100%70%45%Unterhalb der blauenKennl<strong>in</strong>ie bestehen ke<strong>in</strong>eAn<strong>for</strong>derungen h<strong>in</strong>sichtlichdes Verbleibens am Netz.30%15%0 150 700 1.5003.000Zeit <strong>in</strong> msZeitpunkt e<strong>in</strong>es Störungse<strong>in</strong>trittsFigure 2.5.1.2-2 Borderl<strong>in</strong>es of <strong>the</strong> voltage profile of a type-2 generat<strong>in</strong>g plant at<strong>the</strong> network connection po<strong>in</strong>tNote:U means <strong>the</strong> lowest value of <strong>the</strong> three l<strong>in</strong>e-to-l<strong>in</strong>e voltagesVoltage drops with values above <strong>the</strong> borderl<strong>in</strong>e 1 must not lead to <strong>in</strong>stability or to <strong>the</strong> disconnectionof <strong>the</strong> generat<strong>in</strong>g plant from <strong>the</strong> network (TC2007; 3.3.13.5, section 13; extendedto asymmetrical voltage drops).If <strong>the</strong> voltage drops at values above <strong>the</strong> borderl<strong>in</strong>e 2 and below <strong>the</strong> borderl<strong>in</strong>e 1, generat<strong>in</strong>gunits shall pass through <strong>the</strong> fault without disconnect<strong>in</strong>g from <strong>the</strong> network. Feed-<strong>in</strong> of ashort-circuit current dur<strong>in</strong>g that time is to be agreed with <strong>the</strong> network operator. In consultationwith <strong>the</strong> network operator, it is permissible to shift <strong>the</strong> borderl<strong>in</strong>e 2 if <strong>the</strong> generat<strong>in</strong>gplant’s connection concept requires to do so. Also <strong>in</strong> consultation with <strong>the</strong> network operator,a short-time disconnection from <strong>the</strong> network is permissible if <strong>the</strong> generat<strong>in</strong>g plant can beresynchronized 2 seconds, at <strong>the</strong> latest, after <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> short-time disconnection.After resynchronization, <strong>the</strong> active power must be <strong>in</strong>creased with a gradient of at least10% of <strong>the</strong> nom<strong>in</strong>al capacity per second (TC2007; 3.3.13.5, section 14).Below <strong>the</strong> borderl<strong>in</strong>e 2, a short-time disconnection of <strong>the</strong> generat<strong>in</strong>g plant may be carriedout <strong>in</strong> any case. Prolonged resynchronization times and lower gradients of <strong>the</strong> active power© BDEW, June 2008 page 23/130


Technical Guidel<strong>in</strong>e „Generat<strong>in</strong>g plants connected to <strong>the</strong> medium-voltage network“<strong>in</strong>crease after resynchronization as compared to those admissible above <strong>the</strong> borderl<strong>in</strong>e 2 arepermitted if <strong>the</strong>y are agreed with <strong>the</strong> network operator (TC2007, 3.3.13.5, section 15).The behaviour of type-2 generat<strong>in</strong>g plants <strong>in</strong> <strong>the</strong> case of automatic re-closure is describedmore precisely <strong>in</strong> Annex B.3.Depend<strong>in</strong>g on <strong>the</strong> concrete technical network conditions, <strong>the</strong> actual duration of <strong>the</strong> generat<strong>in</strong>gfacility’s connection to <strong>the</strong> medium-voltage network can be reduced by requirements of<strong>the</strong> network operator <strong>in</strong> terms of protection equipment.For all generat<strong>in</strong>g plants, <strong>the</strong> rule shall apply that a current accord<strong>in</strong>g to <strong>the</strong> TransmissionCode 2007 is to be supplied to <strong>the</strong> network <strong>for</strong> <strong>the</strong> duration of a symmetrical fault. Concern<strong>in</strong>gunsymmetrical faults, it is not permissible that dur<strong>in</strong>g <strong>the</strong> duration of <strong>the</strong> fault reactivecurrents be fed <strong>in</strong>to <strong>the</strong> network which give rise to voltages higher than 1,1 U c <strong>in</strong> non-faultyphases at <strong>the</strong> network connection po<strong>in</strong>t.As a matter of pr<strong>in</strong>ciple, <strong>the</strong> requirements <strong>in</strong> terms of dynamic network support apply to allfacilities irrespective of <strong>the</strong>ir type and connection variant. They shall be implementedthrough sett<strong>in</strong>g of <strong>the</strong> generat<strong>in</strong>g plants’ or units’ control equipment.The network operator shall determ<strong>in</strong>e <strong>the</strong> extent to which generat<strong>in</strong>g plants must participate<strong>in</strong> dynamic network support. A dist<strong>in</strong>ction is made between connections• directly via a separate circuit breaker bay to <strong>the</strong> bus-bar of a trans<strong>for</strong>m<strong>in</strong>g station and• <strong>in</strong> <strong>the</strong> <strong>system</strong> operator’s medium-voltage network.A general basic requirement is however that all generat<strong>in</strong>g plants rema<strong>in</strong> connected to <strong>the</strong>network <strong>in</strong> <strong>the</strong> case of voltage drops above <strong>the</strong> borderl<strong>in</strong>e <strong>in</strong> figure 2.5.1.2-1 or <strong>the</strong> borderl<strong>in</strong>e<strong>in</strong> figure 2.5.1.2-1. Consequently, <strong>the</strong> network operator only determ<strong>in</strong>es whe<strong>the</strong>r or towhich extent a reactive current is to be supplied to <strong>the</strong> network by <strong>the</strong> generat<strong>in</strong>g facility <strong>in</strong><strong>the</strong> event of voltage drops.Customer plants with generat<strong>in</strong>g plants turn<strong>in</strong>g <strong>in</strong>to isolated operation <strong>in</strong> <strong>the</strong> event of disturbances<strong>in</strong> <strong>the</strong> higher-voltage network to cover <strong>the</strong> customer’s own <strong>energy</strong> demand mustparticipate <strong>in</strong> network support until <strong>the</strong>y are disconnected from <strong>the</strong> <strong>system</strong> operator’s medium-voltagenetwork. Isolated operation scheduled by <strong>the</strong> customer has to be agreed bycontract with <strong>the</strong> network operator.© BDEW, June 2008 page 24/130


Technical Guidel<strong>in</strong>e „Generat<strong>in</strong>g plants connected to <strong>the</strong> medium-voltage network“2.5.2 Maximum admissible short-circuit currentDue to <strong>the</strong> operation of a generat<strong>in</strong>g plant, <strong>the</strong> network’s short-circuit current is <strong>in</strong>creasedby <strong>the</strong> generat<strong>in</strong>g plant’s short-circuit current, particularly <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> networkconnection po<strong>in</strong>t. There<strong>for</strong>e, <strong>in</strong><strong>for</strong>mation about <strong>the</strong> anticipated short-circuit currents of <strong>the</strong>generat<strong>in</strong>g plant at <strong>the</strong> network connection po<strong>in</strong>t has to be provided toge<strong>the</strong>r with <strong>the</strong> application<strong>for</strong> connection to <strong>the</strong> network.To determ<strong>in</strong>e a generat<strong>in</strong>g plant’s short-circuit current contribution, <strong>the</strong> follow<strong>in</strong>g rough valuescan be assumed:• <strong>for</strong> synchronous generators: eight times <strong>the</strong> rated current• <strong>for</strong> asynchronous generators and double-fed asynchronous generators: six times <strong>the</strong>rated current• <strong>for</strong> generators with <strong>in</strong>verters: one time <strong>the</strong> rated current.To ensure correct calculations, <strong>the</strong> impedances between <strong>the</strong> generator and <strong>the</strong> network connectionpo<strong>in</strong>t (customer trans<strong>for</strong>mer, l<strong>in</strong>es, etc.) need to be taken <strong>in</strong>to consideration.If <strong>the</strong> generat<strong>in</strong>g plant gives rise to a short-circuit current <strong>in</strong>crease <strong>in</strong> <strong>the</strong> medium-voltagenetwork above <strong>the</strong> rated value, <strong>the</strong> network operator and <strong>the</strong> connection owner shall agreeupon appropriate measures, such as limitation of <strong>the</strong> short-circuit current from <strong>the</strong> generat<strong>in</strong>gfacility (e.g. by us<strong>in</strong>g I s –limiters).2.5.3 Active power outputIt must be possible to operate <strong>the</strong> generat<strong>in</strong>g facility at reduced power output. In <strong>the</strong> caseslisted below, <strong>the</strong> network operator is entitled to require a temporary limitation of <strong>the</strong> powerfeed-<strong>in</strong> or disconnect <strong>the</strong> facility:• potential danger to secure <strong>system</strong> operation,• congestion or risk of overload on <strong>the</strong> network operator’s network,• risk of island<strong>in</strong>g,• risk to <strong>the</strong> steady-state or dynamic network stability,• rise <strong>in</strong> frequency endanger<strong>in</strong>g <strong>the</strong> <strong>system</strong> stability,• repairs or implementation of construction measures,© BDEW, June 2008 page 25/130


Technical Guidel<strong>in</strong>e „Generat<strong>in</strong>g plants connected to <strong>the</strong> medium-voltage network“• with<strong>in</strong> <strong>the</strong> scope of generation <strong>management</strong>/ feed-<strong>in</strong> <strong>management</strong>/ network security<strong>management</strong> (see „Grundzüge zum Erzeugungs<strong>management</strong>“ 8 ).The generat<strong>in</strong>g plants must be capable of reduc<strong>in</strong>g <strong>the</strong>ir active power at steps of maximally10 % of <strong>the</strong> agreed active connection power. This power reduction must be possible <strong>in</strong> anyoperat<strong>in</strong>g condition and from any operat<strong>in</strong>g po<strong>in</strong>t to a target value given by <strong>the</strong> networkoperator. This target value is normally preset without steps or <strong>in</strong> steps, and corresponds toa percentage value related to <strong>the</strong> agreed active connection power P AV . To date, target valuesof 100 % / 60 % / 30 % / 0 % have proven to be effective. The network operator shallnot <strong>in</strong>terfere <strong>in</strong> <strong>the</strong> control of <strong>the</strong> generat<strong>in</strong>g plants. He shall only be responsible <strong>for</strong> signall<strong>in</strong>g.The reduction of <strong>the</strong> power feed-<strong>in</strong> is carried out at <strong>the</strong> plant operator’s own responsibility.The reduction of <strong>the</strong> power output to <strong>the</strong> respective target value must be realized withoutdelay, but with<strong>in</strong> one m<strong>in</strong>ute, at <strong>the</strong> most. A reduction to <strong>the</strong> target value 10 % must bepossible without automatic disconnection from <strong>the</strong> network; below 10 % of <strong>the</strong> agreed activeconnection power P AV , <strong>the</strong> generat<strong>in</strong>g facility may disconnect from <strong>the</strong> network.All generat<strong>in</strong>g units must reduce, while <strong>in</strong> operation, at a frequency of more than 50.2 Hz<strong>the</strong> <strong>in</strong>stantaneous active power (at <strong>the</strong> time of request; value freeze) with a gradient of40 % of <strong>the</strong> generator’s <strong>in</strong>stantaneously available capacity per Hertz (see figure 2.5.3-1„Active power reduction <strong>in</strong> <strong>the</strong> case of over-frequency“, taken from <strong>the</strong> Transmission Code2007, Section 3.3.13.3, figure 1 ibid.).The active power may be <strong>in</strong>creased aga<strong>in</strong> only if <strong>the</strong> frequency returns to a value of f ≤50.05 Hz, as long as <strong>the</strong> actual frequency does not exceed 50.2 Hz. The neutral zone mustbe below 10 mHz.8„Grundzüge zum Erzeugungs<strong>management</strong> zur Umsetzung des §4 Abs. 3 EEG (status:27/02/2006)“, published by VDN© BDEW, June 2008 page 26/130


Technical Guidel<strong>in</strong>e „Generat<strong>in</strong>g plants connected to <strong>the</strong> medium-voltage network“f Netz50,2 HzfNetzΔP=40% PM pro HzΔPΔ PΔP=20PM50,2Hz−f50HzNetzbei 50,2 Hz ≤ f Netz ≤ 51.5 HzP MΔPMomentane verfügbare LeistungLeistungsreduktionf NetzNetzfrequenzIm Bereich 47.5 Hz ≤ f Netz ≤ 50.2 Hz ke<strong>in</strong>e E<strong>in</strong>schränkungBei f Netz ≤ 47.5 Hz und f Netz ≥ 51.5 Hz Trennung vom NetzBild 1Wirkleistungsreduktion bei ÜberfrequenzFigure 2.5.3-1: Active power reduction <strong>in</strong> <strong>the</strong> case of over-frequency (fromTransmission Code 2007)2.5.4 Reactive powerWith active power output, it must be possible to operate <strong>the</strong> generat<strong>in</strong>g plant <strong>in</strong> any operat<strong>in</strong>gpo<strong>in</strong>t with at least a reactive power output correspond<strong>in</strong>g to a active factor at <strong>the</strong> networkconnection po<strong>in</strong>t ofcos ϕ = 0.95 underexcited to 0.95 overexcitedValues deviat<strong>in</strong>g from <strong>the</strong> above must be agreed upon by contract. In <strong>the</strong> consumer referencearrow <strong>system</strong> (see Annex B.4), that means operation <strong>in</strong> quadrant II (under-excited) orIII (overexcited).With active power output, ei<strong>the</strong>r a fixed target value <strong>for</strong> reactive power provision or a targetvalue variably adjustable by remote control (or o<strong>the</strong>r control technologies) will be specifiedby <strong>the</strong> network operator <strong>in</strong> <strong>the</strong> transfer station. The sett<strong>in</strong>g value is ei<strong>the</strong>ra) a fixed active factor cos ϕ orb) a active factor cos ϕ (P) orc) a fixed reactive power <strong>in</strong> MVar ord) a reactive power/voltage characteristic Q(U).© BDEW, June 2008 page 27/130


Technical Guidel<strong>in</strong>e „Generat<strong>in</strong>g plants connected to <strong>the</strong> medium-voltage network“The reactive power of <strong>the</strong> generat<strong>in</strong>g plant must be adjustable. It must be possible to passthrough <strong>the</strong> agreed reactive power range with<strong>in</strong> a few m<strong>in</strong>utes and as often as required. If acharacteristic is specified by <strong>the</strong> network operator, any reactive power value result<strong>in</strong>g from<strong>the</strong> characteristic must automatically adapt as follows:• with<strong>in</strong> 10 seconds <strong>for</strong> <strong>the</strong> cos ϕ (P)-characteristic and• adjustable between 10 seconds and 1 m<strong>in</strong>ute <strong>for</strong> <strong>the</strong> Q(U)-characteristic (specified by<strong>the</strong> network operator).Figure 2.5.4-1 shows an example of a cos ϕ (P)-characteristic.cos ϕ0.95overexcited1underexci-1P/P n0.95Figure 2.5.4-1: Example of a ϕ (P)-characteristicWith a view to avoid<strong>in</strong>g voltage jumps <strong>in</strong> <strong>the</strong> event of fluctuations <strong>in</strong> active power feed-<strong>in</strong>, itis advisable to choose a characteristic with cont<strong>in</strong>uous profile and limited gradient.Both <strong>the</strong> chosen approach and <strong>the</strong> target values shall be determ<strong>in</strong>ed <strong>in</strong>dividually <strong>for</strong> everygenerat<strong>in</strong>g facility by <strong>the</strong> network operator. The specification can be based on• <strong>the</strong> agreement of a value or, where applicable, of a schedule• onl<strong>in</strong>e presett<strong>in</strong>g of target valuesIn <strong>the</strong> case of onl<strong>in</strong>e presett<strong>in</strong>g of target values, <strong>the</strong> new specifications <strong>for</strong> <strong>the</strong> work<strong>in</strong>g po<strong>in</strong>tof reactive power exchange shall be implemented at <strong>the</strong> network connection po<strong>in</strong>t after onem<strong>in</strong>ute, at <strong>the</strong> latest.© BDEW, June 2008 page 28/130


Technical Guidel<strong>in</strong>e „Generat<strong>in</strong>g plants connected to <strong>the</strong> medium-voltage network“gure 3.2.3.4-2). If <strong>the</strong> generat<strong>in</strong>g plant must participate <strong>in</strong> dynamic network support by <strong>in</strong>jectionof a reactive current, <strong>the</strong> relevant protection devices and trans<strong>for</strong>mers need to beupgraded by <strong>the</strong> connection owner and <strong>the</strong> sett<strong>in</strong>gs of <strong>the</strong> generat<strong>in</strong>g units’ protection devicesmust be adjusted accord<strong>in</strong>g to Section 3.2.3.3 (see 3.2.3.4-2).3.2.3.6 Short-circuit protectionThe connection of generat<strong>in</strong>g plants to <strong>the</strong> medium-voltage network is implemented ei<strong>the</strong>rby means of circuit breakers or through an on-load-switch-fuse comb<strong>in</strong>ation, depend<strong>in</strong>g onnetwork conditions and <strong>the</strong> number and size of generat<strong>in</strong>g units.Generat<strong>in</strong>g plants connected through a circuit breaker shall be equipped at least with overcurrenttime protection as short-circuit protection. Short-circuit protection of generat<strong>in</strong>gplants connected by means of a comb<strong>in</strong>ed on-load-switch-fuse is ensured by <strong>the</strong> fuse.The <strong>in</strong>stallation of a distance relay and <strong>the</strong> relevant voltage trans<strong>for</strong>mers is to be taken <strong>in</strong>toconsideration <strong>in</strong> <strong>the</strong> conceptual design, and has to be realized at <strong>the</strong> network operator’s request.The “retrofitt<strong>in</strong>g” option is shown <strong>in</strong> Figure 3.2.3.4-2 by a broken l<strong>in</strong>e.The distance protection device must <strong>the</strong>n act upon <strong>the</strong> circuit breaker at <strong>the</strong> transfer po<strong>in</strong>tor, <strong>in</strong> <strong>the</strong> case of an on-load-switch-fuse comb<strong>in</strong>ation, upon <strong>the</strong> generator-side circuitbreaker.3.2.3.7 Protective disconnection devicesAt <strong>the</strong> transfer station, <strong>the</strong> <strong>in</strong>stallation of protective disconnection devices is to be taken<strong>in</strong>to consideration <strong>in</strong> <strong>the</strong> conceptual design accord<strong>in</strong>g to Section 3.2.3.3, and has to be realizedat <strong>the</strong> network operator’s request. If connected through a circuit breaker, <strong>the</strong> protectivedisconnection device acts upon <strong>the</strong> latter or upon <strong>the</strong> coupl<strong>in</strong>g switch, if it is connectedby means of an on-load-switch-fuse comb<strong>in</strong>ation, <strong>the</strong> protective device acts upon <strong>the</strong> generator-sidecircuit breaker or on <strong>the</strong> coupl<strong>in</strong>g switch (see Annex C, Examples of connections).The same protection equipment as <strong>for</strong> <strong>the</strong> generat<strong>in</strong>g plant’s connection to <strong>the</strong> bus-bar of atrans<strong>for</strong>mer station (cf. Table 3.2.3.3-2) is required at <strong>the</strong> generat<strong>in</strong>g units; only <strong>the</strong> sett<strong>in</strong>gsof <strong>the</strong> voltage protection devices are dissimilar.The network operator may require super-ord<strong>in</strong>ate protective disconnection equipment <strong>for</strong>generat<strong>in</strong>g plants which have a widespread medium-voltage network available and are connectedwith <strong>the</strong> network operator’s network through a transfer station. The function of thisprotective equipment is to disconnect <strong>the</strong> entire generat<strong>in</strong>g plant from <strong>the</strong> network if <strong>the</strong>network voltage or network frequency limits are violated. A circuit breaker has to be generallyprovided <strong>for</strong> disconnection from <strong>the</strong> network <strong>in</strong> this case.© BDEW, June 2008 page 41/130


Technical Guidel<strong>in</strong>e „Generat<strong>in</strong>g plants connected to <strong>the</strong> medium-voltage network“Protective disconnection devices of generat<strong>in</strong>g units shall be connected at <strong>the</strong> high or lowvoltageside of <strong>the</strong> generator trans<strong>for</strong>mer. The follow<strong>in</strong>g sett<strong>in</strong>gs are recommended as basicparameters:FunctionSett<strong>in</strong>g range of<strong>the</strong> protectionrelayRecommended protectionrelay sett<strong>in</strong>gsRise-<strong>in</strong>-voltage protection U>> 1.00 – 1.30 U n 1.15 U NS *) ≤ 100 ms *)Under-voltage protection U< 0.10 – 1.00 U n 0.80 U NS **) 1 s **)Under-voltage protection U 50.0 – 52.0 Hz 51.5 Hz ≤ 100 msUnder-frequency protection f< 47.5 – 50 Hz 47.5 Hz ≤ 100 msTable 3.2.3.4-1Recommended sett<strong>in</strong>gs of <strong>the</strong> protective equipment at <strong>the</strong> generat<strong>in</strong>gunit <strong>for</strong> connection of <strong>the</strong> generat<strong>in</strong>g plant to <strong>the</strong> medium-voltagenetwork.U n is <strong>the</strong> secondary rated trans<strong>for</strong>mer voltage and thus <strong>the</strong> reference voltage of <strong>the</strong> protection equipment.U NS is <strong>the</strong> voltage on <strong>the</strong> low-voltage side of <strong>the</strong> generat<strong>in</strong>g unit’s generator trans<strong>for</strong>mer (U NS = U c / üwith ü = trans<strong>for</strong>mation ratio of <strong>the</strong> generator trans<strong>for</strong>mer). Consideration is to be given to <strong>the</strong> factthat disconnection times are obta<strong>in</strong>ed from <strong>the</strong> sum of sett<strong>in</strong>g times and <strong>in</strong>herent response times of<strong>the</strong> switch<strong>in</strong>g device and <strong>the</strong> protection equipment.*) and **) see remarks on Figure 3.2.3.4-1.The graphic below shows <strong>the</strong> protection scheme with<strong>in</strong> <strong>the</strong> transfer station and <strong>in</strong> <strong>the</strong> generat<strong>in</strong>gunits if <strong>the</strong> generat<strong>in</strong>g plants are connected to <strong>the</strong> medium-voltage network.© BDEW, June 2008 page 42/130


Technical Guidel<strong>in</strong>e „Generat<strong>in</strong>g plants connected to <strong>the</strong> medium-voltage network“protection equipment <strong>in</strong>stalled on <strong>the</strong> high-voltage side of <strong>the</strong> network trans<strong>for</strong>mer acts on correspond<strong>in</strong>gcircuit breaker of <strong>the</strong> connected generat<strong>in</strong>g plant. Fur<strong>the</strong>rmore, <strong>in</strong>ter-tripp<strong>in</strong>g of <strong>the</strong> protectionequipment of <strong>the</strong> medium-voltage outgo<strong>in</strong>g feeder is required to <strong>the</strong> relevant circuit breaker of<strong>the</strong> connected generat<strong>in</strong>g plant.3.2.4 Test term<strong>in</strong>alFor <strong>the</strong> implementation of functional tests on protection equipment, a term<strong>in</strong>al block withsectionalizer and test sockets has to be provided as <strong>in</strong>terface and mounted at an easily accessibleplace. Its basic structure is shown <strong>in</strong> Figure 3.2.4-1.The measurement <strong>in</strong>puts of <strong>the</strong> protection equipment, <strong>the</strong> auxiliary supplies and <strong>the</strong> tripp<strong>in</strong>gdevices <strong>for</strong> coupl<strong>in</strong>g switches shall be led via this term<strong>in</strong>al block. This shall apply aswell if functions of protective disconnection are <strong>in</strong>tegrated as a whole or separately <strong>in</strong>too<strong>the</strong>r appliances (e.g. programmable control). In this case, <strong>the</strong> appliances shall be mountedor programmed so as to enable <strong>the</strong> release or <strong>the</strong> <strong>in</strong>spection of <strong>the</strong> protective functions irrespectiveof <strong>the</strong> generat<strong>in</strong>g plant’s operat<strong>in</strong>g condition.The type and structure of <strong>the</strong> test term<strong>in</strong>al need to be agreed with <strong>the</strong> network operator.Instead of <strong>the</strong> test term<strong>in</strong>al, <strong>the</strong> network operator may also require that a test socket beused.Figure 3.2.4-1: Basic structure of <strong>the</strong> test term<strong>in</strong>al board© BDEW, June 2008 page 45/130

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!