24.11.2012 Views

Experience Gathered from the Use of ANSYS - TechNet Alliance

Experience Gathered from the Use of ANSYS - TechNet Alliance

Experience Gathered from the Use of ANSYS - TechNet Alliance

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Summary<br />

FEM Simulation <strong>of</strong> loudspeakers<br />

and loudspeaker components<br />

Leonhard Kreitmeier<br />

Harman/Becker automotive systems<br />

Straubing, Germany<br />

The electrodynamic principle is widely used for Loudspeaker application due to <strong>the</strong> fact that <strong>the</strong> result<br />

is a robust type <strong>of</strong> transducer.This Fact is especially useful in car application where <strong>the</strong>re is massive<br />

environmental testing done. FEM Simulations <strong>of</strong> <strong>the</strong>se transducers helps defining <strong>the</strong> design <strong>of</strong> <strong>the</strong><br />

components without a large amount <strong>of</strong> samples. Also <strong>the</strong> components are defined and optimised with<br />

respect to <strong>the</strong> sound pressure level frequency response SPL as <strong>the</strong> final target <strong>of</strong> <strong>the</strong> transducer.<br />

In this Paper we want to show some <strong>of</strong> <strong>the</strong> special problems arising with FEM simulation <strong>of</strong> <strong>the</strong>se<br />

transducers. More specifically dealing with <strong>the</strong> problem <strong>of</strong> defining <strong>the</strong> material parameters.<br />

Keywords<br />

Loudspeaker, Material Parameter, Correlation, <strong>ANSYS</strong> MECHANICAL/EMAG,<br />

20th CAD-FEM <strong>Use</strong>rs’ Meeting 2002 October 9-11, 2002<br />

International Congress Kultur- und Congress Centrum Graf-Zeppelin-Haus,<br />

on FEM Technology Friedrichshafen, Lake Constance, Germany<br />

1<br />

2.4.3


1. Introduction<br />

The investigation is done to an electrodynamic loudspeaker. (Fig. 1).<br />

Figure 1:<br />

electrodynamic loudspeaker<br />

This speaker consists <strong>of</strong> <strong>the</strong> following main parts which are<br />

• a vibrating mechanical structure (membrane, dust cup, voice coil, voice coil former, surround<br />

and spider) which is clamped or glued to a basket (Fig. 2).<br />

• a fixing structure (basket) (Fig. 3).<br />

• a motor unit (Magnet structure) which is also fixed to <strong>the</strong> basket. (Fig. 4).<br />

Figure 2: vibrat.structure<br />

Figure 3: basket<br />

Figure 4: motor unit<br />

This structure is assembled that way that <strong>the</strong> voice coil, which is part <strong>of</strong> <strong>the</strong> vibrating structure, is<br />

placed in <strong>the</strong> radial air gap <strong>of</strong> <strong>the</strong> permanent magnet structure.<br />

The electrical signal is now transferred via Lorenzforces acting on <strong>the</strong> voice coil, due to <strong>the</strong> interaction<br />

<strong>of</strong> <strong>the</strong> current in <strong>the</strong> voice coil and <strong>the</strong> Magnet field in <strong>the</strong> air gap <strong>of</strong> <strong>the</strong> magnet system. Thus an axial<br />

movement (vibration) <strong>of</strong> <strong>the</strong> structure is created (electro dynamic interaction). The vibrating structure<br />

(membrane) <strong>the</strong>n creates air waves in <strong>the</strong> audio frequency range. (Fig. 1).<br />

The FEM Simulation <strong>of</strong> this structure and <strong>of</strong> its parts has <strong>the</strong> target to create a constant sound<br />

pressure level over <strong>the</strong> operating audio frequency range. Also <strong>the</strong> limitation <strong>of</strong> this vibration (motion) in<br />

a defined manner and level is part <strong>of</strong> this simulations.<br />

Denomination <strong>of</strong> certain parts <strong>of</strong> <strong>the</strong> vibrating structure (Fig. 5).<br />

membran<br />

surround<br />

spider<br />

Voice coil<br />

Figure 5: vibrating structure<br />

Dust cup<br />

former<br />

20th CAD-FEM <strong>Use</strong>rs’ Meeting 2002 October 9-11, 2002<br />

International Congress Kultur- und Congress Centrum Graf-Zeppelin-Haus,<br />

on FEM Technology Friedrichshafen, Lake Constance, Germany<br />

2


2. Simulation <strong>of</strong> electrodynamic Loudspeakers and <strong>the</strong>ir components<br />

Some examples for this type <strong>of</strong> calculations are magnet calculations, none linear force excursion,<br />

Force Factor Bl versus excursion calculation for magnet-voice coil configuration and frequency<br />

response calculation for <strong>the</strong> complete loudspeaker.<br />

• magnet simulation (optimisation) Fig. 6a,b<br />

Flux Density B in <strong>the</strong> air gap<br />

Created are Design spaces <strong>of</strong> geometric data versus <strong>the</strong> Flux Density B[T] in <strong>the</strong> air gap. The<br />

variables to be optimised in this calculations, are iron part thicknesses, magnet material type<br />

and dimension. Principle design space plots are<br />

preferred versus single optimisation results (f.e.<br />

random optimisation because <strong>of</strong> changing<br />

optimisation target functions.<br />

Figure 6a: magnet<br />

• magnet simulation (large signal) Fig. 7a,b<br />

Force Factor BL versus excursion x<br />

Figure 6b: Design Space<br />

The Designspace consists <strong>of</strong> <strong>the</strong> configuration type <strong>of</strong> magnet system and voice coil system. The<br />

target is to design this excursion function <strong>of</strong> <strong>the</strong><br />

Force Factor Bl [ Tm] in a way that <strong>the</strong> distortion <strong>of</strong><br />

<strong>the</strong> transducer is minimised. Target function is<br />

created by special large signal measurement<br />

s<strong>of</strong>tware.<br />

Figure 7a:<br />

• suspension simulation ( large signal )<br />

Force versus excursion<br />

Figure 7b: Bl vers. Excursion ( voice coil)<br />

The Force – Excursion curve for <strong>the</strong> components (spider,surround) or <strong>the</strong> complete speaker, is<br />

evaluated by a none linear calculation. The figure 8b show results for a spider and <strong>the</strong> variation <strong>of</strong> its<br />

roll height. This allows geometric design<br />

with respect to excursion limits. Fig. 8a,b<br />

spider<br />

Figure 8a:<br />

Roll height<br />

Figure 8b: Force-Excursion ( spider )<br />

20th CAD-FEM <strong>Use</strong>rs’ Meeting 2002 October 9-11, 2002<br />

International Congress Kultur- und Congress Centrum Graf-Zeppelin-Haus,<br />

on FEM Technology Friedrichshafen, Lake Constance, Germany<br />

3


• frequency response Topology Correlation<br />

Sound Pressure Level (SPL) versus frequency<br />

( dome tweeter ) Fig. 9a,b<br />

The sound pressure frequency response is used two ways<br />

- as a target function <strong>of</strong> an existing sample for material parameter definition<br />

- optimisation for <strong>the</strong> geometric design data <strong>of</strong> <strong>the</strong> transducer.<br />

In this example <strong>the</strong> frequency response curve for a dome tweeter is calculated <strong>from</strong> 8kHz up to 30kHz.<br />

The results are used to determine <strong>the</strong> material parameters <strong>of</strong> <strong>the</strong> dome tweeter components by<br />

correlation with <strong>the</strong> measured response.Sensitivity<br />

analysis <strong>of</strong> <strong>the</strong> parameters allow to detect <strong>the</strong><br />

influence <strong>of</strong> <strong>the</strong> parameter on part <strong>of</strong> <strong>the</strong> response<br />

curve and how it is typically changed.So certain<br />

specifics <strong>of</strong> <strong>the</strong> frequency response should be<br />

reproduced.<br />

Figure 9a:<br />

Figure 9b: Sound Pressure Level (SPL)<br />

frequency response<br />

3. Special requirements <strong>of</strong> an acoustic frequency response calculation<br />

Now we want to look at certain specifics <strong>of</strong> calculating sound pressure level frequency response curve<br />

by FEM simulation means with <strong>ANSYS</strong>/MECHANICAL.<br />

What is <strong>of</strong> interest here are certain requirements concerning frequency calculation <strong>of</strong> <strong>the</strong> complete<br />

loudspeaker over <strong>the</strong> audio frequency range.<br />

3.1. Initial considerations<br />

specifics on loudspeaker frequency response calculation should be considered here.<br />

Initial considerations<br />

• Axisymetric calculation in 2D<br />

• Air space is reduced to 0.37 m<br />

• Exact FEM modelling <strong>of</strong> geometry, wave guide, inner air spaces and glue is necessary<br />

• sensitivity <strong>of</strong> <strong>the</strong> frequency response result is very high to geometric variations,<br />

so <strong>the</strong> geometric data must be defined very exactly<br />

• Results data <strong>of</strong> <strong>the</strong> FEM simulation ( Frequency resonse,basic resonance fo,excursion x ) are used<br />

in different ways<br />

to correlate with measured data <strong>of</strong> a sample to determine material parameters<br />

to make design optimisation <strong>of</strong> geometric data in case <strong>the</strong> material parameters are defined.<br />

The calculation is now performed as a harmonic calculation (Small Signal Domain)<br />

20th CAD-FEM <strong>Use</strong>rs’ Meeting 2002 October 9-11, 2002<br />

International Congress Kultur- und Congress Centrum Graf-Zeppelin-Haus,<br />

on FEM Technology Friedrichshafen, Lake Constance, Germany<br />

4


3.2. special requirements <strong>of</strong> acoustic calculations<br />

Specialities <strong>of</strong> a acoustic frequency response calculation<br />

The specifics for such an acoustic calculations are<br />

3.2.1 Frequency bandwidth is large<br />

The frequency bandwidth for this transducers is very high . Fig. 10<br />

• The frequency bandwidth covers <strong>the</strong> whole<br />

audio bandwidth <strong>from</strong> 20 Hz to 20 kHz.<br />

• Measured frequency range for <strong>the</strong> devices<br />

is 0 Hz up to 30 kHz.<br />

3.2.2 multi physic coupling<br />

SPL<br />

20 Hz<br />

8 kHz<br />

30 000 Hz<br />

Figure 10: frequency response bandwidth<br />

f [Hz]<br />

There is a series <strong>of</strong> energy conversion <strong>from</strong> electrical signal to <strong>the</strong> final sound pressure wave in air.<br />

Fig. 10<br />

Sound Pressure Level SPL<br />

• <strong>the</strong> fluid-structure coupling<br />

<strong>the</strong> mechanical vibration creates an<br />

acoustic pressure wave.<br />

• <strong>the</strong> electrodynamic coupling<br />

electrical signal is converted to<br />

mechanical vibration <strong>of</strong> <strong>the</strong> structure.<br />

3.2.3 number <strong>of</strong> DOF´s is extremely high<br />

Figure 11: multi physic coupling<br />

Lorenz Force F<br />

<strong>the</strong> number <strong>of</strong> DOF´s becomes under certain conditions very high dependent on dimension and upper<br />

frequency limit Fig.12a,b,c<br />

• <strong>the</strong> main contribution due to air alements<br />

• size <strong>of</strong> <strong>the</strong> elements is defined by upper bandwidth limit<br />

Abbildung 12a:<br />

structure<br />

Elements : 906<br />

DOF´s : 1812<br />

Calc.time (25 frequ.) :<br />

Figure 12b:<br />

Structur+air space 0.375 m<br />

Elements : 14040<br />

DOF´s : 14946<br />

Calc.time (25 frequ.) : 7 min<br />

Figure 12c:<br />

Structur+air space 0.375 m<br />

Elements : 74646<br />

DOF´s : 75552<br />

Calc.time (25 frequ.) : -3 Std.<br />

20th CAD-FEM <strong>Use</strong>rs’ Meeting 2002 October 9-11, 2002<br />

International Congress Kultur- und Congress Centrum Graf-Zeppelin-Haus,<br />

on FEM Technology Friedrichshafen, Lake Constance, Germany<br />

5


3.2.4 difference <strong>of</strong> 2D and 3D calculation (radiating modes)<br />

A 2D calculation is sufficient because only radial modes are contributing to <strong>the</strong> radiation. Only in<br />

special cases a 3D calculation is necessary (Oval transducers,<br />

asymmetric overlap <strong>of</strong> glued parts,etc,). High amount <strong>of</strong> elements<br />

and thus an extended calculation time is achieved by solving a<br />

3D Problem and keeping <strong>the</strong> resolution at <strong>the</strong> measurement point<br />

<strong>the</strong> same as in <strong>the</strong> 2D axisymetric case. Fig. 13a,b,c<br />

Figure 13a:<br />

Structur+air space 0.375 m<br />

Elements : 14040<br />

DOF´s : 14946<br />

Calc.time (25 frequ.) : 7 min<br />

3.2.5 material parameters are frequency dependent<br />

Figure 13b:<br />

Structur+air space 0.375 m<br />

Elements : 560.000<br />

DOF´s : 560.000<br />

Calc.time (25 frequ.) : -8 days<br />

Figure 13c:<br />

Structur+air space 0.375 m<br />

Elements : 74646<br />

DOF´s : 75552<br />

Calc.time (25 frequ.) : -3 hours.<br />

Material Parameters for most materials (paper,polymers, glues) are frequency dependent over this<br />

extended frequency range.Measurements have been<br />

done on this area and show a clear dependency on<br />

E-Module<br />

frequency and temperature over <strong>the</strong> audio frequency<br />

range.<br />

5 °C<br />

• Measurements on Polyvinylchlorid results <strong>from</strong><br />

Becker and Oberst are shown in Fig. 14. [1] [2]<br />

• The frequency range is <strong>from</strong> 10 Hz to 10 kHz<br />

• The temperature range <strong>from</strong> 5 °C to 120 °C<br />

• The Module is changing <strong>from</strong> 1.0e7 Pa to 5.0e9 Pa.<br />

3.2.6 to measure frequency parameter<br />

120 °C<br />

Figure 14: E-Module <strong>of</strong> Polyvinylchlorid<br />

Most available material parameter measurement tools are only for static measurements. The<br />

consequence is for <strong>the</strong> determination <strong>of</strong> material parameters values at higher frequencies <strong>the</strong>re is a<br />

need to relay on correlation with result values ( frequency response, etc).<br />

• measurement technique frequency range temperature range<br />

• Push/Pull measurement 0Hz -40-300 °C<br />

• Rotary-vibrating measurement 2Hz -40-300 °C<br />

( Dreh/Schwingversuch )<br />

• DMTA Dynamic Mechanical Thermal Analysis 1 - 200Hz -40-300 °C<br />

• Modal Analysis measurement (by Laser) 1Hz - 5kHz -40-300 °C<br />

Modal Correlation S<strong>of</strong>tware (LMS,IDEAS)<br />

• Special Rotary-Vibration measurement 1Hz – 5 kHz -40-300 °C<br />

( Mastering Technique ) 1Hz – 10 kHz -40-300 °C<br />

20th CAD-FEM <strong>Use</strong>rs’ Meeting 2002 October 9-11, 2002<br />

International Congress Kultur- und Congress Centrum Graf-Zeppelin-Haus,<br />

on FEM Technology Friedrichshafen, Lake Constance, Germany<br />

6


3.2.7 Material parameter correlation<br />

For <strong>the</strong> entire frequency range correlation’s with result values like frequency response are <strong>the</strong> only<br />

way to determine material parameter values. In <strong>the</strong> case <strong>of</strong> <strong>the</strong> frequency response <strong>the</strong> correlation is<br />

done reproducing <strong>the</strong> special characteristics <strong>of</strong> <strong>the</strong> response curve. If <strong>the</strong>re are none <strong>the</strong>n samples are<br />

created with different configuration (shapes, wave guide, etc ) or reduced amount <strong>of</strong> materials.<br />

There are certain categories ( force-excursion, resonances, response curve) used for correlation<br />

• correlation measurement component frequency range<br />

• static force-excursion measurement surround/spider 0 Hz<br />

• static force-3D deformation measurement cone 0 Hz<br />

• Basic resonance measurement surround/spider 50 Hz – 2 kHz<br />

• surround resonance Measurement surround 1 kHz<br />

• cone resonance measurement cone 15 kHz<br />

• Frequency response <strong>of</strong> SPL (Topology) loudspeaker 10 Hz – 30 kHz<br />

• consistent multi response correlation loudspeaker 10 Hz – 30 kHz<br />

• general sensitivity analysis<br />

• special samples with reduced amount <strong>of</strong> materials<br />

3.2.8 large amount <strong>of</strong> materials<br />

The loudspeaker consists <strong>of</strong> a large amount <strong>of</strong> materials which are connected to each o<strong>the</strong>r. Mostly<br />

These parts are glued but <strong>the</strong>re is also <strong>the</strong> possibility <strong>of</strong> clamping. They all interact creating <strong>the</strong><br />

frequency response curve.<br />

So only those parameter formulations (damping models) are available which can be assigned to a lot<br />

<strong>of</strong> materials (material dependent damping ß i).<br />

• minimum 2 materials<br />

( membrane, glue)<br />

• maximum up to 14 materials<br />

3.2.9 restriction on material models to be used (due to large amount <strong>of</strong> materials)<br />

Only those parameter formulations are available in <strong>ANSYS</strong>/MECHANICAL which can be assigned to a<br />

lot <strong>of</strong> materials ( material dependent damping ß i )<br />

• large amount <strong>of</strong> materials<br />

• only certain damping mechanisms<br />

can be used (material dependent<br />

ß damping and element damping)<br />

• parameter <strong>of</strong> <strong>the</strong> damping model<br />

is used as adjustment parameter Figure 16: damping mechanisms in <strong>ANSYS</strong><br />

in an energetic view.<br />

Global mass damping<br />

element damping<br />

3.2.10 MACRO in APDL<br />

Global structural damping Global constant damping<br />

Material depending structural damping<br />

To incorporate <strong>the</strong>se aspects into <strong>the</strong> calculation and using frequency dependent material parameters<br />

an external Macro in APDL is created for <strong>the</strong>se calculations.<br />

This external Macro in APDL allows to formulate <strong>the</strong> material parameters as frequency dependent<br />

functions as well as to use simply material dependent constant damping.<br />

Iteration process <strong>of</strong> external macro (Ansys APDL language)<br />

allows for<br />

- application <strong>of</strong> material parameter functions (redefining and remeshing)<br />

- constant damping ratio for different materials<br />

- to choose linear or logarithmic frequency spacing<br />

20th CAD-FEM <strong>Use</strong>rs’ Meeting 2002 October 9-11, 2002<br />

International Congress Kultur- und Congress Centrum Graf-Zeppelin-Haus,<br />

on FEM Technology Friedrichshafen, Lake Constance, Germany<br />

7


4. Examples<br />

We want to go into details showing 2 examples <strong>of</strong> determining material parameters by correlation.<br />

4.1. material parameter correlation <strong>of</strong> cone membrane<br />

In this example <strong>the</strong> frequency dependent material parameter <strong>of</strong> different paper cones is determined by<br />

use <strong>of</strong> correlation.<br />

• Theoretical response curve known <strong>from</strong><br />

measurements. [1] [2]<br />

( see point 4.1.1 )<br />

• in <strong>the</strong> static case correlation with force-excursion<br />

measurements are performed (3D deformation <strong>of</strong><br />

cone )<br />

( see point 4.1.2 )<br />

• In <strong>the</strong> upper frequency range 3kHz to 10 kHz<br />

resonances <strong>of</strong> <strong>the</strong> cone are used for correlation.<br />

( in this frequency range <strong>the</strong> cone does not vibrate<br />

as a rigid poston – cone break up region )<br />

( see point 4.1.3 )<br />

4.1.1 <strong>the</strong>oretical response curve<br />

Theoretic response curve <strong>from</strong> measurements<br />

by Becker and Oberst on Polyvinylchlorid [1] [2]<br />

Fig. 17<br />

The absolute values <strong>of</strong> <strong>the</strong> E-module function depends<br />

on <strong>the</strong> s<strong>of</strong>tening temperature <strong>of</strong> <strong>the</strong> material used.<br />

In principle <strong>the</strong>re is a continuos raising function with<br />

temperature.<br />

4.1.2 static case force-excursion correlation<br />

2.<br />

Cone res. 3.<br />

1.<br />

Force-excurs. <strong>the</strong>ory<br />

Figure 16: frequ.depending E <strong>of</strong> paper cone<br />

Abbildung 17: E-Module Polyvinylchlorid<br />

In <strong>the</strong> static case correlation with force-excursion measurements are performed.(3D deformation <strong>of</strong><br />

cone Fig. 18a,b,c,d<br />

• in <strong>the</strong> static case <strong>the</strong> Youngs modulus E is determined by correlation with force-excursion<br />

measurements<br />

• this correlation is a replacement for static push/pull measurement done with special tailored, flat<br />

samples.<br />

• <strong>the</strong> advantage <strong>of</strong> <strong>the</strong> correlation is that <strong>the</strong> initial sample is used.<br />

Figure 18a:<br />

measurement<br />

Figure 18b:<br />

modelling<br />

Figure 18c:<br />

simulation<br />

Figure 18d: correlation<br />

20th CAD-FEM <strong>Use</strong>rs’ Meeting 2002 October 9-11, 2002<br />

International Congress Kultur- und Congress Centrum Graf-Zeppelin-Haus,<br />

on FEM Technology Friedrichshafen, Lake Constance, Germany<br />

8


4.1.3 dynamic case cone resonance correlation<br />

The definition <strong>of</strong> <strong>the</strong> cone material parameter in <strong>the</strong> dynamic case at higher frequencies ( 3 kHz to 10<br />

kHz )is done by correlation with cone resonances. For this case a special sample is created with<br />

removed surround and <strong>the</strong> dust cup replaced by a massive part. So <strong>the</strong> relevant materials remained<br />

are <strong>the</strong> cone and <strong>the</strong> glue to <strong>the</strong> voice coil. In this upper frequency range <strong>the</strong> cone does not vibrate as<br />

a rigid piston. So a multitude <strong>of</strong> resonances are created ( cone break up modes ). Fig. 19a,b<br />

No surround.<br />

Figure 19a:<br />

special sample loudspeaker<br />

(with no surround )<br />

4.1.3 comparison with DMTA measurement<br />

Figure 19b: cone resonances<br />

Comparison <strong>of</strong> <strong>the</strong> correlation results(Fig. 20a) <strong>of</strong> two cone paper materials with DMTA measurements<br />

Fig. 20b show a clear correspondence <strong>of</strong> <strong>the</strong> static values (0Hz or 1Hz) at a temperature <strong>of</strong> 27 °C.<br />

Also <strong>the</strong> tendency <strong>of</strong> <strong>the</strong> frequency dependency towards higher frequency is represented in a<br />

corresponding behaviour towards low temperatures in <strong>the</strong> DMTA measurement.<br />

1.01 GPa<br />

0.56 GPa<br />

Figure 20a:<br />

Determine E-Modulus by correlation<br />

2.9 GPa 2.2 GPa<br />

4.2. dome tweeter frequency response calculation<br />

0.95 GPa<br />

0.54 GPa<br />

Figure 20b:<br />

DMTA measurement <strong>of</strong> E-modulus at 1Hz<br />

Dome Tweeter loudspeaker for high frequency reproduction require a very exact modelling due to <strong>the</strong><br />

fact that <strong>the</strong> sound pressure frequency response SPL shows high sensitivity concerning a variation <strong>of</strong><br />

geometric data.<br />

Two procedures are possible ei<strong>the</strong>r to use one frequency response and detect <strong>the</strong> frequency range<br />

where <strong>the</strong> specific parameter acts upon or to use multiple sample type results using <strong>the</strong> same<br />

materials (consistent set type <strong>of</strong> parameter).<br />

4.1.3 Single frequency response topology<br />

sensitivity analysis <strong>of</strong> material parameters<br />

on <strong>the</strong> frequency response. Fig. 21a,b<br />

Figure 11a: dome<br />

Figure 21b: single frequency<br />

20th CAD-FEM <strong>Use</strong>rs’ Meeting 2002 October 9-11, 2002<br />

International Congress Kultur- und Congress Centrum Graf-Zeppelin-Haus,<br />

on FEM Technology Friedrichshafen, Lake Constance, Germany<br />

9


4.2.2 multi frequency response topology<br />

Sensitivity analysis <strong>of</strong> material parameter on a multitude <strong>of</strong> frequency responses <strong>of</strong> different sample<br />

types using <strong>the</strong> same materials. The changed geometry shapes <strong>of</strong> <strong>the</strong> dome membrane and <strong>the</strong><br />

changed acoustic wave guide in front <strong>of</strong> <strong>the</strong> transducer create a completely different frequency<br />

response behaviour. The effects <strong>of</strong> <strong>the</strong> material parameters on those responses is also different.These<br />

different target response curves allow to identify <strong>the</strong> correct set <strong>of</strong> parameters<br />

Tweeter with wave guide 1. Fig. 22a,b<br />

Tweeter with wave guide 2. Fig. 23a,b<br />

Tweeter without wave guide. Fig. 24a,b<br />

Conclusions<br />

Figure 22a:<br />

Figure 23a:<br />

Figure 24a:<br />

Figure 22b:<br />

Figure 23b:<br />

Figure 24b:<br />

The Problems arising with <strong>the</strong> design <strong>of</strong> Loudspeakers can be solved with Ansys FEM simulations.<br />

Also <strong>the</strong> specific formulations <strong>of</strong> frequency dependent material parameters can be implemented in<br />

Ansys to adapt to <strong>the</strong> requirements <strong>of</strong> loudspeaker Simulations.<br />

The definition and correlation <strong>of</strong> material parameters is <strong>the</strong> most time consuming part <strong>of</strong> <strong>the</strong><br />

simulations. Once <strong>the</strong>se parameters are defined <strong>the</strong> performance <strong>of</strong> <strong>the</strong> loudspeaker, <strong>the</strong> geometric<br />

design, <strong>the</strong> material choice, tolerance considerations, <strong>the</strong> weight and <strong>the</strong> related costs could be<br />

optimised (minimised).<br />

This is a much more time saving and cost optimised procedure <strong>of</strong> adoption to <strong>the</strong> required<br />

performance than to build a huge amount <strong>of</strong> samples.<br />

References<br />

[1] Becker G.W., Oberst H..: "Frequency dependent material parameter <strong>of</strong> Polyvinylchlorid”,Kolloid<br />

Zeitschrift 148, 1956, pp. 6<br />

[2] Cremer L., Heckel M.: "Körperschall", Springer Verlag, 1996, pp 224<br />

20th CAD-FEM <strong>Use</strong>rs’ Meeting 2002 October 9-11, 2002<br />

International Congress Kultur- und Congress Centrum Graf-Zeppelin-Haus,<br />

on FEM Technology Friedrichshafen, Lake Constance, Germany<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!