11.07.2015 Views

The asymptotic behaviour of the number of solutions of polynomial ...

The asymptotic behaviour of the number of solutions of polynomial ...

The asymptotic behaviour of the number of solutions of polynomial ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>asymptotic</strong> <strong>behaviour</strong> <strong>of</strong> <strong>the</strong> <strong>number</strong> <strong>of</strong> <strong>solutions</strong> <strong>of</strong> <strong>polynomial</strong>... 259where C k,l (t) ∈ Q[t] with deg(C k,l (t)) < b k and where <strong>the</strong> maximum <strong>of</strong> <strong>the</strong>degrees <strong>of</strong> <strong>the</strong> <strong>polynomial</strong>s g k,d (e) is equal to m k − 1. Actually, if we denote<strong>the</strong> coefficient <strong>of</strong> t d in C k,l (t) by C k,l,d , we get(e + m k − 2)!g k,d (e) = C k,mk ,d(e − 1)!(m k − 1)! +C (e + m k − 3)!k,m k −1,d(e − 1)!(m k − 2)! +· · ·+C k,1,d.□(2.2) Finally, we give two examples. In <strong>the</strong> first example, all <strong>the</strong> coefficients<strong>of</strong> <strong>the</strong> <strong>polynomial</strong>s C k (t), k ∈ V , are in S. This is in some sense <strong>the</strong> easiestsituation. <strong>The</strong> second example shows that this is not always <strong>the</strong> case. <strong>The</strong>reare several ways to compute <strong>the</strong> Poincaré series: one can calculate <strong>the</strong> integralon an embedded resolution <strong>of</strong> singularities <strong>of</strong> f, one can use <strong>the</strong> formula for<strong>polynomial</strong>s which are non-degenerated over F p with respect to <strong>the</strong>ir Newtonpolyhedron [DH] and one can use <strong>the</strong> p-adic stationary phase formula [Ig2,<strong>The</strong>orem 10.2.1]. All <strong>the</strong>se techniques are also explained in [Se1, Section 1.1].Example 1. Let f(x, y) = y 2 − x 3 and let p be an arbitrary prime. <strong>The</strong>n,P (t) = −t6 + p 4 t 2 − p 3 t 2 + p 6(p 5 − p 6 )(p − t)= 2p−5 t 5 + 2p −4 t 4 + 2p −3 t 3 + 2p −2 t 2 + (p + 1)p −2 t + (p + 1)p −11 − p −5 t 6= − p−11 − p −1 t .We obtain for every e ∈ Z ≥0 thatM 6e = (p + 1)p 7e−1 − p 6e−1 , M 6e+1 = (p + 1)p 7e − p 6e ,M 6e+2 = 2p 7e+2 − p 6e+1 , M 6e+3 = 2p 7e+3 − p 6e+2 ,M 6e+4 = 2p 7e+4 − p 6e+3 and M 6e+5 = 2p 7e+5 − p 6e+4 .Example 2. Let f(x, y) = x 3 + y 5 and let p be an arbitrary prime. <strong>The</strong>n,P (t) ==−t 15 + (p − 1)t 14 + (p − 1)pt 12 + (p − 1)p 3 t 9+(p − 1)p 3 t 8 + (p − 1)p 5 t 5 + (p − 1)p 6 t 3 + (p − 1)p 6 t 2 + p 9(p 8 − t 15 )(p − t)C 1 (t)1 − p −8 t 15 + C 2(t)1 − p −1 t ,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!