11.07.2015 Views

The Kadison-Singer and Paulsen Problems in Finite Frame Theory

The Kadison-Singer and Paulsen Problems in Finite Frame Theory

The Kadison-Singer and Paulsen Problems in Finite Frame Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2 Peter G. Casazza<strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> Problem <strong>and</strong> the <strong>Paulsen</strong> Problem. We warn the readerthat because we are restrict<strong>in</strong>g ourselves to f<strong>in</strong>ite dimensional Hilbert spaces,a significant body of literature on the <strong>in</strong>f<strong>in</strong>ite dimensional versions of theseproblems does not appear here.1.2 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> ProblemFor over 50 years the <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> Problem [36] has defied the best effortsof some of the most talented mathematicians of our time.<strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> Problem 1 (KS) Does every pure state on the (abelian)von Neumann algebra D of bounded diagonal operators on l 2 , the Hilbert spaceof square summable sequences on the <strong>in</strong>tegers, have a unique extension to a(pure) state on B(l 2 ), i.e., the von Neumann algebra of all bounded l<strong>in</strong>earoperators on the Hilbert space l 2 ?A state of a von Neumann algebra R is a l<strong>in</strong>ear functional f on R for whichf(I) = 1 <strong>and</strong> f(T ) ≥ 0 whenever T ≥ 0 (whenever T is a positive operator).<strong>The</strong> set of states of R is a convex subset of the dual space of R which iscompact <strong>in</strong> the ω ∗ -topology. By the Kre<strong>in</strong>-Milman theorem, this convex setis the closed convex hull of its extreme po<strong>in</strong>ts. <strong>The</strong> extremal elements <strong>in</strong> thespace of states are called the pure states (of R).This problem arose from the very productive collaboration of <strong>Kadison</strong> <strong>and</strong><strong>S<strong>in</strong>ger</strong> <strong>in</strong> the 1950s when they were study<strong>in</strong>g Dirac’s Quantum Mechanicsbook [30] which culm<strong>in</strong>ated <strong>in</strong> their sem<strong>in</strong>al work on triangular operatoralgebras.It is now known that the 1959 <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> Problem is equivalent tofundamental unsolved problems <strong>in</strong> a dozen areas of research <strong>in</strong> pure mathematics,applied mathematics <strong>and</strong> eng<strong>in</strong>eer<strong>in</strong>g (See [1, 2, 3, 4, 17, 26, 27, 37]<strong>and</strong> their references). We will not develop this topic <strong>in</strong> detail here s<strong>in</strong>ce it isfundamentally an <strong>in</strong>f<strong>in</strong>ite dimensional problem <strong>and</strong> we are concentrat<strong>in</strong>g onf<strong>in</strong>ite dimensional frame theory. In this chapter we will look at a number ofthese f<strong>in</strong>ite dimensional problems which are equivalent to KS <strong>and</strong> which areimpacted by f<strong>in</strong>ite frame theory. Most people today seem to agree with theorig<strong>in</strong>al statement of <strong>Kadison</strong> <strong>and</strong> <strong>S<strong>in</strong>ger</strong> [36] that KS will have a negativeanswer <strong>and</strong> so all the equivalent forms will have negative answers also.1.2.1 <strong>The</strong> Pav<strong>in</strong>g ConjectureA significant advance on KS was made by Anderson [2] <strong>in</strong> 1979 when hereformulated KS <strong>in</strong>to what is now known as the Pav<strong>in</strong>g Conjecture (Seealso [3, 4]). Lemma 5 of [36] shows a connection between KS <strong>and</strong> Pav<strong>in</strong>g. For


1 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> <strong>and</strong> <strong>Paulsen</strong> <strong>Problems</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Frame</strong> <strong>The</strong>ory 3notation, if J ⊂ {1, 2, . . . , n}, the diagonal projection Q J is the matrixwhose entries are all zero except for the (i, i) entries for i ∈ J which are allone. For a matrix A = (a ij ) N i,j=1 let δ(A) = max 1≤i≤N |a ii |.Def<strong>in</strong>ition 1. An operator T ∈ B(l N 2 ) is said to have an (r, ɛ)-pav<strong>in</strong>g if thereis a partition {A j } r j=1 of {1, 2, . . . , N} so that‖Q Aj T Q Aj ‖ ≤ ɛ‖T ‖.Pav<strong>in</strong>g Conjecture 1 (PC) For every 0 < ɛ < 1, there is a natural numberr so that for every natural number N <strong>and</strong> every l<strong>in</strong>ear operator T on l N 2whose matrix has zero diagonal, T has an (r, ɛ)-pav<strong>in</strong>g.It is important that r not depend on N <strong>in</strong> PC. We will say that an arbitraryoperator T satisfies PC if T − D(T ) satisfies PC where D(T ) is the diagonalof T .<strong>The</strong> only large classes of operators which have been shown to be pavableare “diagonally dom<strong>in</strong>ant” matrices [6, 7, 11, 31], l 1 -localized operators [24],matrices with all entries real <strong>and</strong> positive [32], matrices with small coefficients<strong>in</strong> comparison with the dimension [13] (See [40] for a pav<strong>in</strong>g <strong>in</strong>to blocks ofconstant size), <strong>and</strong> Toeplitz operators over Riemann <strong>in</strong>tegrable functions (Seealso [33]). Also, <strong>in</strong> [9] there is an analysis of the pav<strong>in</strong>g problem for certa<strong>in</strong>Schatten C p -norms.<strong>The</strong>orem 1. <strong>The</strong> Pav<strong>in</strong>g Conjecture has a positive solution if any one of thefollow<strong>in</strong>g classes satisfies the Pav<strong>in</strong>g Conjecture:1. Unitary operators. [27]2. Orthogonal projections. [27]3. Orthogonal projections with constant diagonal 1/2. [18]4. Positive operators. [27]5. Self-adjo<strong>in</strong>t operators. [27]6. Gram matrices (〈ϕ i , ϕ j 〉) i,j∈I where T : l 2 (I) → l 2 (I) is a bounded l<strong>in</strong>earoperator, <strong>and</strong> T e i = ϕ i , ‖T e i ‖ = 1 for all i ∈ I. [27]7. Invertible operators (or <strong>in</strong>vertible operators with zero diagonal). [27]8. Triangular operators [38]Recently, Weaver [43] provided important <strong>in</strong>sight <strong>in</strong>to KS by giv<strong>in</strong>g anequivalent problem to PC <strong>in</strong> terms of projections.Conjecture 1 (Weaver). <strong>The</strong>re exist universal constants 0 < δ, ɛ < 1 <strong>and</strong>r ∈ N so that for all N <strong>and</strong> all orthogonal projections P on l N 2 with δ(P ) ≤ δ,there is a pav<strong>in</strong>g {A j } r j=1 of {1, 2, . . . , N} so that ‖Q A jP Q Aj ‖ ≤ 1 − ɛ, forall j = 1, 2, . . . , r.This needs some explanation s<strong>in</strong>ce there is noth<strong>in</strong>g <strong>in</strong> [43] that looks anyth<strong>in</strong>glike Conjecture 1. Weaver observes that the fact that Conjecture 1


4 Peter G. Casazzaimplies PC follows by a m<strong>in</strong>or modification of Propositions 7.6 <strong>and</strong> 7.7 of[1]. <strong>The</strong>n he <strong>in</strong>troduces what he calls “Conjecture KS r ” (See Conjecture 8).A careful exam<strong>in</strong>ation of the proof of <strong>The</strong>orem 1 of [43] reveals that Weavershows Conjecture KS r implies Conjecture 1 which <strong>in</strong> turn implies KS which(after the theorem is proved) is equivalent to KS r .In [18] it was shown that PC fails for r = 2, even for projections withconstant diagonal 1/2. Recently [21] there appeared a frame theoretic concreteconstruction of non-2-pavable projections. If this construction can begeneralized, we would have a counterexample to PC <strong>and</strong> KS. We now lookat the construction from [21].Def<strong>in</strong>ition 2. A family of vectors {ϕ i } M i=1 for an N-dimensional Hilbertspace H N is (δ, r)-Rieszable if there is a partition {A j } r j=1 of {1, 2, . . . , M}so that for all j = 1, 2, . . . , r <strong>and</strong> all scalars {a i } i∈Aj we have‖ ∑i∈A ja i ϕ i ‖ 2 ≥ δ ∑i∈A j|a i | 2 .A projection P on H N is (δ, r)-Rieszable if {P e i } N i=1 is (δ, r)-Rieszable.We now have:Proposition 1. Let P be an orthogonal projection on H N . <strong>The</strong> follow<strong>in</strong>g areequivalent:(1) <strong>The</strong> vectors {P e i } N i=1 are (δ, r)-Rieszable.(2) <strong>The</strong>re is a partition {A j } r j=1 of {1, 2, . . . , N} so that for all j =1, 2, . . . , r <strong>and</strong> all scalars {a i } i∈Aj we have‖ ∑i∈A ja i (I − P )e i ‖ 2 ≤ (1 − δ) ∑(3) <strong>The</strong> matrix of I − P is (δ, r)-pavable.Proof. (1) ⇔ (2): For any scalars {a i } i∈AJ we have∑|a i | 2 = ‖ ∑a i P e i ‖ 2 + ‖ ∑i∈A j i∈A jHence,‖ ∑i∈A ja i (I−P )e i ‖ 2 ≤ (1−δ) ∑i∈A j|a i | 2 .i∈A ja i (I − P )e i ‖ 2 .i∈A j|a i | 2 if <strong>and</strong> only if ‖ ∑i∈A ja i P e i ‖ 2 ≥ δ ∑i∈A j|a i | 2 .(2) ⇔ (3): Given any partition {A j } r j=1 , any 1 ≤ j ≤ r <strong>and</strong> any x =∑i∈A ja i e i we have


1 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> <strong>and</strong> <strong>Paulsen</strong> <strong>Problems</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Frame</strong> <strong>The</strong>ory 5〈(I − P )x, x〉 = ‖(I − P )x‖ 2 = ‖ ∑i∈A ja i (I − P )e i ‖ 2if <strong>and</strong> only if I − P ≤ (1 − δ)I.≤ (1 − δ) ∑i∈A j|a i | 2 = 〈(1 − δ)x, x〉,Given N ∈ N, let ω = exp ( 2πiN ) , we def<strong>in</strong>e the discrete Fourier transform(DFT) matrix <strong>in</strong> C N byD N =√1N(ωjk ) N−1j,k=0 .<strong>The</strong> ma<strong>in</strong> po<strong>in</strong>t of these D N matrices is that they √ are unitary matrices1for which the modulus of all the entries are equal toN. <strong>The</strong> follow<strong>in</strong>g is asimple observation.Proposition 2. Let A = (a ij ) N i,j=1 be a matrix with orthogonal rows <strong>and</strong>satisfy<strong>in</strong>g |a ij | 2 = a for all i, j. If we multiply the j th -row of A by a constantC j to get a new matrix B, then:(1) <strong>The</strong> rows of B are orthogonal.(2) <strong>The</strong> square sums of the entries of any column of B all equalaN∑Cj 2 .j=1(3) <strong>The</strong> square sum of the entries of the j th row of B equals aC 2 j .To construct our example, we start with a 2N × 2N DFT <strong>and</strong> multiplythe first N − 1 rows by √ √22 <strong>and</strong> the rema<strong>in</strong><strong>in</strong>g rows byN+1to get a newmatrix B 1 . Next, we take a second 2N × 2N DFT √ matrix <strong>and</strong> multiply the2Nfirst N − 1 rows by 0 <strong>and</strong> the rema<strong>in</strong><strong>in</strong>g rows by2N+1 to get a matrix B 2.We then put the matrices B 1 , B 2 side by side to get a N × 2N matrix B ofthe formB = (N-1) Rows √2 0√ √2(N+1) RowsN+12NN+1This matrix has 2N rows <strong>and</strong> 4N columns. Now we show that this matrixgives the required example.Proposition 3. <strong>The</strong> matrix B satisfies:(1) <strong>The</strong> columns are orthogonal <strong>and</strong> the square sum of the coefficients ofevery column equals 2.


6 Peter G. Casazza(2) <strong>The</strong> square sum of the coefficients of every row equals 1.<strong>The</strong> row vectors of the matrix B are not (δ, 2)-Rieszable, for any δ <strong>in</strong>dependentof N.Proof. A direct calculation yields (1) <strong>and</strong> (2).We will now show that the column vectors of B are not uniformly twoRieszable <strong>in</strong>dependent of N. So let {A 1 , A 2 } be a partition of {1, 2, . . . , 4N}.Without loss of generality, we may assume that |A 1 ∩ {1, 2, . . . , 2N}| ≥ N.Let the column vectors of the matrix B be {ϕ i } 4Ni=1 as elements of C2N . LetP N−1 be the orthogonal projection of C 2N onto the first N − 1 coord<strong>in</strong>ates.S<strong>in</strong>ce |A 1 | ≥ N, there are scalars {a i } i∈A1 so that ∑ i∈A 1|a i | 2 = 1 <strong>and</strong>P N−1( ∑i∈A 1a i ϕ i)= 0.Also, let {ψ j } 2Nj=1 be the orthonormal basis consist<strong>in</strong>g of the orig<strong>in</strong>al columnsof the DF T 2N . We now have:‖ ∑a i ϕ i ‖ 2 = ‖(I − P N−1 )( ∑a i ϕ i )‖ 2i∈A 1 i∈A 1= 2N + 1 ‖(I − P N−1)( ∑≤ 2N + 1 ‖ ∑= 2N + 1= 2N + 1 .a i ψ i ‖ 2i∈A 1∑|a i | 2i∈A 1i∈A 1a i ψ i )‖ 2Lett<strong>in</strong>g N → ∞, this class of matrices is not (δ, 2)-Rieszable, <strong>and</strong> hence not(δ, 2)-pavable for any δ > 0.If this argument could be generalized to yield non-(δ, 3)-Rieszable (Pavable)matrices, then such an argument will lead to a complete counterexample toPC.1.2.2 <strong>The</strong> R ɛ -ConjectureIn this section we will def<strong>in</strong>e the R ɛ -Conjecture <strong>and</strong> show it is equivalent tothe Pav<strong>in</strong>g Conjecture.Def<strong>in</strong>ition 3. A family of vectors {ϕ i } M i=1 is an ɛ-Riesz basic sequence for0 < ɛ < 1 if for all scalars {a i } M i=1 we have


1 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> <strong>and</strong> <strong>Paulsen</strong> <strong>Problems</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Frame</strong> <strong>The</strong>ory 7M∑M∑M∑(1 − ɛ) |a i | 2 ≤ ‖ a i ϕ i ‖ 2 ≤ (1 + ɛ) |a i | 2 .i=1i=1A natural question is whether we can improve the Riesz basis bounds fora unit norm Riesz basic sequence by partition<strong>in</strong>g the sequence <strong>in</strong>to subsets.Conjecture 2 (R ɛ -Conjecture). For every ɛ > 0, every unit norm Riesz basicsequence is a f<strong>in</strong>ite union of ɛ-Riesz basic sequences.This conjecture was first stated by Casazza <strong>and</strong> Vershyn<strong>in</strong> <strong>and</strong> was firststudied <strong>in</strong> [16] where it was shown that PC implies the conjecture. Oneadvantage of the R ɛ -Conjecture is that it can be shown to students at thebeg<strong>in</strong>n<strong>in</strong>g of a course <strong>in</strong> Hilbert spaces.<strong>The</strong> R ɛ -Conjecture has a natural f<strong>in</strong>ite dimensional form.Conjecture 3. For every ɛ > 0 <strong>and</strong> every T ∈ B(l N 2 ) with ‖T e i ‖ = 1 for i =1, 2, . . . , N there is an r = r(ɛ, ‖T ‖) <strong>and</strong> a partition {A j } r j=1 of {1, 2, . . . , N}so that for all j = 1, 2, . . . , r <strong>and</strong> all scalars {a i } i∈Aj we have(1 − ɛ) ∑i∈A j|a i | 2 ≤ ‖ ∑i=1i∈A ja i T e i ‖ 2 ≤ (1 + ɛ) ∑i∈A j|a i | 2 .Now we show that the R ɛ -Conjecture is equivalent to PC.<strong>The</strong>orem 2. <strong>The</strong> follow<strong>in</strong>g are equivalent:(1) <strong>The</strong> Pav<strong>in</strong>g Conjecture.(2) For 0 < ɛ < 1, there is an r = r(ɛ, B) so that for every N ∈ N, ifT : l N 2 → l N 2 is a bounded l<strong>in</strong>ear operator with ‖T ‖ ≤ B <strong>and</strong> ‖T e i ‖ = 1 forall i = 1, 2, . . . , N, then there is a partition {A j } r j=1 of {1, 2, . . . , N} so thatfor each 1 ≤ j ≤ r, {T e i } i∈Aj is an ɛ-Riesz basic sequence.(3) <strong>The</strong> R ɛ -Conjecture.Proof. (1) ⇒ (2): Fix 0 < ɛ < 1. Given T as <strong>in</strong> (2), let S = T ∗ T . S<strong>in</strong>ce S hasones on its diagonal, by the Pav<strong>in</strong>g Conjecture there is a r = r(ɛ, ‖T ‖) <strong>and</strong> apartition {A j } r j=1 of {1, 2, . . . , N} so that for every j = 1, 2, . . . , r we havewhere δ =‖ ∑‖Q Aj (I − S)Q Aj ‖ ≤ δ‖I − S‖ɛ‖S‖+1 . Now, for all x = ∑ Ni=1 a ie i <strong>and</strong> all j = 1, 2, . . . , r we havei∈A ja i T e i ‖ 2 = ‖T Q Aj x‖ 2 = 〈T Q Aj x, T Q Aj x〉 = 〈T ∗ T Q Aj x, Q Aj x〉= 〈Q Aj x, Q Aj x〉 − 〈Q Aj (I − S)Q Aj x, Q Aj x〉≥ ‖Q Aj x‖ 2 − δ‖I − S‖‖Q Aj x‖ 2≥ (1 − ɛ)‖Q Aj x‖ 2 = (1 − ɛ) ∑i∈A j|a i | 2 .


8 Peter G. CasazzaSimilarly, ‖ ∑ i∈A ja i T e i ‖ 2 ≤ (1 + ɛ) ∑ i∈A j|a i | 2 .(2) ⇒ (3): This is obvious.(3) ⇒ (1): Let T ∈ B(l N 2 ) with T e i = ϕ i <strong>and</strong> ‖ϕ i ‖ = 1 for all 1 ≤ i ≤ N.By <strong>The</strong>orem 1 part 6, it suffices to show that the Gram operator G of {ϕ i } N i=1is pavable. Fix 0 < δ < 1 <strong>and</strong> let ɛ > 0. Let ψ i = √ 1 − δ 2 ϕ i ⊕ δe i ∈ l N 2 ⊕ l N 2 .<strong>The</strong>n ‖ψ i ‖ = 1 for all 1 ≤ i ≤ N <strong>and</strong> for all scalars {a i } N i=1N∑N∑N∑δ |a i | 2 ≤ ‖ a i ψ i ‖ 2 = (1 − δ 2 )‖ a i T e i ‖ 2 + δ 2i=1i=1i=1≤ [ (1 − δ 2 )‖T ‖ 2 + δ 2] ∑N |a i | 2 .i=1N ∑i=1|a i | 2So {ψ i } N i=1 is a unit norm Riesz basic sequence <strong>and</strong> 〈ψ i, ψ k 〉 = (1−δ 2 )〈ϕ i , ϕ k 〉for all 1 ≤ i ≠ k ≤ N. By the R ɛ -Conjecture, there is a partition {A j } r j=1 of{1, 2, . . . , N} so that for all j = 1, 2, . . . , r <strong>and</strong> all x = ∑ i∈A ja i e i ,(1 − ɛ) ∑i∈A j|a i | 2 ≤ ‖ ∑a i ψ i ‖ 2 = 〈 ∑a i ψ i , ∑a k ψ k 〉i∈A j i∈A j k∈A j= ∑|a i | 2 ‖ψ i ‖ 2 +∑a i a k 〈ψ i , ψ k 〉i∈A j i≠k∈A j= ∑∑|a i | 2 + (1 − δ 2 ) a i a k 〈ϕ i , ϕ k 〉i∈A j i≠k∈A j= ∑|a i | 2 + (1 − δ 2 )〈Q Aj (G − D(G))Q Aj x, x〉i∈A j≤ (1 + ɛ) ∑|a i | 2 .i∈A jSubtract<strong>in</strong>g ∑ i∈A j|a i | 2 through the <strong>in</strong>equality yields,That is,−ɛ ∑i∈A j|a i | 2 ≤ (1 − δ 2 )〈Q Aj (G − D(G))Q Aj x, x〉 ≤ ɛ ∑(1 − δ 2 )|〈Q Aj (G − D(G))Q Aj x, x〉| ≤ ɛ‖x‖ 2 .i∈A j|a i | 2 .S<strong>in</strong>ce Q Aj (G−D(G))Q Aj is a self-adjo<strong>in</strong>t operator, we have (1−δ 2 )‖Q Aj (G−D(G))Q Aj ‖ ≤ ɛ, i.e., (1 − δ 2 )G (<strong>and</strong> hence G) is pavable.Remark 1. <strong>The</strong> proof of (3) ⇒ (1) of <strong>The</strong>orem 2 illustrates a st<strong>and</strong>ard methodfor turn<strong>in</strong>g conjectures about unit norm Riesz basic sequences {ψ i } i∈I <strong>in</strong>toconjectures about unit norm familes {ϕ i } i∈I with T ∈ B(l 2 (I)) <strong>and</strong> T e i = ϕ i .Namely, given {ϕ i } i∈I <strong>and</strong> 0 < δ < 1 let ψ i = √ 1 − δ 2 f i ⊕δe i ∈ l 2 (I)⊕l 2 (I).


1 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> <strong>and</strong> <strong>Paulsen</strong> <strong>Problems</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Frame</strong> <strong>The</strong>ory 9<strong>The</strong>n {ψ i } i∈I is a unit norm Riesz basic sequence <strong>and</strong> for δ small enough, ψ iis close enough to ϕ i to pass <strong>in</strong>equalities from {ψ i } i∈I to {ϕ i } i∈I .<strong>The</strong> R ɛ -Conjecture is different from all other conjectures <strong>in</strong> this chapter<strong>in</strong> that it does not hold for equivalent norms on the Hilbert space <strong>in</strong> general.For example, if we renorm l 2 by: |{a i }| = ‖{a i }‖ l2 + sup i |a i | then the R ɛ -Conjecture fails for this equivalent norm. To see this, we proceed by way ofcontradiction <strong>and</strong> assume there is an 0 < ɛ < 1 <strong>and</strong> an r = r(ɛ, 2) satisfy<strong>in</strong>gthe R ɛ -Conjecture. Let {e i } 2Ni=1 be the unit vectors for l2N2 <strong>and</strong> let x i =e 2i+e √2+1 2i+1for 1 ≤ i ≤ N. This is now a unit norm Riesz basic sequence withupper Riesz bound 2. Assume we partition {1, 2, . . . , 2N} <strong>in</strong>to sets {A j } r j=1 .<strong>The</strong>n for some 1 ≤ k ≤ r we have |A k | ≥ N r . Let A ⊂ A k with |A| = N r<strong>and</strong>a i = √ 1Nfor i ∈ A. <strong>The</strong>n| ∑ ( )1 √2 ra i x i | = √ + √i∈A 2 + 1 NS<strong>in</strong>ce the norm above is bounded away from one for large N, we cannot satisfythe requirements of the R ɛ -Conjecture. It follows that a positive solution toKS would imply a fundamental new result concern<strong>in</strong>g “<strong>in</strong>ner products”, notjust norms.Another important equivalent form of PC comes from [26]. This is, onits face, a significant weaken<strong>in</strong>g of the R ɛ -Conjecture while it still rema<strong>in</strong>sequivalent to PC.Conjecture 4. <strong>The</strong>re exists a constant A > 0 <strong>and</strong> a natural number r so thatfor all natural numbers N <strong>and</strong> all T : l N 2 → l N 2 with ‖T e i ‖ = 1 for alli = 1, 2, . . . , N <strong>and</strong> ‖T ‖ ≤ 2, there is a partition {A j } r j=1 of {1, 2, . . . , N} sothat for all j = 1, 2, . . . , r <strong>and</strong> all scalars {a i } i∈Aj we have‖ ∑i∈A ja i T e i ‖ 2 ≥ A ∑<strong>The</strong>orem 3. Conjecture 4 is equivalent to PC.i∈A j|a i | 2 .Proof. S<strong>in</strong>ce PC is equivalent to the R ɛ -Conjecture, which <strong>in</strong> turn impliesConjecture 4, we just need to show that Conjecture 4 implies Conjecture1. So choose r, A satisfy<strong>in</strong>g Conjecture 4. Fix 0 < δ ≤ 3 4<strong>and</strong> let P be anorthogonal projection on l N 2 with δ(P ) ≤ δ Now, 〈P e i , e i 〉 = ‖P e i ‖ 2 ≤ δimplies ‖(I − P )e i ‖ 2 ≥ 1 − δ ≥ 1 4 . Def<strong>in</strong>e T : lN 2 → l N 2 by T e i =For any scalars {a i } N i=1 we have(I−P )ei‖(I−P )e i‖ .


10 Peter G. Casazza‖N∑a i T e i ‖ 2 N∑ a i=∥ ‖(I − P )ei=1i ‖ (I − P )e i∥N∑2≤a i∣‖(I − P )e i ‖ ∣i=1≤ 4i=1N∑|a i | 2 .i=1So ‖T e i ‖ = 1 <strong>and</strong> ‖T ‖ ≤ 2. By Conjecture 4, there is a partition {A j } r j=1 of{1, 2, . . . , N} so that for all j = 1, 2, . . . , r <strong>and</strong> all scalars {a i } i∈Aj we have‖ ∑i∈A Ja i T e i ‖ 2 ≥ A ∑i∈A j|a i | 2 .2Hence,∥ ∑∥∥∥∥∥2∥ ∑∥∥∥∥∥2a i (I − P )e i =a i ‖(I − P )e i ‖T e i∥i∈A j∥i∈A j≥ A ∑|a i | 2 ‖(I − P )e i ‖ 2i∈A j≥ A ∑|a i | 2 .4i∈A jIt follows that for all scalars {a i } i∈Aj ,∑|a i | 2 = ‖ ∑i∈A jNow, for all x = ∑ Ni=1 a ie i we havea i (I − P )e i ‖ 2i∈A j≥ ‖ ∑a i P e i ‖ 2 + A ∑|a i | 2 .4i∈A j i∈A j‖P Q Aj x‖ 2 = ‖ ∑i∈A ja i P e i ‖ 2 + ‖ ∑i∈A ja i P e i ‖ 2 ≤ (1 − A 4 ) ∑i∈A j|a i | 2 .Thus,‖Q Aj P Q Aj ‖ = ‖P Q Aj ‖ 2 ≤ 1 − A 4 .So Conjecture 1 holds.Weaver [43] established an important relationship between frames <strong>and</strong> PCby show<strong>in</strong>g that the follow<strong>in</strong>g conjecture is equivalent to PC.


12 Peter G. Casazza<strong>in</strong>to a f<strong>in</strong>ite number of subsets which were Riesz basic sequences. This led tothe conjecture:Feicht<strong>in</strong>ger Conjecture 1 (FC) Every bounded frame (or equivalently,every unit norm frame) is a f<strong>in</strong>ite union of Riesz basic sequences.<strong>The</strong> f<strong>in</strong>ite dimensional form of FC looks like:Conjecture 7 (F<strong>in</strong>ite Dimensional Feicht<strong>in</strong>ger Conjecture). For every B, C >0, there is a natural number r = r(B, C) <strong>and</strong> a constant A = A(B, C) > 0so that whenever {ϕ i } N i=1 is a frame for HN with upper frame bound B <strong>and</strong>‖ϕ i ‖ ≥ C for all i = 1, 2, . . . , N, then {1, 2, . . . , N} can be partitioned <strong>in</strong>tosubsets {A j } r j=1 so that for each 1 ≤ j ≤ r, {ϕ i} i∈Aj is a Riesz basic sequencewith lower Riesz basis bound A <strong>and</strong> upper Riesz basis bound B.<strong>The</strong>re is a significant body of work on this conjecture [6, 7, 16, 31], yet, itrema<strong>in</strong>s open even for Gabor frames.We now check that the Feicht<strong>in</strong>ger Conjecture is equivalent to PC.<strong>The</strong>orem 5. <strong>The</strong> follow<strong>in</strong>g are equivalent:(1) <strong>The</strong> Pav<strong>in</strong>g Conjecture.(2) <strong>The</strong> Feicht<strong>in</strong>ger Conjecture.Proof. (1) ⇒ (2): Part (2) of <strong>The</strong>orem 2 is equivalent to PC <strong>and</strong> clearlyimplies FC.(2) ⇒ (1): We will observe that FC implies Conjecture 4 which is equivalentto PC by <strong>The</strong>orem 3. In Conjecture 4, {T e i } N i=1 is a frame for its spanwith upper frame bound 2. It is now immediate that the F<strong>in</strong>ite DimensionalFeicht<strong>in</strong>ger Conjecture implies Conjecture 4.Another equivalent formulation of KS due to Weaver [43].Conjecture 8 (KS r ). <strong>The</strong>re are universal constants B <strong>and</strong> ɛ > 0 so that the follow<strong>in</strong>gholds. Let {ϕ i } M i=1 be elements of lN 2 with ‖ϕ i ‖ ≤ 1 for i = 1, 2, . . . , M<strong>and</strong> suppose for every x ∈ l N 2 ,M∑|〈x, ϕ i 〉| 2 ≤ B‖x‖ 2 . (1.2)i=1<strong>The</strong>n, there is a partition {A j } r j=1 of {1, 2, . . . , M} so that for all x ∈ lN 2all j = 1, 2, . . . , r, ∑|〈x, ϕ i 〉| 2 ≤ (B − ɛ)‖x‖ 2 .i∈A j<strong>and</strong><strong>The</strong>orem 6. <strong>The</strong> follow<strong>in</strong>g are equivalent:(1) <strong>The</strong> Pav<strong>in</strong>g Conjecture.(2) Conjecture KS r holds for some r ≥ 2.


1 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> <strong>and</strong> <strong>Paulsen</strong> <strong>Problems</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Frame</strong> <strong>The</strong>ory 13Proof. Assume Conjecture KS r is true for some fixed r, B, ɛ. We will showthat Conjecture 1 is true. Let P be an orthogonal projection on H M withδ(P ) ≤ 1 B. If P has rank N, then its range is a N-dimensional subspace W ofH M . Def<strong>in</strong>e ϕ i = √ B · P e i ∈ W for all 1 ≤ i ≤ M. We check‖ϕ i ‖ 2 = B · ‖P e i ‖ 2 = B〈P e i , e i 〉 ≤ Bδ(P ) ≤ 1, for all i = 1, 2, . . . , M.Now, if x ∈ W is any unit vector thenM∑M∑|〈x, ϕ i 〉| 2 = |〈x, √ M∑BP e i 〉| 2 = B · |〈x, e i 〉| 2 = B.i=1i=1By Conjecture KS r , there is a partition {A j } r j=1 of {1, 2, . . . , M} satisfy<strong>in</strong>gfor all 1 ≤ j ≤ r <strong>and</strong> all unit vectors x ∈ W ,∑|〈x, ϕ i 〉| 2 ≤ B − ɛ.i∈A j<strong>The</strong>n ∑ rj=1 Q A j= Id, <strong>and</strong> for any unit vector x ∈ W we havei=1i=1M∑M∑‖Q Aj P x‖ 2 = |〈Q Aj P x, e i 〉| 2 = |〈x, P Q j e i 〉| 2= 1 ∑|〈x, ϕ i 〉| 2 ≤ ɛ BB .i∈A jThus Conjecture 1 holds <strong>and</strong> so PC holds.Conversely, assume KS r fails for all r. Fix B = r ≥ 2 <strong>and</strong> let {ϕ i } M i=1<strong>in</strong> H N be a counterexample with ɛ = 1. Let ψ i = √ ϕiB<strong>and</strong> note that‖ψ i ψ T i ‖ = ‖ψ i ‖ 2 ≤ 1 B , for all i = 1, 2, . . . , M <strong>and</strong> ∑ Mi=1 ψ iψ T i ≤ Id. <strong>The</strong>nId − ∑ Mi=1 ψ iψi T is a positive f<strong>in</strong>ite rank operator, so we can f<strong>in</strong>d positiverank one operators ψ i ψiT for M + 1 ≤ i ≤ K such that ‖ψ i ψi T ‖ ≤ 1 Bfor all1 ≤ i ≤ K <strong>and</strong> ∑ Ki=1 ψ iψi T = Id.Let T be the analysis operator for {ψ i } K i=1 , which is an isometry <strong>and</strong> if Pis the orthogonal projection of H K with range T (H N ), then P e i = T ψ i forall i = 1, 2, . . . , K. Let D be the diagonal matrix with the same diagonal asP . <strong>The</strong>n‖D‖ = max ‖ψ i‖ 2 ≤ 11≤i≤K B .Let {Q j } r j=1 be any K ×K diagonal projections which sum to the identity.Def<strong>in</strong>e a partition {A j } r j=1 of {1, 2, . . . , K by lett<strong>in</strong>g A j be the diagonal of Q j .By our choice of {ϕ i } M i=1 , there exists 1 ≤ j ≤ r <strong>and</strong> x ∈ HN with ‖x‖ = 1<strong>and</strong>i=1


14 Peter G. Casazza∑|〈x, ϕ i 〉| 2 > B − 1.Hence,It follows that for all j,‖Q j P (T x)‖ 2 ≥i∈A j∩{1,2,...,M}∑i∈A j|〈x, ψ i 〉| 2 > 1 − 1 B .O∑|〈Q j P (T x), e i 〉| 2 = ∑i=1= ∑i∈A j|〈x, ψ i 〉| 2 > 1 − 1 B .i∈A j|〈T x, e i 〉| 2Thus, ‖Q j P Q j ‖ = ‖Q j P ‖ 2 > 1 − 1 B. Now, the matrix A = P − D has zerodiagonal <strong>and</strong> satisfies ‖A‖ ≤ 1 + 1 B<strong>and</strong> the above shows that for any K × Kdiagonal projections {Q j } r j=1 with ∑ rj=1 Q j = Id we have‖Q j AQ j ‖ ≥ ‖Q j P Q j ‖ − ‖Q j DQ j ‖ ≥ 1 − 2 , for some j .BF<strong>in</strong>ally, as B = r → ∞, we obta<strong>in</strong> a sequence of examples which negate thePav<strong>in</strong>g Conjecture.Weaver [43] also shows that Conjecture KS r is equivalent to PC if weassume equality <strong>in</strong> Equation 1.2 for all x ∈ l M 2 . Weaver further shows thatConjecture KS r is equivalent to PC even if we strengthen its assumptions soas to require that the vectors {ϕ i } M i=1 are of equal norm <strong>and</strong> that equalityholds <strong>in</strong> 1.2, but at great cost to our ɛ > 0.Conjecture 9 (KS ′ r ). <strong>The</strong>re exists universal constants B ≥ 4 <strong>and</strong> ɛ > √ B sothat the follow<strong>in</strong>g holds. Let {ϕ i } M i=1 be elements of lN 2 with ‖ϕ i ‖ = 1 fori = 1, 2, . . . , M <strong>and</strong> suppose for every x ∈ l N 2 ,M∑|〈x, ϕ i 〉| 2 = B‖x‖ 2 . (1.3)i=1<strong>The</strong>n, there is a partition {A j } r j=1 of {1, 2, . . . , M} so that for all x ∈ lM 2all j = 1, 2, . . . , r, ∑|〈x, ϕ i 〉| 2 ≤ (B − ɛ)‖x‖ 2 .i∈A j<strong>and</strong>We <strong>in</strong>troduce one more conjecture.Conjecture 10. <strong>The</strong>re exist universal constants 0 < δ, √ δ ≤ ɛ < 1 <strong>and</strong> r ∈ Nso that for all N <strong>and</strong> all orthogonal projections P on l N 2 with δ(P ) ≤ δ


1 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> <strong>and</strong> <strong>Paulsen</strong> <strong>Problems</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Frame</strong> <strong>The</strong>ory 15<strong>and</strong> ‖P e i ‖ = ‖P e j ‖ for all i, j = 1, 2, . . . , N, there is a pav<strong>in</strong>g {A j } r j=1 of{1, 2, . . . , N} so that ‖Q Aj P Q Aj ‖ ≤ 1 − ɛ, for all j = 1, 2, . . . , r.Us<strong>in</strong>g Conjecture 9 we can see that PC is equivalent to Conjecture 10.<strong>The</strong>orem 7. PC is equivalent to Conjecture 10.Proof: It is clear that Conjecture 1 (which is equivalent to (PC)) impliesConjecture 10. So we assume that Conjecture 10 holds <strong>and</strong> we will showthat Conjecture 9 holds. Let {ϕ i } M i=1 be elements of HN with ‖ϕ i ‖ = 1 fori = 1, 2, . . . , M <strong>and</strong> suppose for every x ∈ H N ,M∑|〈x, ϕ i 〉| 2 = B‖x‖ 2 , (1.4)i=1where 1 1B≤ δ. It follows from Equation 1.4 that { √Bϕ i } M i=1 is an equal normParseval frame <strong>and</strong> so by Naimark’s <strong>The</strong>orem, we may assume there is alarger Hilbert space l M 2 <strong>and</strong> a projection P : l M 2 → H N so that P e i = ϕ i forall i = 1, 2, . . . , M. Now ‖P e i ‖ 2 = 〈P e i , e i 〉 = 1 B≤ δ for all i = 1, 2, . . . , N.So by Conjecture 10, there is a pav<strong>in</strong>g {A j } r j=1 of {1, 2, . . . , M} so that‖Q Aj P Q Aj ‖ ≤ 1 − ɛ, for all j = 1, 2, . . . , r. Now for all 1 ≤ j ≤ r <strong>and</strong> allx ∈ l N 2 we have:It follows that for all x ∈ l N 2∑‖Q Aj P x‖ 2 ==M∑|〈Q Aj P x, e i 〉| 2i=1M∑|〈x, P Q Aj e i 〉| 2i=1= 1 ∑|〈x, ϕ i 〉| 2Bi∈A jwe have≤ ‖Q Aj P ‖ 2 ‖x‖ 2= ‖Q Aj P Q Aj ‖‖x‖ 2≤ (1 − ɛ)‖x‖ 2 .i∈A j|〈xϕ i 〉| 2 ≤ (B − ɛB)‖x‖ 2 .S<strong>in</strong>ce ɛB > √ B, we have verified Conjecture 9.⊓⊔


16 Peter G. Casazza1.2.4 <strong>The</strong> Bourga<strong>in</strong>-Tzafriri ConjectureWe start with a fundamental theorem of Bourga<strong>in</strong> <strong>and</strong> Tzafriri called theRestricted Invertibility Pr<strong>in</strong>ciple. This theorem led to the (strong <strong>and</strong> weak)Bourga<strong>in</strong>-Tzafriri Conjectures. We will see that these conjectures are equivalentto PC.In 1987, Bourga<strong>in</strong> <strong>and</strong> Tzafriri [12] proved a fundamental result <strong>in</strong> Banachspace theory known as the Restricted Invertibility Pr<strong>in</strong>ciple.<strong>The</strong>orem 8 (Bourga<strong>in</strong>-Tzafriri). <strong>The</strong>re is a universal constants 0 < c < 1so that whenever T : l N 2 → l N 2 is a l<strong>in</strong>ear operator for which ‖T e i ‖ = 1,for 1 ≤ i ≤ N, then there exists a subset σ ⊂ {1, 2, . . . , N} of card<strong>in</strong>ality|σ| ≥ cN/‖T ‖ 2 so that for all choices of scalars {a j } j∈σ ,‖ ∑ a j T e j ‖ 2 ≥ c ∑j∈σj∈σ|a j | 2 .A close exam<strong>in</strong>ation of the proof of the theorem [12] yields that c is onthe order of 10 −72 . <strong>The</strong> proof of the theorem uses probabilistic <strong>and</strong> functionanalytic techniques, is non-trivial <strong>and</strong> is non-constructive. A significant breakthroughoccurred recently when Spielman <strong>and</strong> Srivastava [39] presented analgorithm for prov<strong>in</strong>g the Restricted-Invertibility <strong>The</strong>orem. Moreover, theirproof gives the best possible constants <strong>in</strong> the theorem.<strong>The</strong>orem 9 (Restricted Invertibility <strong>The</strong>orem: Spielman-SrivastavaForm). Assume {v i } M i=1 are vectors <strong>in</strong> lN 2 with A = ∑ Mi=1 v ivi T = I <strong>and</strong>0 < ɛ < 1. If L : l N 2 → l N 2 is a l<strong>in</strong>ear operator, then there is a subset J ⊂{1, 2, . . . , M} of size |J| ≥ ɛ 2 ‖L‖ 2 F‖L‖ 2<strong>and</strong>( )∑λ m<strong>in</strong> Lv i (Lv i ) Ti∈Jfor which {Lv i } i∈J is l<strong>in</strong>early <strong>in</strong>dependent> (1 − ɛ)2 ‖L‖ FMwhere ‖L‖ F is the Frobenious norm of L <strong>and</strong> λ m<strong>in</strong> is the smallest eigenvalueof the operator computed on span {v i } i∈J .This generalized form of the Restricted-Invertibility <strong>The</strong>orem was <strong>in</strong>troducedby Vershyn<strong>in</strong> [41] where he studied the contact po<strong>in</strong>ts of convex bodiesus<strong>in</strong>g John’s decompositions of the identity. <strong>The</strong> correspond<strong>in</strong>g theorem for<strong>in</strong>f<strong>in</strong>ite dimensional Hilbert spaces is still open. But this case requires the setJ to be large with respect to the Beurl<strong>in</strong>g density [6, 7]. Special cases of thisproblem were solved <strong>in</strong> [24, 41].<strong>The</strong> <strong>in</strong>equality <strong>in</strong> the Restricted Invertibility <strong>The</strong>orem is referred to as alower l 2 -bound. It is known [28, 41] that there is a correspond<strong>in</strong>g close to oneupper l 2 -bound which can be achieved <strong>in</strong> the theorem. Recently, a two-sidedSpielman-Srivastava algorithm was given [25] which gives the best two sidedlower <strong>and</strong> upper bounds <strong>in</strong> BT.,


1 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> <strong>and</strong> <strong>Paulsen</strong> <strong>Problems</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Frame</strong> <strong>The</strong>ory 17Corollary 1. For T : l N 2 → l N 2 <strong>and</strong> an orthonormal basis {e i } N i=1 with‖T e i ‖ 2 = 1, i = 1, . . . , N, <strong>and</strong> for any α ∈ (0, 1) there exists a subsetJ α ⊆ {1, 2, . . . , N}, satisfy<strong>in</strong>g⌊ ⌋ α2N1. |J α | ≥2 ‖T ‖ 2 ,<strong>and</strong>2. <strong>The</strong> condition number of T | span {ej: j∈J α} is bounded above by (1 − α) −4 .<strong>The</strong> correspond<strong>in</strong>g theorem for <strong>in</strong>f<strong>in</strong>ite dimensional Hilbert spaces is stillopen. Special cases of this problem were solved <strong>in</strong> [24, 41].<strong>The</strong>orem 8 gave rise to a problem <strong>in</strong> the area which has received a greatdeal of attention [13, 26, 27].Bourga<strong>in</strong>-Tzafriri Conjecture 1 (BT) <strong>The</strong>re is a universal constant A >0 so that for every B > 1 there is a natural number r = r(B) satisfy<strong>in</strong>g: Forany natural number N, if T : l N 2 → l N 2 is a l<strong>in</strong>ear operator with ‖T ‖ ≤ B<strong>and</strong> ‖T e i ‖ = 1 for all i = 1, 2, . . . , N, then there is a partition {A j } r j=1 of{1, 2, . . . , N} so that for all j = 1, 2, . . . , r <strong>and</strong> all choices of scalars {a i } i∈Ajwe have:‖ ∑a i T e i ‖ 2 ≥ A ∑|a i | 2 .i∈A j i∈A jSometimes BT is called strong BT s<strong>in</strong>ce there is a weaken<strong>in</strong>g called weakBT. In weak BT we allow A to depend upon the norm of the operator T . Asignificant amount of effort over the years was <strong>in</strong>vested <strong>in</strong> try<strong>in</strong>g to show thatstrong <strong>and</strong> weak BT are equivalent. Casazza <strong>and</strong> Trema<strong>in</strong> f<strong>in</strong>ally proved thisequivalence [26]. We will not have to do any work here s<strong>in</strong>ce we developed allof the needed results <strong>in</strong> earlier sections.<strong>The</strong>orem 10. <strong>The</strong> follow<strong>in</strong>g are equivalent:(1) <strong>The</strong> Pav<strong>in</strong>g Conjecture.(2) <strong>The</strong> Bourga<strong>in</strong>-Tzafriri Conjecture.(3) <strong>The</strong> (weak) Bourga<strong>in</strong>-Tzafriri Conjecture.Proof. (1) ⇒ (2) ⇒ (3): <strong>The</strong> Pav<strong>in</strong>g Conjecture is equivalent to the R ɛ -Conjecture which clearly implies the Bourga<strong>in</strong>-Tzafriri Conjecture <strong>and</strong> thisimmediately implies the (weak) Bourga<strong>in</strong>-Tzafriri Conjecture.(3) ⇒ (1): <strong>The</strong> weak Bourga<strong>in</strong>-Tzafriri Conjecture immediately impliesConjecture 4 which is equivalent to the Pav<strong>in</strong>g Conjecture.1.2.5 Partition<strong>in</strong>g <strong>Frame</strong>s <strong>in</strong>to <strong>Frame</strong> SubsetsA natural <strong>and</strong> frequently occurr<strong>in</strong>g problem <strong>in</strong> frame theory is to partitiona frame <strong>in</strong>to subsets each of which has good frame bounds. This <strong>in</strong>nocent


18 Peter G. Casazzalook<strong>in</strong>g question turns out to be much deeper than it looks, <strong>and</strong> as we willnow see, it is equivalent to PC.Conjecture 11. <strong>The</strong>re exists an ɛ > 0 so that for large K, for all N <strong>and</strong> allequal norm Parseval frames {ϕ i } KNi=1 for lN 2 , there is a J ⊂ {1, 2, . . . , KN} sothat both {ϕ i } i∈J <strong>and</strong> {ϕ i } i∈J c have lower frame bounds which are greaterthan ɛ.<strong>The</strong> ideal situation would be for Conjecture 11 to hold for all K ≥ 2. Inorder for {ϕ i } i∈J <strong>and</strong> {ϕ i } i∈J c to both be frames for l N 2 , they at least haveto span l N 2 . So the first question is whether we can partition our frame <strong>in</strong>tospann<strong>in</strong>g sets. This follows from a generalization of the Rado-Horn theorem.See the chapter on <strong>in</strong>dependence <strong>and</strong> spann<strong>in</strong>g properties of frames.Proposition 4. Every equal norm Parseval frame {ϕ i } KN+Li=1 , 0 ≤ L < Nfor l N 2 can be partitioned <strong>in</strong>to K l<strong>in</strong>early <strong>in</strong>dependent spann<strong>in</strong>g sets plus al<strong>in</strong>early <strong>in</strong>dependent set of L elements.<strong>The</strong> natural question is whether we can do such a partition so that eachof the subsets has good frame bounds, i.e., a universal lower frame bound forall subsets. Before address<strong>in</strong>g this question, we state another conjecture.Conjecture 12. <strong>The</strong>re exists ɛ > 0 <strong>and</strong> a natural number r so that for allN, all large K <strong>and</strong> all equal norm Parseval frames {ϕ i } KNi=1 <strong>in</strong> lN 2 there is apartition {A j } r j=1 of {1, 2, . . . , KN} so that for all j = 1, 2, . . . , r the Besselbound of {ϕ i } i∈Aj is ≤ 1 − ɛ.We will now establish a relationship between our conjectures <strong>and</strong> PC.<strong>The</strong>orem 11. (1) Conjecture 11 implies Conjecture 12.(2) Conjecture 12 is equivalent to PC.Proof. (1): Fix ɛ > 0, r, K as <strong>in</strong> Conjecture 11. Let {ϕ i } KNi=1 be an equal normParseval frame for an N-dimensional Hilbert space H N . By Naimark’s <strong>The</strong>oremwe may assume there is an orthogonal projection P on l KN2 with P e i = ϕ ifor all i = 1, 2, . . . , KN. By Conjecture 11, there is a J ⊂ {1, 2, . . . , KN} sothat {P e i } i∈J <strong>and</strong> {P e i } i∈J c both have a lower frame bound of ɛ > 0. Hence,for x ∈ H M = P (l KN2 ),∑KN‖x‖ 2 = |〈x, P e i 〉| 2 = ∑ |〈x, P e i 〉| 2 + ∑ |〈x, P e i 〉| 2i=1i∈Ji∈J c≥ ∑ i∈J|〈x, P e i 〉| 2 + ɛ‖x‖ 2 .That is, ∑ i∈J |〈x, P e i〉| 2 ≤ (1−ɛ)‖x‖ 2 . So the upper frame bound of {P e i } i∈J(which is the norm of the analysis operator (P Q J ) ∗ for this frame) is ≤ 1 − ɛ.S<strong>in</strong>ce P Q J is the synthesis operator for this frame, we have that ‖Q J P Q J ‖ =


1 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> <strong>and</strong> <strong>Paulsen</strong> <strong>Problems</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Frame</strong> <strong>The</strong>ory 19‖P Q J ‖ 2 = ‖(P Q J ) ∗ ‖ 2 ≤ 1 − ɛ. Similarly, ‖Q J cP Q J c‖ ≤ 1 − ɛ. So Conjecture12 holds for r = 2.(2): We will show that Conjecture 12 implies Conjecture 5. Choose ɛ <strong>and</strong>r satisfy<strong>in</strong>g Conjecture 12 for all large K. In particular, choose any K with1 √K< α. Let {ϕ i } M i=1 be a unit norm K-tight frame for an N-dimensionalHilbert space H N . <strong>The</strong>n M = ∑ Mi=1 ‖ϕ i‖ 2 = KN. S<strong>in</strong>ce { √ 1Kϕ i } M i=1 is anequal norm Parseval frame, by Naimark’s <strong>The</strong>orem we may assume there isan orthogonal projection P on l M 2 with P e i = √ 1Kϕ i , for i = 1, 2, . . . , M. ByConjecture 12 there is a partition {A j } r j=1 of {1, 2, . . . , M} so that the Besselbound ‖(P Q Aj ) ∗ ‖ 2 for each family {ϕ i } i∈Aj is ≤ 1 − ɛ. So for j = 1, 2, . . . , r<strong>and</strong> any x ∈ l N 2 we have∑i∈A j|〈x,1√ ϕ i 〉| 2 = ∑Ki∈A j|〈x, P Q Aj e i 〉| 2 = ∑i∈A j|〈Q Aj P x, e i 〉| 2 ≤ ‖Q Aj P x‖ 2≤ ‖Q Aj P ‖ 2 ‖x‖ 2 = ‖(P Q Aj ) ∗ ‖ 2 ‖x‖ 2 ≤ (1 − ɛ)‖x‖ 2 .Hence,∑i∈A j|〈x, ϕ i 〉| 2 ≤ K(1 − ɛ)‖x‖ 2 = (K − Kɛ)‖x‖ 2 .S<strong>in</strong>ce Kɛ > √ K, we have verified Conjecture 5.For the converse, choose r, δ, ɛ satisfy<strong>in</strong>g Conjecture 1. If {ϕ i } KNi=1 is anequal norm Parseval frame for an N-dimensional Hilbert space H N with 1 K ≤δ, by Naimark’s <strong>The</strong>orem we may assume we have an orthogonal projectionP on l KN2 with P e i = ϕ i for i = 1, 2, . . . , KN. S<strong>in</strong>ce δ(P ) = ‖ϕ i ‖ 2 ≤ 1 K ≤ δ,by Conjecture 1 there is a partition {A j } r j=1 of {1, 2, . . . , KN} so that for allj = 1, 2, . . . , r,‖Q Aj P Q Aj ‖ = ‖P Q Aj ‖ 2 = ‖(P Q Aj ) ∗ ‖ 2 ≤ 1 − ɛ.S<strong>in</strong>ce ‖(P Q Aj ) ∗ ‖ 2 is the Bessel bound for {P e i } i∈Ajthat Conjecture 12 holds.= {ϕ i } i∈Aj , we have1.3 <strong>The</strong> Sundberg ProblemRecently, an apparent weaken<strong>in</strong>g of the <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> Problem has arisen.In his work on <strong>in</strong>terpolation <strong>in</strong> complex function theory, Sundberg noticedthe follow<strong>in</strong>g problem. Although this is an <strong>in</strong>f<strong>in</strong>ite dimensional problem, westate it here because of its connections to the <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> Problem.Problem 1 (Sundberg Problem). If {ϕ} ∞ i=1 is a unit norm Bessel sequence,can we partition {ϕ i } ∞ i=1 <strong>in</strong>to a f<strong>in</strong>ite number of spann<strong>in</strong>g sets?


20 Peter G. CasazzaThis problem appears to be quite <strong>in</strong>nocent, but it is surpris<strong>in</strong>gly difficult. Itis immediate that the Feicht<strong>in</strong>ger Conjecture implies the Sundberg Problem.<strong>The</strong>orem 12. A positive solution to the Feicht<strong>in</strong>ger Conjecture implies apositive solution to the Sundberg Problem.Proof. If {ϕ i } ∞ i=1 is a unit norm Bessel sequence then by FC, we can partitionthe natural numbers <strong>in</strong>to a f<strong>in</strong>ite number of sets {A j } r j=1 so that {ϕ i} i∈Aj isa Riesz sequence for all j = 1, 2, . . . , r. For each j = 1, 2, . . . , r choose i j ∈ A j .<strong>The</strong>n neither ϕ ij nor {ϕ i } i∈Aj\{i j} can span the space.1.4 <strong>The</strong> <strong>Paulsen</strong> Problem<strong>The</strong> <strong>Paulsen</strong> Problem has been <strong>in</strong>tractable for over a dozen years despitereceiv<strong>in</strong>g quite a bit of attention. In this section we look at the current stateof the art on this problem. First we need two def<strong>in</strong>itions.Def<strong>in</strong>ition 4. A frame {ϕ i } M i=1 for HN with frame operator S is said to beɛ-nearly equal norm if(1 − ɛ) N M ≤ ‖ϕ i‖ 2 ≤ (1 + ɛ) N , for all i = 1, 2, . . . , M,M<strong>and</strong> it is ɛ-nearly Parseval ifWe also need:(1 − ɛ)Id ≤ S ≤ (1 + ɛ)Id.Def<strong>in</strong>ition 5. Given frames Φ = {ϕ i } M i=1 <strong>and</strong> Ψ = {ψ i} M i=1 for HN , we def<strong>in</strong>ethe distance between them byd(Φ, Ψ) =M∑‖ϕ i − ψ i ‖ 2 .i=1<strong>The</strong> above is not exactly a distance function s<strong>in</strong>ce we have not taken thesquare root of the right-h<strong>and</strong>-side of the equality. But s<strong>in</strong>ce this formulationis st<strong>and</strong>ard, we will use it. We can now state the <strong>Paulsen</strong> Problem.Problem 2 (<strong>Paulsen</strong> Problem). How close is an ɛ-nearly equal norm <strong>and</strong>ɛ-nearly Parseval frame to an equal norm Parseval frame?<strong>The</strong> importance of the <strong>Paulsen</strong> Problem is that we have algorithms forconstruct<strong>in</strong>g frames which are equal norm <strong>and</strong> nearly Parseval. <strong>The</strong> questionis, if we work with these frames, are we sure that we are work<strong>in</strong>g with a framewhich is close to some equal norm Parseval frame? We are look<strong>in</strong>g for the


1 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> <strong>and</strong> <strong>Paulsen</strong> <strong>Problems</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Frame</strong> <strong>The</strong>ory 21function f(ɛ, N, M) so that every ɛ-nearly equal norm <strong>and</strong> ɛ-nearly Parsevalframe Φ = {ϕ i } M i=1 satisfies d(Φ, Ψ) ≤ f(ɛ, N, M),for some equal norm Parseval frame Ψ. A simple compactness argument dueto Hadw<strong>in</strong> (See [10]) shows that such a function must exist.Lemma 1. <strong>The</strong> function f(ɛ, N, M) exists.Proof. We will proceed by way of contradiction. If this fails, then there is an0 < ɛ so that for every δ = 1 n , there is a frame {ϕn i }M i=1 with frame bounds1 − 1 n , 1 + 1 n<strong>and</strong> satisfy<strong>in</strong>g(1 −n) 1 (NM ≤ ‖ϕn i ‖ ≤ 1 +n) 1 NM ,while Φ n = {ϕ n i }M i=1 is a distance greater than ɛ from any equal norm Parsevalframe. By compactness <strong>and</strong> switch<strong>in</strong>g to a subsequence, we may assume thatlimn→∞ ϕn i = ϕ i , exists for all i = 1, 2, . . . , M.But now Φ = {ϕ i } M i=1 is an equal norm Parseval frame contradict<strong>in</strong>g the factthatd(Φ n , Φ) ≥ ɛ > 0, for all n = 1, 2, . . . ,for any equal norm Parseval frame.<strong>The</strong> problem with this argument is that it does not give any quantitativeestimate on the parameters. We do not have a good idea of what form thefunction f(ɛ, N, M) must have. We do not even know if M needs to be <strong>in</strong>the function or if it is <strong>in</strong>dependent of the number of frame vectors. <strong>The</strong>follow<strong>in</strong>g example shows that the <strong>Paulsen</strong> function is certa<strong>in</strong>ly a function ofthe dimension of the space.Lemma 2. <strong>The</strong> <strong>Paulsen</strong> function satisfiesf(ɛ, N, M) ≥ ɛ 2 N.Proof. Fix an ɛ > 0 <strong>and</strong> an orthonormal basis {e j } N j=1 for HN . We def<strong>in</strong>e aframe {ϕ i } 2Ni=1 by ϕ i ={ 1−ɛ √2e i1+ɛ √2e i−Nif 1 ≤ i ≤ Nif N + 1 ≤ i ≤ 2NBy the def<strong>in</strong>ition, {ϕ i } M i=1 is ɛ-nearly equal norm. Also, for any x ∈ HN wehave


22 Peter G. Casazza2N∑i=1|〈x, ϕ i 〉| 2 =(1 − ɛ)22N∑|〈x, e i 〉| 2 +i=1(1 + ɛ)22N∑|〈x, e i 〉| 2 = (1 + ɛ 2 )‖x‖ 2 .i=1So {ϕ i } 2Ni=1 is a (1 + ɛ2 ) tight frame <strong>and</strong> hence an ɛ-nearly Parseval frame.<strong>The</strong> closest equal norm frame to {ϕ i } 2N eii=1 is { √2} N i=1 ∪ { √ ei2} N i=1 . Also,N∑i=1‖ e i√ −ϕ i ‖ 2 + 22N∑i=N+1‖ e i−N√ −ϕ i ‖ 2 = 2N∑i=1‖ ɛ √2e i ‖ 2 +‖N∑i=1‖ ɛ √2e i ‖ 2 = ɛ 2 N.<strong>The</strong> ma<strong>in</strong> difficulty with solv<strong>in</strong>g the <strong>Paulsen</strong> Problem is that f<strong>in</strong>d<strong>in</strong>g aclose equal-norm frame to a given frame <strong>in</strong>volves f<strong>in</strong>d<strong>in</strong>g a close frame whichsatisfies a geometric condition while f<strong>in</strong>d<strong>in</strong>g a close Parseval frame to a givenframe <strong>in</strong>volves satisfy<strong>in</strong>g a (algebraic) spectral condition. At this time, welack techniques for comb<strong>in</strong><strong>in</strong>g these two conditions. However, each of them<strong>in</strong>dividually has a known solution. That is, we do know the closest equalnorm frame to a given frame [15] <strong>and</strong> we do know the closest Parseval frameto a given frame [5, 10, 15, 22, 35].Lemma 3. If {ϕ i } M i=1 is an ɛ-nearly equal norm frame <strong>in</strong> HN , then the closestequal norm frame to {ϕ i } M i=1 iswhereψ i = a ϕ i, for i = 1, 2, . . . , M,‖ϕ i ‖∑ Mi=1a =‖ϕ i‖.MIt is well known that for a frame {ϕ i } M i=1 for HN with frame operator S,the closest Parseval frame to {ϕ i } M i=1 is {S−1/2 ϕ i } M i=1 [5, 10, 15, 22, 35]. Wewill give the version from [10] here.Proposition 5. Let {ϕ i } M i=1 be a frame for a N-dimensional Hilbert spaceH N , with frame operator S = T ∗ T . <strong>The</strong>n {S −1/2 ϕ i } M i=1 is the closest Parsevalframe to {ϕ i } M i=1 . Moreover, if {ϕ i} M i=1 is an ɛ-nearly Parseval frame thenM∑‖S −1/2 ϕ i − ϕ i ‖ 2 ≤ N(2 − ɛ − 2 √ 1 − ɛ) ≤ Nɛ 2 /4.i=1Proof. We first check that {S −1/2 ϕ i } M i=1 is the closest Parseval frame to{ϕ i } M i=1 .<strong>The</strong> squared l 2 -distance between {ϕ i } M i=1 <strong>and</strong> any Parseval frame {ψ j} n j=1can be expressed <strong>in</strong> terms of their analysis operators T <strong>and</strong> T 1 as‖F − G‖ 2 = T r[(T − T 1 )(T − T 1 ) ∗ ]= T r[T T ∗ ] + T r[T 1 T ∗ 1 ] − 2RT r[T T ∗ 1 ]


1 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> <strong>and</strong> <strong>Paulsen</strong> <strong>Problems</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Frame</strong> <strong>The</strong>ory 23Choos<strong>in</strong>g a Parseval frame {ψ i } M i=1 is equivalent to choos<strong>in</strong>g the isometry T 1.To m<strong>in</strong>imize the distance over all choices of T 1 , consider the polar decompositionT = UP , where P is positive <strong>and</strong> U is an isometry. In fact, S = T ∗ Timplies P = S 1/2 , which means its eigenvalues are bounded away from zero.S<strong>in</strong>ce P is positive <strong>and</strong> bounded away from zero, the term T r[T T ∗ 1 ] =T r[UP T ∗ 1 ] = T r[T ∗ 1 UP ] is an <strong>in</strong>ner product between T 1 <strong>and</strong> U. Its magnitudeis bounded by the Cauchy Schwarz <strong>in</strong>equality, <strong>and</strong> thus it has a maximal realpart if T 1 = U which implies T ∗ 1 U = I. In this case, T = T 1 P = T 1 S 1/2 ,or equivalently T ∗ 1 = S −1/2 T ∗ , <strong>and</strong> we conclude ψ i = S −1/2 ϕ i for all i =1, 2, . . . M.After choos<strong>in</strong>g T 1 = T S −1/2 , the l 2 -distance is expressed <strong>in</strong> terms of theeigenvalues {λ j } N j=1 of S = T ∗ T by‖F − G‖ 2 = T r[S] + T r[I] − 2T r[S 1/2 ]N∑N∑ √= λ j + N − 2 λj .j=1If 1 − ɛ ≤ λ j ≤ 1 + ɛ for all j = 1, 2, . . . N, calculus shows that the maximumof λ j − 2 √ λ j is achieved when λ j = 1 − ɛ.Consequently,j=1‖F − G‖ 2 ≤ 2N − Nɛ − 2N √ 1 − ɛ.Estimat<strong>in</strong>g √ 1 − ɛ by the first three terms <strong>in</strong> its decreas<strong>in</strong>g power series givesthe <strong>in</strong>equality ‖F − G‖ 2 ≤ Nɛ 2 /4.It can be shown that the estimate above is exact <strong>and</strong> so we have separateverification that the closeness function is a function of N.<strong>The</strong>re is a simple algorithm for turn<strong>in</strong>g any frame <strong>in</strong>to an equal normframe with the same frame operator due to Holmes <strong>and</strong> <strong>Paulsen</strong> [34].Proposition 6. <strong>The</strong>re is an algorithm for turn<strong>in</strong>g any frame <strong>in</strong>to an equalnorm frame with the same frame operator.Proof. Let {ϕ i } M i=1 be a frame for HN with frame operator S <strong>and</strong> analysisoperator T . <strong>The</strong>nM∑‖ϕ i ‖ 2 = T r S.i=1Let λ = T r SM . If ‖ϕ i‖ 2 = λ, for all m = 1, 2, . . . , M, then we are done.Otherwise, there exists 1 ≤ i ≠ j ≤ M with ‖ϕ i ‖ 2 > λ > ‖ϕ j ‖ 2 . For any θ,replace the vectors ϕ i , ϕ j by the vectorsψ i = (cosθ)ϕ i − (s<strong>in</strong>θ)ϕ j , ψ j = (s<strong>in</strong>θ)ϕ i + (cosθ)ϕ j , ψ k = ϕ k , for k ≠ i, j.Now, the analysis operator for {ψ i } M i=1 is T 1 = UT for a unitary operator Uon l N 2 given by the Givens’ rotation. Hence, T1 ∗ T 1 = T ∗ U ∗ UT = T ∗ T = S; so


24 Peter G. Casazzathe frame operator is unchanged for any value of θ. Now choose the θ yield<strong>in</strong>g‖ψ i ‖ 2 = λ. Repeat<strong>in</strong>g this process at most M − 1 times yields an equal normframe with the same frame operator as {ϕ i } M i=1 .Us<strong>in</strong>g a Parseval frame <strong>in</strong> Proposition 6, we do get to an equal normParseval frame. <strong>The</strong> problem, aga<strong>in</strong>, is that we do not have any quantitativemeasure of how close these two Parseval frames are.<strong>The</strong>re is an obvious approach towards solv<strong>in</strong>g the <strong>Paulsen</strong> Problem. Givenan ɛ-nearly equal norm ɛ-nearly Parseval frame {ϕ i } M i=1 for HN with frameoperator S, we can switch to the closest Parseval frame {S −1/2 ϕ i } M i=1 . <strong>The</strong>nswitch to the closest equal norm frame to {S −1/2 ϕ i } M i=1 , call it {ψ i} M i=1 withframe operator S 1 . Now switch to {S −1/21 ψ i } M i=1 <strong>and</strong> aga<strong>in</strong> switch to the closestequal norm frame <strong>and</strong> cont<strong>in</strong>ue. Unfortunately, even if we could show thatthis process converges <strong>and</strong> we could check the distance traveled through thisprocess, we would still not have an answer to the <strong>Paulsen</strong> Problem becausethis process does not have to converge to an equal norm Parseval frame. Inparticular, there is a fixed po<strong>in</strong>t of this process which is not an equal normParseval frame.Example 1. Let {e i } N i=1 be an orthonormal basis for lN 2 <strong>and</strong> let {ϕ i } N+1i=1 bea equiangular unit norm tight frame for l N 2 . <strong>The</strong>n {e i ⊕ 0} N i=1 ∪ {0 ⊕ ϕ i} N+1i=1<strong>in</strong> l N 2 ⊕ l N 2 is a ɛ = 1 N -nearly equal norm <strong>and</strong> 1 N- nearly Parseval frame withframe operator, say S. A direct calculation shows that tak<strong>in</strong>g S −1/2 of theframe vectors <strong>and</strong> switch<strong>in</strong>g to the closest equal norm frame leaves the frameunchanged.<strong>The</strong> <strong>Paulsen</strong> Problem has proven to be <strong>in</strong>tractable for over 12 years. Recently,two partial solutions to the problem were given <strong>in</strong> [10, 20] each hav<strong>in</strong>gsome advantages. S<strong>in</strong>ce each of these papers is technical, we will only outl<strong>in</strong>ethe ideas here.In [10], a new technique is <strong>in</strong>troduced. This is a system of vector valuedODE’s which starts with a given Parseval frame <strong>and</strong> has the property that allframes <strong>in</strong> the flow are still Parseval while approach<strong>in</strong>g an equal norm Parsevalframe. <strong>The</strong>y then bound the arc length of the system of ODE’s by the frameenergy. F<strong>in</strong>ally, giv<strong>in</strong>g an exponential bound on the frame energy, they havea quantitative estimate for the distance between the <strong>in</strong>itial, ɛ-nearly equalnorm<strong>and</strong> ɛ-nearly Parseval frame F <strong>and</strong> the equal-norm Parseval frame G.For the method to work, they must assume that the dimension N of theHilbert space <strong>and</strong> the number M of frame vectors are relatively prime. <strong>The</strong>authors show that <strong>in</strong> practice, this is not a serious restriction. <strong>The</strong> ma<strong>in</strong> resultof [10] is<strong>The</strong>orem 13. Let N, M ∈ N be relatively prime, let 0 < ɛ < 1 2, <strong>and</strong> assumeΦ = {ϕ i } M i=1 is an ɛ-nearly equal-norm <strong>and</strong> ɛ-nearly Parseval frame for areal or complex Hilbert space of dimension N. <strong>The</strong>n there is an equal-normParseval frame Ψ = {ψ i } M i=1 such that


1 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> <strong>and</strong> <strong>Paulsen</strong> <strong>Problems</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Frame</strong> <strong>The</strong>ory 25‖Φ − Ψ‖ ≤ 298 N 2 M(M − 1) 8 ɛ.In [20], the authors present a new iterative algorithm—gradient descent ofthe frame potential—for <strong>in</strong>creas<strong>in</strong>g the degree of tightness of any f<strong>in</strong>ite unitnorm frame. <strong>The</strong> algorithm itself is trivial to implement, <strong>and</strong> it preservescerta<strong>in</strong> group structures present <strong>in</strong> the <strong>in</strong>itial frame. In the special case wherethe number of frame elements is relatively prime to the dimension of theunderly<strong>in</strong>g space, they show that this algorithm converges to a unit normtight frame at a l<strong>in</strong>ear rate, provided the <strong>in</strong>itial unit norm frame is alreadysufficiently close to be<strong>in</strong>g tight. <strong>The</strong> ma<strong>in</strong> difference between this approach<strong>and</strong> the approach <strong>in</strong> [10] is that <strong>in</strong> [10], the authors start with a nearly equalnorm Parseval frame <strong>and</strong> improve its closeness to an equal norm frame whilema<strong>in</strong>ta<strong>in</strong><strong>in</strong>g Parseval, <strong>and</strong> <strong>in</strong> [20] the authors start with an equal norm nearlyParseval frame <strong>and</strong> give an algorithm for improv<strong>in</strong>g its algebraic propertieswhile chang<strong>in</strong>g its transform as little as possible. <strong>The</strong> ma<strong>in</strong> result from [20]is:1<strong>The</strong>orem 14. Suppose M <strong>and</strong> N are relatively prime. Pick t ∈ (0,2M), <strong>and</strong>let Φ 0 = {ϕ i } M i=1 be a unit norm frame with analysis operator T 0 satisfy<strong>in</strong>g‖T0 ∗ T 0 − M N I‖2 HS ≤ 2N. Now, iterate the gradient descent of the frame potential3method to obta<strong>in</strong> Φ k . <strong>The</strong>n, Φ ∞ := lim k Φ k exists <strong>and</strong> is a unit norm tightframe satisfy<strong>in</strong>g‖Φ ∞ − Φ 0 ‖ HS ≤ 4N 20 M 8.51−2Mt∥ T∗0 T 0 − M N I∥ ∥HS.In [10], the authors showed there is a connection between the <strong>Paulsen</strong>Problem <strong>and</strong> a fundamental open problem <strong>in</strong> operator theory.Problem 3 (Projection Problem). Let H N be an N-dimensional Hilbertspace with orthonormal basis {e i } N i=1 . F<strong>in</strong>d the function g(ɛ, N, M) satisfy<strong>in</strong>gthe follow<strong>in</strong>g. If P is a projection of rank M on H N satisfy<strong>in</strong>g(1 − ɛ) M N ≤ ‖P e i‖ 2 ≤ (1 + ɛ) M , for all i = 1, 2, . . . , N,Nthen there is a projection Q with ‖Qe i ‖ 2 = M Nfor all i = 1, 2, . . . , N satisfy<strong>in</strong>gN∑‖P e i − Qe i ‖ 2 ≤ g(ɛ, N, M).i=1In [14], it was shown that the <strong>Paulsen</strong> problem is equivalent to the ProjectionProblem <strong>and</strong> that their closeness functions are with<strong>in</strong> a factor of 2 ofone another. <strong>The</strong> proof of this result gives several exact connections betweenthe distance between frames <strong>and</strong> the distance between the ranges of theiranalysis operators.


26 Peter G. Casazza<strong>The</strong>orem 15. Let Φ = {ϕ i } i∈I , Ψ = {ψ i } i∈I be Parseval frames for a Hilbertspace H with analysis operators T 1 , T 2 respectively. Ifd(Φ, Ψ) = ∑ i∈I‖ϕ i − ψ i ‖ 2 < ɛ,thend(T 1 (Φ), T 2 (Ψ)) = ∑ i∈I‖T 1 ϕ i − T 2 ψ i ‖ 2 < 4ɛ.Proof. Note that for all j ∈ I,T 1 ϕ j = ∑ i∈I〈ϕ j , ϕ i 〉e i , <strong>and</strong> T 2 ψ j = ∑ i∈I〈ψ j , ψ i 〉e i .Hence,‖T 1 ϕ j − T 2 ψ j ‖ 2 = ∑ |〈ϕ j , ϕ i 〉 − 〈ψ j , ψ i 〉| 2i∈I= ∑ |〈ϕ j , ϕ i − ψ i 〉 + 〈ϕ j − ψ j , ψ i 〉| 2i∈I≤ 2 ∑ |〈ϕ j , ϕ i − ψ i 〉| 2 + 2 ∑ |〈ϕ j − ψ j , ψ i 〉| 2 .i∈Ii∈ISumm<strong>in</strong>g over j <strong>and</strong> us<strong>in</strong>g the fact that our frames Φ <strong>and</strong> Ψ are Parsevalgives∑‖T 1 ϕ j − T 2 ψ j ‖ 2 ≤ 2 ∑ ∑|〈ϕ j , ϕ i − ψ i 〉| 2 + 2 ∑ ∑|〈ϕ j − ψ j , ψ i 〉| 2j∈Ij∈I i∈Ij∈I i∈I= 2 ∑ ∑|〈ϕ j , ϕ i − ψ i 〉| 2 + 2 ∑ ‖ϕ j − ψ j ‖ 2i∈I j∈Ij∈I= 2 ∑ ‖ϕ i − ψ i ‖ 2 + 2 ∑ ‖ϕ j − ψ j ‖ 2i∈Ij∈I= 4 ∑ ‖ϕ j − ψ j ‖ 2 .j∈INext, we want to relate the chordal distance between two subspaces to thedistance between their orthogonal projections. First we need to def<strong>in</strong>e thedistance between projections.Def<strong>in</strong>ition 6. If P, Q are projections on H N , we def<strong>in</strong>e the distance betweenthem byM∑d(P, Q) = ‖P e i − Qe i ‖ 2 ,i=1where {e i } N i=1 is an orthonormal basis for HN .


1 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> <strong>and</strong> <strong>Paulsen</strong> <strong>Problems</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Frame</strong> <strong>The</strong>ory 27<strong>The</strong> chordal distance between subspaces of a Hilbert space was def<strong>in</strong>ed by[29] <strong>and</strong> has been shown to have many uses over the years.Def<strong>in</strong>ition 7. Given M-dimensional subspaces W 1 , W 2 of a Hilbert space,def<strong>in</strong>e the M-tuple (σ 1 , σ 2 , . . . , σ M ) as follows:σ 1 = max{〈x, y〉 : x ∈ Sp W1, y ∈ Sp W2} = 〈x 1 , y 1 〉,where Sp W is the unit sphere of the subspace W . For 2 ≤ i ≤ M,σ i = max{〈x, y〉 : ‖x‖ = ‖y‖ = 1, 〈x j , x〉 = 0 = 〈y j , y〉, for 1 ≤ j ≤ i − 1},whereσ i = 〈x i , y i 〉.<strong>The</strong> M-tuple (θ 1 , θ 2 , . . . , θ M ) with θ i = cos −1 (σ i ) is called the pr<strong>in</strong>cipleangles between W 1 , W 2 . <strong>The</strong> chordal distance between W 1 , W 2 is given byd 2 c(W 1 , W 2 ) =M∑s<strong>in</strong> 2 θ i .i=1So by the def<strong>in</strong>ition, there exists orthonormal bases {a j } M j=1 , {b j} M j=1W 1 , W 2 respectively satisfy<strong>in</strong>g( θ‖a j − b j ‖ = 2s<strong>in</strong> , for all j = 1, 2, . . . , M.2)forIt follows that for 0 ≤ θ ≤ π 2 ,Hence,( ) θs<strong>in</strong> 2 θ ≤ 4s<strong>in</strong> 2 = ‖a j − b j ‖ 2 ≤ 4s<strong>in</strong> 2 θ, for all j = 1, 2, . . . , M.2d 2 c(W 1 , W 2 ) ≤M∑‖a j − b j ‖ 2 ≤ 4d 2 c(W 1 , W 2 ). (1.5)j=1We also need the follow<strong>in</strong>g result [29].Lemma 4. If H N is an N-dimensional Hilbert space <strong>and</strong> P, Q are rank Morthogonal projections onto subspaces W 1 , W 2 respectively, then the chordaldistance d c (W 1 , W 2 ) between the subspaces satisfiesd 2 c(W 1 , W 2 ) = M − T r P Q.Next we give a precise connection between chordal distance for subspaces<strong>and</strong> the distance between the projections onto these subspaces. This resultcan be found <strong>in</strong> [29] <strong>in</strong> the language of Hilbert-Schmidt norms.


28 Peter G. CasazzaProposition 7. Let H M be an M-dimensional Hilbert space with orthonormalbasis {e i } M i=1 . Let P, Q be the orthogonal projections of HM onto N-dimensional subspaces W 1 , W 2 respectively. <strong>The</strong>n the chordal distance betweenW 1 , W 2 satisfiesd 2 c(W 1 , W 2 ) = 1 M∑‖P e i − Qe i ‖ 2 .2i=1In particular, there are orthonormal bases {e i } N i=1 for W 1 <strong>and</strong> {ẽ i } N i=1 for W 2satisfy<strong>in</strong>g1M∑N∑N∑‖P e i − Qe i ‖ 2 ≤ ‖e i − ẽ i ‖ 2 ≤ 2 ‖P e i − Qe i ‖ 2 .2i=1Proof. We compute:i=1i=1i=1M∑M∑‖P e i − Qe i ‖ 2 = 〈P e i − Qe i , P e i − Qe i 〉i=1M∑M∑M∑= ‖P e i ‖ 2 + ‖Qe i ‖ 2 − 2 〈P e i , Qe i 〉i=1= 2N − 2i=1M∑〈P Qe i , e i 〉i=1= 2N − 2T r P Q= 2N − 2[N − d 2 c(W 1 , W 2 )]= 2d 2 c(W 1 , W 2 ).This comb<strong>in</strong>ed with Equation 1.5 completes the proof.<strong>The</strong> next problem to be addressed is to connect the distance betweenprojections <strong>and</strong> the distance between the correspond<strong>in</strong>g ranges of analysisoperators for Parseval frames.<strong>The</strong>orem 16. Let P, Q be projections of rank N on H M <strong>and</strong> let {e i } M i=1 bethe coord<strong>in</strong>ate basis of H M . Further, assume that there is a Parseval frame{ϕ i } M i=1 for HN with analysis operator T satisfy<strong>in</strong>g T ϕ i = P e i for all i =1, 2, . . . , M. IfM∑‖P e i − Qe i ‖ 2 < ɛ,i=1then there is a Parseval frame {ψ i } M i=1 for H M with analysis operator T 1satisfy<strong>in</strong>gT 1 ψ i = Qe i , for all i = 1, 2, . . . , M,<strong>and</strong>i=1


1 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> <strong>and</strong> <strong>Paulsen</strong> <strong>Problems</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Frame</strong> <strong>The</strong>ory 29M∑‖ϕ i − ψ i ‖ 2 < 2ɛ.i=1Moreover, if {Qe i } M i=1 is equal norm, then {ψ i} M i=1 may be chosen to be equalnorm.Proof. By Proposition 7, there are orthonormal bases {a j } M j=1 <strong>and</strong> {b j} M j=1for W 1 = T (H N ), W 2 = T 1 (H N ) respectively satisfy<strong>in</strong>gM∑‖a j − b j ‖ 2 < 2ɛ.j=1Let A, B be the N ×M matrices whose j th columns are a j , b j respectively. Leta ij , b ij be the (i, j) entry of A, B respectively. F<strong>in</strong>ally, let {ϕ ′ i }M i=1 , {ψ′ i }M i=1 bethe i th rows of A, B respectively. <strong>The</strong>n we haveM∑M∑ N∑‖ϕ ′ i − ψ i‖ ′ 2 = |a ij − b ij | 2i=1==i=1 j=1N∑j=1 i=1M∑|a ij − b ij | 2N∑‖a j − b j ‖ 2i=1≤ 2ɛ.S<strong>in</strong>ce the columns of A form an orthonormal basis for W 1 , we know that{ϕ ′ i }M i=1 is a Parseval frame which is isomorphic to {ϕ i} M i=1 . Thus there isa unitary operator U : H M → H M with Uϕ ′ i = ϕ i. Now let {ψ i } M i=1 ={Uψ i ′}M i=1 . <strong>The</strong>nM∑M∑M∑‖ϕ i − Uψ i‖ ′ 2 = ‖U(ϕ ′ i) − U(ψ i)‖ ′ 2 = ‖ϕ ′ i − ψ i‖ ′ 2 ≤ 2ɛ.i=1i=1F<strong>in</strong>ally, if T 1 is the analysis operator for the Parseval frame {ψ i } M i=1 , thenT 1 is a isometry <strong>and</strong> s<strong>in</strong>ce T 1 ψ i = Qe i , for all i = 1, 2, . . . , N, if Qe i is equalnorm, so is {T 1 ψ i } M i=1 <strong>and</strong> hence so is {ψ i} N i=1 .<strong>The</strong>orem 17. If g(ɛ, N, M) is the function for the <strong>Paulsen</strong> Problem <strong>and</strong>f(ɛ, N, M) is the function for the Projection Problem, theni=1f(ɛ, N, M) ≤ 4g(ɛ, N, M) ≤ 8f(ɛ, N, M).Proof. First, assume that the Projection Problem holds with function f(ɛ, N, M).Let {ϕ i } M i=1 be a Parseval frame for HN satisfy<strong>in</strong>g


30 Peter G. Casazza(1 − ɛ) N M ≤ ‖ϕ i‖ 2 ≤ (1 + ɛ) N M .Let T be the analysis operator of {ϕ i } M i=1 <strong>and</strong> let P be the projection of H Monto range T . So, T ϕ i = P e i for all i = 1, 2, . . . , M. By our assumption thatthe Projection Problem holds, there is a projection Q on H M with constantdiagonal so thatM∑‖P e i − Qe i ‖ 2 ≤ f(ɛ, N, M).i=1By <strong>The</strong>orem 16, there is a a Parseval frame {ψ i } M i=1 for HN with analysisoperator T 1 so that T 1 ψ i = Qe i <strong>and</strong>M∑‖ϕ i − ψ i ‖ 2 ≤ 2f(ɛ, N, M).i=1S<strong>in</strong>ce T 1 is a isometry <strong>and</strong> {T 1 ψ i } M i=1 is equal norm, it follows that {ψ i} M i=1is an equal norm Parseval frame satisfy<strong>in</strong>g the <strong>Paulsen</strong> problem.Conversely, assume the Parseval <strong>Paulsen</strong> problem has a positive solutionwith function g(ɛ, N, M). Let P be an orthogonal projection on H M satisfy<strong>in</strong>g(1 − ɛ) N M ≤ ‖P e i‖ 2 ≤ (1 + ɛ) N M .<strong>The</strong>n {P e i } M i=1 is a ɛ-nearly equal norm Parseval frame for HN <strong>and</strong> by the<strong>Paulsen</strong> problem, there is an equal norm Parseval frame {ψ i } M i=1 so thatM∑‖ϕ i − ψ i ‖ 2 < g(ɛ, N, M).i=1Let T 1 be the analysis operator of {ψ i } M i=1 . Lett<strong>in</strong>g Q be the projection ontothe range of T 1 , we have that Qe i = T 1 ψ i , for all i = 1, 2, . . . , M. By <strong>The</strong>orem15, we have thatM∑N∑‖P e i − T 1 ψ i ‖ 2 = ‖P e i − Qe i ‖ 2 ≤ 4g(ɛ, N, M).i=1i=1S<strong>in</strong>ce T 1 is a isometry <strong>and</strong> {ψ i } M i=1constant diagonal projection.is equal norm, it follows that Q is aIn [14] there are several generalizations of the <strong>Paulsen</strong> <strong>and</strong> Projection<strong>Problems</strong>.


1 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> <strong>and</strong> <strong>Paulsen</strong> <strong>Problems</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Frame</strong> <strong>The</strong>ory 311.5 F<strong>in</strong>al CommentsWe have concentrated here on some problems <strong>in</strong> pure mathematics which havef<strong>in</strong>ite dimensional formulations. <strong>The</strong>re are many other <strong>in</strong>f<strong>in</strong>ite dimensionalversions of these problems [26, 27] <strong>in</strong> sampl<strong>in</strong>g theory, harmonic analysis <strong>and</strong>more which we have not covered.Because of the long history of these problems <strong>and</strong> their connections to somany areas of mathematics, we are naturally led to consider the decidabilityof KS. S<strong>in</strong>ce we have f<strong>in</strong>ite dimensional versions of the problem, it can bereformulated <strong>in</strong> the language of pure number theory, <strong>and</strong> hence it has aproperty logicians call absolutness. As a practical matter, the general feel<strong>in</strong>gis that this means it is very unlikely to be undecidable.Acknowledgements<strong>The</strong> author acknowledges support from NSF DMS 1008183, NSF ATD1042701<strong>and</strong> AFOSR DGE51: FA9550-11-1-0245.References1. C.A. Akemann <strong>and</strong> J. Anderson, Lyapunov theorems for operator algebras, Memoirsof AMS 94 (1991).2. J. Anderson, Restrictions <strong>and</strong> representations of states on C ∗ -algebras, Transactionsof AMS 249 (1979) 303–329.3. J. Anderson, Extreme po<strong>in</strong>ts <strong>in</strong> sets of positive l<strong>in</strong>ear maps on B(H), Journalof Functional Analysis 31 (1979) 195–217.4. J. Anderson, A conjecture concern<strong>in</strong>g pure states on B(H) <strong>and</strong> a related theorem,<strong>in</strong> Topics <strong>in</strong> modern operator theory, Birkhäuser (1981) 27–43.5. R. Balan, Equivalence relations <strong>and</strong> distances between Hilbert frames. Proceed<strong>in</strong>gsof AMS 127 (8) (1999), 2353-2366.6. R. Balan, P.G. Casazza, C. Heil <strong>and</strong> Z. L<strong>and</strong>au, Density, overcompleteness <strong>and</strong>localization of frames. I. <strong>The</strong>ory, Journal of Fourier Analysis <strong>and</strong> Applications,12 (2006) pp. 105-143.7. R. Balan, P.G. Casazza, C. Heil <strong>and</strong> Z. L<strong>and</strong>au, Density, overcompleteness <strong>and</strong>localization of frames. II. Gabor systems, Journal of Fourier Analysis <strong>and</strong> Applications,12 (2006) pp. 309-344.8. K. Berman, H. Halpern, V. Kaftal <strong>and</strong> G. Weiss, Matrix norm <strong>in</strong>equalities <strong>and</strong>the relative Dixmier property, Integral Equations <strong>and</strong> Operator <strong>The</strong>ory 11 (1988)28–48.9. K. Berman, H. Halpern, V. Kaftal <strong>and</strong> G. Weiss, Some C 4 <strong>and</strong> C 6 norm <strong>in</strong>equalitiesrelated to the pav<strong>in</strong>g problem, Proceed<strong>in</strong>gs of Symposia <strong>in</strong> Pure Math.51 (1970) 29-41.10. B. Bodmann <strong>and</strong> P.G. Casazza, <strong>The</strong> road to equal-norm Parseval frames, Journalof Functional Analysis 258, No. 2 (2010) 397-420.


32 Peter G. Casazza11. K. Berman, H. Halpern, V. Kaftal <strong>and</strong> G. Weiss, Matrix norm <strong>in</strong>equalities <strong>and</strong>the relative Dixmier property, Integral Equations <strong>and</strong> Operator <strong>The</strong>ory 11 (1988)28–48.12. J. Bourga<strong>in</strong> <strong>and</strong> L. Tzafriri, Invertibility of “large” submatrices <strong>and</strong> applicationsto the geometry of Banach spaces <strong>and</strong> Harmonic Analysis, Israel Journal ofMathematics 57 (1987) 137–224.13. J. Bourga<strong>in</strong> <strong>and</strong> L. Tzafriri, On a problem of <strong>Kadison</strong> <strong>and</strong> <strong>S<strong>in</strong>ger</strong>, J. Re<strong>in</strong>eAngew Mathematics 420 (1991), 1–43.14. J. Cahill <strong>and</strong> P.G. Casazza, <strong>The</strong> <strong>Paulsen</strong> Problem <strong>in</strong> operator theory, Prepr<strong>in</strong>t.15. P. G. Casazza, Custom build<strong>in</strong>g f<strong>in</strong>ite frames. <strong>in</strong>: Wavelets, <strong>Frame</strong>s <strong>and</strong> Operator<strong>The</strong>ory (College Park, MD, 2003), Contemporary Mathematics 345, AmericanMathematical Society, Providence, RI, (2004) 61–86.16. P.G. Casazza, O. Christensen, A. L<strong>in</strong>dner <strong>and</strong> R. Vershyn<strong>in</strong>, <strong>Frame</strong>s <strong>and</strong> theFeicht<strong>in</strong>ger conjecture, Proceed<strong>in</strong>gs of AMS, 133 No. 4 (2005) 1025–1033.17. P.G. Casazza <strong>and</strong> D. Edid<strong>in</strong>, Equivalents of the <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> Problem, ContemporaryMathematics Vol. 435 (2007) 123-142.18. P.G. Casazza, D. Edid<strong>in</strong>, D. Kalra <strong>and</strong> V. <strong>Paulsen</strong>, Projections <strong>and</strong> the <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> Problem, Operators <strong>and</strong> Matrices, Vol. 1, No. 3 (2007) 391-408.19. P.G. Casazza <strong>and</strong> M. Fickus, M<strong>in</strong>imiz<strong>in</strong>g fusion frame potentials, Acta Applic<strong>and</strong>aeMathematicae 107 No. 103 (2009) 7–24.20. P.G. Casazza, M. Fickus <strong>and</strong> D. Mixon, Auto-tun<strong>in</strong>g unit norm frames, To appear:Applied <strong>and</strong> Computational Harmonic Analysis.21. Peter G. Casazza, Matthew Fickus, Dust<strong>in</strong> G. Mixon <strong>and</strong> Janet C. Trema<strong>in</strong>, <strong>The</strong>Bourga<strong>in</strong>-Tzafriri conjecture <strong>and</strong> concrete constructions of non-pavable projections,Operators <strong>and</strong> Matrices 5, No. 2 (2011) 351-363.22. P. Casazza <strong>and</strong> G. Kutyniok, A generalization of Gram Schmidt orthogonalizationgenerat<strong>in</strong>g all Parseval frames. Advances <strong>in</strong> Computational Mathematics,18 (2007), 65-78.23. P.G. Casazza, G. Kutyniok <strong>and</strong> D. Speegle, A decomposition theorem for frames<strong>and</strong> the Feicht<strong>in</strong>ger Conjecture, Proceed<strong>in</strong>gs of AMS 136 (2008) pp. 2043-2053.24. P.G. Casazza <strong>and</strong> G. Pf<strong>and</strong>er, An <strong>in</strong>f<strong>in</strong>ite dimensional restricted <strong>in</strong>vertibilitytheorem, Prepr<strong>in</strong>t.25. P.G. Casazza <strong>and</strong> G. Pf<strong>and</strong>er, A two-sided algorithm for the restricted <strong>in</strong>vertibilitytheorem, Prepr<strong>in</strong>t.26. P.G. Casazza <strong>and</strong> J.C. Trema<strong>in</strong>, <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> problem <strong>in</strong> Mathematics<strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Proceed<strong>in</strong>gs of the National Academy of Sciences Vol. 103No. 7 (2006) 2032-2039.27. P.G. Casazza, M. Fickus, J.C. Trema<strong>in</strong> <strong>and</strong> E. Weber, <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong>Problem <strong>in</strong> mathematics <strong>and</strong> eng<strong>in</strong>eer<strong>in</strong>g— A detailed account, ContemporaryMathematics, 414, Operator theory, operator algebras <strong>and</strong> applications, D. Han,P.E.T. Jorgensen <strong>and</strong> D.R. Larson Eds. (2006) 297-356.28. P.G. Casazza <strong>and</strong> J.C. Trema<strong>in</strong>, Revisit<strong>in</strong>g the Bourga<strong>in</strong>-Tzafriri restricted <strong>in</strong>vertibilitytheorem, Operators <strong>and</strong> Matrices, 3, No. 1 (2009) pp. 97-110.29. J. H. Conway, R. H. Hard<strong>in</strong>, N. J. A. Sloane, Pack<strong>in</strong>g l<strong>in</strong>es, planes, etc.: pack<strong>in</strong>gs<strong>in</strong> Grassmannian spaces, Experimental Mathematica 5 No. 2 (1996) 139-159.30. P.A.M. Dirac, Quantum Mechanics, 3rd Ed., Oxford University Press, London(1947).31. K.H. Gröchenig, Localized frames are f<strong>in</strong>ite unions of Riesz sequences, Advances<strong>in</strong> Computational mathematics 18 (2003) 149–157.32. H. Halpern, V. Kaftal <strong>and</strong> G. Weiss, Matrix pav<strong>in</strong>gs <strong>and</strong> Laurent operators,Journal of Operator <strong>The</strong>ory 16 (1986) 121–140.33. H. Halpern, V. Kaftal <strong>and</strong> G. Weiss, Matrix pav<strong>in</strong>gs <strong>in</strong> B(H), Proc. 10 th Internationalconference on operator theory, Increst 1985; Advances <strong>and</strong> Applications24 (1987) 201–214.


1 <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> <strong>and</strong> <strong>Paulsen</strong> <strong>Problems</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Frame</strong> <strong>The</strong>ory 3334. R.B. Holmes <strong>and</strong> V. <strong>Paulsen</strong>, Optimal frames for erasures, L<strong>in</strong>ear Algebra <strong>and</strong>Applications 377 (2004) 31-51.35. A. J. E. M. Janssen, Zak transforms with few zeroes <strong>and</strong> the tie. In Advances<strong>in</strong> Gabor Analysis, H.G. Feicht<strong>in</strong>ger <strong>and</strong> T. Strohmer, eds., Birkhäuser, Boston(2002), 31-70.36. R. <strong>Kadison</strong> <strong>and</strong> I. <strong>S<strong>in</strong>ger</strong>, Extensions of pure states, American Jour. Math. 81(1959), 383–400.37. V. <strong>Paulsen</strong>, A dynamical systems approach to the <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> Problem, Jour.Functional Analysis 255 (2008) 120-132.38. V. <strong>Paulsen</strong> <strong>and</strong> M. Ragupathi, Some new equivalences of Anderson’s pav<strong>in</strong>gconjecture, Proceed<strong>in</strong>gs of AMS 136 (2008) 4275-4282.39. D.A. Spielman <strong>and</strong> N. Srivastava, An elementary proof of the restricted <strong>in</strong>vertibilitytheorem, To appear: Israel Journal of Mathematics.40. J. Tropp, <strong>The</strong> r<strong>and</strong>om pav<strong>in</strong>g property for uniformly bounded matrices, StudiaMathematica 185 No. 1 (2008) 67-82.41. R. Vershyn<strong>in</strong>, Remarks on the geometry of coord<strong>in</strong>ate projections <strong>in</strong> R n , IsraelJournal of Mathematics 140 (2004) 203-220.42. R. Vershyn<strong>in</strong>, John’s decompositions: select<strong>in</strong>g a large part, Israel Journal ofMathematics 122 (2001), 253–277.43. N. Weaver, <strong>The</strong> <strong>Kadison</strong>-<strong>S<strong>in</strong>ger</strong> Problem <strong>in</strong> discrepancy theory, Discrete Mathematics278 (2004), 227–239.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!