11.07.2015 Views

Pseudo-Anosovs with small entropy and the magic 3-manifold E. Kin ...

Pseudo-Anosovs with small entropy and the magic 3-manifold E. Kin ...

Pseudo-Anosovs with small entropy and the magic 3-manifold E. Kin ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>with</strong> <strong>small</strong> <strong>entropy</strong> <strong>and</strong> <strong>the</strong><strong>magic</strong> 3-<strong>manifold</strong>E. <strong>Kin</strong> ∗ M. TakasawaWorkshop Simplicial Complexes Arising in Low-DimensionalTopology2009.07.02-03


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 2/ 25Mapping class groupsΣ = Σ g,n ; an orientable surface of genus g <strong>with</strong> n puncturesM(Σ); <strong>the</strong> mapping class group on Σ• A classification of mapping classes φ ∈ M(Σ) (Thurston)(1) reducible, (2) periodic, (3) pseudo-Anosov (pA)


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 3/ 25Properties of pseudo-<strong>Anosovs</strong>Fact. (Miller, Thurston)φ ∈ M(Σ) is pA⇐⇒ φ n (c) ≠ c for any essential loop c in Σ <strong>and</strong> for any n > 0⇐⇒ mapping torus T(φ) = Σ × [0, 1]/ (x,0)∼(Φ(x),1) is hyperbolic


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 4/ 25• Fix a hyperbolic metric m on Σ.Fact. Let φ ∈ M(Σ) be pseudo-Anosov.for any essential simple loop c in Σ,∃1 λ = λ(φ) > 1 such thatwhere l m (·) is <strong>the</strong> length of (·).λ = limn→∞ l m(φ n (c)) 1/n ,• λ(φ) > 1 is called <strong>the</strong> dilatation of φ.Question. How do you compute λ = λ(φ)?• Compute <strong>the</strong> transition matrix M (incident matrix) for <strong>the</strong> train track map ofφ. Then <strong>the</strong> largest eigenvalue of M equals λ(φ). (Thurston, Penner, Bestvina-H<strong>and</strong>el....)


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 5/ 25pseudo-Anosov braids• Σ = D n ; an n-punctured disk.• B n : n-braid group• ∃ Γ : B n → M(D n ) a homomorphism.• b ∈ B n is said to be pseudo-Anosov if Γ(b) is a pA mapping class.• For a braid b, one defines <strong>the</strong> braided link b.• mapping torus T(Γ(b)) is homeomorphic to S 3 \ b.bb


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 6/ 25Two invariants of pA1. volume vol(φ) := volume of <strong>the</strong> mapping torus T(φ)2. dilatation λ(φ) or <strong>entropy</strong> ent(φ) = log(λ(φ))Fixing a surface Σ,λ(Σ) := min{λ(φ) | φ ∈ M(Σ)},vol(Σ) := min{vol(φ) | φ ∈ M(Σ)}.• It is hard to compute <strong>the</strong> minimal dilatation <strong>and</strong> minimal volume.


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 7/ 25Qeustion. Are <strong>the</strong>re any relation between <strong>the</strong> two invariants vol(φ) <strong>and</strong>ent(φ)?Yes!Fact. Fix a surface Σ. Then ∃ B = B(Σ) such that ent(φ) ≥ Bvol(φ)for any pA φ ∈ M(Σ).(1) ent(φ) = ||φ|| T .(2) D −1 vol(φ) ≤ ||φ|| W P ≤ D vol(φ), ( ∃ D = D(Σ)) (Brock)(3) C||φ|| T > ||φ|| W P , ( ∃ C = C(Σ)) (Royden)


Magic <strong>manifold</strong>• n-chain link C n<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 8/ 25non-alternating• They are an important examples for <strong>the</strong> study of exceptional Dehn surgery• M <strong>magic</strong> := S 3 \ (3-chain link C 3 )(1) <strong>small</strong>est known volume among ori. 3-<strong>manifold</strong>s having 3 cusps.(2) some <strong>manifold</strong>s having at most 2 cusps <strong>with</strong> <strong>small</strong> volume are obtained fromM <strong>magic</strong> by Dehn fill. (figure 8 knot, whitehead link, whitehead sister link etc)


Families of braids<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 9/ 25• β m,n <strong>and</strong> ̂β m,nm n m n• β m,n is obtained from ̂β m,n by forgetting two str<strong>and</strong>s• <strong>the</strong>se braids are pseudo-Ansovs for all m, n ≥ 1 (Hironaka-K)


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 10/ 254-chain link• L c = L ′ means that S 3 \ L = S 3 \ L ′Lemma 1. For each m, n ≥ 1, we have(1) (braided link of β b m,n ) = c C 4(2) (braided link of β m,n ) is obtained from S 3 \ C 4 by a Dehn filling.Proof. See <strong>the</strong> picture.cc


Dilatation<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 11/ 25Proposition 1 (Takasawa-K).lim λ(β m,n) =m,n→∞lim λ(̂β m,n ) = 1m,n→∞


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 12/ 25• efficient graph map (Bestvina-H<strong>and</strong>el 1994)• transition matrix M = (m i,j )m i,j = ♯ of times that φ(e i ) (image of edge e i ) crosses e j• λ(β m,n ) = λ( b β m,n ) = <strong>the</strong> largest eigenvalue of M


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 13/ 25What’s happened for λ(β m,n ) if m, n go to ∞?You can imagine that dilatation is decreasing as m or n goes to ∞pqpq


• λ(D 3 ) = λ(β 1,1 )<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 14/ 25• λ(D 4 ) = λ(β 2,1 ) = λ(β 1,2 )Question.{β m,n }?No!Can we find braids <strong>with</strong> <strong>the</strong> <strong>small</strong>est dilatations among


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 15/ 25A friend σ m,n of β m,nm nProposition 2 (H-K). σ m,n is pseudo-Anosov iff n ≠ m, m + 1. In case σ m,n ispseudo-Anosov, λ(σ m,n ) < λ(β m,n )Key: pA representative of β m,n has a 1-pronged singularity at ∂D.(train track of β m,n )(n+1)-gon(m+1)-gon


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 16/ 25Bounds on <strong>the</strong> <strong>small</strong>est dilatationLemma 2.(1) λ(σ g−1,g+1 ) = min{λ(σ m,n ) | m + n = 2g}(2) λ(σ g−1,g+1 ) is <strong>the</strong> largest real root oft 2g+1 − 2t g+1 − 2t g + 1.Theorem 1 (H-K 2006). log λ(D 2g+1 ) < log(2 + √ 3)g


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 17/ 25Corollary (H-K 2006, Minakawa 2006).log λ(Σ g,0 ) < log(2 + √ 3)g• Recently, Thiffeault <strong>and</strong> Lanneau determined <strong>the</strong> minimum value of<strong>the</strong> dillatation of pA mapping classes φ ∈ M(Σ g,0 ) for g = 3, 4, 5 <strong>with</strong>orientable invariant foliations. Their examples has <strong>the</strong> <strong>small</strong>er dilatationthan H-K’s examples.


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 18/ 25Magic <strong>manifold</strong> <strong>and</strong> <strong>small</strong> dilatation braidProposition 3 (T-K 2009, Venzke 2008).For each n ≥ 2, S 3 \ σ n−1,n+1 is obtained from M <strong>magic</strong> by a Dehn filling.Theorem 2 (Farb-Leininger-Margalit 2009). There exists a noncompact,hyperbolic 3-<strong>manifold</strong> M such that:∃ Dehn fillings on M giving a sequence of hyperbolic fibered <strong>manifold</strong>s,<strong>with</strong> n i -punctured disk fibers D ni(n i → ∞), <strong>and</strong> <strong>with</strong> monodromyΦ i so that λ(D ni ) = λ(Φ i ).• Thm. 2 does not say which <strong>manifold</strong> satisfies <strong>the</strong> property


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 19/ 25Proposition 3. (restated) For each n ≥ 2, S 3 \ σ n−1,n+1 is obtainedfrom M <strong>magic</strong> by a Dehn filling.Claim 1. σ −11 σ2 2c= Pretzel(2, 2, −4) c = Pretzel(−2, −2, −2) = C 3 .Cx y x y


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 20/ 25• σ n−1,n+1 ∈ B 2n+1 <strong>and</strong> ̂σ = ̂σ n−1,n+1 ∈ B 2n+2n-1 n+1conjugateadd 1 str<strong>and</strong>2n-2Claim 2. ̂σ n−1,n+1 = σ −11 σ2 2 Θk(n) c= σ−11 σ2 2 , where Θ is <strong>the</strong> full twistbraid.


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 21/ 25Question. Are <strong>the</strong>re any braids b o<strong>the</strong>r than ̂σ n−1,n+1 such thatS 3 \ b = M <strong>magic</strong> ?Definition 1 (braid T m,p ).T m,p = (112 · · · m − 1) p−1 112 · · · (m − 2)(m − 1) −1 ∈ B m (i := σ i )• example; T 6,2 <strong>and</strong> T 5,2• If gcd(m − 1, p) ≠ 1, <strong>the</strong>n T m,p is a reducible braid.• By forgetting <strong>the</strong> 1st str<strong>and</strong>, one defines an (m−1)-braid from T ′ m,p.


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 22/ 25Proposition 4. If gcd(m − 1, p) = 1, <strong>the</strong>n S 3 \ T m,p = M <strong>magic</strong> .• T 2k,2 ′ ∼ σ k−2,k ∈ B 2k−1 .• There are still ∞ly many braids b o<strong>the</strong>r than T m,p such that S 3 \ b = M <strong>magic</strong> .• We know that dilatations of <strong>the</strong>se braids are not <strong>small</strong>.


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 23/ 25For n > 0,M n <strong>magic</strong> := {φ ∈ M(Σ 0,n ) | T(φ) is homeomorphic to M <strong>magic</strong> }.Main <strong>the</strong>orem (T-K). (1) For each n ≥ 4, <strong>the</strong> minimal dilatation ofmapping classes φ ∈ M n <strong>magic</strong> is realized by:˛nmapping class2k + 1 (k ≥ 2) T 2k,26 σ 1 σ2σ 2 3 σ 44k + 2 (k ≥ 2) T 4k+1,2k−14 T 3,18k + 4 (k ≥ 1) T 8k+3,2k+18∃ b ∈ B 78k + 8 (k ≥ 1) T 8k+7,2k+1˛˛˛˛˛˛˛˛˛˛˛˛˛˛˛˛˛˛˛(2) The above mapping class realizing <strong>the</strong> minimal dilatation amongM n <strong>magic</strong> is unique up to conjugacy.


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 24/ 25Forgetting braid T ′ m,p of T m,p in Main <strong>the</strong>orem• T 4,1 ′ = β 1,1 ∈ B 3 has <strong>the</strong> minimal dilatation (Matsuoka)• T 5,1 ′ = β 2,1 ∈ B 4 has <strong>the</strong> minimal dilatation (Ko-Los-Song)• T 6,2 ′ ∼ σ 1,3 ∈ B 5 has <strong>the</strong> minimal dilatation (Ham-Song)• T 2k,2 ′ ∼ σ k−2,k ∈ B 2k−1 (H-K).


<strong>Pseudo</strong>-<strong>Anosovs</strong> <strong>and</strong> <strong>the</strong> <strong>magic</strong> <strong>manifold</strong> (2009.07.2) 25/ 25pseudo-<strong>Anosovs</strong> on Σ g,0 <strong>with</strong> <strong>small</strong> dilatationQuestion. Is <strong>the</strong>re any pseudo-Anosov ψ g ∈ M(Σ g,0 ) <strong>with</strong> <strong>small</strong>(est)dilatation such that T(ψ g ) is obtained from M <strong>magic</strong> by a Dehn filling?Yes!Theorem 3 (T-K). For each g ≥ 2, <strong>the</strong>re exists a Dehn filling of M <strong>magic</strong>which gives a hyperbolic fibered <strong>manifold</strong> <strong>with</strong> a closed fiber Σ g,0 of genusg, <strong>and</strong> <strong>with</strong> a monodromy Ψ g : Σ g,0 → Σ g,0 such that λ(Ψ g ) is less thanor equal to <strong>the</strong> largest real root oft 2g+1 − 2t g+1 − 2t g + 1.In particular, in case g = 2, Ψ 2 has <strong>the</strong> <strong>small</strong>est dilatation.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!