11.07.2015 Views

Targeting-Adipose-Tissue-Lipid-Metabolism-to-Improve-Glucose-Metabolism-in-Cardiometabolic-Disease

Targeting-Adipose-Tissue-Lipid-Metabolism-to-Improve-Glucose-Metabolism-in-Cardiometabolic-Disease

Targeting-Adipose-Tissue-Lipid-Metabolism-to-Improve-Glucose-Metabolism-in-Cardiometabolic-Disease

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Recently, we have shown that dietary polyphenols,<strong>in</strong>clud<strong>in</strong>g resveratrol and epigallocatech<strong>in</strong>-3-gallate, found naturally <strong>in</strong> red w<strong>in</strong>e and greentea, have CR-like effects <strong>in</strong> overweight humans. 105,106Interest<strong>in</strong>gly, our microarray data showed thatresveratrol supplementation affected the expressionof the master of lipophagy TFEB and improvedadipose tissue function <strong>in</strong> humans. 105,107 However,it needs <strong>to</strong> be determ<strong>in</strong>ed whether lipophagymediatedlipid catabolism <strong>in</strong> adipose tissue isdirectly <strong>in</strong>volved <strong>in</strong> the potential beneficialmetabolic effects of polyphenols. F<strong>in</strong>ally, it hasbeen shown that au<strong>to</strong>phagy might regulate lipidaccumulation by controll<strong>in</strong>g the balance betweenwhite and brown adipose tissue mass, whichfavours lipid oxidation and <strong>in</strong>creases systemic<strong>in</strong>sul<strong>in</strong> sensitivity by limit<strong>in</strong>g FFA efflux. 27,29,108Overall, we propose that the success of modulat<strong>in</strong>glipophagy, as a potential strategy <strong>in</strong> themanagement of obesity, is largely dependent onthe f<strong>in</strong>e tun<strong>in</strong>g of all three steps <strong>in</strong> this pathway,namely au<strong>to</strong>phagosome formation, lysososmalbreakdown, and f<strong>in</strong>al mi<strong>to</strong>chondrial oxidation ofthe lipid cargo (Figure 2).CONCLUSION AND PERSPECTIVEResearch over the last decade has substantially<strong>in</strong>creased our understand<strong>in</strong>g, but also addedcomplexity <strong>to</strong> the regulation of adipose tissuelipid metabolism <strong>in</strong> cMet diseases. Increased basaland desensitisation of catecholam<strong>in</strong>e and NPstimulatedadipose tissue lipolysis, due <strong>to</strong>downregulation of the expression of the keylipolytic enzymes, is a hallmark of human obesity(Figure 2). However, there is no straightforwardrelationship between fat mass, systemic FFA flux,and the development of <strong>in</strong>sul<strong>in</strong> resistance andcMet diseases. Nevertheless, the <strong>in</strong>terest <strong>in</strong> antilipolyticdrugs, which have been used for decadesas a lipid-lower<strong>in</strong>g agent, recently rega<strong>in</strong>ed <strong>in</strong>terestby the development of selective HSL and ATGL<strong>in</strong>hibi<strong>to</strong>rs. Partial <strong>in</strong>hibition of HSL shows promis<strong>in</strong>geffects, prevent<strong>in</strong>g extra weight ga<strong>in</strong> by reshap<strong>in</strong>gFFA fluxes and improv<strong>in</strong>g systemic glucosemetabolism via stimulation of adipose tissue DNL. 84However, long-term human cl<strong>in</strong>ical trials us<strong>in</strong>gselective ATGL and HSL <strong>in</strong>hibi<strong>to</strong>rs are lack<strong>in</strong>g.In contrast <strong>to</strong> this anti-lipolytic approach, the effec<strong>to</strong>f <strong>in</strong>creas<strong>in</strong>g NP and catecholam<strong>in</strong>e sensitivity/signall<strong>in</strong>g, us<strong>in</strong>g NEP or PDE <strong>in</strong>hibi<strong>to</strong>rs, on lipidmetabolism needs <strong>to</strong> be <strong>in</strong>vestigated <strong>in</strong> more detail.Importantly, exaggerated <strong>in</strong>hibition or activationof ATL may result <strong>in</strong> excessive weight ga<strong>in</strong> or thedevelopment of cachexia when tissue FFA uptake,esterification, and oxidation are not adaptedaccord<strong>in</strong>gly. In addition, the alternative pathwayfor adipocyte lipid breakdown, lipophagy mightbe an <strong>in</strong>terest<strong>in</strong>g target for treatment. Increasedau<strong>to</strong>phagy, as observed <strong>in</strong> obese adipose tissue,might be a compensa<strong>to</strong>ry mechanism for animpaired classical lipolysis, and contribute <strong>to</strong> thedevelopment of systemic <strong>in</strong>sul<strong>in</strong> resistance whenall steps <strong>in</strong> this pathway are not aligned with eachother (Figure 2). Thus, f<strong>in</strong>e-tun<strong>in</strong>g all three steps <strong>in</strong>the au<strong>to</strong>phagy-lysosomal-mi<strong>to</strong>chondrial pathway<strong>in</strong> human adipose tissue may be critical regard<strong>in</strong>gtreatment outcome. For this reason, componentswith dual/multiple action on lipid metabolismmight hold promise for future treatment ofcMet disorders.REFERENCES1. Whitlock G et al. Body-mass <strong>in</strong>dexand cause-specific mortality <strong>in</strong>900,000 adults: collaborative analysesof 57 prospective studies. Lancet.2009;373(9669):1083-96.2. Karastergiou K, Fried SK. Multipleadipose depots <strong>in</strong>crease cardiovascularrisk via local and systemic effects. CurrAtheroscler Rep. 2013;15(10):361.3. Bluher M. Are there still healthy obesepatients? Curr Op<strong>in</strong> Endocr<strong>in</strong>ol DiabetesObes. 2012;19:341-6.4. Thorne A et al. A pilot study of longtermeffects of a novel obesity treatment:omentec<strong>to</strong>my <strong>in</strong> connection withadjustable gastric band<strong>in</strong>g. Int J ObesRelat Metab Disord. 2002;26(2):193-9.5. Lottati M et al. Greater omentec<strong>to</strong>myimproves <strong>in</strong>sul<strong>in</strong> sensitivity <strong>in</strong> nonobesedogs. Obesity (Silver Spr<strong>in</strong>g).2009;17(4):674-80.6. Csendes A et al. A prospectiverandomized study compar<strong>in</strong>g patientswith morbid obesity submitted <strong>to</strong>laparo<strong>to</strong>mic gastric bypass with or withou<strong>to</strong>mentec<strong>to</strong>my. Obes Surg. 2009;19:490-4.7. Kle<strong>in</strong> S et al. Absence of an effect ofliposuction on <strong>in</strong>sul<strong>in</strong> action and riskfac<strong>to</strong>rs for coronary heart disease. N EnglJ Med. 2004;350(25):2549-57.8. Goossens GH. The role of adiposetissue dysfunction <strong>in</strong> the pathogenesis ofobesity-related <strong>in</strong>sul<strong>in</strong> resistance. PhysiolBehav. 2008;94:206-18.9. Hellmer J et al. Mechanisms fordifferences <strong>in</strong> lipolysis between humansubcutaneous and omental fat cells. J Cl<strong>in</strong>Endocr<strong>in</strong>ol Metab. 1992;75:15-20.10. Arner P et al. Beta-adrenocep<strong>to</strong>rexpression <strong>in</strong> human fat cells from differentregions. J Cl<strong>in</strong> Invest. 1990;86:1595-600.11. Imbeault P et al. Reduced alpha(2)-adrenergic sensitivity of subcutaneousabdom<strong>in</strong>al adipocytes as a modula<strong>to</strong>rof fast<strong>in</strong>g and postprandial triglyceridelevels <strong>in</strong> men. J <strong>Lipid</strong> Res. 2000;41:1367-75.DIABETES • Oc<strong>to</strong>ber 2014 EMJ EUROPEAN MEDICAL JOURNAL 79


12. Dicker A et al. Primary differences <strong>in</strong>lipolysis between human omental andsubcutaneous adipose tissue observedus<strong>in</strong>g <strong>in</strong> vitro differentiated adipocytes.Horm Metab Res. 2009;41:350-5.13. Sengenes C et al. Natriuretic peptides:A new lipolytic pathway <strong>in</strong> humanadipocytes. FASEB J. 2000;14:1345-51.14. Berl<strong>in</strong> I et al. Terta<strong>to</strong>lol potentiatesexercise-<strong>in</strong>duced atrial natriureticpeptide release by <strong>in</strong>creas<strong>in</strong>g atrialdiameter <strong>in</strong> healthy subjects. Cardiology.1993;83:Suppl 1:16-24.15. Berl<strong>in</strong> I et al. Beta-adrenocep<strong>to</strong>rblockade potentiates acute exercise<strong>in</strong>ducedrelease of atrial natriureticpeptide by <strong>in</strong>creas<strong>in</strong>g atrial diameter <strong>in</strong>normotensive healthy subjects. Eur J Cl<strong>in</strong>Pharmacol. 1993;44(2):127-33.16. Pivovarova O et al. Insul<strong>in</strong> up-regulatesnatriuretic peptide clearance recep<strong>to</strong>rexpression <strong>in</strong> the subcutaneous fat depot<strong>in</strong> obese subjects: a miss<strong>in</strong>g l<strong>in</strong>k betweenCVD risk and obesity? J Cl<strong>in</strong> Endocr<strong>in</strong>olMetab. 2012;97(5):731-9.17. Moro C et al. Functional andpharmacological characterization of thenatriuretic peptide-dependent lipolyticpathway <strong>in</strong> human fat cells. J PharmacolExp Ther. 2004;308(3):984-92.18. Moro C et al. Differential regulation ofatrial natriuretic peptide- and adrenergicrecep<strong>to</strong>r-dependent lipolytic pathways<strong>in</strong> human adipose tissue. <strong>Metabolism</strong>.2005;54(1):122-31.19. Abate N et al. Relationships ofgeneralized and regional adiposity <strong>to</strong><strong>in</strong>sul<strong>in</strong> sensitivity <strong>in</strong> men. J Cl<strong>in</strong> Invest.1995;96(1):88-98.20. Frayn KN. Visceral fat and <strong>in</strong>sul<strong>in</strong>resistance--causative or correlative? Br JNutr. 2000;83:Suppl 1:S71-7.21. Salans LB et al. Studies of humanadipose tissue. <strong>Adipose</strong> cell size andnumber <strong>in</strong> nonobese and obese patients.J Cl<strong>in</strong> Invest. 1973;52(4):929-41.22. Aberde<strong>in</strong> N et al. Sodium acetatedecreases phosphorylation of hormonesensitive lipase <strong>in</strong> isoproterenolstimulated3T3-L1 mature adipocytes.Adipocyte. 2014;3:121-5.23. Ge H et al. Activation of G prote<strong>in</strong>coupledrecep<strong>to</strong>r 43 <strong>in</strong> adipocytes leads<strong>to</strong> <strong>in</strong>hibition of lipolysis and suppressionof plasma free fatty acids. Endocr<strong>in</strong>ology.2008;149(9):4519-26.24. Ahmed K et al. An au<strong>to</strong>cr<strong>in</strong>e lactateloop mediates <strong>in</strong>sul<strong>in</strong>-dependent<strong>in</strong>hibition of lipolysis through GPR81. CellMetab. 2010;11(4):311-9.25. Taggart AK et al. (D)-betahydroxybutyrate<strong>in</strong>hibits adipocytelipolysis via the nicot<strong>in</strong>ic acid recep<strong>to</strong>rPUMA-G. J Biol Chem. 2005;280:26649-52.26. Goossens GH, Blaak EE. <strong>Adipose</strong>tissue oxygen tension: Implications forchronic metabolic and <strong>in</strong>flamma<strong>to</strong>rydiseases. Curr Op<strong>in</strong> Cl<strong>in</strong> Nutr Metab Care.2012;15:539-46.27. Zhang Y et al. <strong>Adipose</strong>-specific deletionof au<strong>to</strong>phagy-related gene 7 (atg7)<strong>in</strong> mice reveals a role <strong>in</strong> adipogenesis.Proc Natl Acad Sci U.S.A. 2009;106(47):19860-5.28. Lizaso A et al. Beta-adrenergicrecep<strong>to</strong>r-stimulated lipolysis requiresthe RAB7-mediated au<strong>to</strong>lysosomal lipiddegradation. Au<strong>to</strong>phagy. 2013;9(8):1228-43.29. S<strong>in</strong>gh R et al. Au<strong>to</strong>phagy regulatesadipose mass and differentiation <strong>in</strong> mice.J Cl<strong>in</strong> Invest. 2009;119(11):3329-39.30. Settembre C et al. TFEB controlscellular lipid metabolism through astarvation-<strong>in</strong>duced au<strong>to</strong>regula<strong>to</strong>ry loop.Nat Cell Biol. 2013;15(6):647-58.31. Karpe F et al. Fatty acids, obesity, and<strong>in</strong>sul<strong>in</strong> resistance: time for a reevaluation.Diabetes. 2011;60(10):2441-9.32. McQuaid SE et al. Downregulationof adipose tissue fatty acid traffick<strong>in</strong>g<strong>in</strong> obesity: a driver for ec<strong>to</strong>pic fatdeposition? Diabetes. 2011;60(1):47-55.33. Jocken JW et al. Effect of betaadrenergicstimulation on whole-bodyand abdom<strong>in</strong>al subcutaneous adiposetissue lipolysis <strong>in</strong> lean and obese men.Diabe<strong>to</strong>logia. 2008;51(2):320-7.34. Jocken JW et al. <strong>Adipose</strong> triglyceridelipase and hormone-sensitive lipaseprote<strong>in</strong> expression is decreased <strong>in</strong> theobese <strong>in</strong>sul<strong>in</strong>-resistant state. J Cl<strong>in</strong>Endocr<strong>in</strong>ol Metab. 2007;92(6):2292-9.35. Lang<strong>in</strong> D et al. Adipocyte lipasesand defect of lipolysis <strong>in</strong> human obesity.Diabetes. 2005;54:3190-7.36. Fisher RM et al. Fatty acid b<strong>in</strong>d<strong>in</strong>gprote<strong>in</strong> expression <strong>in</strong> different humanadipose tissue depots <strong>in</strong> relation <strong>to</strong> ratesof lipolysis and <strong>in</strong>sul<strong>in</strong> concentration<strong>in</strong> obese <strong>in</strong>dividuals. Mol Cell Biochem.2002;239(1-2):95-100.37. Hauner H et al. Effects of tumournecrosis fac<strong>to</strong>r alpha (TNF alpha) onglucose transport and lipid metabolismof newly-differentiated human fat cells<strong>in</strong> cell culture. Diabe<strong>to</strong>logia. 1995;38(7):764-71.38. Ryden M et al. Mapp<strong>in</strong>g of earlysignal<strong>in</strong>g events <strong>in</strong> tumor necrosis fac<strong>to</strong>ralpha-mediated lipolysis <strong>in</strong> human fatcells. J Biol Chem. 2002;277:1085-91.39. Jocken JW et al. Insul<strong>in</strong>-mediatedsuppression of lipolysis <strong>in</strong> adiposetissue and skeletal muscle of obesetype 2 diabetic men and men withnormal glucose <strong>to</strong>lerance. Diabe<strong>to</strong>logia.2013;56:2255-65.40. Nellemann B et al. Impaired <strong>in</strong>sul<strong>in</strong>mediatedantilipolysis and lactaterelease <strong>in</strong> adipose tissue of upper-bodyobese women. Obesity (Silver Spr<strong>in</strong>g).2012;20(1):57-64.41. Ormsbee MJ et al. Regulation of fatmetabolism dur<strong>in</strong>g resistance exercise <strong>in</strong>sedentary lean and obese men. J ApplPhysiol. 2009;106(5):1529-37.42. Coppack SW et al. <strong>Adipose</strong> tissuemetabolism <strong>in</strong> obesity: lipase action<strong>in</strong> vivo before and after a mixed meal.<strong>Metabolism</strong>. 1992;41(3):264-72.43. Guo Z et al. Regional postprandialfatty acid metabolism <strong>in</strong> different obesityphenotypes. Diabetes. 1999;48(8):1586-92.44. Ryden M et al. Comparative studiesof the role of hormone-sensitive lipaseand adipose triglyceride lipase <strong>in</strong> humanfat cell lipolysis. Am J Physiol Endocr<strong>in</strong>olMetab. 2007;292:E1847-55.45. Blaak EE et al. Beta-adrenergicstimulation of energy expenditure andforearm skeletal muscle metabolism<strong>in</strong> lean and obese men. Am J Physiol.1994;267:E306-15.46. Hellstrom L et al. Adipocytelipolysis <strong>in</strong> normal weight subjects withobesity among first-degree relatives.Diabe<strong>to</strong>logia. 1996;39:921-8.47. Arner P et al. Dynamics of humanadipose lipid turnover <strong>in</strong> health andmetabolic disease. Nature. 2011;478:110-3.48. Ryden M et al. Adipocyte triglycerideturnover and lipolysis <strong>in</strong> lean andoverweight subjects. J <strong>Lipid</strong> Res.2013;54:2909-13.49. Jocken JW, Blaak EE. Catecholam<strong>in</strong>e<strong>in</strong>ducedlipolysis <strong>in</strong> adipose tissue andskeletal muscle <strong>in</strong> obesity. Physiol Behav.2008;94:219-30.50. Andersson DP et al. Visceral fat celllipolysis and cardiovascular risk fac<strong>to</strong>rs<strong>in</strong> obesity. Horm Metab Res. 2011;43(11):809-15.51. Bjorn<strong>to</strong>rp P. “Portal” adipose tissueas a genera<strong>to</strong>r of risk fac<strong>to</strong>rs forcardiovascular disease and diabetes.Arteriosclerosis. 1990;10(4):493-6.52. Rytka JM et al. The portal theorysupported by venous dra<strong>in</strong>ageselectivefat transplantation. Diabetes.2011;60(1):56-63.53. Nielsen S et al. Splanchnic lipolysis<strong>in</strong> human obesity. J Cl<strong>in</strong> Invest.2004;113:1582-8.54. Jensen MD et al. Splanchnic free fattyacid k<strong>in</strong>etics. Am J Physiol Endocr<strong>in</strong>olMetab. 2003;284(6):1140-8.55. Wang TJ et al. Impact of obesityon plasma natriuretic peptide levels.Circulation. 2004;109(5):594-600.56. Moro C, Lafontan M. Natriureticpeptides and cGMP signal<strong>in</strong>g control ofenergy homeostasis. Am J Physiol HeartCirc Physiol. 2013;304(3):358-68.57. Dessi-Fulgheri P et al. Plasma atrial80DIABETES • Oc<strong>to</strong>ber 2014EMJ EUROPEAN MEDICAL JOURNAL


natriuretic peptide and natriureticpeptide recep<strong>to</strong>r gene expression <strong>in</strong>adipose tissue of normotensive andhypertensive obese patients. J Hypertens.1997;15(12):1695-9.58. Birkenfeld AL et al. Metabolic actionscould confound advantageous effectsof comb<strong>in</strong>ed angiotens<strong>in</strong> ii recep<strong>to</strong>rand neprilys<strong>in</strong> <strong>in</strong>hibition. Hypertension.2011;57:e4-559. Szabo T et al. Increased catabolicactivity <strong>in</strong> adipose tissue of patients withchronic heart failure. Eur J Heart Fail.2013;15:1131-7.60. Schulze PC. Myocardial lipidaccumulation and lipo<strong>to</strong>xicity <strong>in</strong> heartfailure. J <strong>Lipid</strong> Res. 2009;50(11):2137-8.61. Kovsan J et al. Altered au<strong>to</strong>phagy <strong>in</strong>human adipose tissues <strong>in</strong> obesity. J Cl<strong>in</strong>Endocr<strong>in</strong>ol Metab. 2011;96:E268-77.62. Jansen HJ et al. Au<strong>to</strong>phagy activityis up-regulated <strong>in</strong> adipose tissue ofobese <strong>in</strong>dividuals and modulatespro<strong>in</strong>flamma<strong>to</strong>ry cy<strong>to</strong>k<strong>in</strong>e expression.Endocr<strong>in</strong>ology. 2012;153(12):5866-74.63. Öst A et al. Attenuated mTORsignal<strong>in</strong>g and enhanced au<strong>to</strong>phagy <strong>in</strong>adipocytes from obese patients with type2 diabetes. Mol Med. 2010;16(7-8):235-46.64. Rodriguez A et al. The ghrel<strong>in</strong>O-acyltransferase-ghrel<strong>in</strong> system reducesTNF-alpha-<strong>in</strong>duced apop<strong>to</strong>sis andau<strong>to</strong>phagy <strong>in</strong> human visceral adipocytes.Diabe<strong>to</strong>logia. 2012;55(11):3038-50.65. Nunez CE et al. Defective regulationof adipose tissue au<strong>to</strong>phagy <strong>in</strong> obesity.Int J Obes (Lond). 2013;37(11):1473-80.66. Wu JW et al. Fast<strong>in</strong>g energyhomeostasis <strong>in</strong> mice with adiposedeficiency of desnutr<strong>in</strong>/adiposetriglyceride lipase. Endocr<strong>in</strong>ology.2012;153(5):2198-207.67. Wu JW et al. Deficiency of liveradipose triglyceride lipase <strong>in</strong> mice causesprogressive hepatic stea<strong>to</strong>sis. Hepa<strong>to</strong>logy.2011;54(1):122-32.68. Guenard F et al. Association of LIPAgene polymorphisms with obesity-relatedmetabolic complications among severelyobese patients. Obesity (Silver Spr<strong>in</strong>g).2012;20(10):2075-82.69. Gornicka A et al. Adipocytehypertrophy is associated with lysosomalpermeability both <strong>in</strong> vivo and <strong>in</strong> vitro:role <strong>in</strong> adipose tissue <strong>in</strong>flammation. AmJ Physiol Endocr<strong>in</strong>ol Metab. 2012;303:597-606.70. Speakman JR, Mitchell SE. Caloricrestriction. Mol Aspects Med. 2011;32:159-221.71. Bales CW, Kraus WE. Caloric restriction:implications for human cardiometabolichealth. J Cardiopulm Rehabil Prev.2013;33:201-8.72. den Boer AT et al. Prevention of themetabolic syndrome <strong>in</strong> IGT subjects <strong>in</strong>a lifestyle <strong>in</strong>tervention: results from theSLIM study. Nutr Metab Cardiovasc Dis.2013;23:1147-53.73. Penn L et al. Importance of weight lossma<strong>in</strong>tenance and risk prediction <strong>in</strong> theprevention of type 2 diabetes: analysisof European Diabetes Prevention StudyRCT. PloS One. 2013;8:e57143.74. Lee SH, M<strong>in</strong> KJ. Caloric restriction andits mimetics. BMB Rep. 2013;46:181-7.75. Sun X et al. High free fatty acidslevel related with cardiac dysfunction<strong>in</strong> obese rats. Diabetes Res Cl<strong>in</strong> Pract.2012;95(2):251-9.76. Carlson LA. Inhibition of themobilization of free fatty acids fromadipose tissue. Physiological aspectson the mechanisms for the <strong>in</strong>hibition ofmobilization of FFA from adipose tissue.Ann N Y Acad Sci. 1965;131(1):119-42.77. Ak<strong>to</strong>ries K et al. Nicot<strong>in</strong>ic acid<strong>in</strong>hibits adipocyte adenylate cyclase<strong>in</strong> a hormone--like manner. FEBS Lett.1980;115(1):11-4.78. Karpe F, Frayn KN. The nicot<strong>in</strong>ic acidrecep<strong>to</strong>r--a new mechanism for an olddrug. Lancet. 2004;363:1892-4.79. van Loon LJ et al. Inhibition of adiposetissue lipolysis <strong>in</strong>creases <strong>in</strong>tramuscularlipid use <strong>in</strong> type 2 diabetic patients.Diabe<strong>to</strong>logia. 2005;48(10):2097-107.80. Daniele G et al. Chronic reductionof plasma FFA improves mi<strong>to</strong>chondrialfunction and whole body <strong>in</strong>sul<strong>in</strong> sensitivity<strong>in</strong> obese and type 2 diabetic <strong>in</strong>dividuals.Diabetes. 2013;10:1130.81. Tav<strong>in</strong>tharan S, Kashyap ML. Thebenefits of niac<strong>in</strong> <strong>in</strong> atherosclerosis. CurrAtheroscler Rep. 2001;3(1):74-82.82. Wang M, Fotsch C. Small-moleculecompounds that modulate lipolysis<strong>in</strong> adipose tissue: target<strong>in</strong>g strategiesand molecular classes. Chem Biol.2006;13(10):1019-27.83. Claus TH et al. Specific <strong>in</strong>hibition ofhormone-sensitive lipase improves lipidprofile while reduc<strong>in</strong>g plasma glucose.J Pharmacol Exp Ther. 2005;315(3):1396-402.84. Girousse A et al. Partial <strong>in</strong>hibition ofadipose tissue lipolysis improves glucosemetabolism and <strong>in</strong>sul<strong>in</strong> sensitivitywithout alteration of fat mass. PLoS Biol.2013;11:e1001485.85. Herman MA et al. A novel ChREBPisoform <strong>in</strong> adipose tissue regulatessystemic glucose metabolism. Nature.2012;484(7394):333-8.86. Roberts R et al. Markers of de novolipogenesis <strong>in</strong> adipose tissue: associationswith small adipocytes and <strong>in</strong>sul<strong>in</strong>sensitivity <strong>in</strong> humans. Diabe<strong>to</strong>logia.2009;52(5):882-90.87. Cao H et al. Identification of alipok<strong>in</strong>e, a lipid hormone l<strong>in</strong>k<strong>in</strong>g adiposetissue <strong>to</strong> systemic metabolism. Cell.2008;134(6):933-44.88. Mayer N et al. Development of smallmolecule<strong>in</strong>hibi<strong>to</strong>rs target<strong>in</strong>g adiposetriglyceride lipase. Nat Chem Biol.2013;9:785-7.89. Fernandes J et al. Intravenous acetateelicits a greater free fatty acid rebound <strong>in</strong>normal than hyper<strong>in</strong>sul<strong>in</strong>aemic humans.Eur J Cl<strong>in</strong> Nutr. 2012;66(9):1029-34.90. Threaple<strong>to</strong>n DE et al. Dietary fibre<strong>in</strong>take and risk of cardiovascular disease:systematic review and meta-analysis.BMJ. 2013;347:6879.91. Jenk<strong>in</strong>s DJ et al. Viscous andnonviscous fibres, nonabsorbable and lowglycaemic <strong>in</strong>dex carbohydrates, bloodlipids and coronary heart disease. CurrOp<strong>in</strong> <strong>Lipid</strong>ol. 2000;11(1):49-56.92. Rueda-Clausen CF et al. Newpharmacological approaches for obesitymanagement. Nat Rev Endocr<strong>in</strong>ol.2013;9:467-78.93. Krief S et al. <strong>Tissue</strong> distribution of beta3-adrenergic recep<strong>to</strong>r mRNA <strong>in</strong> man. JCl<strong>in</strong> Invest. 1993;91(1):344-9.94. Berkowitz DE et al. Distribution of beta3-adrenocep<strong>to</strong>r mRNA <strong>in</strong> human tissues.Eur J Pharmacol. 1995;289(2):223-8.95. Mund RA, Frishman WH. Brownadipose tissue thermogenesis: β3-adrenorecep<strong>to</strong>rs as a potential targetfor the treatment of obesity <strong>in</strong> humans.Cardiol Rev. 2013;21(6):265-9.96. van Baak MA et al. Acute effect ofL-796568, a novel beta 3-adrenergicrecep<strong>to</strong>r agonist, on energy expenditure<strong>in</strong> obese men. Cl<strong>in</strong> Pharmacol Ther.2002;71(4):272-9.97. Larsen TM et al. Effect of a 28-dtreatment with L-796568, a novelbeta(3)-adrenergic recep<strong>to</strong>r agonist,on energy expenditure and bodycomposition <strong>in</strong> obese men. Am J Cl<strong>in</strong>Nutr. 2002;76(4):780-8.98. Bordicchia M et al. Cardiac natriureticpeptides act via p38 MAPK <strong>to</strong> <strong>in</strong>duce thebrown fat thermogenic program <strong>in</strong> mouseand human adipocytes. J Cl<strong>in</strong> Invest.2012;122(3):1022-36.99. Engeli S et al. Natriuretic peptidesenhance the oxidative capacity ofhuman skeletal muscle. J Cl<strong>in</strong> Invest.2012;122:4675-9.100. Richards AM et al. Chronic <strong>in</strong>hibitionof endopeptidase 24.11 <strong>in</strong> essentialhypertension: evidence for enhancedatrial natriuretic peptide and angiotens<strong>in</strong>II. J Hypertens. 1993;11(4):407-16.101. Jandeleit-Dahm KA. Dual ace/nep<strong>in</strong>hibi<strong>to</strong>rs - more than play<strong>in</strong>g the acecard. J Hum Hypertens. 2006;20(7):478-81.102. Colombo G et al. Phosphodiesterase5 as target for adipose tissue disorders.Nitric Oxide. 2013;35:186-92.103. De Toni L et al. Effects of typeDIABETES • Oc<strong>to</strong>ber 2014 EMJ EUROPEAN MEDICAL JOURNAL 81


5-phosphodiesterase <strong>in</strong>hibition on energymetabolism and mi<strong>to</strong>chondrial biogenesis<strong>in</strong> human adipose tissue ex vivo. JEndocr<strong>in</strong>ol Invest. 2011;34(10):738-41.104. Moro C et al. Phosphodiesterase-5aand neutral endopeptidase activities <strong>in</strong>human adipocytes do not control atrialnatriuretic peptide-mediated lipolysis. BrJ Pharmacol. 2007;152(7):1102-10.105. Timmers S et al. Calorie restrictionlikeeffects of 30 days of resveratrolsupplementation on energy metabolismand metabolic profile <strong>in</strong> obese humans.Cell Metab. 2011;14(5):612-22.106. Most J et al. Short-termsupplementation with a specificcomb<strong>in</strong>ation of dietary polyphenols<strong>in</strong>creases energy expenditure and alterssubstrate metabolism <strong>in</strong> overweightsubjects. IJO. 2014;38(5):698-706.107. Kon<strong>in</strong>gs E et al. The effects of 30days resveratrol supplementation onadipose tissue morphology and geneexpression patterns <strong>in</strong> obese men. IJO.2014;38(3):470-3.108. Mart<strong>in</strong>ez-Lopez N et al. Au<strong>to</strong>phagy<strong>in</strong> Myf5+ progeni<strong>to</strong>rs regulates energyand glucose homeostasis throughcontrol of brown fat and skeletal muscledevelopment. EMBO Rep. 2013;14(9):795-803.82DIABETES • Oc<strong>to</strong>ber 2014EMJ EUROPEAN MEDICAL JOURNAL

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!