02.02.2015 Views

calculations on some sequence spaces - European Mathematical ...

calculations on some sequence spaces - European Mathematical ...

calculations on some sequence spaces - European Mathematical ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

IJMMS 2004:31, 1653–1670<br />

PII. S0161171204209401<br />

http://ijmms.hindawi.com<br />

© Hindawi Publishing Corp.<br />

CALCULATIONS ON SOME SEQUENCE SPACES<br />

BRUNO DE MALAFOSSE<br />

Received 16 September 2002<br />

We deal with space of <strong>sequence</strong>s generalizing the well-known <strong>spaces</strong> w p ∞(λ), c ∞ (λ,µ), replacing<br />

the operators C(λ) and ∆(µ) by their transposes. We get generalizati<strong>on</strong>s of results<br />

c<strong>on</strong>cerning the str<strong>on</strong>g matrix domain of an infinite matrix A.<br />

2000 Mathematics Subject Classificati<strong>on</strong>: 46A45, 40C05.<br />

1. Notati<strong>on</strong>s and preliminary results. For a given infinite matrix A = (a nm ) n,m≥1 ,<br />

the operators A n are defined, for any integer n ≥ 1, by<br />

A n (X) =<br />

∞∑<br />

a nm x m , (1.1)<br />

m=1<br />

where X = (x n ) n≥1 , the series intervening in the sec<strong>on</strong>d member being c<strong>on</strong>vergent. So<br />

we are led to the study of the infinite linear system<br />

A n (X) = b n , n= 1,2,..., (1.2)<br />

where B = (b n ) n≥1 is a <strong>on</strong>e-column matrix and X the unknown, see [1, 2, 3, 4, 5, 6, 7,<br />

8, 10]. Equati<strong>on</strong> (1.2) can be written in the form AX = B, where AX = (A n (X)) n≥1 .In<br />

this paper, we will also c<strong>on</strong>sider A an operator from a <strong>sequence</strong> space into another<br />

<strong>sequence</strong> space.<br />

A Banach space E of complex <strong>sequence</strong>s with the norm ‖‖ E is a BK space if each<br />

projecti<strong>on</strong> P n X = x n is c<strong>on</strong>tinuous for all X ∈ E. A BK space E is said to have AK, (see<br />

[12, 13]), if B = ∑ ∞<br />

m=1 b m e m , for every B = (b n ) n≥1 ∈ E, (withe n = (0,...,1,...),1being<br />

in the nth positi<strong>on</strong>), that is,<br />

∥<br />

∞∑<br />

m=N+1<br />

b m e m<br />

∥ ∥∥∥∥E<br />

→ 0 (n →∞). (1.3)<br />

We will write s for the set of all complex <strong>sequence</strong>s, l ∞ , c, c 0 for the sets of bounded,<br />

c<strong>on</strong>vergent, and null <strong>sequence</strong>s, respectively. We will denote by cs and l 1 the sets of<br />

c<strong>on</strong>vergent and absolutely c<strong>on</strong>vergent series, respectively.<br />

In all that follows we will use the set<br />

U +∗ = {( u n<br />

)n≥1 ∈ s | u n > 0 ∀n } . (1.4)


1654 BRUNO DE MALAFOSSE<br />

From Wilansky’s notati<strong>on</strong>s [15], we define for any <strong>sequence</strong><br />

α = ( α n<br />

)n≥1 ∈ U +∗ , (1.5)<br />

and for any set of <strong>sequence</strong>s E, the set<br />

( 1<br />

α<br />

) −1 { ∣ ( }<br />

(xn ) ∣∣∣<br />

∗E =<br />

n≥1 ∈ s xn<br />

∈ E . (1.6)<br />

α n<br />

)n<br />

We will write α∗E instead of (1/α) −1 ∗E forshort.Soweget<br />

⎧<br />

s ⎪⎨<br />

α ◦ if E = c 0 ,<br />

α∗E = s α (c) if E = c,<br />

⎪⎩<br />

s α if E = l ∞ .<br />

(1.7)<br />

We have for instance<br />

α∗c 0 = s ◦ α = {( x n<br />

)n≥1 ∈ s | x n = o ( α n<br />

)<br />

n →∞<br />

}<br />

. (1.8)<br />

Each of the <strong>spaces</strong> α∗E, where E ∈{c 0 ,c,l ∞ }, is a BK space normed by<br />

( ∣ ∣ ) ∣xn ‖X‖ sα = sup , (1.9)<br />

n≥1 α n<br />

and s ◦ α has AK.<br />

Now let α = (α n ) n≥1 and β = (β n ) n≥1 ∈ U +∗ . S α,β is the set of infinite matrices<br />

A = (a nm ) n,m≥1 such that<br />

(<br />

anm α m<br />

)<br />

m≥1 ∈ l1 ∀n ≥ 1,<br />

S α,β is a Banach space with the norm<br />

∞∑ (∣ ∣ ) ( )<br />

∣anm∣αm = O βn<br />

m=1<br />

(n →∞). (1.10)<br />

⎛<br />

‖A‖ Sα,β = sup⎝<br />

n≥1<br />

⎞<br />

∞∑<br />

∣<br />

∣ anm α m ⎠ . (1.11)<br />

β n<br />

m=1<br />

Let E and F be any subsets of s.WhenA maps E into F,wewillwriteA ∈ (E,F),see[11].<br />

So for every X ∈ E, AX ∈ F, (AX ∈ F will mean that for each n ≥ 1 the series defined<br />

by y n = ∑ ∞<br />

m=1 a nm x m is c<strong>on</strong>vergent and (y n ) n≥1 ∈ F). It has been proved in [9] that<br />

A ∈ (s α ,s β ) if and <strong>on</strong>ly if A ∈ S α,β . So we can write that (s α ,s β ) = S α,β .<br />

When s α = s β , we obtain the unital Banach algebra S α,β = S α ,(see[1, 2, 3, 5, 6, 10])<br />

normed by ‖A‖ Sα =‖A‖ Sα,α .<br />

We also have A ∈ (s α ,s α ) if and <strong>on</strong>ly if A ∈ S α .If‖I −A‖ Sα < 1, we will say that A ∈ Γ α .<br />

Since the set S α is a unital algebra, we have the useful result that if A ∈ Γ α , A is bijective<br />

from s α into itself.


CALCULATIONS ON SOME SEQUENCE SPACES 1655<br />

If α = (r n ) n≥1 , Γ α , S α , s α , sα ◦ ,ands(c) α are replaced by Γ r , S r , s r , sr ◦ , and s(c) r , respectively,<br />

(see [1, 2, 3, 5, 6, 10]). When r = 1, we obtain s 1 = l ∞ , s1 ◦ = c 0, and s (c)<br />

1 = c, and<br />

putting e = (1,1,...), we have S 1 = S e . It is well known, see [11], that<br />

(<br />

s1 ,s 1<br />

)<br />

=<br />

(<br />

c0 ,s 1<br />

)<br />

=<br />

(<br />

c,s1<br />

)<br />

= S1 . (1.12)<br />

For any subset E of s, weput<br />

AE ={Y ∈ s |∃X ∈ E, Y = AX}. (1.13)<br />

If F is a subset of s, wewilldenote<br />

F(A)= F A ={X ∈ s | Y = AX ∈ F}. (1.14)<br />

We can see that F(A)= A −1 F.<br />

2. Some properties of the operators ∆ + and Σ + . Here we will deal with the operators<br />

represented by C + (λ) and ∆ + (λ).<br />

Let<br />

U = {( u n<br />

)n≥1 ∈ s | u n ≠ 0 ∀n } . (2.1)<br />

We define C(λ) = (c nm ) n,m≥1 ,forλ = (λ n ) n≥1 ∈ U, by<br />

⎧<br />

⎪⎨<br />

1<br />

if m ≤ n,<br />

c nm = λ n<br />

⎪⎩<br />

0 otherwise.<br />

(2.2)<br />

So, we put C + (λ) = C(λ) t . It can be proved that the matrix ∆(λ) = (c ′ nm) n,m≥1 with<br />

⎧<br />

λ ⎪⎨ n if m = n,<br />

c nm ′ = −λ n−1 if m = n−1, n≥ 2,<br />

⎪⎩<br />

0 otherwise,<br />

(2.3)<br />

is the inverse of C(λ),see[12, 14]. Similarly, we put ∆ + (λ) = ∆(λ) t .Ifλ = e, weget<br />

the well-known operator of first difference represented by ∆(e) = ∆ and it is usually<br />

written as Σ = C(e). Note that ∆ = Σ −1 and Σ bel<strong>on</strong>g to any given space S R with R>1.<br />

Writing D λ = (λ n δ nm ) n,m≥1 , (where δ nm = 0forn ≠ m and δ nn = 1 otherwise), we have<br />

∆ + (λ) = D λ ∆ + .Soforanygivenα ∈ U +∗ , we see that if (α n−1 /α n )|λ n /λ n−1 |=O(1),<br />

then ∆ + (λ) ∈ (s (α/|λ|) ,s α ).SinceKer∆ + (λ) ≠ 0, we are lead to define the set<br />

sα<br />

∗ (<br />

∆ + (λ) ) (<br />

= s α ∆ + (λ) ) ⋂<br />

s(α/|λ|) = { X = ( )<br />

x n n≥1 ∈ s (α/|λ|) | ∆ + }<br />

(λ)X ∈ s α . (2.4)


1656 BRUNO DE MALAFOSSE<br />

It can easily be seen that<br />

s ∗ (α/|λ|)(<br />

∆ + (e) ) = s ∗ (α/|λ|)(<br />

∆<br />

+ ) = s ∗ α<br />

(<br />

∆ + (λ) ) . (2.5)<br />

2.1. Properties of the <strong>sequence</strong> C(α)α. We will use the following sets:<br />

⎧<br />

⎛<br />

⎨ ∣ ∣∣∣<br />

Ĉ 1 =<br />

⎩ α ∈ U +∗ 1<br />

n∑<br />

⎝<br />

α n<br />

k=1<br />

⎧<br />

⎛<br />

⎨ ∣ ∣∣∣<br />

Ĉ =<br />

⎩ α ∈ U +∗ 1<br />

n∑<br />

⎝<br />

α n<br />

⎧<br />

⎨<br />

Ĉ 1 + = ⎩ α ∈ U ⋂ +∗ cs<br />

∣<br />

k=1<br />

1<br />

α n<br />

⎛<br />

⎝<br />

α k<br />

⎞<br />

⎠ = O(1) (n →∞)<br />

⎫<br />

⎬<br />

⎭ ,<br />

α k<br />

⎞<br />

⎠ ∈ c<br />

⎫<br />

⎬<br />

⎭ ,<br />

∞∑<br />

k=n<br />

{ ∣ ( ) }<br />

∣∣∣<br />

Γ = α ∈ U +∗ αn−1<br />

lim < 1 ,<br />

n→∞ α n<br />

{ ∣ ( ) }<br />

∣∣∣<br />

Γ + = α ∈ U +∗ αn+1<br />

lim < 1 .<br />

n→∞ α n<br />

α k<br />

⎞<br />

⎠ = O(1) (n →∞)<br />

⎫<br />

⎬<br />

⎭ ,<br />

(2.6)<br />

Note that α ∈ Γ + if and <strong>on</strong>ly if 1/α ∈ Γ . We will see in Propositi<strong>on</strong> 2.1 that if α ∈ Ĉ 1 , α<br />

tends to infinity. On the other hand, we see that ∆ ∈ Γ α implies α ∈ Γ and α ∈ Γ if and<br />

<strong>on</strong>ly if there is an integer q ≥ 1 such that<br />

( )<br />

αn−1<br />

γ q (α) = sup < 1. (2.7)<br />

n≥q+1 α n<br />

We obtain the following results in which we put [C(α)α] n = ( ∑ n<br />

k=1 α k)/α n .<br />

Propositi<strong>on</strong> 2.1. Let α ∈ U +∗ .Then<br />

(i) α n−1 /α n → 0 if and <strong>on</strong>ly if [C(α)α] n → 1,<br />

(ii) (a) α ∈ Ĉ implies that (α n−1 /α n ) n≥1 ∈ c,<br />

(b) [C(α)α] n → l implies that α n−1 /α n → 1−1/l,<br />

(iii) if α ∈ Ĉ 1 , there are K>0 and γ>1 such that<br />

α n ≥ Kγ n ∀n, (2.8)<br />

(iv) the c<strong>on</strong>diti<strong>on</strong> α ∈ Γ implies that α ∈ Ĉ 1 and there exists a real b>0 such that<br />

[<br />

C(α)α<br />

]n ≤ 1<br />

1−χ +bχn for n ≥ q +1, χ= γ q (α) ∈ ]0,1[, (2.9)<br />

(v) the c<strong>on</strong>diti<strong>on</strong> α ∈ Γ + implies that α ∈ Ĉ+ 1 .


CALCULATIONS ON SOME SEQUENCE SPACES 1657<br />

Proof.<br />

Assume that α n−1 /α n → 0. Then there is an integer N such that<br />

n ≥ N +1 ⇒ α n−1<br />

α n<br />

≤ 1 2 . (2.10)<br />

So there exists a real K>0 such that α n ≥ K2 n for all n and<br />

Then<br />

⎛<br />

n−1<br />

1 ∑<br />

⎝<br />

α n<br />

k=1<br />

α k<br />

=<br />

α ( )<br />

k<br />

··· αn−1 1 n−k<br />

≤ for N ≤ k ≤ n−1. (2.11)<br />

α n α k+1 α n 2<br />

⎞ ⎛<br />

N−1<br />

α k<br />

⎠<br />

1 ∑<br />

= ⎝<br />

α n<br />

k=1<br />

⎞<br />

n−1<br />

∑<br />

α k<br />

⎠ +<br />

k=N<br />

⎛<br />

α k<br />

≤ 1<br />

N−1<br />

∑<br />

⎝<br />

α n K2 n<br />

k=1<br />

⎞<br />

n−1<br />

∑ ( )<br />

α k<br />

⎠ 1 n−k<br />

+ , (2.12)<br />

2<br />

k=N<br />

and since ∑ n−1<br />

k=N(1/2) n−k = 1−(1/2) n−N → 1, (n →∞), wededucethat<br />

⎛ ⎞<br />

n−1<br />

1 ∑<br />

⎝ α k<br />

⎠ = O(1) (2.13)<br />

α n<br />

k=1<br />

and ([C(α)α] n ) ∈ l ∞ . Using the identity<br />

[<br />

C(α)α<br />

]n = α 1 +···+α n−1<br />

α n−1<br />

α n−1<br />

α n<br />

we get [C(α)α] n → 1. This proves the necessity.<br />

C<strong>on</strong>versely, if [C(α)α] n → 1, then<br />

[ ]<br />

α n−1 C(α)α<br />

n<br />

= [ ]<br />

−1<br />

α n C(α)α n−1<br />

+1 = [ C(α)α ] n−1<br />

(<br />

αn−1<br />

)<br />

+1, (2.14)<br />

α n<br />

→ 0. (2.15)<br />

(ii) is a direct c<strong>on</strong><strong>sequence</strong> of the identity (2.14).<br />

(iii) We put Σ n = ∑ n<br />

k=1 α k .ThenforarealM>1,<br />

[<br />

C(α)α<br />

]n = Σ n<br />

Σ n −Σ n−1<br />

≤ M ∀n. (2.16)<br />

So Σ n ≥ (M/(M −1))Σ n−1 and Σ n ≥ ( M/(M−1) ) n−1<br />

α1 ∀n. Therefore, from<br />

( )<br />

α 1 M n−1<br />

≤ [ C(α)α ] n<br />

α n M −1<br />

= Σ n<br />

≤ M, (2.17)<br />

α n<br />

we c<strong>on</strong>clude that α n ≥ Kγ n for all n, withK = (M −1)α 1 /M 2 and γ = M/(M−1)>1.


1658 BRUNO DE MALAFOSSE<br />

(iv) If α ∈ Γ , there is an integer q ≥ 1 for which<br />

So there is a real M ′ > 0 for which<br />

k ≥ q +1 implies α k−1<br />

α k<br />

≤ χ


CALCULATIONS ON SOME SEQUENCE SPACES 1659<br />

X = (x n,0 ) n≥1 in s α . Then there is a unique scalar x 1 such that<br />

n−1<br />

∑<br />

x n,0 = x 1 − α k . (2.25)<br />

k=1<br />

So<br />

∣ ⎛<br />

⎞<br />

∣ xni , 0 n i −1<br />

=<br />

1 ∑<br />

⎝<br />

α x1 − α k<br />

⎠<br />

ni ∣ α →∞ as i →∞, (2.26)<br />

ni ∣<br />

k=1<br />

and X ∉ s α , which is c<strong>on</strong>tradictory.<br />

We c<strong>on</strong>clude that each of the properties e ∈ Ker∆ + ⋂ s α and e ∉ Ker∆ + ⋂ s α is impossible<br />

and ∆ + is not bijective from s α into itself. This proves the lemma.<br />

Lemma 2.6. For every X ∈ c 0 , Σ + (∆ + X) = X and for every X ∈ cs, ∆ + (Σ + X) = X.<br />

Proof.<br />

It can easily be seen that<br />

[<br />

Σ<br />

+ ( ∆ + X )] n = ∞ ∑<br />

(<br />

xm −x m+1<br />

)<br />

= xn ∀X ∈ c 0 ,<br />

m=n<br />

[<br />

∆<br />

+ ( Σ + X )] ∞ n = ∑<br />

∞∑<br />

x m − x m = x n<br />

m=n m=n+1<br />

∀X ∈ cs.<br />

(2.27)<br />

We can assert the following result, in which we put α + = (α n+1 ) n≥1 and s ◦∗<br />

α (∆ + ) =<br />

s ◦ α(∆ + ) ⋂ s ◦ α. Note that from (2.5) we have<br />

s ∗ α<br />

(<br />

∆ + (e) ) = s ∗ α<br />

(<br />

∆<br />

+ ) = s α<br />

(<br />

∆<br />

+ ) ⋂<br />

sα . (2.28)<br />

Theorem 2.7. (i) (a) s α (∆) = s α if and <strong>on</strong>ly if α ∈ Ĉ 1 ,<br />

(b) sα(∆) ◦ = sα ◦ if and <strong>on</strong>ly if α ∈ Ĉ 1 ,<br />

(c) s α<br />

(c) (∆) = s α (c) if and <strong>on</strong>ly if α ∈ Ĉ.<br />

(ii) (a) α ∈ Ĉ 1 if and <strong>on</strong>ly if s α +(∆ + ) = s α and ∆ + is surjective from s α into s α +,<br />

(b) α ∈ Ĉ+ 1 if and <strong>on</strong>ly if s∗ α (∆ + ) = s α and ∆ + is bijective from s α into s α ,<br />

(c) α ∈ Ĉ+ 1 implies that s◦∗ α (∆ + ) = sα ◦ and ∆ + is bijective from sα ◦ into sα.<br />

◦<br />

(iii) α ∈ Ĉ+ 1 if and <strong>on</strong>ly if s α(Σ + ) = s α and s α (Σ + ) = s α implies sα ◦ (Σ+ ) = sα ◦ .<br />

Proof. (i) has been proved in [8].<br />

(ii)(a) Sufficiency. If ∆ + is surjective from s α into s α +, then for every B ∈ s α +<br />

soluti<strong>on</strong>s of ∆ + X = B in s α are given by<br />

the<br />

n∑<br />

x n+1 = x 1 − b k n = 1,2,..., (2.29)<br />

k=1


1660 BRUNO DE MALAFOSSE<br />

where x 1 is arbitrary. If we take B = α + ,wegetx n = x 1 − ∑ n<br />

k=2 α k.So<br />

⎛<br />

x n<br />

= x 1<br />

− 1 ⎝<br />

α n α n α n<br />

n∑<br />

k=2<br />

α k<br />

⎞<br />

⎠ = O(1). (2.30)<br />

Taking x 1 =−α 1 , we c<strong>on</strong>clude that ( ∑ n−1<br />

k=1 α k )/α n = O(1) and α ∈ Ĉ 1 .<br />

C<strong>on</strong>versely, assume that α ∈ Ĉ 1 . From the inequality<br />

α n−1<br />

α n<br />

≤ 1 α n<br />

⎛<br />

⎝<br />

n∑<br />

k=1<br />

α k<br />

⎞<br />

⎠ = O(1), (2.31)<br />

we deduce that α n−1 /α n = O(1) and ∆ + ∈ (s α ,s α +). ThenforanygivenB ∈ s α +,the<br />

soluti<strong>on</strong>s of the equati<strong>on</strong> ∆ + X = B are given by x 1 =−u and<br />

n−1<br />

∑<br />

−x n = u+ b k for n ≥ 2, (2.32)<br />

where u is an arbitrary scalar. So there exists a real K>0 such that<br />

∣ ∣ xn ∣<br />

∑ n−1 u+<br />

=<br />

α n<br />

k=1 b k<br />

α n<br />

∣<br />

k=1<br />

≤ |u|+K(∑ n<br />

k=2 α )<br />

k<br />

= O(1) (2.33)<br />

α n<br />

and X ∈ s α . We c<strong>on</strong>clude that ∆ + is surjective from s α into s α +.<br />

(ii)(b) Necessity. Assume that α ∈ Ĉ+ 1 .Then∆+ ∈ (s α ,s α ),since<br />

α n+1<br />

α n<br />

≤ 1 α n<br />

⎛<br />

⎝<br />

∞∑<br />

k=n<br />

α k<br />

⎞<br />

⎠ = O(1) (n →∞). (2.34)<br />

Further, from s α ⊂ cs, we deduce, using Lemma 2.4, that for any given B ∈ s α ,<br />

∆ +( Σ + B ) = B. (2.35)<br />

On the other hand, Σ + B = ( ∑ ∞<br />

k=n b k ) n≥1 ∈ s α ,sinceα ∈ Ĉ+ 1 .So∆+ is surjective from s α<br />

into s α . Finally, ∆ + is injective because the equati<strong>on</strong><br />

∆ + X = O (2.36)<br />

admits the unique soluti<strong>on</strong> X = O in s α ,since<br />

Ker∆ + = { ue t | u ∈ C } (2.37)<br />

and e t ∉ s α .


CALCULATIONS ON SOME SEQUENCE SPACES 1661<br />

Sufficiency. For every B ∈ s α , the equati<strong>on</strong> ∆ + X = B admits a unique soluti<strong>on</strong> in<br />

s α .ThenfromLemma 2.5, α ∈ cs and since s α ⊂ cs, we deduce from Lemma 2.6 that<br />

X = Σ + B ∈ s α is the unique soluti<strong>on</strong> of ∆ + X = B. TakingB = α, wegetΣ + α ∈ s α ,thatis,<br />

α ∈ Ĉ+ 1 .<br />

(ii)(c) If α ∈ Ĉ+ 1 , ∆+ is bijective from sα ◦ into itself. Indeed, we have D 1/α ∆ + D α ∈ (c 0 ,c 0 )<br />

from (2.34) andLemma 2.4. Furthermore, since α ∈ Ĉ+ 1 we have s◦ α ⊂ cs and for every<br />

B ∈ sα,<br />

◦<br />

∆ +( Σ + B ) = B. (2.38)<br />

From Lemma 2.4, we have Σ + ∈ (sα,s ◦ α), ◦ so the equati<strong>on</strong> ∆ + X = B admits the soluti<strong>on</strong><br />

X 0 = Σ + B in sα ◦ and we have proved that ∆ + is surjective from sα ◦ into itself. Finally,<br />

α ∈ Ĉ+ 1 implies that et ∉ sα,soKer∆ ⋂ ◦ + sα ◦ ={0} and we c<strong>on</strong>clude that ∆ + is bijective<br />

from sα ◦ into itself.<br />

(iii) comes from (ii), since α ∈ Ĉ+ 1 if and <strong>on</strong>ly if ∆+ is bijective from s α into itself and<br />

Σ +( ∆ + X ) = ∆ +( Σ + X ) = X ∀X ∈ s α . (2.39)<br />

As a direct c<strong>on</strong><strong>sequence</strong> of Theorem 2.7 we obtain the following results.<br />

Corollary 2.8.<br />

Let R be any real > 0. Then<br />

R>1 ⇐⇒ s R (∆) = s R ⇐⇒ s ◦ R (∆) = s◦ R ⇐⇒ s R(<br />

∆<br />

+ ) = s R . (2.40)<br />

Proof. From (i) and (ii) in Theorem 2.7, we see that it is enough to prove that α =<br />

(R n ) n≥1 ∈ Ĉ 1 if and <strong>on</strong>ly if R>1. We have (R n ) n≥1 ∈ Ĉ 1 if and <strong>on</strong>ly if R ≠ 1 and<br />

R −n ⎛<br />

⎝<br />

n∑<br />

k=1<br />

⎞<br />

R k ⎠<br />

1 =<br />

1−R R−n+1 −<br />

This means that R>1 and the corollary is proved.<br />

R = O(1)<br />

1−R<br />

as n →∞. (2.41)<br />

Using the notati<strong>on</strong> α − = (1,α 1 ,α 2 ,...,α n−1 ,...) we get the next result.<br />

Corollary 2.9. Let α ∈ U +∗ and µ ∈ U. Then<br />

(i) α/|µ|∈Ĉ 1 if and <strong>on</strong>ly if<br />

s α<br />

(<br />

∆ + (µ) ) = s (α/|µ|) −, (2.42)<br />

(ii) α/|µ|∈Ĉ+ 1<br />

if and <strong>on</strong>ly if sα<br />

∗ (<br />

∆ + (µ) ) = s (α/|µ|) . (2.43)<br />

Proof.<br />

First we have<br />

s α<br />

(<br />

∆ + (µ) ) = s (α/|µ|)<br />

(<br />

∆<br />

+ ) . (2.44)


1662 BRUNO DE MALAFOSSE<br />

Indeed,<br />

X ∈ s α<br />

(<br />

∆ + (µ) ) ⇐⇒ D µ ∆ + X ∈ s α ⇐⇒ ∆ + X ∈ s (α/|µ|) ⇐⇒ X ∈ s (α/|µ|)<br />

(<br />

∆<br />

+ ) . (2.45)<br />

Now, if α/|µ| ∈ Ĉ 1 , from (i) in Theorem 2.7, we have s (α/|µ|) (∆ + ) = s (α/|µ|) − and<br />

s α (∆ + (µ)) = s (α/|µ|) −. C<strong>on</strong>versely, assume s α (∆ + (µ)) = s (α/|µ|) −. Reas<strong>on</strong>ing as above,<br />

we get s (α/|µ|) (∆ + ) = s (α/|µ|) −, and using (i) in Theorem 2.7 we c<strong>on</strong>clude that α/|µ|∈Ĉ 1<br />

and (i) holds.<br />

(ii) α/|µ|∈Ĉ+ 1 implies that ∆+ is bijective from s (α/|µ|) into itself. Thus<br />

s ∗ α<br />

(<br />

∆ + (µ) ) = s ∗ (α/|µ|)(<br />

∆<br />

+ ) = s (α/|µ|) . (2.46)<br />

This proves the necessity. C<strong>on</strong>versely, assume that sα ∗ (∆ + (µ))=s (α/|µ|) .Thens ∗ (α/|µ|) (∆+ )<br />

= s (α/|µ|) and from Theorem 2.7(ii)(b), α/|µ|∈Ĉ+ 1 and (ii) holds.<br />

2.3. Spaces w p α(λ) and w +p<br />

α (λ) for given real p>0. Here we will define sets generalizing<br />

the well-known sets<br />

w p ∞(λ) = { X ∈ s | C(λ) ( |X| p) ∈ l ∞<br />

}<br />

,<br />

w p 0 (λ) = { X ∈ s | C(λ) ( |X| p) ∈ c 0<br />

}<br />

,<br />

(2.47)<br />

see [9, 12, 13, 14, 15]. It is proved that each of the sets w p 0 = wp 0 ((n) n) and w∞ p =<br />

w∞((n) p n ) is a p-normed FK space for 0


CALCULATIONS ON SOME SEQUENCE SPACES 1663<br />

Theorem 2.10. (i) (a) The c<strong>on</strong>diti<strong>on</strong> α ∈ Ĉ+ 1<br />

is equivalent to<br />

w +p<br />

α (λ) = s (αλ) 1/p . (2.51)<br />

(b) If α ∈ Ĉ+ 1 , then<br />

w ◦p<br />

α (λ) = s ◦ (αλ) 1/p . (2.52)<br />

(ii) (a) The c<strong>on</strong>diti<strong>on</strong> αλ ∈ Ĉ 1 is equivalent to<br />

w p α(λ) = s (αλ) 1/p . (2.53)<br />

(b) If αλ ∈ Ĉ 1 , then<br />

w ◦+p<br />

α (λ) = s ◦ (αλ) 1/p . (2.54)<br />

Proof.<br />

Assume that α ∈ Ĉ+ 1 .SinceC+ (λ) = Σ + D 1/λ , we have<br />

w +p<br />

α (λ) = { X | ( Σ + D 1/λ<br />

)(<br />

|X|<br />

p ) ∈ s α<br />

}<br />

=<br />

{<br />

X | D1/λ<br />

(<br />

|X|<br />

p ) ∈ s α<br />

(<br />

Σ<br />

+ )} , (2.55)<br />

and since α ∈ Ĉ+ 1<br />

implies s α(Σ + ) = s α , we c<strong>on</strong>clude that<br />

w +p<br />

α (λ) = { X ||X| p ∈ D λ s α = s αλ<br />

}<br />

= s(αλ) 1/p . (2.56)<br />

C<strong>on</strong>versely, we have (αλ) 1/p ∈ s (αλ) 1/p = w α<br />

+p<br />

(λ). So<br />

⎛<br />

C + (λ) [ (αλ) 1/p] ∞∑<br />

p<br />

= ⎝<br />

k=n<br />

α k λ k<br />

λ k<br />

⎞<br />

⎠<br />

n≥1<br />

∈ s α , (2.57)<br />

that is, α ∈ Ĉ+ 1 and we have proved (i). We obtain (i)(b) by reas<strong>on</strong>ing as above.<br />

(ii) Assume that αλ ∈ Ĉ 1 .Then<br />

w p α(λ) = { X ||X| p ∈ ∆(λ)s α<br />

}<br />

. (2.58)


1664 BRUNO DE MALAFOSSE<br />

Since ∆(λ) = ∆D λ ,weget∆(λ)s α = ∆s αλ . Now, from αλ ∈ Ĉ 1 we deduce that ∆ is<br />

bijective from s αλ into itself and w p α(λ) = s (αλ) 1/p . C<strong>on</strong>versely, assume that w p α(λ) =<br />

s (αλ) 1/p .Then(αλ) 1/p ∈ s (αλ) 1/p implies that<br />

C(λ)(αλ) ∈ s α , (2.59)<br />

and since D 1/α C(λ)(αλ) ∈ s 1 = l ∞ , we c<strong>on</strong>clude that C(αλ)(αλ) ∈ l ∞ . The proof of<br />

(ii)(b) follows the same lines as in the proof of the necessity in (ii) replacing s αλ by s ◦ αλ .<br />

3. New sets of <strong>sequence</strong>s of the form [A 1 ,A 2 ]. In this secti<strong>on</strong>, we will deal with the<br />

sets<br />

[<br />

A1 (λ),A 2 (µ) ] = { X ∈ s | A 1 (λ) (∣ ∣ A2 (µ)X ∣ ) }<br />

∈ s α , (3.1)<br />

where A 1 and A 2 are of the form C(ξ), C + (ξ), ∆(ξ), or∆ + (ξ) and we give necessary<br />

c<strong>on</strong>diti<strong>on</strong>s to get [A 1 (λ),A 2 (µ)] in the form s γ .<br />

Let λ and µ ∈ U +∗ . For simplificati<strong>on</strong>, we will write throughout this secti<strong>on</strong><br />

[ ] [<br />

A1 ,A 2 = A1 (λ),A 2 (µ) ] = { X ∈ s | A 1 (λ) (∣ ∣ A2 (µ)X ∣ ) }<br />

∈ s α (3.2)<br />

for any matrices<br />

A 1 (λ) ∈ { ∆(λ),∆ + (λ),C(λ),C + (λ) } ,<br />

A 2 (µ) ∈ { ∆(µ),∆ + (µ),C(µ),C + (µ) } .<br />

(3.3)<br />

So we have for instance<br />

[C,∆] = { X ∈ s | C(λ) (∣ ∣) } (<br />

∣ ∆(µ)X ∈ sα = wα (λ) ) ∆(µ) ,.... (3.4)<br />

In all that follows, the c<strong>on</strong>diti<strong>on</strong>s ξ ∈ Γ ,or1/η ∈ Γ for any given <strong>sequence</strong>s ξ and η can<br />

be replaced by the c<strong>on</strong>diti<strong>on</strong>s ξ ∈ Ĉ 1 and η ∈ Ĉ+ 1 .<br />

3.1. Spaces [C,C], [C,∆], [∆,C],and[∆,∆]. For the c<strong>on</strong>venience of the reader we<br />

will write the following identities, where A 1 (λ) and A 2 (µ) are lower triangles and we<br />

will use the c<strong>on</strong>venti<strong>on</strong> µ 0 = 0:<br />

⎧<br />

⎛<br />

⎛ ⎞<br />

⎞<br />

⎫<br />

⎨ ∣ ∣∣∣<br />

[C,C] =<br />

⎩ X ∈ s 1<br />

n∑<br />

⎝<br />

1<br />

m∑<br />

⎬<br />

⎝<br />

λ x k<br />

⎠<br />

⎠<br />

n ∣ µ = αn O(1)<br />

m=1 m ∣<br />

⎭ ,<br />

k=1<br />

⎧<br />

⎛<br />

⎞<br />

⎫<br />

⎨ ∣ ∣∣∣<br />

[C,∆] =<br />

⎩ X ∈ s 1<br />

n∑<br />

∣ ⎬<br />

⎝ ∣ µk x k −µ k−1 x k−1 ⎠ = αn O(1)<br />

λ n<br />

⎭ ,<br />

k=1<br />

⎧<br />

∣ ⎛ ⎞<br />

⎛ ⎞<br />

⎫<br />

⎨ ∣ ∣∣∣∣∣ ∣∣∣<br />

n−1<br />

[∆,C]=<br />

⎩ X ∈ s 1 ∑<br />

−λ n−1<br />

⎝ x i<br />

⎠<br />

µ n−1 ∣ +λ 1<br />

n∑<br />

⎬<br />

⎝<br />

n<br />

x i<br />

⎠<br />

∣ µ n ∣ = α nO(1)<br />

⎭ ,<br />

k=1<br />

[∆,∆] = { X ∈ s |−λ n−1<br />

∣ ∣µn−1<br />

x n−1 −µ n−2 x n−2<br />

∣ ∣+λn<br />

∣ ∣µn x n −µ n−1 x n−1<br />

∣ ∣ = αn O(1) } .<br />

(3.5)<br />

k=1


CALCULATIONS ON SOME SEQUENCE SPACES 1665<br />

Note that for α = e and λ = µ, [C,∆] is the well-known set of <strong>sequence</strong>s that are str<strong>on</strong>gly<br />

bounded, denoted by c ∞ (λ), see[9, 12, 13, 14, 15]. We get the following result.<br />

Theorem 3.1.<br />

(i) If αλ and αλµ ∈ Γ , then<br />

[C,C] = s (αλµ) , (3.6)<br />

(ii) if αλ ∈ Γ , then<br />

[C,∆] = s (α(λ/µ)) , (3.7)<br />

(iii) if α and αµ/λ ∈ Γ , then<br />

[∆,C]= s (α(µ/λ)) , (3.8)<br />

(iv) if α and α/λ ∈ Γ , then<br />

[∆,∆] = s (α(µ/λ)) . (3.9)<br />

Proof.<br />

We have for any given X<br />

C(λ) (∣ ∣ C(µ)X<br />

∣ ∣<br />

)<br />

∈ sα (3.10)<br />

if and <strong>on</strong>ly if C(µ)X ∈ s α<br />

(<br />

C(λ)<br />

)<br />

= s(αλ) ,sinceαλ ∈ Γ .Soweget<br />

X ∈ ∆(µ)s αλ (3.11)<br />

and the c<strong>on</strong>diti<strong>on</strong> αλµ ∈ Γ implies ∆(µ)s αλ = s (αλµ) , which permits us to c<strong>on</strong>clude (i).<br />

(ii) Now, for any given X, the c<strong>on</strong>diti<strong>on</strong> C(λ)(|∆(µ)X|) ∈ s α is equivalent to<br />

∣<br />

∣ ∆(µ)X ∈ ∆(λ)sα = ∆s αλ = s αλ , (3.12)<br />

since αλ ∈ Γ . Thus<br />

X ∈ C(µ)s αλ = D 1/µ Σs αλ = s (α(λ/µ)) . (3.13)<br />

(iii) Similarly, ∆(λ)(|C(µ)X|) ∈ s α if and <strong>on</strong>ly if<br />

∣ ( )<br />

∣ C(µ)X ∈ sα ∆(λ) = C(λ)sα = D 1/λ Σs α = s (α/λ) , (3.14)<br />

since α ∈ Γ .So<br />

X ∈ ∆(µ)s (α/λ) = ∆s (αµ/λ) . (3.15)<br />

We c<strong>on</strong>clude since αµ/λ ∈ Γ implies that ∆s (αµ/λ) = s (αµ/λ) . (iv) Here,<br />

if α ∈ Γ . Thus we have<br />

∆(λ) (∣ ∣ ∆(µ)X<br />

∣ ∣<br />

)<br />

∈ sα if and <strong>on</strong>ly if ∆(µ)X ∈ C(λ)s α = s (α/λ) , (3.16)<br />

since α/λ ∈ Γ . So (iv) holds.<br />

X ∈ C(µ)s (α/λ) = s (α/λµ) (3.17)


1666 BRUNO DE MALAFOSSE<br />

Remark 3.2.<br />

If we define<br />

[<br />

A1 ,A 2<br />

]<br />

0 = { X ∈ s | A 1 (λ) (∣ ∣ A2 (µ)X ∣ ∣ ) ∈ s ◦ α}<br />

, (3.18)<br />

we get the same results as in Theorem 3.1, replacing in each case (i), (ii), (iii), and (iv) s ξ<br />

by s ◦ ξ .<br />

3.2. Sets [∆,∆ + ], [∆,C + ], [C,∆ + ], [∆ + ∆], [∆ + ,C], [∆ + ∆ + ], [C + ,C], [C + ,∆], [C + ,∆ + ],<br />

and [C + ,C + ]. We get immediately from the definiti<strong>on</strong>s of the operators ∆(ξ), ∆ + (η),<br />

C(ξ), and C + (η), the following:<br />

[<br />

∆,∆<br />

+ ] = { ∣ ∣ ∣ ∣<br />

X | λ ∣µn n x n −µ n+1 x ∣−λn−1∣µn−1 n+1 x n−1 −µ n x n = αn O(1) } ,<br />

⎧<br />

∣ ∣ ∣ ⎫<br />

[<br />

∆,C<br />

+ ] ⎨<br />

=<br />

⎩ X | λ ∞∑ ∣∣∣∣∣ ∣∣∣∣∣ x i<br />

∑<br />

∞ ∣∣∣∣∣<br />

x<br />

⎬<br />

i<br />

n<br />

−λ n−1 = α n O(1)<br />

∣ µ<br />

i=n i µ<br />

i=n−1 i<br />

⎭ ,<br />

⎧ ⎛<br />

⎞<br />

⎫<br />

[<br />

C,∆<br />

+ ] ⎨ ∣ ∣∣∣<br />

=<br />

⎩ X 1<br />

n∑<br />

∣ ⎬<br />

⎝ ∣ µk x k −µ k+1 x k+1 ⎠ = αn O(1)<br />

λ n<br />

⎭ ,<br />

k=1<br />

[<br />

∆ + ,∆ ] = { ∣ ∣ ∣ ∣<br />

X | λ ∣µn n x n −µ n−1 x ∣−λn+1∣µn+1 n−1 x n+1 −µ n x n = αn O(1) } ,<br />

⎧ ∣ ∣ ∣ ∣ ⎫<br />

[<br />

∆ + ,C ] ⎨ ∣ ∣∣∣∣∣ ∣∣∣<br />

=<br />

⎩ X λ n n<br />

∑ ∣∣∣∣∣ ∣∣∣∣∣<br />

x i − λ n+1<br />

∑ ∣∣∣∣∣ ⎬<br />

n+1<br />

x i = α n O(1)<br />

µ n µ<br />

i=1<br />

n+1<br />

⎭ ,<br />

i=1<br />

[<br />

∆ + ,∆ +] = { ∣ ∣ ∣ ∣<br />

X | λ ∣µn n x n −µ n+1 x ∣−λn+1∣µn+1 n+1 x n+1 −µ n+2 x n+2 = αn O(1) } ,<br />

⎧ ⎛ ∣ ∣⎞<br />

⎫<br />

[<br />

C + ,C ] ⎨ ∣ ∣∣∣<br />

∞<br />

=<br />

⎩ X ∑ ∣∣∣∣∣<br />

⎝ 1 1 ∑<br />

k ∣∣∣∣∣ ⎬<br />

x i<br />

⎠ = αn O(1)<br />

λ<br />

k=n k µ k<br />

⎭ ,<br />

i=1<br />

⎧<br />

⎫<br />

[<br />

C + ,∆ ] ⎨ ∣ ∣∣∣<br />

∞<br />

=<br />

⎩ X ∑ ( )<br />

1 ∣ ∣ ⎬<br />

∣µk x k −µ k−1 x k−1 = α n O(1)<br />

λ<br />

k=n k<br />

⎭ ,<br />

⎧<br />

⎫<br />

[<br />

C + ,∆ +] ⎨ ∣ ∣∣∣<br />

∞<br />

=<br />

⎩ X ∑ ( )<br />

1 ∣ ∣ ⎬<br />

∣µk x k −µ k+1 x k+1 = α n O(1)<br />

λ<br />

k=n k<br />

⎭ ,<br />

⎧ ⎛ ∣ ∣⎞<br />

⎫<br />

[<br />

C + ,C +] ⎨ ∣ ∣∣∣<br />

∞<br />

=<br />

⎩ X ∑ ∣∣∣∣∣<br />

⎝ 1 ∑<br />

∞ ∣∣∣∣∣<br />

x<br />

⎬<br />

i ⎠ = αn O(1)<br />

λ<br />

k=n k µ<br />

i=k i<br />

⎭ . (3.19)<br />

We can assert the following result, in which we do the c<strong>on</strong>venti<strong>on</strong> α n = 1forn ≤ 0.<br />

Theorem 3.3.<br />

(i) Assume that α ∈ Γ .Then<br />

[<br />

∆,∆<br />

+ ] = s (α/λµ) − if α λµ ∈ Γ ,<br />

[<br />

∆,C<br />

+ ] = s (α(µ/λ)) if λ (3.20)<br />

α ∈ Γ .<br />

(ii) The c<strong>on</strong>diti<strong>on</strong>s αλ ∈ Γ and αλ/µ ∈ Γ together imply<br />

[<br />

C,∆<br />

+ ] = s (α(λ/µ)) −. (3.21)


CALCULATIONS ON SOME SEQUENCE SPACES 1667<br />

(iii) The c<strong>on</strong>diti<strong>on</strong> α/λ ∈ Γ implies<br />

[<br />

∆ + ,∆ ] = s (αn−1 /µ nλ n−1 ) n<br />

= s (1/µ(α/λ) − ). (3.22)<br />

(iv) If α/λ and µ(α/λ) − = (µ n (α n−1 /λ n−1 )) n ∈ Γ , then<br />

[<br />

∆ + ,C ] = s µ(α/λ) −. (3.23)<br />

(v) If α/λ and 1/µ(α/λ) − = (α n−1 /µ n λ n−1 ) n ∈ Γ , then<br />

[<br />

∆ + ,∆ +] = s ((α/λ) − /µ) − = s (α n−2 /λ n−2 µ n−1 ) n<br />

. (3.24)<br />

(vi) If 1/α and αλµ ∈ Γ , then<br />

[<br />

C + ,C ] = s (αλµ) . (3.25)<br />

(vii) If 1/α and αλ ∈ Γ , then<br />

[<br />

C + ,∆ ] = s (α(λ/µ)) . (3.26)<br />

(viii) If 1/α and α(λ/µ) ∈ Γ , then<br />

[<br />

C + ,∆ +] = s (α(λ/µ)) −. (3.27)<br />

(ix) If 1/α and 1/αλ ∈ Γ , then<br />

[<br />

C + ,C +] = s (αλµ) . (3.28)<br />

Proof.<br />

(i) First, for any given X, the c<strong>on</strong>diti<strong>on</strong> ∆(λ)(|∆ + (µ)X|) ∈ s α is equivalent to<br />

∣ ∆ + (µ)X ∣ ( ) ∈ sα ∆(λ) = s(α/λ) , (3.29)<br />

since α ∈ Γ .SoX ∈ s αλ (∆ + (µ)) and applying Corollary 2.9, we c<strong>on</strong>clude the first part<br />

of the proof of (i).<br />

We have ∆(λ)(|C + (µ)X|) ∈ s α if and <strong>on</strong>ly if<br />

∣ C + (µ)X ∣ ∈ C(λ)sα = D 1/λ Σs α . (3.30)<br />

Since α ∈ Γ , we have Σs α = s α and D 1/λ Σs α = s (α/λ) . Then, for α/λ ∈ Γ + , X ∈ [∆,C + ] if<br />

and <strong>on</strong>ly if<br />

X ∈ w +1<br />

(α/λ) (µ) = s (α(µ/λ)). (3.31)<br />

(ii) For any given X, C(λ)(|∆ + (µ)X|) ∈ s α is equivalent to<br />

and since αλ ∈ Γ we have w 1 α(λ) = s αλ .So<br />

if αλ/µ ∈ Γ . Then (ii) is proved.<br />

∆ + (µ)X ∈ w 1 α(λ), (3.32)<br />

X ∈ s αλ<br />

(<br />

∆ + (µ) ) = s (α(λ/µ)) − (3.33)


1668 BRUNO DE MALAFOSSE<br />

(iii) Here, ∆ + (λ)(|∆(µ)X|) ∈ s α if and <strong>on</strong>ly if<br />

∣ (<br />

∣ ∆(µ)X ∈ sα ∆ + (λ) ) = s (α/λ) −, (3.34)<br />

since α/λ ∈ Γ . Thus<br />

X ∈ C(µ)s (α/λ) − = D 1/µ Σs (α/λ) − = s (αn−1 /λ n−1 µ n) (3.35)<br />

if (α/λ) − ∈ Γ , that is, α/λ ∈ Γ .<br />

(iv) If α/λ ∈ Γ ,weget<br />

∆ + (λ) (∣ ∣ C(µ)X<br />

∣ ∣<br />

)<br />

∈ sα ⇐⇒ ∣ ∣ C(µ)X<br />

∣ ∣ ∈ sα<br />

(<br />

∆ + (λ) )<br />

= s (α/λ) − ⇐⇒ X ∈ ∆(µ)s (α/λ) −.<br />

(3.36)<br />

Since µ(α/λ) − ∈ Γ , we c<strong>on</strong>clude that [∆ + ,C]= s (µ(α/λ) − ).<br />

(v) One has<br />

[<br />

∆ + ,∆ +] = { X | ∆ + (<br />

(µ)X ∈ s α ∆ + (λ) )} , (3.37)<br />

and since α/λ ∈ Γ ,weget<br />

We deduce that if α/λ ∈ Γ ,<br />

s α<br />

(<br />

∆ + (λ) ) = s (α/λ) −. (3.38)<br />

[<br />

∆ + ,∆ +] (<br />

= s (α/λ) − ∆ + (µ) ) . (3.39)<br />

Then, from Corollary 2.9, ifα/λ ∈ Γ and (α/λ) − /µ = (α n−1 /λ n−1 µ n ) n ∈ Γ ,<br />

(vi) We have<br />

s (α/λ) −(<br />

∆ + (µ) ) = s ((α/λ) − /µ) − = s (α n−2 /λ n−2 µ n−1 ) n<br />

. (3.40)<br />

C + (λ) (∣ ∣ C(µ)X<br />

∣ ∣<br />

)<br />

∈ sα ⇐⇒ C(µ)X ∈ w +1<br />

α (λ), (3.41)<br />

and since α ∈ Γ + , we have w α<br />

+1 (λ) = s αλ .Thenforαλµ ∈ Γ , X ∈ [C + ,C] if and <strong>on</strong>ly if<br />

(vii) The c<strong>on</strong>diti<strong>on</strong> C + (λ)(|∆(µ)X|) ∈ s α is equivalent to<br />

and since α ∈ Γ + , we have w α<br />

+1 (λ) = s αλ . Thus<br />

since αλ ∈ Γ . So (vii) holds.<br />

X ∈ ∆(µ)s αλ = s (αλµ) . (3.42)<br />

∆(µ)X ∈ w +1<br />

α (λ), (3.43)<br />

X ∈ s αλ<br />

(<br />

∆(µ)<br />

)<br />

= D1/µ Σs αλ = s (α(λ/µ)) , (3.44)


CALCULATIONS ON SOME SEQUENCE SPACES 1669<br />

(viii) First, we have<br />

[<br />

C + ,∆ +] = { X | ∆ + (µ)X ∈ w +1<br />

α (λ) } , (3.45)<br />

and the c<strong>on</strong>diti<strong>on</strong> α ∈ Γ + implies that w α<br />

+1 (λ) = s αλ . Thus<br />

[<br />

C + ,∆ +] = { X | ∆ + } (<br />

(µ)X ∈ s αλ = sαλ ∆ + (µ) ) , (3.46)<br />

and we c<strong>on</strong>clude since<br />

s αλ<br />

(<br />

∆ + (µ) ) = s (αλ/µ) −<br />

for αλ<br />

µ ∈ Γ . (3.47)<br />

(ix) If α ∈ Γ + ,<br />

[<br />

C + ,C +] = { X | C + (µ)X ∈ w α +1 }<br />

(λ) = s αλ = w<br />

+1<br />

αλ<br />

(µ). (3.48)<br />

We c<strong>on</strong>clude that w +1<br />

αλ (µ) = s (αλµ), sinceαλ ∈ Γ + .<br />

Remark 3.4. Note that in Theorem 3.3, we have [A 1 ,A 2 ] = s α (A 1 A 2 ) = (s α (A 1 )) A2<br />

for A 1 ∈{∆(λ),∆ + (λ),C(λ),C + (λ)} and A 2 ∈{∆(µ),∆ + (µ),C(µ),C + (µ)}. For instance,<br />

we have<br />

⎧<br />

⎫<br />

⎨ ∣ ( ∣∣∣<br />

[∆,C]=<br />

⎩ X λn<br />

− λ ) n−1<br />

n−1 ∑<br />

x i + λ ⎬<br />

n<br />

αµ<br />

x n = α n O(1) for<br />

µ n µ n−1 µ<br />

i=1 n<br />

⎭ λ ∈ Γ . (3.49)<br />

Similarly, under the corresp<strong>on</strong>ding c<strong>on</strong>diti<strong>on</strong>s given in Theorems 3.1 and 3.3, weget<br />

[∆,∆] = { ( )<br />

X |−λ n−1 µ n−2 x n−2 +µ n−1 λn +λ n−1 xn−1 −λ n µ n x n = α n O(1) } ,<br />

⎧<br />

⎫<br />

[<br />

∆,C<br />

+ ] ⎨ ∣ ∣∣∣<br />

=<br />

⎩ X λ n<br />

x n + ( )<br />

∞∑ x<br />

⎬<br />

m<br />

λ n −λ n−1 = α n O(1)<br />

µ n µ<br />

m=n−1 m<br />

⎭ ,<br />

[<br />

∆,∆<br />

+ ] = { ( )<br />

X |−λ n−1 µ n−1 x n−1 +µ n λn +λ n−1 xn −λ n µ n+1 x n+1 = α n O(1) } ,<br />

(3.50)<br />

[<br />

∆ + ,∆ ] = { X |−λ n µ n−1 x n−1 + ( λ n +λ n+1<br />

)<br />

µn x n −λ n+1 µ n+1 x n+1 = α n O(1) } .<br />

References<br />

[1] B. de Malafosse, Systèmes linéaires infinis admettant une infinité de soluti<strong>on</strong>s [Infinite linear<br />

systems admitting an infinity of soluti<strong>on</strong>s], Atti Accad. Peloritana Pericolanti Cl. Sci.<br />

Fis. Mat. Natur. 65 (1988), 49–59 (French).<br />

[2] , Some properties of the Cesàro operator in the space s r , Commun. Fac. Sci. Univ.<br />

Ank. Ser. A1 Math. Stat. 48 (1999), no. 1-2, 53–71.<br />

[3] , Bases in <strong>sequence</strong> <strong>spaces</strong> and expansi<strong>on</strong> of a functi<strong>on</strong> in a series of power series,<br />

Mat. Vesnik 52 (2000), no. 3-4, 99–112.<br />

[4] , Applicati<strong>on</strong> of the sum of operators in the commutative case to the infinite matrix<br />

theory, Soochow J. Math. 27 (2001), no. 4, 405–421.<br />

[5] , Properties of <strong>some</strong> sets of <strong>sequence</strong>s and applicati<strong>on</strong> to the <strong>spaces</strong> of bounded difference<br />

<strong>sequence</strong>s of order µ, Hokkaido Math. J. 31 (2002), no. 2, 283–299.<br />

[6] , Recent results in the infinite matrix theory, and applicati<strong>on</strong> to Hill equati<strong>on</strong>,Dem<strong>on</strong>stratio<br />

Math. 35 (2002), no. 1, 11–26.


1670 BRUNO DE MALAFOSSE<br />

[7] , Variati<strong>on</strong> of an element in the matrix of the first difference operator and matrix<br />

transformati<strong>on</strong>s, Novi Sad J. Math. 32 (2002), no. 1, 141–158.<br />

[8] , On <strong>some</strong> BK <strong>spaces</strong>, Int. J. Math. Math. Sci. 2003 (2003), no. 28, 1783–1801.<br />

[9] B. de Malafosse and E. Malkowsky, Sequence <strong>spaces</strong> and inverse of an infinite matrix, Rend.<br />

Circ. Mat. Palermo (2) 51 (2002), no. 2, 277–294.<br />

[10] R. Labbas and B. de Malafosse, On <strong>some</strong> Banach algebra of infinite matrices and applicati<strong>on</strong>s,<br />

Dem<strong>on</strong>stratio Math. 31 (1998), no. 1, 153–168.<br />

[11] I. J. Maddox, Infinite Matrices of Operators, Lecture Notes in Mathematics, vol. 786,<br />

Springer-Verlag, Berlin, 1980.<br />

[12] E. Malkowsky, The c<strong>on</strong>tinuous duals of the <strong>spaces</strong> c 0 (Λ) and c(Λ) for exp<strong>on</strong>entially bounded<br />

<strong>sequence</strong>s Λ, Acta Sci. Math. (Szeged) 61 (1995), no. 1–4, 241–250.<br />

[13] , Linear operators in certain BK <strong>spaces</strong>, Approximati<strong>on</strong> Theory and Functi<strong>on</strong> Series<br />

(Budapest, 1995), Bolyai Soc. Math. Stud., vol. 5, János Bolyai <strong>Mathematical</strong> Society,<br />

Budapest, 1996, pp. 259–273.<br />

[14] F. Móricz, On Λ-str<strong>on</strong>g c<strong>on</strong>vergence of numerical <strong>sequence</strong>s and Fourier series, Acta Math.<br />

Hungar. 54 (1989), no. 3-4, 319–327.<br />

[15] A. Wilansky, Summability through Functi<strong>on</strong>al Analysis, North-Holland Mathematics Studies,<br />

vol. 85, North-Holland Publishing, Amsterdam, 1984.<br />

Bruno de Malafosse: Laboratoire de Mathématiques Appliquées du Havre (LMAH), Université<br />

du Havre, Institut Universitaire de Technologie du Havre, 76610 Le Havre, France<br />

E-mail address: bdemalaf@wanadoo.fr

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!