11.07.2015 Views

Self-Sealing Evaporation Ponds for Desalination Facilities in Texas

Self-Sealing Evaporation Ponds for Desalination Facilities in Texas

Self-Sealing Evaporation Ponds for Desalination Facilities in Texas

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Cover photo: aerial view of River Oaks Ranch evaporation ponds and facility (Hays County).Courtesy of Google Earth.


Table of ContentsTable of Contents .......................................................................................................................... iiiList of Figures ............................................................................................................................vList of Tables .......................................................................................................................... ixGlossary and Abbreviations........................................................................................................... xiAcknowledgments........................................................................................................................ xiiiExecutive Summary.........................................................................................................................11 Introduction ............................................................................................................................52 Background Technical In<strong>for</strong>mation on <strong>Evaporation</strong> <strong>Ponds</strong>.....................................................72.1 <strong>Desal<strong>in</strong>ation</strong> Primer .........................................................................................................72.2 <strong>Desal<strong>in</strong>ation</strong> <strong>Facilities</strong> <strong>in</strong> <strong>Texas</strong> <strong>in</strong> 2006..........................................................................72.3 How Do <strong>Evaporation</strong> <strong>Ponds</strong> Operate? ...........................................................................122.3.1 <strong>Evaporation</strong> Rates <strong>in</strong> <strong>Texas</strong> .........................................................................................122.3.2 Typical M<strong>in</strong>eral Suite—Chemical Divide ...................................................................192.4 Geochemical Model<strong>in</strong>g In<strong>for</strong>mation..............................................................................213 Approach and Sources of In<strong>for</strong>mation...................................................................................233.1 Feedwater Chemistry .....................................................................................................233.1.1 Groundwater Data........................................................................................................233.1.2 Surface-Water Data......................................................................................................283.1.3 Feedwater Groups and <strong>Evaporation</strong> Rates...................................................................293.2 Regulatory Review.........................................................................................................303.3 Field Sampl<strong>in</strong>g and Technical Interviews......................................................................304 Analysis and Results..............................................................................................................314.1 Legislative Options ........................................................................................................314.1.1 Regulatory Framework ................................................................................................314.1.1.1 Federal Statutory and Regulatory Requirements .............................................. 314.1.1.2 <strong>Texas</strong> Statutory Requirements .......................................................................... 314.1.1.3 <strong>Texas</strong> Regulatory Requirements....................................................................... 324.1.2 Policy Overview...........................................................................................................344.1.2.1 Pond Siz<strong>in</strong>g ....................................................................................................... 344.1.2.2 Pond L<strong>in</strong>er......................................................................................................... 344.1.2.3 Alternative L<strong>in</strong>er Requirements........................................................................ 354.1.3 Regulatory Programs <strong>in</strong> Selected Southwestern States ...............................................354.1.3.1 Arizona.............................................................................................................. 354.1.3.2 Oklahoma.......................................................................................................... 364.1.3.3 New Mexico...................................................................................................... 374.1.4 Factors to Reduce Complexity and Cost <strong>in</strong> <strong>Texas</strong>.......................................................384.1.4.1 L<strong>in</strong>er Requirements........................................................................................... 384.1.4.2 Permit Process<strong>in</strong>g.............................................................................................. 384.1.4.3 Leak Monitor<strong>in</strong>g ............................................................................................... 384.1.5 What if Someth<strong>in</strong>g Goes Wrong?................................................................................394.1.6 Regulatory Conclusions...............................................................................................394.2 Range of Likely Membrane Concentrate Compositions................................................404.2.1 Out-of-State Examples.................................................................................................414.2.2 <strong>Texas</strong> Data ...................................................................................................................45iii


4.2.3 Conclusions on the Range of Likely Membrane Concentrate Compositions ..............474.3 <strong>Self</strong>-<strong>Seal<strong>in</strong>g</strong> Geochemical Calculations.........................................................................474.3.1 Mechanics of <strong>Self</strong> <strong>Seal<strong>in</strong>g</strong> ...........................................................................................474.3.2 Literature Review of Analogs......................................................................................484.3.2.1 Industrial <strong>Ponds</strong>—Lagoons............................................................................... 484.3.2.2 Sepiolite ............................................................................................................ 484.3.2.3 Natural Analogs ................................................................................................ 494.3.2.4 Experiments ...................................................................................................... 504.3.2.5 Additives........................................................................................................... 514.3.3 Geochemical Simulation Parameters ...........................................................................514.3.3.1 Balance of Influx and <strong>Evaporation</strong> Rates ......................................................... 524.3.3.2 M<strong>in</strong>erals Allowed to Precipitate ....................................................................... 544.3.3.3 Simulation Parameters ...................................................................................... 564.3.3.4 Scal<strong>in</strong>g of PHREEQC results............................................................................ 584.3.4 Geochemical Simulation Results .................................................................................594.3.5 Conclusions on <strong>Self</strong>-<strong>Seal<strong>in</strong>g</strong> Geochemical Calculations.............................................614.4 Design Specifics and Cost Estimates.............................................................................654.4.1 Pond Siz<strong>in</strong>g ..................................................................................................................654.4.2 Conta<strong>in</strong>ment Equivalence ............................................................................................714.4.2.1 Equivalence to Clay L<strong>in</strong>er ................................................................................ 714.4.2.2 Equivalence to Geomembrane L<strong>in</strong>er with a Leak-Detection System orGroundwater Monitor<strong>in</strong>g System..................................................................... 714.4.3 Conclusions on Conta<strong>in</strong>ment Equivalence ..................................................................724.4.4 Cost Analysis ...............................................................................................................735 Conclusions, Recommendations, and Future Work...............................................................776 References ..........................................................................................................................797 Appendix List.........................................................................................................................878 Appendix A: Groundwater and Surface-Water Sample Locations and Piper Plots..............899 Appendix B: Relevant TAC/TCEQ Rules and Excerpts from Form TCEQ 10411/10055-Instructions.....................................................................................................11310 Appendix C: Example of Permit to Discharge Wastewater to an <strong>Evaporation</strong> Pond..........12111 Appendix D: Panhandle Sal<strong>in</strong>e Lake Sampl<strong>in</strong>g...................................................................12712 Appendix E: <strong>Evaporation</strong> Pond Sampl<strong>in</strong>g ...........................................................................13113 Appendix F: A Few Words about Clay M<strong>in</strong>erals ................................................................14914 Appendix G: Commented Geochemical Input Files............................................................15515 Appendix H: Results of Some Geochemical Runs ..............................................................16316 Appendix I: Disposal of As-Rich Residuals as Hazardous Wastes .....................................20917 Appendix J: Conceptual Draw<strong>in</strong>gs of <strong>Evaporation</strong> <strong>Ponds</strong>...................................................21318 Appendix K: Responses to Review Comments ...................................................................21719 Appendix L: List of Changes <strong>in</strong> Revision 1.........................................................................225iv


List of FiguresFigure 2-1. Feedwater TDS distribution. .........................................................................................8Figure 2-2. Map of desal<strong>in</strong>ation facilities show<strong>in</strong>g design capacity................................................9Figure 2-3. Map of desal<strong>in</strong>ation facilities (≥0.025 MGD DC) show<strong>in</strong>g concentrate disposalmethod.........................................................................................................................9Figure 2-4. Map of desal<strong>in</strong>ation facilities show<strong>in</strong>g TDS of feedwater..........................................10Figure 2-5. Map of <strong>Texas</strong> desal<strong>in</strong>ation facilities show<strong>in</strong>g feedwater orig<strong>in</strong>..................................10Figure 2-6. Average temperature (a) month of July, (b) annual. ...................................................14Figure 2-7. Average annual precipitation rate. ..............................................................................15Figure 2-8. Average annual gross lake evaporation rate................................................................16Figure 2-9. Net average annual fresh-water evaporation rates across <strong>Texas</strong>.................................17Figure 2-10. Net average annual evaporation rates across <strong>Texas</strong> from a low-sal<strong>in</strong>ity waterbody...........................................................................................................................18Figure 2-11. Net average annual evaporation rates across <strong>Texas</strong> from a high-sal<strong>in</strong>ity waterbody...........................................................................................................................19Figure 2-12. Conceptual model of concentrate evolution..............................................................20Figure 3-1. Map of counties with no, low to medium (30 <strong>in</strong>ches) netevaporation rates and of groundwater samples with TDS >1,000 and 1,000 ppm..................28Figure 3-4. Surface-water stations with chemical analyses of major ions and TDS >1,000ppm. ..........................................................................................................................29Figure 3-5. Net average annual evaporation rate <strong>for</strong> each water sampl<strong>in</strong>g group. ........................30Figure 4-1. Piper plot of feedwater (F) and concentrate (C) of selected desal<strong>in</strong>ation facilities<strong>in</strong> the Middle East. ....................................................................................................42Figure 4-2. Piper plot of feedwater (F) and concentrate (C) of selected <strong>Texas</strong> desal<strong>in</strong>ationfacilities.....................................................................................................................45Figure 4-3. Mix<strong>in</strong>g scheme of numerical model<strong>in</strong>g.......................................................................54Figure 4-4. Comparison of total m<strong>in</strong>eral accumulation (<strong>in</strong>ches) at 5 years <strong>for</strong> noneng<strong>in</strong>eered(“natural”) and eng<strong>in</strong>eered (addition of sepiolite precursor) systems. .....................61Figure 8-1. TDS distribution of slightly brackish waters ..............................................................91Figure 8-2. Map and Piper plot of all groundwater samples on map of Figure 3-1.......................94Figure 8-3. Map and Piper plot of Mixed Alluvium group............................................................95Figure 8-4. Map and Piper plot of Rio Grande and Brazos Alluvium groups...............................96Figure 8-5. Map and Piper plot of Seymour group........................................................................97Figure 8-6. Map and Piper plot of Bolson group...........................................................................98Figure 8-7. Map and Piper plot of Ogallala group.........................................................................99Figure 8-8. Map and Piper plot of Pecos Valley group ...............................................................100Figure 8-9. Map and Piper plot of Gulf Coast group...................................................................101Figure 8-10. Map and Piper plot of Eocene group.......................................................................102Figure 8-11. Map and Piper plot of Cretaceous Limestone group...............................................103Figure 8-12. Map and Piper plot of Cretaceous Sandstone group ...............................................104Figure 8-13. Map and Piper plot of Triassic Sandstone group ....................................................105Figure 8-14. Map and Piper plot of Permian Evaporite group ....................................................106v


Figure 8-15. Map and Piper plot of Permian Limestone group ...................................................107Figure 8-16. Map and Piper plot of Permian Sandstone group....................................................108Figure 8-17. Map and Piper plot of Bone Spr<strong>in</strong>g – Victorio Peak and Capitan groups ..............109Figure 8-18. Map and Piper plot of Pennsylvanian group...........................................................110Figure 8-19. Map and Piper plot of Llano Uplift group ..............................................................111Figure 8-20. Map and Piper plot of surface-water group.............................................................112Figure 11-1. Locations of Panhandle sal<strong>in</strong>e lakes .......................................................................130Figure 12-1. Location map of the four sampled evaporation ponds............................................135Figure 12-2. Piper plots of samples from selected <strong>Texas</strong> desal<strong>in</strong>ation facilities.........................136Figure 12-3. Examples of X-ray diffraction patterns of bottom pond sediments: HorizonMUD sample 3 (a), Abilene sample 1 (b), River Oaks Ranch sample 1 (c) andBrady sample 1 (d)..................................................................................................137Figure 12-4. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g sampledconcentrate as the source. .......................................................................................139Figure 12-5. Aerial view of River Oaks Ranch evaporation pond show<strong>in</strong>g sampl<strong>in</strong>g location(courtesy of Google Earth)......................................................................................141Figure 12-6. View of River Oaks Ranch evaporation pond from sampl<strong>in</strong>g po<strong>in</strong>t #4 show<strong>in</strong>gthe gypsum crust .....................................................................................................142Figure 12-7. View of River Oaks Ranch evaporation pond show<strong>in</strong>g concentrate outfall andwater-level gage......................................................................................................142Figure 12-8. Aerial view of Horizon MUD evaporation ponds show<strong>in</strong>g approximate waterlimits at time of sampl<strong>in</strong>g and sampl<strong>in</strong>g locations (courtesy of Google Earth)......143Figure 12-9. Horizon City MUD north evaporation pond show<strong>in</strong>g the sampled water; outfallis on the far left-hand side of the picture beh<strong>in</strong>d the trees......................................144Figure 12-10. Horizon MUD south pond (not active) be<strong>in</strong>g scraped ..........................................144Figure 12-11. Aerial view of evaporation pond of City of Abilene desal<strong>in</strong>ation facilityshow<strong>in</strong>g sampl<strong>in</strong>g location (courtesy of Google Earth) .........................................145Figure 12-12. City of Abilene east pond show<strong>in</strong>g some of the sampled water (“2” and “3”).....146Figure 12-13. City of Abilene west pond show<strong>in</strong>g the l<strong>in</strong>ers emplaced to control wave action .146Figure 12-14. Aerial view of the evaporation pond of City of Brady desal<strong>in</strong>ation facilityshow<strong>in</strong>g sampl<strong>in</strong>g location (courtesy of Google Earth) .........................................147Figure 12-15. City of Brady evaporation pond show<strong>in</strong>g the sampled water ...............................148Figure 12-16. City of Brady evaporation pond seen from the western berm. The pond water isvisible under the l<strong>in</strong>e of vegetation on the right-hand side of the picture...............148Figure 15-1. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions ..........................................167Figure 15-2. Comparison of results of selected groups run with different databases: mixedalluvium with Pitzer (a), mixed alluvium with LLNL (b), surface water withPitzer (c), and surface water with LLNL (d)...........................................................175Figure 15-3. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> twopond depths (3 and 12 <strong>in</strong>ches) <strong>for</strong> all water groups................................................176Figure 15-4. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> eng<strong>in</strong>eered conditions (0.01 mol/L of sepioliteprecursor compounds).............................................................................................184Figure 15-5. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> allwater groups <strong>in</strong> eng<strong>in</strong>eered and natural sett<strong>in</strong>gs (pond depth is 3 <strong>in</strong>ches)..............192vi


Figure 15-6. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions—Ca-Montmorillonite(d)is allowed to precipitate ..........................................................................................200Figure 17-1. Conceptual draw<strong>in</strong>g ((layout and cross-section) of evaporation pond <strong>for</strong> facility<strong>in</strong> quadrangle 608....................................................................................................215vii


List of TablesTable 2-1. Concentrate disposal method statistics (<strong>Texas</strong> PWS plants with ≥0.025 MGD DC).....8Table 2-2. Characteristic summary of <strong>Texas</strong> desal<strong>in</strong>ation facilities with capacity ≥0.025MGD and us<strong>in</strong>g evaporation pond <strong>for</strong> disposal..........................................................11Table 3-1. List of water sample groups (12,720 samples).............................................................25Table 4-1. Feedwater and concentrate chemical composition from a few Middle Easterndesal<strong>in</strong>ation facilities..................................................................................................43Table 4-2. Facility characteristics..................................................................................................44Table 4-3. Feedwater and concentrate chemical composition from selected <strong>Texas</strong>desal<strong>in</strong>ation facilities..................................................................................................46Table 4-4. Mix<strong>in</strong>g parameter <strong>for</strong> monthly periods.........................................................................54Table 4-5. Important allowed (“A”) and suppressed (“S”) m<strong>in</strong>erals.............................................56Table 4-6. Average m<strong>in</strong>eral accumulation thickness and sepiolite fraction at 5 and 30 years <strong>in</strong>a 3-<strong>in</strong>ch-depth pond <strong>in</strong> noneng<strong>in</strong>eered conditions (assumes a porosity of 0%).........62Table 4-7. Average m<strong>in</strong>eral accumulation thickness and sepiolite fraction at 5 years <strong>in</strong> a 3–<strong>in</strong>ch-depth pond <strong>in</strong> noneng<strong>in</strong>eered and eng<strong>in</strong>eered conditions (assumes a porosityof 0%).........................................................................................................................63Table 4-8. Average m<strong>in</strong>eral accumulation thickness and sepiolite fraction at 30 years <strong>in</strong> a 3-<strong>in</strong>ch-depth pond <strong>in</strong> noneng<strong>in</strong>eered and eng<strong>in</strong>eered conditions (assumes a porosityof 0%).........................................................................................................................64Table 4-9. Generic pond size <strong>for</strong> 1-MGD facilities located near the sampled ponds....................66Table 4-10. Pond water balance <strong>for</strong> quadrangle 709, represent<strong>in</strong>g the River Oaks Ranch site....67Table 4-11. Pond water balance <strong>for</strong> quadrangle 608, represent<strong>in</strong>g the Brady site. .......................68Table 4-12. Pond water balance <strong>for</strong> quadrangle 508, represent<strong>in</strong>g the Abilene site. ....................69Table 4-13. Pond water balance <strong>for</strong> quadrangle 601, represent<strong>in</strong>g the Horizon MUD site...........70Table 4-14. Conta<strong>in</strong>ment equivalence summary ...........................................................................73Table 4-15. Summary of approximate costs and cost sav<strong>in</strong>gs features <strong>for</strong> generic evaporationponds ..........................................................................................................................76Table 8-1. Samples best represent<strong>in</strong>g the central value of each group (units are ppm) ................93Table 11-1. Chemical analysis results of Panhandle sal<strong>in</strong>e lake, summer 2006 field sampl<strong>in</strong>g..129Table 11-2. X-ray analyses of sal<strong>in</strong>e lake sediments (f<strong>in</strong>e-gra<strong>in</strong>ed fraction) ..............................129Table 12-1. X-ray analyses of pond bottom sediments and crusts ..............................................133Table 12-2. <strong>Evaporation</strong> pond sampl<strong>in</strong>g results ..........................................................................134Table 13-1. Physical characteristics of clay m<strong>in</strong>erals.................................................................152Table 13-2. Environmental conditions <strong>for</strong> magnesian clay associations.....................................154Table 15-1. Correspondence table between evaporation progress as given <strong>in</strong> plot abscissa andduration (calendar years) ..........................................................................................165ix


Glossary and AbbreviationsADEQ Arizona Department of Environmental QualityARS Arizona Revised StatutesASTM American Society <strong>for</strong> Test<strong>in</strong>g and MaterialsBADCTCWADCDODWEDEDREPEPAGCLGWHDPEINDIRRiWUDLALLNLMCLMFMGDmilNCDCNFNMACNMEDNPDESNRCSOACODEQBest Available Demonstrated Control TechnologyClean Water ActDesign capacityDissolved oxygenDr<strong>in</strong>k<strong>in</strong>g waterElectrodialysisElectrodialysis reversal<strong>Evaporation</strong> pondEnvironmental Protection AgencyGeosynthetic clay l<strong>in</strong>erGroundwaterHigh-density polyethyleneIndustrialIrrigationTCEQ water utility database search eng<strong>in</strong>eLand applicationLawrence Livermore National LaboratoryMaximum contam<strong>in</strong>ant levelMicrofiltrationMillion gallons per day1/1000 th of 1 <strong>in</strong>chNational Climatic Data CenterNanofiltrationNew Mexico Adm<strong>in</strong>istrative CodeNew Mexico Environment DepartmentNational Pollutant Discharge Elim<strong>in</strong>ation SystemNatural Resources Conservation Service (<strong>in</strong> New Mexico)Oklahoma Adm<strong>in</strong>istrative CodeOklahoma Department of Environmental Qualityxi


ppmPVCPWSROSISSEPSWSWATSTACTCEQTCLPTDSTLAPTNRCCTNRISTPDESTWDBUFUSGSWWTPpart per millionPolyv<strong>in</strong>yl chloridePublic water systemReverse osmosisSaturation <strong>in</strong>dex<strong>Self</strong>-seal<strong>in</strong>g evaporation pondSurface waterSurface Water and Treatment System<strong>Texas</strong> adm<strong>in</strong>istrative code<strong>Texas</strong> Commission on Environmental QualityToxicity Characteristic Leach<strong>in</strong>g ProcedureTotal dissolved solids<strong>Texas</strong> Land Application Permit<strong>Texas</strong> Natural Resources Conservation Commission; name changed to TCEQ<strong>Texas</strong> Natural Resources In<strong>for</strong>mation System<strong>Texas</strong> Pollutant Discharge Elim<strong>in</strong>ation System<strong>Texas</strong> Water Development BoardUltrafiltrationUnited States Geological SurveyWastewater treatment plantxii


AcknowledgmentsThe authors would like to thank all <strong>in</strong>dividuals and organizations that helped make this worksuccessful. Patrick V. Brady, senior researcher and project manager at Sandia NationalLaboratories, revived the concept of self-seal<strong>in</strong>g evaporation ponds <strong>for</strong> desal<strong>in</strong>ation facilities.James Krumhansl, senior researcher also at Sandia, did X-ray analyses of the sal<strong>in</strong>e lake andevaporation pond sediments at no charge. Andrew Tachovsky at BEG collected the sal<strong>in</strong>e lakesamples and did the cation chemical analyses. Thanks to David Yohe, Henry Ochella (RiverOaks plant), and Toby Alvarado and Joe Paxton (Horizon MUD) from ECO Resources, Inc., <strong>for</strong>allow<strong>in</strong>g us to visit and sample their facilities. Thanks also to Kenny Hutch<strong>in</strong>s and RodneyTaylor (City of Abilene) and Rufus Beam (City of Brady) <strong>for</strong> their help <strong>in</strong> sampl<strong>in</strong>g water atvarious locations of their facility. Thanks to Sanjeev Kalaswad at the <strong>Texas</strong> Water DevelopmentBoard (TWDB) and Travis Swanson (BEG) <strong>for</strong> their help <strong>in</strong> the sampl<strong>in</strong>g.We would also like to thank the <strong>Texas</strong> Commission on Environmental Quality (TCEQ) staff, <strong>in</strong>particular, Kelly Holligan, Michael Chadwick, and Kathy H. Brown, <strong>for</strong> their <strong>in</strong>put on theregulatory aspects. We also benefited from discussions with Jorge Arroyo, Team Leader atTWDB, and Hari Krishna, Contract Manager, also at TWDB. We are grateful as well to LanaDieterich <strong>for</strong> the thorough edit<strong>in</strong>g of this report.xiii


Executive SummaryThe State of <strong>Texas</strong> has taken a renewed <strong>in</strong>terest <strong>in</strong> desal<strong>in</strong>ation of brackish water. Because the<strong>Texas</strong> population is expected to grow tremendously <strong>in</strong> com<strong>in</strong>g decades, many municipalities andother water-supply<strong>in</strong>g entities will need to supplement their current fresh-water sources.<strong>Desal<strong>in</strong>ation</strong> of brackish water is high on the list of water-source alternatives <strong>for</strong> supply<strong>in</strong>g someor all of the <strong>in</strong>creased water needs <strong>in</strong> many communities. However, disposal of desal<strong>in</strong>ationconcentrates may pose legal, technical, and economic barriers, especially <strong>for</strong> smallercommunities with water supplies of less than one million gallons per day (MGD). In this report,we exam<strong>in</strong>e evaporation ponds and the possibility of <strong>in</strong>corporat<strong>in</strong>g a low-permeability layer(precipitant) <strong>in</strong>to the pond-l<strong>in</strong>er system as a l<strong>in</strong>er component or possibly as the l<strong>in</strong>er itself. Oneaspect of this analysis was to <strong>in</strong>vestigate the regulatory requirements and barriers of us<strong>in</strong>g selfseal<strong>in</strong>gponds, if this strategy proves to be a technically viable alternative to standard pond l<strong>in</strong>ers.Another part of the work consisted of understand<strong>in</strong>g the favorable chemical conditions, naturalor <strong>in</strong>duced, <strong>for</strong> the precipitation of such a compound(s). The third and last facet of this work wasto <strong>in</strong>vestigate the sav<strong>in</strong>gs or extra costs of this approach.The follow<strong>in</strong>g observations characterize the regulatory issues relat<strong>in</strong>g to self-seal<strong>in</strong>g pond l<strong>in</strong>ers.(1) No significant regulatory barriers currently exist that would prevent the permitt<strong>in</strong>g of selfseal<strong>in</strong>gevaporation pond-l<strong>in</strong>er technologies at desal<strong>in</strong>ation facilities <strong>in</strong> <strong>Texas</strong>. (2) No Federalauthorizations are required, but a <strong>Texas</strong> Land Application Permit (TLAP) must be obta<strong>in</strong>ed fromthe <strong>Texas</strong> Commission on Environmental Quality (TCEQ) Water Quality Division. (3) TCEQhas considerable latitude <strong>for</strong> approv<strong>in</strong>g alternative permit requirements <strong>for</strong> <strong>in</strong>dustrial permits.Rules <strong>for</strong> municipal wastewater treatment are used as guides <strong>for</strong> the evaluation of <strong>in</strong>dustrialevaporation ponds but do not impose strict regulatory requirements. Currently approved pondl<strong>in</strong>ers <strong>in</strong>clude a 3-foot-thick layer of <strong>in</strong> situ clay or compacted clay (with a maximum hydraulicconductivity of 10 -7 cm/s) or a geomembrane l<strong>in</strong>er (polyv<strong>in</strong>yl chloride [PVC], high-densitypolyethylene [HDPE], butyl rubber, polypropylene, etc) of 30 mils (0.76 mm) or more with leakdetectionmonitor<strong>in</strong>g. An alternative l<strong>in</strong>er technology may be approved by TCEQ if it can bedemonstrated to achieve and ma<strong>in</strong>ta<strong>in</strong> equivalent conta<strong>in</strong>ment capabilities to the pre-approvedl<strong>in</strong>ers and that the result<strong>in</strong>g l<strong>in</strong>er material(s) will not deteriorate because of reactivity withsal<strong>in</strong>ity or other compounds <strong>in</strong> the effluent stream or other ambient conditions. Support<strong>in</strong>gdemonstration <strong>in</strong><strong>for</strong>mation may <strong>in</strong>clude previous research, pilot projects, and monitor<strong>in</strong>g datafrom exist<strong>in</strong>g operational facilities currently utiliz<strong>in</strong>g the proposed technology. Regulatoryprocess<strong>in</strong>g <strong>for</strong> the permitt<strong>in</strong>g of an evaporation pond could be simplified if the self-seal<strong>in</strong>gtechnology were recognized by the TCEQ as an accepted type of l<strong>in</strong>er, equivalent to compactedclay or geomembrane l<strong>in</strong>ers. No statutory change or rulemak<strong>in</strong>g would be required to revise thepermit <strong>in</strong>structions to add self-seal<strong>in</strong>g pond l<strong>in</strong>ers to the list of acceptable methods, althoughcompell<strong>in</strong>g scientific and eng<strong>in</strong>eer<strong>in</strong>g evidence would be necessary to justify such amodification.The technical part of this study started with the assessment of previous laboratory experimentsand natural analogs, such as sal<strong>in</strong>e lakes. The assessment suggests that precipitation of a specificclay m<strong>in</strong>eral called sepiolite, which is composed of mostly magnesium oxide and silica, couldhave many advantages. It has the flow properties of clay m<strong>in</strong>erals but is not expandable whenexposed to water or to a change <strong>in</strong> sal<strong>in</strong>ity or aqueous ionic makeup. Despite the absence ofsepiolite <strong>in</strong> the few samples collected from <strong>Texas</strong> evaporation ponds, geochemical numerical1


simulations per<strong>for</strong>med us<strong>in</strong>g U.S. Geological Survey (USGS) code PHREEQC suggests thatsepiolite does precipitate <strong>in</strong> evaporation ponds but <strong>in</strong> small quantities. Calcite and gypsum arethe two m<strong>in</strong>erals that precipitate <strong>in</strong> significant amounts. After 5 years of operation, an averageprecipitate thickness is approximately 0.15 <strong>in</strong>ch, conta<strong>in</strong><strong>in</strong>g about 15% sepiolite, with largegeographic variability. Addition of low-cost sepiolite precursors to the concentrate stream hasbeen shown to <strong>in</strong>crease the amount of sepiolite precipitated (with a pH ma<strong>in</strong>ta<strong>in</strong>ed at 8.5), to anaverage of 0.38 <strong>in</strong>ch after 5 years of operation, with a sepiolite fraction of approximately 60%.Water-chemical composition <strong>in</strong>puts to the numerical simulations were derived from databasesconta<strong>in</strong><strong>in</strong>g <strong>in</strong><strong>for</strong>mation on thousands of brackish groundwater samples at the <strong>Texas</strong> WaterDevelopment Board (TWDB) and surface-water samples from TCEQ. They were categorized<strong>in</strong>to 20 groups correspond<strong>in</strong>g to aquifers or group of aquifers, except <strong>for</strong> one group comprisedentirely of all surface-water samples. Although the range and variety of water composition arelarge, results are essentially qualitatively similar <strong>for</strong> all groups: without precursors, mostlycalcite, gypsum, and some m<strong>in</strong>or m<strong>in</strong>erals precipitate, whereas with addition of precursors, asignificant amount of sepiolite can precipitate. This study did not per<strong>for</strong>m laboratoryexperiments on the precipitates and, there<strong>for</strong>e, does not present <strong>in</strong>dependent hydraulicconductivity analyses. However, other <strong>in</strong>vestigators have measured hydraulic conductivity of avariety of precipitants <strong>in</strong> laboratory experiments. They have observed that measured conductivityvalues of the precipitant are still too high and above the threshold value of 10 -7 cm/s. Overall,while develop<strong>in</strong>g self-seal<strong>in</strong>g ponds is not technically challeng<strong>in</strong>g, do<strong>in</strong>g so at a lower cost thanthat of present simple technology may be difficult.The regulation section of this study showed that the practical way to make use of self-seal<strong>in</strong>gproperties is to exercise an option to demonstrate that the alternative l<strong>in</strong>er will achieve equivalentconta<strong>in</strong>ment. Even <strong>in</strong> the case of pre-approved l<strong>in</strong>ers, self-seal<strong>in</strong>g deposition could beadvantageous <strong>in</strong> sett<strong>in</strong>gs where an additional defense-<strong>in</strong>-depth layer is needed, such as areas withan underly<strong>in</strong>g unconf<strong>in</strong>ed aquifer sensitive to contam<strong>in</strong>ation.Substantial sav<strong>in</strong>gs can be achieved if waivers are granted. Sav<strong>in</strong>gs can be as high as 90% if thepond consists of little more than an excavation <strong>in</strong>to the ground. Large sav<strong>in</strong>gs may also beachieved if the leak-detection system is not required <strong>for</strong> geomembrane l<strong>in</strong>ers. Our analysissuggests that the precipitant, even with a hydraulic conductivity >1×10 -7 cm/s could efficientlyplug holes and defects of the geomembrane. This analysis also suggests that, because defects andholes can be plugged with no operator <strong>in</strong>tervention, a th<strong>in</strong>ner geomembrane could be used, <strong>in</strong>comb<strong>in</strong>ation or not with the leak detection system waiver. This possibility, however, needs to beconfirmed by experiments and pilot tests.On the other hand, equivalent conta<strong>in</strong>ment can be achieved <strong>for</strong> clay l<strong>in</strong>ers—common <strong>in</strong> <strong>Texas</strong>—mostly by sheer accumulation of the precipitated material at the bottom of the pond. The modestthickness of at most a few <strong>in</strong>ches of precipitant after a few years of operation suggests that theprecipitated material needs to have a hydraulic conductivity much lower than 1×10 -7 cm/s toimpart the required properties to a scaled-down l<strong>in</strong>er and to be successfully substituted <strong>in</strong> part orall of the clay l<strong>in</strong>er. As <strong>in</strong> the case of geomembranes, precipitant may plug small cracks thatcould appear throughout the life of the pond, reduc<strong>in</strong>g the cost of operator <strong>in</strong>tervention.In summary:2


- There are no regulatory hurdles <strong>in</strong> us<strong>in</strong>g self-seal<strong>in</strong>g evaporation ponds; however, theburden of prov<strong>in</strong>g the validity of the approach <strong>in</strong> each specific case is on the permitapplicant.- Calcite and gypsum are the most common m<strong>in</strong>eral precipitates. Some clay m<strong>in</strong>eral(s)(notably sepiolite) may also precipitate, especially if additives are added to theconcentrate stream. M<strong>in</strong>erals, however, precipitate <strong>in</strong> small amounts (typically


1 Introduction<strong>Evaporation</strong> ponds are a relatively simple and low-ma<strong>in</strong>tenance option <strong>for</strong> manag<strong>in</strong>g anddispos<strong>in</strong>g of desal<strong>in</strong>ation concentrate <strong>in</strong> small-scale applications. They may be particularlyattractive <strong>for</strong> small communities <strong>in</strong> arid environments with level topography and where landcosts are low. Typically the largest outlay <strong>for</strong> evaporation ponds is that of the constructed ormanufactured l<strong>in</strong>er—which might potentially leak. In some cases, the chemistry of theconcentrate can be changed with additives to create a relatively impermeable layer that makesthe base of the pond self seal<strong>in</strong>g. This study addresses the chemical, physical, legal, andeconomic conditions to be met <strong>for</strong> the use of self-seal<strong>in</strong>g evaporation ponds <strong>in</strong> <strong>Texas</strong> by(1) determ<strong>in</strong><strong>in</strong>g ranges of likely membrane concentrate compositions <strong>in</strong> <strong>Texas</strong>, (2) calculat<strong>in</strong>gthe ability of additives to impart self-seal<strong>in</strong>g characteristics to the pond walls and bottom,(3) exam<strong>in</strong><strong>in</strong>g any regulatory constra<strong>in</strong>ts to reliance on self-seal<strong>in</strong>g evaporation ponds, and(4) provid<strong>in</strong>g cost estimates <strong>for</strong> a self-seal<strong>in</strong>g evaporation pond <strong>for</strong> a 1-million-gallon-per-day(MGD) brackish groundwater desal<strong>in</strong>ation facility.The present report documents results <strong>for</strong> the three tasks described <strong>in</strong> the scope of work ofContract # 2005-483-027 “<strong>Self</strong>-seal<strong>in</strong>g <strong>Evaporation</strong> <strong>Ponds</strong>.” Task 1 consisted of a mostlydesktop geochemistry study aimed at understand<strong>in</strong>g the technical basis beh<strong>in</strong>d the concept andaddressed items (1) and (2) above. The geochemistry work was per<strong>for</strong>med <strong>in</strong> parallel to, but<strong>in</strong>dependent of, similar work per<strong>for</strong>med at Sandia National Laboratory (Sandia) under thedirection of Dr. Patrick Brady. A study of the regulatory aspects was undertaken <strong>in</strong> Task 2.Task 3 consisted of estimat<strong>in</strong>g cost <strong>in</strong>frastructure and potential sav<strong>in</strong>gs and of design<strong>in</strong>g ageneric self-seal<strong>in</strong>g evaporation pond.The report first gives an overview of relevant <strong>in</strong><strong>for</strong>mation on desal<strong>in</strong>ation facilities <strong>in</strong> <strong>Texas</strong>(Section 2). Section 2 also describes the scientific underp<strong>in</strong>n<strong>in</strong>gs of evaporation ponds andcomputes the net evaporation rates applicable across <strong>Texas</strong>. Section 3 lays out the sources of<strong>in</strong><strong>for</strong>mation <strong>for</strong> the water chemical composition and presents the general approach. Section 4successively presents the regulatory framework <strong>in</strong> <strong>Texas</strong> and <strong>in</strong> some southwestern states and thelikely composition of desal<strong>in</strong>ation concentrates across <strong>Texas</strong>. It then documents the geochemicalnumerical simulations and their results and moves on to describ<strong>in</strong>g design specifics and costestimates. Lengthy and/or secondary <strong>in</strong><strong>for</strong>mation has been attached <strong>in</strong> several appendices(derivation of water groups, documentation on regulation, example of a permit of an evaporationpond <strong>for</strong> desal<strong>in</strong>ation facility, results of field sampl<strong>in</strong>g, <strong>in</strong><strong>for</strong>mation on clay m<strong>in</strong>erals, a fewwords about those facilities with above-maximum contam<strong>in</strong>ant level (MCL) arsenic, andexamples and results of geochemical simulations).5


2 Background Technical In<strong>for</strong>mation on <strong>Evaporation</strong> <strong>Ponds</strong>2.1 <strong>Desal<strong>in</strong>ation</strong> PrimerAll public water supply (PWS) desal<strong>in</strong>ation facilities <strong>in</strong> <strong>Texas</strong> use membrane technology. Thereare two k<strong>in</strong>ds of membrane processes: pressure driven and electro-potential driven. Pressuredrivenmembrane processes are further described as microfiltration (MF), ultrafiltration (UF),nanofiltration (NF), and reverse osmosis (RO). MF and UF act only mechanically, block<strong>in</strong>gbacteria and suspended particles (10–0.05 μm) because they are too large to flow through themembrane pores. UF also blocks colloids and macromolecules (0.05–0.005 μm). In contrast, NF(0.005–0.0005 μm) blocks solutes as small as organic molecules and divalent ions. RO (0.001–0.0001 μm) blocks particles as small as monovalent ions. Both RO and NF operate ma<strong>in</strong>lythrough diffusion and chemical <strong>in</strong>teraction between membrane and solutes. NF is also calledlow-pressure RO, or water-soften<strong>in</strong>g membrane. NF removes more calcium and magnesium thanchloride, result<strong>in</strong>g <strong>in</strong> softer waters. NF also removes more sulfate and bicarbonate than chloride.The two electro-potential-driven processes are electrodialysis (ED) and electrodialysis reversal(EDR). The latter process is very similar to ED, with the added benefit of reduced scal<strong>in</strong>gbecause potentials are reversed periodically. However, ED/EDR does not remove unchargedspecies, such as silica. Below ~3,000 to 3,500 part per million total dissolved solids (ppm TDS),both RO and ED/EDR processes can be competitive and can produce low-sal<strong>in</strong>ity water at lowcost. RO plants are the most widely used <strong>in</strong> the nation <strong>for</strong> desal<strong>in</strong>ation, with 72 % of plants us<strong>in</strong>gbrackish-water RO, 2 % seawater RO, 15 % ED/EDR, and 11 % NF (Mickley, 2001).<strong>Desal<strong>in</strong>ation</strong> concentrates are produced dur<strong>in</strong>g removal of salts from low-quality water <strong>in</strong> ROand ED/EDR plants. The amount of concentrate as a percentage of feedwater varies accord<strong>in</strong>g todesal<strong>in</strong>ation method, percentage of recovery, and chemical additives. In RO systems thatproduce dr<strong>in</strong>k<strong>in</strong>g water, a typical pretreatment consists of acidification and addition ofantiscalant chemicals. Disposal of the concentrate could be a major issue <strong>in</strong> sit<strong>in</strong>g of a newfacility.2.2 <strong>Desal<strong>in</strong>ation</strong> <strong>Facilities</strong> <strong>in</strong> <strong>Texas</strong> <strong>in</strong> 2006A comprehensive survey of PWS desal<strong>in</strong>ation facilities <strong>in</strong> <strong>Texas</strong> was recently per<strong>for</strong>med <strong>for</strong> theTWDB (Nicot et al., 2005). The concentrate disposal method was one of the features<strong>in</strong>vestigated. The number of desal<strong>in</strong>ation facilities <strong>in</strong> <strong>Texas</strong> has <strong>in</strong>creased sharply <strong>in</strong> the pastdecade (Nicot et al., 2005). In 2005, the State of <strong>Texas</strong> was host to about 38 PWS facilities witha desal<strong>in</strong>ation design capacity of ≥0.025 million gallons a day (MGD), a cumulative desal<strong>in</strong>ationdesign capacity (DC) of ~52 MGD (Figure 2-2), and another approximately 50 facilities withsmaller desal<strong>in</strong>ation design capacity, <strong>for</strong> a cumulative desal<strong>in</strong>ation design capacity of


with a design capacity of ≥0.025 MGD (as of summer 2005) have evaporation ponds as anexclusive or nonexclusive method <strong>for</strong> dispos<strong>in</strong>g of concentrate (Table 2-1 and Table 2-2), towhich can be added many other PWS facilities with a design capacity of


ShermanAbileneLake GranburyHorizon Regional M.U.D.Rob<strong>in</strong>sonFort StocktonBrady<strong>Desal<strong>in</strong>ation</strong> DesignCapacity (MGD)0.023 - 0.050.05 - 0.50.5 - 11 - 33 - 55 - 8Dual-Use Facility¹PrimeraSWRA0 50 100 200 300 400MilesNote: Location of some facilities is only approximate; facilities with a desal<strong>in</strong>ation design capacity ≥1.5 MGD arenamed; map from Nicot et al. (2005)Figure 2-2. Map of desal<strong>in</strong>ation facilities show<strong>in</strong>g design capacity.#*")XW")")#*#*#* XWXWXW XW#*")#*Disposal MethodXW<strong>Evaporation</strong> Pond") Land Application#* Surface Water BodyXWMunicipal Sewer¹0 50 100 200 300 400MilesNote: Location of some facilities is only approximate; map from Nicot et al. (2005)Figure 2-3. Map of desal<strong>in</strong>ation facilities (≥0.025 MGD DC) show<strong>in</strong>g concentrate disposalmethod.XW#*XW#*#* #* #* ")#*#*XW9


#*")")%, #*")") #*#*#*%,Total Dissolved Solids (ppm)") Unknown


Table 2-2. Characteristic summary of <strong>Texas</strong> desal<strong>in</strong>ation facilities with capacity ≥0.025 MGDand us<strong>in</strong>g evaporation pond <strong>for</strong> disposal.DesignCapacity(MGD) Use SourceStartupYearBlend<strong>in</strong>g?DisposalMethodPlant Name CountyProcessPWS Plants with Design Capacity ~≥ 0.025 MGDCity ofAbilene Taylor 8 DW SW 2004 RO No EPCity of Brady McCulloch 1.5 DW SW D 2005 RO Yes EPRiver OaksRanch Hays 0.14 DW GW 1987 RO No EPMidlandCountry Club—fairways &greens A Midland 0.11DW/IRR GW 2004 RO No EPBig BendMotor Inn Brewster 0.072 DW GW 1992 RO No EPCity ofBayside Refugio 0.029 DW GW 1990 RO No EPHorizonRegionalM.U.D. El Paso 2.2 DW GW 2001 RO YesHaciendasDel NorteWaterImprovementDistrict El Paso 0.05 DW GW 1981 RO YesLA/IRR/EPLA/IRR/EPEsperanzaFresh WaterSupply Hudspeth 0.023 DW GW 1990 RO Yes EP BCity of LosYbanez Dawson 0.022 B DW GW 1991 RO Yes EP BOther Plants (not comprehensive) CTMPAGibbonsCreek Bryan 0.144 IND SW 1982 RO No EPCountryView Estates Med<strong>in</strong>a 0.014 DW GW 2002 RO Yes EPSource: Nicot et al. (2005); Mickley (2006) (see note B )Note: DW=dr<strong>in</strong>k<strong>in</strong>g water; IND=<strong>in</strong>dustrial; GW=groundwater; SW=surface water; RO=reverse osmosis;EDR=electrodialysis reversal; EP=evaporation pond; IRR=irrigation; LA=land applicationA Dual-use facility: public water supply and irrigationB Nicot et al. (2005) did not provide disposal method <strong>for</strong> those two facilities, but Mickley (2006) did(p. 59)C Survey presented <strong>in</strong> Nicot et al. (2005) does not systematically <strong>in</strong>vestigate plants with design capacity


2.3 How Do <strong>Evaporation</strong> <strong>Ponds</strong> Operate?Impoundments and conta<strong>in</strong>ment ponds are common <strong>in</strong> water/wastewater treatment and other<strong>in</strong>dustrial and agricultural operations. There is no fundamental difference between anevaporation pond and other types of conta<strong>in</strong>ment ponds, except <strong>for</strong>, by design, the lack of anoutlet. Regulatory requirements are similar (see Section 4.1). Typical evaporation ponds are notto be confused with sophisticated sal<strong>in</strong>ity-gradient solar ponds, whose pr<strong>in</strong>ciple relies on acontrast <strong>in</strong> sal<strong>in</strong>ity (Lu et al., 2002; Swift et al., 2002). Solar ponds function because of the largesal<strong>in</strong>ity/density gradient that prevents convection and mix<strong>in</strong>g of the dense lower layer anddissipation of the solar energy. They are, <strong>in</strong> general, delicate to operate and fundamentallyrepresent an energy-sav<strong>in</strong>g element more than a disposal feature. Solar lakes naturallyfunction<strong>in</strong>g as solar ponds have been observed (Hudec and Sonnenfeld, 1980; Sonnenfeld andHudec, 1980). They are, however, usually artificial, and all show a contrast <strong>in</strong> density betweentop and bottom of the water sheet of at least 15 g/L. The density contrast is often created byadd<strong>in</strong>g salt/br<strong>in</strong>e at the bottom of the pond.2.3.1 <strong>Evaporation</strong> Rates <strong>in</strong> <strong>Texas</strong>Monthly precipitation and evaporation data as given by TWDB (2006a) from 1954 to 2004 arepresented <strong>in</strong> detail <strong>in</strong> this section. Ambient temperature is another important parameter <strong>for</strong>geochemical model<strong>in</strong>g (Figure 2-6). Temperature data were obta<strong>in</strong>ed from the National ClimaticData Center (NCDC, 2006). <strong>Evaporation</strong> ponds rely on solar energy to reduce the liquid wastevolume by evaporat<strong>in</strong>g water. The rema<strong>in</strong><strong>in</strong>g liquid becomes more and more concentrated,lead<strong>in</strong>g to precipitation of m<strong>in</strong>erals at the bottom of the ponds. The nature of precipitat<strong>in</strong>gm<strong>in</strong>erals is site-specific and a strong function of the outfall chemical composition. Sludge maybe evacuated as part of normal operations <strong>in</strong> the course of the plant’s life, or it may rema<strong>in</strong> at thebottom of the pond until closure of the facility. In both cases, the sludge is generally directed to alandfill. <strong>Evaporation</strong> ponds operate best <strong>in</strong> climatic environments with limited ra<strong>in</strong>fall and highevaporation rates. <strong>Evaporation</strong> rates are reported <strong>in</strong> different ways: gross lake surfaceevaporation rate (depth that a lake surface is reduced by evaporation) and pan A evaporation rate,measured <strong>in</strong> a standard 10-<strong>in</strong>ch-deep, 4-foot-diameter pan. Only the latter is directly accessible<strong>for</strong> measurement, and a correction must be applied to obta<strong>in</strong> the <strong>for</strong>mer, which is the parameterof <strong>in</strong>terest. The correction factor, also called the pan coefficient, varies through the year and islocation specific (0.57 to 0.92 across <strong>Texas</strong>, TWDB, 2006a). So that mean<strong>in</strong>gful gross lakeevaporation rates could be generated, it was decided <strong>in</strong> 1960 (Tschirhart and Rodriguez, 1998,p. 4) that the smallest practical area <strong>for</strong> evaporation calculation was a square 1° latitude and 1°longitude <strong>in</strong> size (as apparent <strong>in</strong> Figure 2-9). A total of 75 quadrangles cover <strong>Texas</strong>.Net evaporation rate is site specific. It is positive on an annual basis when annual precipitationrate (Figure 2-7) is smaller than annual evaporation rate (Figure 2-8). Net evaporation ratefollows the general weather patterns and most of <strong>Texas</strong>, and except <strong>for</strong> a limited band along theLouisiana border, net annual evaporation rates are positive (Figure 2-9). A study by Moore andRunkles (1968, figures 18–24) shows a similar pattern, although they used different pancoefficients, now out of date, result<strong>in</strong>g <strong>in</strong> different absolute values of net annual evaporation rate.Many reports document the impact of sal<strong>in</strong>ity on evaporation rate (e.g., Harbeck, 1955). Mickley(2006, p. 162) suggested apply<strong>in</strong>g a coefficient of 0.7 to account <strong>for</strong> the sal<strong>in</strong>ity of the pond.When such a coefficient is applied, the areas with positive net evaporation rates are shiftedsomewhat to the west (Figure 2-10 and Figure 2-11). In calculation of net evaporation rates,12


“evaporation × sal<strong>in</strong>ity correction factor – precipitation” was calculated on a yearly basis thenaveraged and not done simply on evaporation and precipitation averages. A value of 0.7 isappropriate only if the ponds are projected to reach salt saturation dur<strong>in</strong>g their expected lives.Our sampl<strong>in</strong>g of a few <strong>Texas</strong> evaporation ponds (Appendix E) suggests that they do not reachextreme sal<strong>in</strong>ity (that is, >30% salt by weight). A sal<strong>in</strong>ity correction factor of 0.9 (“low-sal<strong>in</strong>ity”water body—Figure 2-10) is used <strong>in</strong> the course of this work. This correction factor would beapplied to sal<strong>in</strong>ity <strong>in</strong> the 100,000- to 150,000-ppm range (Harbeck, 1955, Fig. 2). The lower endof the concentration range corresponds to a small fresh-water evaporation rate, whereas the highend of the concentration range corresponds to an annual fresh-water evaporation rate of ~150<strong>in</strong>ches/yr (Harbeck, 1955, Fig. 2).13


Average JulyTemperature (Deg. C)15.6 - 21.121.1 - 26.726.7 - 32.2¹(a)Average Annual Temperature (Deg. C)10.0 - 12.812.8 - 15.615.6 - 18.318.3 - 21.1> 21.1¹0 50 100 200 300 400Miles(b)Source: NCDC Website (NCDC, 2006); desal<strong>in</strong>ation facility capacity from Nicot et al. (2005)Figure 2-6. Average temperature (a) month of July, (b) annual.14


¹0 100 200 300 40050MilesSource: <strong>Desal<strong>in</strong>ation</strong> facility capacity from Nicot et al. (2005); annual precipitation rate from TWDB Website(TWDB, 2006a)Figure 2-7. Average annual precipitation rate.15


¹0 50 100 200 300 400MilesSource: <strong>Desal<strong>in</strong>ation</strong> facility capacity from Nicot et al. (2005); annual gross lake evaporation rate from TWDBWebsite (TWDB, 2006a)Figure 2-8. Average annual gross lake evaporation rate.16


¹0 50 100 200 300 400MilesSource: <strong>Desal<strong>in</strong>ation</strong> facility capacity from Nicot et al. (2005); annual precipitation and gross lake evaporation ratefrom TWDB Website (TWDB, 2006a)Figure 2-9. Net average annual fresh-water evaporation rates across <strong>Texas</strong>.17


¹0 50 100 200 300 400MilesSource: <strong>Desal<strong>in</strong>ation</strong> facility capacity from Nicot et al. (2005); annual precipitation and gross lake evaporation ratefrom TWDB Website (TWDB, 2006a); sal<strong>in</strong>ity correction factor of 0.9 is applied to gross lake evaporationrate to account <strong>for</strong> the water sal<strong>in</strong>ityFigure 2-10. Net average annual evaporation rates across <strong>Texas</strong> from a low-sal<strong>in</strong>ity water body.18


¹0 50 100 200 300 400MilesSource: <strong>Desal<strong>in</strong>ation</strong> facility capacity from Nicot et al. (2005); annual precipitation and gross lake evaporation ratefrom TWDB Website (TWDB, 2006a); multiplicative coefficient of 0.7 is applied to gross lake evaporationrate to account <strong>for</strong> the water sal<strong>in</strong>ityFigure 2-11. Net average annual evaporation rates across <strong>Texas</strong> from a high-sal<strong>in</strong>ity water body.2.3.2 Typical M<strong>in</strong>eral Suite—Chemical DivideIn the chemical evolution of an evaporation pond (with no overflow), general rules can be drawndespite the always complex chemical <strong>in</strong>teractions and geochemical site specificity. Major ionsmak<strong>in</strong>g up most groundwater—fresh or sal<strong>in</strong>e—are Ca +2 , Mg +2 , Na + , K + , SO 4 -2 , HCO 3 - , and Cl - ,to which SiO 2 can be added as a major neutral molecule. They <strong>for</strong>m the bulk of the m<strong>in</strong>eralsprecipitat<strong>in</strong>g when the solution is progressively concentrated. Most clay m<strong>in</strong>erals require Al toprecipitate. Al is generally present <strong>in</strong> m<strong>in</strong>ute amounts <strong>in</strong> solution but <strong>in</strong> much larger amounts asoxide/hydroxide colloids. As seen <strong>in</strong> an extensive geologic record, evaporation of seawater19


yields the follow<strong>in</strong>g precipitation sequence of major m<strong>in</strong>erals: calcite (CaCO 3 ), gypsum(CaSO 4 .2H 2 O), and halite (NaCl). Calcite precipitates right away, gypsum precipitates only afterapproximately 80% of seawater has been removed, and halite does so when ~90% hasevaporated. Because the activity of the water decreases as evaporation progresses, gypsum canbe replaced by an anhydrous calcium sulfate: anhydrite (CaSO 4 ). More complex precipitationfollows when about 95% of the water has been removed and when other ions start precipitat<strong>in</strong>g<strong>in</strong>to soluble salts (e.g., sylvite—KCl; carnallite—MgCl 2 .6H 2 O). It should be noted that this salttrajectory is specific to seawater and waters of similar chemical composition.In general, the first major m<strong>in</strong>erals to precipitate are calcite and gypsum, sometimesaccompanied by m<strong>in</strong>or authigenic clays. Common precipitates (calcite, gypsum, and anhydrite)have a retrograde solubility; that is, their solubility decreases with temperature. It follows that <strong>in</strong>the summer, when pond water is warmer than the concentrate, precipitation can occur with noevaporation. Despite the obvious parallel that these m<strong>in</strong>erals should dissolve back dur<strong>in</strong>g thew<strong>in</strong>ter because of their <strong>in</strong>creased solubility, the mass dissolved is typically less than the massprecipitated because fluid-m<strong>in</strong>eral <strong>in</strong>teractions are limited ow<strong>in</strong>g to the smaller surface areaexposed to the aqueous environment. Such seasonal temperature variations were not addressed <strong>in</strong>this work. Evaporative concentration of groundwater follows well-known chemical pathwayswith multiple chemical divides. If aqueous concentrations <strong>in</strong>crease, some m<strong>in</strong>erals becomesupersaturated and start precipitat<strong>in</strong>g, remov<strong>in</strong>g ions from solution. Calcium is a prime example,and it precipitates with bicarbonate and sulfate as calcite or gypsum, respectively. However,when the system is open to the atmosphere, bicarbonate concentration cannot rise as high as thatof sulfate (e.g., Boyd and Kreitler, 1986, Fig. 11) and stays more or less constant <strong>in</strong> equilibriumwith atmospheric CO 2 . Hardie and Eugster (1970) and Eugster and Jones (1979) described ageneric evolution (Figure 2-12):Source: Boyd and Kreitler (1986, p. 28) and Domenico and Schwartz (1990, p. 554)Figure 2-12. Conceptual model of concentrate evolution.This is the pr<strong>in</strong>ciple of chemical divide with critical po<strong>in</strong>ts. Calcite is often the first m<strong>in</strong>eral toprecipitate from evaporation of groundwater (e.g., caliche layers), accord<strong>in</strong>g to the reactionCa 2+ + 2 HCO 3 - = CaCO 3 + CO 2 + H 2 O. If calcium concentration (<strong>in</strong> equivalents) is higher thanthat of bicarbonate, calcium will be available to precipitate with sulfate to <strong>for</strong>m gypsum. If not,20


most calcium will be consumed, and magnesium will then be available to precipitate as sepiolite.Sepiolite was chosen as the magnesium s<strong>in</strong>k <strong>in</strong> the Hardie and Eugster (1970) model because it isconsistent with observations of sal<strong>in</strong>e lakes of some western states. However, the chemistry ofmagnesium silicates is complex, and this choice may not be appropriate <strong>in</strong> all cases. Drever(1988, p. 239) stated that the most common magnesium m<strong>in</strong>erals are magnesium smectites,dolomite, or magnesium-rich calcite. In this work, ow<strong>in</strong>g to cont<strong>in</strong>uous dilution of the pondwater by outfall water, precipitation is limited to the most <strong>in</strong>soluble m<strong>in</strong>erals, and the wholesequence of evaporites does not occur.Other major ions, such as sodium and chloride, stay <strong>in</strong> solution longer and may precipitatetogether as halite. No major reaction controls sodium concentration <strong>in</strong> the way that calcium iscontrolled by the precipitation of calcite and gypsum. Sodium <strong>in</strong>teractions with clays have, <strong>in</strong>general, a limited impact on sodium aqueous concentration. Magnesium is the third mostabundant ion <strong>in</strong> seawater, although a distant third to sodium and chloride. Dolomites are a majors<strong>in</strong>k, but they typically result from the <strong>in</strong>teraction of limestones with magnesian br<strong>in</strong>es.Potassium concentration is controlled mostly by <strong>in</strong>teractions with clay m<strong>in</strong>erals. At high ionicstrength, it will also precipitate <strong>in</strong> sylvite (KCl) and other evaporites.2.4 Geochemical Model<strong>in</strong>g In<strong>for</strong>mationThe USGS-developed code PHREEQC (Parkhurst and Appelo, 1999) was used <strong>in</strong> thesimulations. Several thermodynamic databases are available to the user, <strong>in</strong>clud<strong>in</strong>g Pitzer andLLNL databases. Because of the <strong>in</strong>creas<strong>in</strong>g ionic strength of pond water as the pond matures, thePitzer database provided with the freeware was used. Only major ions (calcium, magnesium,sodium, potassium, chloride, sulfate, and bicarbonate) are relevant <strong>for</strong> the simulations at handbecause <strong>in</strong>terest is <strong>in</strong> the bulk of the precipitation and not <strong>in</strong> less common species.Thermodynamic <strong>in</strong><strong>for</strong>mation <strong>for</strong> relevant m<strong>in</strong>eral species not present <strong>in</strong> the Pitzer database wasimported from the LLNL database, especially m<strong>in</strong>erals such as alum<strong>in</strong>um and/or silica <strong>in</strong> theirstructure. Such an addition renders results of the study more semiquantitative than if only theofficial Pitzer database had been used. In<strong>for</strong>mation about m<strong>in</strong>eral molar volume was obta<strong>in</strong>edfrom the EQ3/6 data0 database (e.g., Daveler and Wolery, 1992).21


3 Approach and Sources of In<strong>for</strong>mationIn agreement with the scope of work, this project has two ma<strong>in</strong> objectives: (1) to determ<strong>in</strong>ewhether any regulatory hurdle will obstruct the use of self-seal<strong>in</strong>g evaporation ponds, especially<strong>in</strong> <strong>Texas</strong>, and (2) to assess the cost effectiveness of the self-seal<strong>in</strong>g technique through a desktopanalysis, supported by field data and a literature review. The two aspects of the project werepursued relatively <strong>in</strong>dependently. The regulatory analysis relied on <strong>in</strong>terviews with TCEQ staffat the Aust<strong>in</strong> headquarters, <strong>in</strong>terviews with desal<strong>in</strong>ation plant operators and utility managers, andconsultation of official documents (regulations, actual permits). The technical analysis could bedivided <strong>in</strong>to two parts. One part consisted of determ<strong>in</strong><strong>in</strong>g the amount and nature of the materialprecipitat<strong>in</strong>g from solution as water evaporates from the pond by us<strong>in</strong>g a numerical geochemicalmodel. Un<strong>for</strong>tunately, such a desktop analysis does not provide hydraulic conductivity data; onlyfield and laboratory experiments can do so. Instead, several publications supplied the needed<strong>in</strong><strong>for</strong>mation. The second part of the technical analysis <strong>in</strong>volved <strong>in</strong>tegrat<strong>in</strong>g diverse regulatoryoptions with the <strong>in</strong>sights provided by model<strong>in</strong>g to quantify possible cost sav<strong>in</strong>gs <strong>in</strong> implement<strong>in</strong>ga self-seal<strong>in</strong>g pond.This section focuses mostly on the methodology used to establish composition of feedwater <strong>for</strong>desal<strong>in</strong>ation facilities across the state. Nature and amount of precipitates are a function of thefeedwater and concentrate chemical composition. A later section (Section 4.2) will show that thechemical nature of the concentrate is not changed by RO and that it can be <strong>in</strong>ferred <strong>in</strong> generalterms from the feedwater chemical composition.3.1 Feedwater ChemistryIn order to produce results specific to <strong>Texas</strong>, specific water chemical composition from <strong>Texas</strong>had to be used. <strong>Desal<strong>in</strong>ation</strong> facility feedwater can be from either groundwater or surface water.Brackish groundwater is available across the state, but surface water is also an option <strong>in</strong> thenortheast quarter of the state. Source <strong>in</strong><strong>for</strong>mation and preprocess<strong>in</strong>g of water samples aredescribed next. Because water chemical composition is used <strong>in</strong> geochemical model<strong>in</strong>g, str<strong>in</strong>gentconditions must be applied on the set of samples reta<strong>in</strong>ed <strong>for</strong> analysis.3.1.1 Groundwater DataThe TWDB groundwater database (TWDB, 2006b) conta<strong>in</strong>s approximately 105,000 waterqualitysamples from about 55,000 unique locations across the state (<strong>in</strong>clud<strong>in</strong>g ~1,600 samplesrepresent<strong>in</strong>g a mix from two aquifers). We first selected all samples with a TDS >1,000 mg/Land 1,000 mg/Land


pH data or pH outside of the 5–9.5 range, or with a TWDB-def<strong>in</strong>ed reliability of “01” or “02”(Nordstrom and Qu<strong>in</strong>cy, 1999) had been deleted, the number of acceptable samples had beenreduced to 21,823. Keep<strong>in</strong>g only the most recent sample <strong>for</strong> each unique location brought thenumber of available samples to 13,583 over <strong>Texas</strong>, to 12,835 <strong>in</strong> areas with positive net annualevaporation rates, and to 7,642 <strong>in</strong> areas with high net annual evaporation rates (Figure 3-1).Positive net evaporation rates occur when potential evaporation rates are larger than precipitationrates. They can be def<strong>in</strong>ed with<strong>in</strong> a variety of time periods but are generally def<strong>in</strong>ed on an annualbasis.Samples are categorized accord<strong>in</strong>g to their concentration <strong>in</strong> major ions—calcium (Ca),magnesium (Mg), sodium (Na), potassium (K), chloride (Cl), sulfate (SO 4 ), and bicarbonate(HCO 3 )—to which silica (SiO 2 ) can be added, as represented on the Piper plot of Figure 8-2(Appendix A). Given the large variety of aquifer types <strong>in</strong> <strong>Texas</strong>, it is not surpris<strong>in</strong>g to see thatalmost every type of water is present <strong>in</strong> the state. In order to have a manageable data set, we firstdivided the larger set up <strong>in</strong>to smaller significant data sets, correspond<strong>in</strong>g to the selectedrepresentative samples <strong>for</strong> each aquifer (Table 3-1). A total of 12,720 samples were distributedamong 19 groundwater groups, correspond<strong>in</strong>g to TWDB-def<strong>in</strong>ed aquifers when possible. Forexample, the “Eocene” group <strong>in</strong>cludes the Carrizo-Wilcox major aquifers and the Queen City,Sparta, and Yegua-Jackson m<strong>in</strong>or aquifers, as well as other samples outside of these ma<strong>in</strong><strong>for</strong>mations, such as sandier facies of the Midway group (typically assumed to be the bottomconf<strong>in</strong><strong>in</strong>g unit of the Carrizo-Wilcox aquifer). On the other hand, the “Seymour,” the “BrazosRiver Alluvium,” and the “Ogallala” groups correspond to the Seymour, Brazos River Alluvium,and Ogallala aquifers, respectively. There is no TWDB-def<strong>in</strong>ed Rio Grande River Alluviumaquifer, but we def<strong>in</strong>ed a “Rio Grande Alluvium” group because of its specific geochemicalproperties. Similarly, there are several water-bear<strong>in</strong>g <strong>for</strong>mations of Pennsylvanian or Permianage <strong>in</strong> North-Central <strong>Texas</strong> between the TWDB-def<strong>in</strong>ed Ogallala and Tr<strong>in</strong>ity aquifers that havenot been officially sanctioned by the state as m<strong>in</strong>or or major aquifers. Because those groups areoperationally def<strong>in</strong>ed mostly <strong>for</strong> the purpose of understand<strong>in</strong>g their behavior <strong>in</strong> evaporationponds, some s<strong>in</strong>gle aquifers have been split to allow <strong>for</strong> the difference <strong>in</strong> lithology. For <strong>in</strong>stance,Tr<strong>in</strong>ity aquifer samples have been <strong>in</strong>cluded <strong>in</strong> either the “Cretaceous Limestone” or the“Cretaceous Sandstone” groups, depend<strong>in</strong>g on the nature of the host rock (e.g., Hosston Sands orGlenrose Limestone).Geochemical characteristics of the 19 groundwater groups (and the one surface-water groupdiscussed subsequently) are described <strong>in</strong> Appendix A. It should be noted that the geochemicalnature of the brackish samples does not necessarily represent that of the fresh-water samples ofthe same aquifers. One can consult the water-quality section of the relevant GAM models(http://www.twdb.state.tx.us/gam/<strong>in</strong>dex.htm) <strong>for</strong> a better picture of the geochemistry of a givenaquifer as a whole. Figure 3-2 plots the location of the central sample of each group (seeAppendix A) on a Piper plot and demonstrates the wide range of the chemical composition ofslightly brackish waters <strong>in</strong> the state. Out of the 20 groups, 4 stand out <strong>in</strong> their composition:Capitan Reef, Bone Spr<strong>in</strong>g / Victorio Peak, Permian Evaporite, and Brazos River Alluvium.Central values of all other groups occupy a relatively compact area of the Piper plot. They tendto plot toward the sodium and potassium apex, with calcium be<strong>in</strong>g generally second <strong>in</strong> molarconcentration and toward the chloride apex and sulfate second <strong>in</strong> anion abundance. PermianEvaporite water shows a dom<strong>in</strong>ant calcium sulfate water, whereas Capitan Reef and Bone Spr<strong>in</strong>g/ Victorio Peak waters also tend to a less-dom<strong>in</strong>ant calcium sulfate composition. Brazos RiverAlluvium has a strong bicarbonate impr<strong>in</strong>t and tends toward a calcium carbonate water type.24


Table 3-1. List of water sample groups (12,720 samples)Group NameNumber of Samples with TDS>1,000 and


Water samples with TDS between 1,000 and 5,000 ppmCounties with net evaporation >30 <strong>in</strong>ch/yrCounties with net evaporation >0 and


Mg20%AOLHCMGOAI40%Mixed Alluvium GroupBrazos River Alluvium GroupRio Grande Alluvium GroupSeymour GroupBolson GroupOgallala GroupPecos Valley Aquifer GroupGulf Coast Sandstone GroupEocene GroupCretaceous Limestone Group60%P80%80%60%20%40%20%40%40%SO 4 + Cl60%Na + K20%80%60%40%20%HCO 360%M MCAOGAPIHODLOHCLOA80%80%OPCMGM OAIPHLDO CH Cretaceous Sandstone GroupD Triassic Sandstone GroupP Permian Evaporite GroupP Permian Limestone GroupA Permian Sandstone GroupC Bone Spr<strong>in</strong>g – Victorio Peak GroupM Capitan Reef GroupL Pennsylvanian GroupO Llano Uplift GroupO Surface Water GroupHLOA80%60%20%Ca + Mg40%20%O40%P60%80%CMILDMGHAOHPACLOO60%80%SO 440%20%CaClFigure 3-2. Piper plot of central values of all 20 groups.27


3.1.2 Surface-Water DataThe TCEQ surface-water database (TCEQ, 2006b) (“<strong>Texas</strong> Clean Rivers Program”) conta<strong>in</strong>ssurface-water chemical analyses dat<strong>in</strong>g back to 1968 <strong>in</strong> approximately 8,400 unique locationsacross the state, mostly <strong>in</strong> the east half of the state (Figure 3-3). Out of these, 49 stations have atleast 1 complete chemical analysis (often only chloride is analyzed) with TDS >1,000 ppm andare located (Figure 3-4) <strong>in</strong> the section of river bas<strong>in</strong>s (Canadian, Red, Brazos, Tr<strong>in</strong>ity, Sab<strong>in</strong>e,and Colorado) with net positive evaporation rates and where desal<strong>in</strong>ation facilities havehistorically used surface water as feedwater. The 49 stations have a comb<strong>in</strong>ed 496 relevantchemical analyses.River Bas<strong>in</strong>BrazosCanadianColoradoCypressNechesRedSab<strong>in</strong>eSulphurTr<strong>in</strong>ity¹0 50 100 200 300 400MilesSource: Feedwater from Nicot et al. (2005); station location and analyses from TCEQ (2006b)Figure 3-3. Surface-water stations with at least one sample with a TDS >1,000 ppm.28


River Bas<strong>in</strong>BrazosCanadianColoradoCypressNechesRedSab<strong>in</strong>eSulphurTr<strong>in</strong>ity¹0 50 100 200 300 400MilesSource: Feedwater from Nicot et al. (2005); station location and analyses from TCEQ (2006b)Figure 3-4. Surface-water stations with chemical analyses of major ions and TDS >1,000 ppm.3.1.3 Feedwater Groups and <strong>Evaporation</strong> RatesIt can be observed that, <strong>in</strong> any case, net evaporation rates are high <strong>in</strong> the arid west of the state, <strong>in</strong>the 40-to 60- and 20- and 40-<strong>in</strong>ch/yr range <strong>for</strong> low- and high-sal<strong>in</strong>ity water, respectively. Thesepassive net evaporation rates can be enhanced by apply<strong>in</strong>g additional technology (at a cost), suchas spray<strong>in</strong>g <strong>in</strong>to the atmosphere the concentrate and/or pond residual water to <strong>in</strong>creaseevaporative surface area (e.g., Ahmed, 2000). Such an approach has been planned <strong>for</strong> the RiverOaks Ranch facility (Hays County).A net average annual evaporation rate (Figure 3-5) was computed <strong>for</strong> each of the water groupsdef<strong>in</strong>ed <strong>in</strong> Appendix A by sampl<strong>in</strong>g the net annual evaporation rate at each sample location withthe help of GIS software and averag<strong>in</strong>g the rate over all samples. It varies from


Net <strong>Evaporation</strong> Rate (<strong>in</strong>ch/yr)6050403020100SWAll GWMixed Al.BZ AlRG Al.SeymourBolsonOgallalaPecos Val.GC San.EoceneCret. Lim.Cret. San.Trias. San.Perm. Ev.Perm Lim.Perm San.BS-VPCapitanPenn.LlanoNote: <strong>Evaporation</strong> rate assumed to be 90% of gross lake evaporation rateFigure 3-5. Net average annual evaporation rate <strong>for</strong> each water sampl<strong>in</strong>g group.3.2 Regulatory ReviewThe ma<strong>in</strong> written sources of <strong>in</strong><strong>for</strong>mation were articles <strong>in</strong> Title 30 of the <strong>Texas</strong> Adm<strong>in</strong>istrativeCode (TAC) dedicated to TCEQ, especially Chapter 317 “Design criteria <strong>for</strong> sewerage systems”and Chapter 309 “Domestic wastewater effluent limitation and plant sit<strong>in</strong>g,” as well as similardocuments <strong>for</strong> neighbor<strong>in</strong>g states. Municipal wastewater treatment rules are used as guides <strong>for</strong>evaluation but are not strict regulatory requirements <strong>for</strong> <strong>in</strong>dustrial permits. Appendix Breproduces relevant subchapters and excerpts from TCEQ <strong>in</strong>structions <strong>for</strong> complet<strong>in</strong>g an<strong>in</strong>dustrial wastewater permit application (TCEQ, 2006a). To clarify how to apply these rules toself-seal<strong>in</strong>g evaporation ponds, we <strong>in</strong>terviewed several TCEQ staff members. In the WaterQuality Division: Kelly Holligan (Team Leader, Industrial Wastewater Permits) and MichaelChadwick (Geologist) and <strong>in</strong> the Environmental Law Division: Kathy H. Brown. In addition, weobta<strong>in</strong>ed copies of <strong>in</strong>dustrial wastewater permits of two <strong>Texas</strong> facilities us<strong>in</strong>g evaporation ponds(River Oaks Ranch <strong>in</strong> Hays County and Brady <strong>in</strong> McCulloch County –see Appendix C).3.3 Field Sampl<strong>in</strong>g and Technical InterviewsIn the course of the project, opportunities to undertake field sampl<strong>in</strong>g materialized. For a betterunderstand<strong>in</strong>g of natural environments shar<strong>in</strong>g important characteristics with evaporation ponds(that is, natural analogs) (Section 4.3.2), multiple water and sediment samples were collected <strong>in</strong>the <strong>Texas</strong> Panhandle as described <strong>in</strong> Appendix D. Water samples, bottom sediments, and, whenapplicable, crust samples were taken at four facilities with evaporation ponds across <strong>Texas</strong>(River Oaks Ranch <strong>in</strong> Hays County, Brady <strong>in</strong> McCulloch County, Abilene <strong>in</strong> Taylor County, andHorizon MUD <strong>in</strong> El Paso County). Those samples were useful <strong>in</strong> adjust<strong>in</strong>g geochemicalmodel<strong>in</strong>g results and <strong>in</strong> provid<strong>in</strong>g data about actual evaporative processes <strong>in</strong> the state of <strong>Texas</strong>.30


4 Analysis and Results4.1 Legislative OptionsThis “regulatory” section (1) describes the current State and Federal regulatory limitations onself-seal<strong>in</strong>g pond-l<strong>in</strong>er technology; (2) lists the policy, regulatory, and statutory shifts potentiallyneeded to overcome any exist<strong>in</strong>g procedural impediments to efficient permitt<strong>in</strong>g of thistechnology; and (3) makes projections on the likelihood of success of the possible shifts <strong>in</strong>permitt<strong>in</strong>g structure needed to allow self-seal<strong>in</strong>g pond technology.Accord<strong>in</strong>g to Federal regulations, wastewater is classified as either municipal or <strong>in</strong>dustrial—the<strong>for</strong>mer be<strong>in</strong>g restricted to wastewater treatment plant (WWTP) effluent that may conta<strong>in</strong>microorganisms. It follows that desal<strong>in</strong>ation concentrates are by def<strong>in</strong>ition <strong>in</strong>dustrial wastes.4.1.1 Regulatory Framework4.1.1.1 Federal Statutory and Regulatory RequirementsThe Federal Clean Water Act established the National Pollutant Discharge Elim<strong>in</strong>ation System(NPDES) to protect the quality of all navigable waters <strong>in</strong> the United States. Any facility oroperation that would result <strong>in</strong> any discharge <strong>in</strong>to waters <strong>in</strong> the United States is required to obta<strong>in</strong>a permit from the U.S. Environmental Protection Agency (EPA) or a state delegated toadm<strong>in</strong>ister the NPDES program. The <strong>Texas</strong> Commission on Environmental Quality (TCEQ) hasbeen delegated to permit all facilities <strong>in</strong> <strong>Texas</strong> and has adopted and implemented the <strong>Texas</strong>Pollutant Discharge Elim<strong>in</strong>ation Program (TPDES).The def<strong>in</strong>ition of navigable waters has been broadly <strong>in</strong>terpreted to <strong>in</strong>clude lakes, rivers, streams,wetlands, and all other water bodies that are hydrologically connected that could transportpollutants <strong>in</strong>to them. Thus, if evaporation ponds are effectively eng<strong>in</strong>eered to elim<strong>in</strong>atedischarge, no Federally mandated TPDES water-quality permit would be required.4.1.1.2 <strong>Texas</strong> Statutory RequirementsThe <strong>Texas</strong> State Water Code, Subtitle D, Chapter 26, Water Quality Control, describes therequirements <strong>for</strong> permitt<strong>in</strong>g construction, operation, and ma<strong>in</strong>tenance of any facility <strong>in</strong> <strong>Texas</strong>with the potential of discharg<strong>in</strong>g pollutants <strong>in</strong>to or adjacent to waters <strong>in</strong> the state. The follow<strong>in</strong>gis an excerpt from Chapter 26:Sec. 26.121. UNAUTHORIZED DISCHARGES PROHIBITED.Text of section effective until delegation of NPDES permit authority(a) Except as authorized a rule, permit, or order issued by the by the commission, no personmay:(1) discharge sewage, municipal waste, recreational waste, agricultural waste, or <strong>in</strong>dustrialwaste <strong>in</strong>to or adjacent to any water <strong>in</strong> the state;(2) discharge other waste <strong>in</strong>to or adjacent to any water <strong>in</strong> the state which <strong>in</strong> itself or <strong>in</strong>conjunction with any other discharge or activity causes, cont<strong>in</strong>ues to cause, or will causepollution of any of the water <strong>in</strong> the state…TCEQ adm<strong>in</strong>isters this provision and is responsible <strong>for</strong> issu<strong>in</strong>g required permits. One importantdist<strong>in</strong>ction between State and Federal statutes is the State’s requirement to permit dischargesadjacent to, as well as <strong>in</strong>to, waters <strong>in</strong> the state. Hence, evaporation ponds are subject to these“State-only” permit requirements.31


4.1.1.3 <strong>Texas</strong> Regulatory RequirementsTCEQ adm<strong>in</strong>isters the <strong>Texas</strong> Land Application Permit (TLAP) program to regulate all dischargeactivities that do not directly impact waters <strong>in</strong> the state, <strong>in</strong>clud<strong>in</strong>g irrigation, evaporation, andsubsurface disposal of wastewater. A State-issued permit must be obta<strong>in</strong>ed prior to theconstruction and operation of any regulated facility.No specific rules have been adopted to regulate the permitt<strong>in</strong>g of <strong>in</strong>dustrial wastewater treatmentfacilities. However, detailed <strong>in</strong>structions <strong>for</strong> “Complet<strong>in</strong>g the Industrial Wastewater PermitApplication” describe specific criteria <strong>for</strong> impoundments at <strong>in</strong>dustrial facilities, <strong>in</strong>clud<strong>in</strong>g l<strong>in</strong>er<strong>in</strong><strong>for</strong>mation (TCEQ, 2006a), and provide help <strong>in</strong> fill<strong>in</strong>g out the Industrial Wastewater PermitApplication (TCEQ-10411, revised 10/2004). Other documents on related topics have beenreleased as well to facilitate applicants’ tasks (e.g., TNRCC, 1994, on municipal waste l<strong>in</strong>ers).Policies <strong>for</strong> <strong>in</strong>dustrial facilities are based primarily on provisions of the <strong>Texas</strong> Adm<strong>in</strong>istrativeCode, Title 30, Chapter 317 (30 TAC 317), Design Criteria <strong>for</strong> Sewerage Systems, <strong>for</strong> domesticwastewater treatment facilities, <strong>in</strong>clud<strong>in</strong>g no-discharge activities such as evaporation ponds. Thefollow<strong>in</strong>g requirements are applicable (<strong>in</strong> full <strong>in</strong> Appendix B):• Rule 317.4, Wastewater Treatment <strong>Facilities</strong>, <strong>in</strong>cludes requirements <strong>for</strong> wastewaterstabilization ponds (secondary treatment ponds) on which the evaporative pondrequirements are based. However, unlike the current evaporation pond requirements <strong>for</strong><strong>in</strong>dustrial facilities, the criteria specified <strong>in</strong> this rule require a 2-foot-thick layer of claysoil (<strong>in</strong> situ or constructed) and geomembrane l<strong>in</strong>er thickness of only 20 mils. The ruledoes allow <strong>for</strong> the use of “other methods with commission approval.”• Rule 317.5, Sludge Process<strong>in</strong>g, <strong>in</strong>cludes requirements <strong>for</strong> dewater<strong>in</strong>g and dry<strong>in</strong>goperations that would be applicable to desal<strong>in</strong>ation evaporative ponds.• Rule 317.1(a)(4)(B) <strong>in</strong>cludes requirements <strong>for</strong> obta<strong>in</strong><strong>in</strong>g approvals <strong>for</strong> <strong>in</strong>novative andnoncon<strong>for</strong>m<strong>in</strong>g technologies. These provisions would guide TCEQ staff <strong>in</strong> evaluationsnecessary to ga<strong>in</strong> approval of any alternative l<strong>in</strong>er or system <strong>for</strong> desal<strong>in</strong>ation evaporationponds.• Rule 309.13(d), Unsuitable Site Characteristics, <strong>in</strong>cludes criteria <strong>for</strong> wastewaterimpoundments overly<strong>in</strong>g recharge zones of major and m<strong>in</strong>or aquifers, <strong>in</strong>clud<strong>in</strong>gacceptable m<strong>in</strong>imum l<strong>in</strong>er specifications, which are more str<strong>in</strong>gent than the criteria of 30TAC 317.4. The soil l<strong>in</strong>er (<strong>in</strong> situ or constructed) must be at least 3 ft thick, with ahydraulic conductivity no greater than 10 -7 cm/s. The m<strong>in</strong>imum thickness required <strong>for</strong> ageomembrane l<strong>in</strong>er is 30 mils. These standards are the basis <strong>for</strong> the requirements <strong>for</strong>evaporation ponds <strong>for</strong> <strong>in</strong>dustrial facilities.These cited rules <strong>for</strong> municipal wastewater treatment, although used as guides <strong>for</strong> evaluation, arenot considered to be strict regulatory requirements <strong>for</strong> <strong>in</strong>dustrial permits. TCEQ has considerablelatitude <strong>in</strong> approv<strong>in</strong>g alternative permit requirements. The Waste Permit Division at TCEQallows the option of an “alternative l<strong>in</strong>er,” <strong>in</strong> which the permitee submits plans <strong>for</strong> any otherpond l<strong>in</strong><strong>in</strong>g method. Such a case could occur when usable groundwater quality is <strong>in</strong>ferior towastewater-stream quality (alternative l<strong>in</strong>er, option 1; see Appendix C). The follow<strong>in</strong>g is a briefdescription of the permit process.An evaporation pond <strong>for</strong> a desal<strong>in</strong>ation plant would require application <strong>for</strong> an <strong>in</strong>dustrial permit(TCEQ-10411) under the TLAP program. The application process is adm<strong>in</strong>istered by the TCEQ32


Water Quality Division. The follow<strong>in</strong>g <strong>in</strong>dividuals may be contacted <strong>for</strong> further <strong>in</strong><strong>for</strong>mation and<strong>in</strong>structions.• Wastewater Permits Section Chief—Chris L<strong>in</strong>endoll (512) 239-4515• Municipal Permits Team Leader—Kelly Holligan (512) 239-2369In<strong>for</strong>mation required <strong>in</strong> the application <strong>in</strong>cludes, but is not limited to,• Facility/Site In<strong>for</strong>mation—nature and type of <strong>in</strong>dustrial activity, SIC and NAICS codes,process description, materials that may reasonably be expected to be <strong>in</strong> effluent, a facilitymap, sit<strong>in</strong>g relative to the 100-year floodpla<strong>in</strong>.• Treatment System—physical, chemical, and/or biological treatment processes to be usedand a flow schematic with a water balance <strong>for</strong> each treatment unit.• Impoundments—type of impoundment (evaporation) identify<strong>in</strong>g it as a no-dischargepond and describ<strong>in</strong>g proposed pond-l<strong>in</strong>er specifications. For alternative pond-l<strong>in</strong>ertechnology, additional technical <strong>in</strong><strong>for</strong>mation must be provided demonstrat<strong>in</strong>g equivalentper<strong>for</strong>mance criteria. M<strong>in</strong>imum data <strong>for</strong> all impoundments <strong>in</strong>cludeo Dimensions—length, width, and depth of water surface at capacity; depth fromnatural ground level, depth of freeboard.o Test results—l<strong>in</strong>er permeability, compatibility with wastes, depth of impermeableclay soils, etc., as applicable.o Leak Detection—type of detection systems or groundwater monitor<strong>in</strong>g wells andavailable data.o Seasonal High Water Table—depth of seasonal high water table <strong>in</strong> relation to thebottom of the impoundment.o USGS Quadrangle Map—map locat<strong>in</strong>g water supply wells and/or monitor<strong>in</strong>gwells with<strong>in</strong> ½ mi of the impoundment and copies of State Water Well Reportswith data on depths to groundwater (TCEQ Central Records [512] 239-0900).o Site-Specific Data—available data perta<strong>in</strong><strong>in</strong>g to groundwater, soils, geology, etc.,that can be used to assess the potential <strong>for</strong> migration of wastes from theimpoundment and the contam<strong>in</strong>ation of ground- or surface waters.• Outfall In<strong>for</strong>mation—location (latitude/longitude), flow volume, and duration of eachdischarge po<strong>in</strong>t <strong>in</strong>to the impoundment.• Pollutant Analysis—four separate analytical results as specified unless prior approval isobta<strong>in</strong>ed from TCEQ.• Eng<strong>in</strong>eer<strong>in</strong>g Report—calculations <strong>for</strong> evaporation <strong>for</strong> average long-term and worse-caseconditions and <strong>for</strong> storage volume.Once the permit application has been found to be adm<strong>in</strong>istratively and technically complete byTCEQ, all necessary public notice requirements must be satisfied. This public notice <strong>in</strong><strong>for</strong>ms thepublic that a draft permit has been prepared <strong>for</strong> disposal of wastewater. The public may providecomments or request a public meet<strong>in</strong>g or request a public hear<strong>in</strong>g on the draft permit. A permitapplication fee and an annual water quality fee may be required.Initial <strong>in</strong>dustrial wastewater permits are typically issued <strong>for</strong> a 5-year period. Renewal periodsmay vary from 2 to 10 years and may be adjusted to correspond to the State’s bas<strong>in</strong> plann<strong>in</strong>gcycle. Recertification of the <strong>in</strong>tegrity of the pond l<strong>in</strong>er may be required any time materials areremoved from the pond or upon renewal of the permit.33


4.1.2 Policy OverviewThe <strong>Texas</strong> Land Application Permit (TLAP) is required <strong>for</strong> all nondischarge facilities, such asevaporation ponds, to prevent any wastewater discharge that would otherwise be regulated underthe Federally-mandated <strong>Texas</strong> Pollutant Discharge Elim<strong>in</strong>ation Program (TPDES) or that maycause contam<strong>in</strong>ation of groundwater. These state-only permits specify l<strong>in</strong>er characteristics,freeboard height, maximum discharge rates, and other parameters to satisfy the statutoryobligations to regulate discharges “adjacent to” waters <strong>in</strong> the state, <strong>in</strong>clud<strong>in</strong>g groundwater, thatare not regulated by Federal requirements. Data must be provided dur<strong>in</strong>g the application processto demonstrate compliance dur<strong>in</strong>g typical and worst-case conditions expected <strong>for</strong> the geographiclocation of the proposed facility. No water-quality standards are applied to discharges <strong>in</strong>to theponds if all TLAP conditions are met.<strong>Evaporation</strong> ponds are most appropriate <strong>in</strong> the arid areas of the state where meteorologicalconditions are most conducive to this technology. The follow<strong>in</strong>g m<strong>in</strong>imum design features andcriteria have been established by TCEQ. The TCEQ Water Quality Permitt<strong>in</strong>g staff has also<strong>in</strong>dicated that a leak-detection system or a groundwater monitor<strong>in</strong>g system similar to thatrequired <strong>for</strong> geomembrane l<strong>in</strong>ers would also be required <strong>for</strong> alternative l<strong>in</strong>ers until publishedstudies verify a barrier effect under all ambient conditions.4.1.2.1 Pond Siz<strong>in</strong>gThe size of an evaporation pond must be sufficient to satisfy acceptable water balance andstorage-capacity calculations found <strong>in</strong> “Complet<strong>in</strong>g the Industrial Wastewater PermitApplication, Instructions <strong>for</strong> Worksheet 3.1 – Surface Land Disposal of Effluent (Example 6)”(TCEQ, 2006a). Data <strong>for</strong> net evaporation values may be obta<strong>in</strong>ed from TWDB’s<strong>Evaporation</strong>/Precipitation Data <strong>for</strong> <strong>Texas</strong> (TWDB, 2006a). Documentation of alternative datasources must be provided. Criteria considered <strong>in</strong>clude average annual ra<strong>in</strong>fall and evaporationrates <strong>for</strong> the previous 25 years; worst-case ra<strong>in</strong>fall and evaporation rates experienced dur<strong>in</strong>g anyyear with<strong>in</strong> the previous 25 years; maximum effluent flow, typically converted to <strong>in</strong>ches permonth per acre of surface area of the evaporation pond; and ma<strong>in</strong>tenance of a m<strong>in</strong>imum of 2 ft offreeboard at all times (<strong>in</strong>clud<strong>in</strong>g worst-case conditions).4.1.2.2 Pond L<strong>in</strong>erThe l<strong>in</strong>er of an evaporation pond must ensure a hydraulic conductivity of no greater than 10 -7cm/s and must satisfy the requirement <strong>for</strong> a surface impoundment at a domestic wastewatertreatment facility described <strong>in</strong> 30 TAC Chapters 317 and 309. The follow<strong>in</strong>g three l<strong>in</strong>ers areconsidered acceptable: <strong>in</strong> situ clay with a thickness of 3 ft or more, compacted clay with athickness of 3 ft or more, or geomembrane l<strong>in</strong>er of 30-mil thickness or more with anunderground leak-detection system or groundwater monitor<strong>in</strong>g system. The clay (<strong>in</strong> situ orconstructed) must have >30% material pass<strong>in</strong>g the #200 sieve (0.074 mm), liquid limit ≥30%,and plasticity <strong>in</strong>dex ≥15% –<strong>in</strong><strong>for</strong>mation on those parameters is available <strong>in</strong> the manuals“Standard Test Methods <strong>for</strong> Amount of Material <strong>in</strong> Soils F<strong>in</strong>er than No. 200 (75-m) Sieve,”D1140, and “Standard Test Methods <strong>for</strong> Liquid Limit, Plastic Limit, and Plasticity Index ofSoils,” D4318, published by the American Society <strong>for</strong> Test<strong>in</strong>g and Materials (ASTM). Inaddition, the clay must be compacted <strong>in</strong> lifts of no more than 9 <strong>in</strong>ches to 95% of its standardProctor maximum dry density to achieve the required maximum conductivity of 10 -7 cm/s.34


4.1.2.3 Alternative L<strong>in</strong>er RequirementsAn alternative l<strong>in</strong>er technology may be approved by TCEQ if it can be demonstrated to providean equivalent degree of protection (see, <strong>for</strong> example, Appendix C, alternative l<strong>in</strong>er, option 2).Requirements specified <strong>in</strong> Rule 317.1(a)(4)(B) <strong>in</strong>clude eng<strong>in</strong>eer<strong>in</strong>g proposals <strong>for</strong> processes,equipment, or construction materials and results of pilot or demonstration studies. Per<strong>for</strong>mancedata from exist<strong>in</strong>g full-scale facilities may be submitted <strong>in</strong> addition to, or <strong>in</strong> lieu of, pilot studies,warranties, or per<strong>for</strong>mance bonds (2-yr) to cover the cost of removal or abandonment, andeng<strong>in</strong>eer<strong>in</strong>g reports follow<strong>in</strong>g start-up detail<strong>in</strong>g actual per<strong>for</strong>mance of the technology <strong>in</strong>accordance with applicants’ or manufacturer’s claims.4.1.3 Regulatory Programs <strong>in</strong> Selected Southwestern StatesThree states <strong>in</strong> the southwestern United States that have meteorological conditions similar tothose of western <strong>Texas</strong> were exam<strong>in</strong>ed to evaluate current regulatory requirements <strong>for</strong> thepermitt<strong>in</strong>g of evaporation ponds. Pond-l<strong>in</strong>er requirements are very similar to regulations <strong>in</strong> <strong>Texas</strong>and stipulate the type, thickness, hydraulic conductivity, compaction, and durability of variousl<strong>in</strong>er materials. However, no universal national criteria exist, and each state has adopted specificrequirements and permitt<strong>in</strong>g mechanisms <strong>for</strong> approved l<strong>in</strong>er systems. No special or unique l<strong>in</strong>errequirements were identified specifically <strong>for</strong> self-seal<strong>in</strong>g l<strong>in</strong>er alternatives <strong>in</strong> any of the states.Approval of an alternative l<strong>in</strong>er system would require technical data and test<strong>in</strong>g results todemonstrate equivalency to the l<strong>in</strong>er system prescribed <strong>in</strong> each state. Specification <strong>for</strong> compactedsoil, soil/clay, or soil/bentonite l<strong>in</strong>ers may be the most appropriate benchmarks <strong>for</strong> suchdeterm<strong>in</strong>ations. The follow<strong>in</strong>g sections describe specific requirements and applicable citations <strong>in</strong>Arizona, Oklahoma, and New Mexico.4.1.3.1 Arizona<strong>Evaporation</strong> ponds are regulated by the Arizona Department of Environmental Quality (ADEQ)under Title 49, The Environment, Chapter 2, Water Quality Control, Article 3, AquiferProtection Permits, of the Arizona Revised Statutes (ARS). Individual or General Permits maybe issued to facilities demonstrat<strong>in</strong>g the use of Best Available Demonstrated Control Technology(BADCT). Specific BADCT <strong>in</strong><strong>for</strong>mation is provided <strong>in</strong> the Arizona M<strong>in</strong><strong>in</strong>g Guidance ManualBADCT, Section 3.6, Surface <strong>Ponds</strong>, which describes the design, construction, and operationalrequirements <strong>for</strong> aquifer protection. Supplemental <strong>in</strong><strong>for</strong>mation is also found <strong>in</strong> Appendix C ofthe document, L<strong>in</strong>er Design Pr<strong>in</strong>ciples and Practice. Structures that are designed and constructednot to discharge and that are built on an impermeable barrier that can be visually <strong>in</strong>spected <strong>for</strong>leakage are exempt from permitt<strong>in</strong>g under the Aquifer Protection Program (ARS Section 49-250). Title 18, Chapter 9 of the Arizona Adm<strong>in</strong>istrative Code <strong>in</strong>cludes requirements <strong>for</strong> aquiferprotection permits. Type 3 General Permits <strong>for</strong> l<strong>in</strong>ed impoundments (R18-9-D301) may beobta<strong>in</strong>ed <strong>for</strong> “wastewater derived from a potable water treatment system, <strong>in</strong>clud<strong>in</strong>g clarificationsludge, filtration backwash, lime and lime-soften<strong>in</strong>g sludge, ion exchange backwash, and reverseosmosis spent waste….” An applicant must file a Notice of Intent and a Supplemental Notice ofIntent. To satisfy General Permit conditions, evaporation ponds must be designed andconstructed to ensure conta<strong>in</strong>ment of normal operat<strong>in</strong>g volumes plus <strong>in</strong>flow from the 100-yr,24-h storm event and ma<strong>in</strong>ta<strong>in</strong> at least 2 ft of freeboard. Pond l<strong>in</strong>ers typically consist of aprepared foundation, a comb<strong>in</strong>ation of l<strong>in</strong>ers, possibly a leak detection layer, and a protectionlayer. Pond l<strong>in</strong>ers must meet the follow<strong>in</strong>g specifications:35


Soil l<strong>in</strong>ers must• Ensure a seepage rate of


Requirements <strong>for</strong> compacted clay l<strong>in</strong>ers and soil and bentonite l<strong>in</strong>ers are most comparable toself-seal<strong>in</strong>g l<strong>in</strong>er alternatives and are considered to be “moderately protective.” L<strong>in</strong>er materialsmust be compacted with a “water content-density range to assure a maximum saturated hydraulicconductivity of 1×10 -7 cm/sec.”• Clay l<strong>in</strong>ers must be applied <strong>in</strong> at least four successive “lifts” of not more than 9 <strong>in</strong>ches <strong>in</strong>thickness uncompacted, and 6 <strong>in</strong>ches of thickness compacted to a m<strong>in</strong>imum of 2 ft ofthickness. The l<strong>in</strong>er at the bottom of the pond must be compacted to a water content of asmuch as 4% above optimum and to at least 90% of the Standard Proctor maximum drydensity.• Soil and bentonite l<strong>in</strong>ers must be uni<strong>for</strong>mly mix<strong>in</strong>g bentonite <strong>in</strong>to the soil to a depth of atleast 6 <strong>in</strong>ches, applied at a rate at least 125% of the m<strong>in</strong>imum rate determ<strong>in</strong>ed <strong>in</strong>laboratory tests needed <strong>for</strong> stability and maximum hydraulic conductivity.• L<strong>in</strong>ers must be properly protected from freez<strong>in</strong>g and desiccation and covered by at least12 <strong>in</strong>ches of soil.Further <strong>in</strong><strong>for</strong>mation may be available from the ODEQ Public Water Supply Program ComplianceDeterm<strong>in</strong>ation Support Team Leader, Michele Welch at (405) 702-8127.4.1.3.3 New MexicoVery little <strong>in</strong><strong>for</strong>mation is available regard<strong>in</strong>g regulation of evaporation ponds <strong>in</strong> New Mexico.New Mexico Adm<strong>in</strong>istrative Code (NMAC) Title 20 Environmental Protection, Chapter 6 WaterQuality, Part 2 Ground and Surface Water Protection, requires any person who dischargeseffluent or leachate directly or <strong>in</strong>directly <strong>in</strong>to groundwater to obta<strong>in</strong> a State permit from the NewMexico Environment Department (NMED). NMED has not received primacy <strong>for</strong> the NationalPollutant Discharge Elim<strong>in</strong>ation System (NPDES) program. No specific requirements orexemptions <strong>for</strong> evaporation ponds are mentioned <strong>in</strong> these regulations.Pond-l<strong>in</strong>er requirements were <strong>in</strong>cluded <strong>in</strong> the Recommended Standards <strong>for</strong> Wastewater <strong>Facilities</strong>published by the NMED Construction Programs Bureau, although they are applied only tofacultative and aerated ponds. Soil/clay l<strong>in</strong>ers• Must be compacted to a saturated hydraulic conductivity no greater than 1 × 10 -7 cm/secat 90% of the Standard Proctor maximum dry density (ASTM D698) (at least half itsmaterial must pass a #200 sieve); have a Plasticity Index of no less than 10%; and conta<strong>in</strong>particles no larger than 4 mm (5/32 <strong>in</strong>ch).• Must be augmented with bentonite clay if the required hydraulic conductivity limitcannot be met.• Must be no less than 18 <strong>in</strong>ches thick constructed <strong>in</strong> 6-<strong>in</strong>ch lifts.• Are not recommended <strong>for</strong> evaporation ponds that may be subject to desiccation; exposedto highly acidic, alkal<strong>in</strong>e, or chemical wastewater; or located over a vulnerable aquifer.The Natural Resources Conservation Service (NRCS) <strong>in</strong> New Mexico has also published thefollow<strong>in</strong>g series of Conservation Practice Specifications <strong>for</strong> Pond <strong>Seal<strong>in</strong>g</strong> or L<strong>in</strong><strong>in</strong>g: FlexibleMembrane (521A), Soil Dispersant (521B), Bentonite Treatment (521C), and CationicEmulsion-Waterborne Sealant (521D).Specifications <strong>for</strong> geomembrane l<strong>in</strong>ers and bentonite treatment methods were on the NRCSWebsite, but the documents <strong>for</strong> soil dispersion and cationic emission-waterborne sealant methodswere not available. Specifications identify<strong>in</strong>g l<strong>in</strong>er thickness (30–40 mil <strong>for</strong> geomembranes and37


6–24 <strong>in</strong>ches <strong>for</strong> bentonite treatment) were provided, but no other limitations <strong>for</strong> conductivity,permeability, or other criteria were <strong>in</strong>cluded. It is unclear whether these specifications wouldapply to evaporation ponds used <strong>in</strong> conjunction with desal<strong>in</strong>ation or other water-treatmentfacility or are limited to agricultural operations supported by NRCS. Further <strong>in</strong><strong>for</strong>mation may beavailable from the NMED Ground Water Quality Bureau at (505) 827-2918 or from the NewMexico State NRCS Office, State Conservationist, Dennis Alexander at (505) 761-4401.4.1.4 Factors to Reduce Complexity and Cost <strong>in</strong> <strong>Texas</strong>New self-seal<strong>in</strong>g evaporation pond technology can make desal<strong>in</strong>ation facilities more af<strong>for</strong>dableif it can lower costs associated with the <strong>in</strong>stallation and ma<strong>in</strong>tenance of pond l<strong>in</strong>ers by reduc<strong>in</strong>gthe amount of compacted clay to less than 3 ft or replac<strong>in</strong>g it entirely or by elim<strong>in</strong>at<strong>in</strong>g the need<strong>for</strong> a leak-detection system beneath a geomembrane l<strong>in</strong>er.4.1.4.1 L<strong>in</strong>er RequirementsDeposition of precipitants from the effluent stream may reduce or elim<strong>in</strong>ate the need <strong>for</strong> standardl<strong>in</strong>er materials <strong>in</strong> desal<strong>in</strong>ation evaporation ponds. This substitution could reduce the cost of<strong>in</strong>stall<strong>in</strong>g clay or geomembrane l<strong>in</strong>ers to achieve an equally effective seal. An equivalencydeterm<strong>in</strong>ation would require an applicant to adequately demonstrate that (1) self-seal<strong>in</strong>g methodswill achieve conta<strong>in</strong>ment capability equivalent to that of current prescriptive l<strong>in</strong>ers or, whencomb<strong>in</strong>ed with a geomembrane l<strong>in</strong>er, will enhance conta<strong>in</strong>ment to a degree that a leak detectionsystem is unnecessary and (2) result<strong>in</strong>g l<strong>in</strong>er material(s) will not deteriorate ow<strong>in</strong>g to reactivitywith sal<strong>in</strong>ity or other compounds <strong>in</strong> the effluent stream, exposure to sunlight, exposure toexpected temperature extremes, or periods of desiccation.Support <strong>in</strong><strong>for</strong>mation <strong>for</strong> such a demonstration may <strong>in</strong>clude (1) documentation of applicablescientific reports, previously conducted research, and other literature; (2) results of recentlyconducted scientific and eng<strong>in</strong>eer<strong>in</strong>g studies or pilot projects; (3) monitor<strong>in</strong>g data from exist<strong>in</strong>goperational facilities currently utiliz<strong>in</strong>g the proposed technology; and (4) certification by aLicensed Professional Eng<strong>in</strong>eer <strong>in</strong> <strong>Texas</strong>.4.1.4.2 Permit Process<strong>in</strong>gNo changes to exist<strong>in</strong>g regulatory requirements or processes are necessary to obta<strong>in</strong> permits <strong>for</strong>self-seal<strong>in</strong>g evaporation pond l<strong>in</strong>ers at desal<strong>in</strong>ation plants <strong>in</strong> <strong>Texas</strong>. Each application would beevaluated on its own merits and could receive approval upon adequate case-by-casedemonstration of equivalency with current clay and geomembrane l<strong>in</strong>er per<strong>for</strong>mance standards.Regulatory process<strong>in</strong>g <strong>for</strong> permitt<strong>in</strong>g of an evaporation pond could be simplified if the selfseal<strong>in</strong>gtechnology were recognized by TCEQ as an accepted type of l<strong>in</strong>er, equivalent tocompacted clay or geomembrane l<strong>in</strong>ers. Instructions <strong>for</strong> “Complet<strong>in</strong>g the Industrial WastewaterPermit Application” could be modified without statutory change or rulemak<strong>in</strong>g to add selfseal<strong>in</strong>gl<strong>in</strong>er technology to the list of acceptable l<strong>in</strong>ers. Such a revision may provide applicants agreater degree of regulatory certa<strong>in</strong>ty that a permit application will be approved if certa<strong>in</strong>conditions were met. However, TCEQ may be hesitant to make such a modification, given thelimited number of likely permit applications <strong>for</strong> desal<strong>in</strong>ation facilities.4.1.4.3 Leak Monitor<strong>in</strong>g<strong>Evaporation</strong> ponds with geomembrane l<strong>in</strong>ers are required to have underground leak-detectionsystems that lie beneath the l<strong>in</strong>er <strong>for</strong> the purpose of detect<strong>in</strong>g leakage through it. Alternatively,leakage from ponds can be monitored by groundwater monitor<strong>in</strong>g wells (TCEQ, 2006a).38


Monitor<strong>in</strong>g must be conducted at least monthly and results reported to TCEQ annually.Indications of leakage require corrective action. Given that leak detection system or groundwatermonitor<strong>in</strong>g with the potential <strong>for</strong> corrective action is not required <strong>for</strong> ponds with <strong>in</strong> situ orcompacted clay l<strong>in</strong>ers, facility owners may prefer the cost certa<strong>in</strong>ty of ponds l<strong>in</strong>ed with clayrather than geomembrane l<strong>in</strong>ers.TCEQ staff has <strong>in</strong>dicated that similar monitor<strong>in</strong>g is required <strong>for</strong> alternative l<strong>in</strong>er systems.Reduc<strong>in</strong>g or elim<strong>in</strong>at<strong>in</strong>g monitor<strong>in</strong>g requirements would further lower costs to smallmunicipalities or other customers <strong>in</strong>terested <strong>in</strong> us<strong>in</strong>g evaporation ponds with a desal<strong>in</strong>ationsystem. Because self-seal<strong>in</strong>g l<strong>in</strong>er technology by design would automatically seal any leaks thatmight appear <strong>in</strong> the l<strong>in</strong>er, requirements <strong>for</strong> extensive, permanent monitor<strong>in</strong>g may not benecessary. Studies, pilot or demonstration projects, eng<strong>in</strong>eer<strong>in</strong>g design, and other researchper<strong>for</strong>med to document the <strong>in</strong>tegrity of self-seal<strong>in</strong>g evaporation pond-l<strong>in</strong>er technology shouldverify the effectiveness of these self-seal<strong>in</strong>g properties. TCEQ may be able to modify monitor<strong>in</strong>grequirements if adequate documentation can be provided that monitor<strong>in</strong>g would not be necessaryto protect human health or the environment.4.1.5 What if Someth<strong>in</strong>g Goes Wrong?In order to ga<strong>in</strong> some understand<strong>in</strong>g of what would happen if leakage were actually detected wecontacted two of the four facilities we previously visited <strong>for</strong> field sampl<strong>in</strong>g (see Appendix E).Their responses follow:City of Abilene—Rodney Taylor, Assistant Director of Water Utilities:- No specific <strong>in</strong>surance is carried on desal<strong>in</strong>ation plant or evaporation ponds.- City of Abilene is self <strong>in</strong>sured and would address any liability issues.- Repairs or remediation due to a leak <strong>in</strong> the evaporation pond l<strong>in</strong>er would likely be paid<strong>for</strong> by the cash reserves <strong>in</strong> the city’s Enterprise Fund.Horizon Municipal Utility District—Joe Paxton, Operations Manager [(915) 852-4465]:- No specific <strong>in</strong>surance is carried on desal<strong>in</strong>ation plant or evaporation ponds.- General <strong>in</strong>surance is obta<strong>in</strong>ed from the <strong>Texas</strong> Municipal League available to waterdistricts.- Water districts are shielded from liability <strong>in</strong> most cases.- Repairs to clay l<strong>in</strong>er, if necessary, would be covered by general operations andma<strong>in</strong>tenance budget funded by consumer rates and bonds.Implement<strong>in</strong>g self-seal<strong>in</strong>g evaporation ponds will not impact <strong>in</strong>surance cost <strong>for</strong> municipalutilities because they are mostly self-<strong>in</strong>sured.4.1.6 Regulatory ConclusionsNo significant regulatory barriers exist to prevent permitt<strong>in</strong>g of self-seal<strong>in</strong>g evaporation pondl<strong>in</strong>ertechnologies at desal<strong>in</strong>ation facilities <strong>in</strong> <strong>Texas</strong>. No-discharge facilities, such as evaporationponds, are not required to obta<strong>in</strong> any Federal permit or authorization (i.e., TPDES permit).However, a state-only <strong>Texas</strong> Land Application Permit (TLAP) must be issued by the TCEQWater Quality Division.Although TCEQ has not adopted specific regulations regard<strong>in</strong>g TLAP requirements <strong>for</strong> <strong>in</strong>dustrialwastewater treatment facilities, it uses the current requirements <strong>for</strong> municipal wastewater39


treatment facilities at sites that have unsuitable hydrogeologic characteristics as a guide. TCEQhas developed detailed <strong>in</strong>structions <strong>for</strong> complet<strong>in</strong>g a TLAP application <strong>for</strong> <strong>in</strong>dustrial facilitiesthat describes these requirements. Certa<strong>in</strong> pond-l<strong>in</strong>er technologies that have been proven to meetm<strong>in</strong>imum per<strong>for</strong>mance criteria <strong>for</strong> conta<strong>in</strong><strong>in</strong>g <strong>in</strong>dustrial wastewater discharges are specified <strong>in</strong>TCEQ guidance. <strong>Evaporation</strong> pond l<strong>in</strong>ers that are currently recognized as acceptable <strong>in</strong> <strong>Texas</strong>(called prescriptive l<strong>in</strong>ers <strong>in</strong> this report) <strong>in</strong>clude• In situ clay, at least 3 ft thick with hydraulic conductivity of 10 -7 cm/s or less,• Compacted clay, at least 3 ft thick with hydraulic conductivity of 10 -7 cm/s or less, or• Geomembrane l<strong>in</strong>er, at least 30 mil thick with an underly<strong>in</strong>g leak-detection system.Alternative l<strong>in</strong>ers (see Appendix C) may be approved on a case-by-case basis with adequatedemonstration that the alternative can achieve an equivalent hydraulic conductivity and will haveno adverse reactivity to effluent characteristics, sunlight, temperature, or desiccation.Regulatory processes and costs related to the permitt<strong>in</strong>g of self-seal<strong>in</strong>g pond l<strong>in</strong>ers couldpossibly be reduced if the technology were added to the list of acceptable l<strong>in</strong>ers and not requiredto undergo a case-by-case determ<strong>in</strong>ation. No statutory change or rulemak<strong>in</strong>g would be requiredto revise the permit <strong>in</strong>structions; however, TCEQ would require compell<strong>in</strong>g scientific andeng<strong>in</strong>eer<strong>in</strong>g evidence to justify such a modification.Costs could also be reduced if leak-detection monitor<strong>in</strong>g of alternative l<strong>in</strong>er systems could bereduced or elim<strong>in</strong>ated. Aga<strong>in</strong>, scientific and eng<strong>in</strong>eer<strong>in</strong>g evidence, <strong>in</strong>clud<strong>in</strong>g the results ofdemonstration studies, would be necessary to show that monitor<strong>in</strong>g would not be necessary toensure protection of human health and the environment.4.2 Range of Likely Membrane Concentrate CompositionsWhereas feedwater chemical composition is widely available and compiled <strong>in</strong> the TWDBgroundwater database, little public <strong>in</strong><strong>for</strong>mation is available about membrane concentratecomposition. In this report, we followed the procedure presented <strong>in</strong> Mace et al. (2006) tocompute the likely range of membrane concentrate composition. The concentrate composition isa strong function of the feedwater composition to which operational impr<strong>in</strong>ts are added(acidification, closed system, efficiency, and recovery). As discussed <strong>in</strong> Nicot et al. (2005), ROtechnology is supplant<strong>in</strong>g ED/EDR technology, at least <strong>in</strong> <strong>Texas</strong>. Consequently, a ROconcentrate is assumed <strong>in</strong> the rema<strong>in</strong>der of this work. As a first approximation, RO technologyrejects anions, cations, and neutral ions at the same rate as and <strong>in</strong>dependently of charge density(e.g., Jordahl, 2006, p. 6–7). It is assumed that technological improvements will trend <strong>in</strong> thatdirection and that concentrate TDS is about four times that of the feedwater (Mace et al., 2006).In general, divalent ions are rejected at a higher rate than monovalent ions, but the error byassum<strong>in</strong>g the same rejection rate decreases as the recovery <strong>in</strong>creases. It follows that thisassumption is valid <strong>for</strong> the slightly brackish waters considered <strong>in</strong> this study but may not havebeen appropriate <strong>for</strong> seawater desal<strong>in</strong>ation that has a lower recovery rate. This assumption wouldnot be valid either <strong>for</strong> NF membranes that let through most of the monovalent ions. In addition,not mak<strong>in</strong>g that assumption <strong>for</strong> RO membranes would imply consider<strong>in</strong>g specific membranevarieties and us<strong>in</strong>g specific, sometimes proprietary, software designed by membrane vendors.RO technology allows <strong>for</strong> gases (O 2 , CO 2 , H 2 S) to go through the membrane, and the result<strong>in</strong>gconcentrate is gas-poor. Acidification with either hydrochloric or sulfuric acid is a widespread40


pretreatment technique. At least 8 out of the 38 PWS facilities presented <strong>in</strong> Nicot et al. (2005)use this approach (unpublished data).We had limited success <strong>in</strong> contact<strong>in</strong>g <strong>Texas</strong> facilities and request<strong>in</strong>g <strong>in</strong><strong>for</strong>mation aboutconcentrate chemical composition. In the next section, we present <strong>in</strong><strong>for</strong>mation about MiddleEastern facilities whose concentrate <strong>in</strong><strong>for</strong>mation has been published, as well as results of fieldsampl<strong>in</strong>g of four <strong>Texas</strong> facilities conducted dur<strong>in</strong>g this study to suggest the reasonableassumption that concentration of most ions <strong>in</strong> the concentrate is approximately four times thatfound <strong>in</strong> the feedwater.4.2.1 Out-of-State ExamplesIn order to test our numerical approach to obta<strong>in</strong><strong>in</strong>g accurate concentrate compositions, we useddata from Ahmed (2000) and Ahmed et al. (2001). The paper conta<strong>in</strong>s feedwater and concentratedata from several facilities located <strong>in</strong> the Middle East (Table 4-1 and Table 4-2), which hostsnumerous desal<strong>in</strong>ation facilities (e.g., Wangnick, 2002). They provide a good basis <strong>for</strong><strong>in</strong>vestigat<strong>in</strong>g feedwater/concentrate relationships. Inspection of the ratio of concentrate andfeedwater concentrations <strong>for</strong> <strong>in</strong>dividual ions and TDS shows that ions are concentrated roughlyby the same amount. This f<strong>in</strong>d<strong>in</strong>g was confirmed when we plotted the results on a Piper plot(Figure 4-1). It shows little geochemical distance between feedwater and concentrate <strong>for</strong> all ions.It is clear that the Haima facility (Table 4-1) does not fit the general pattern (concentrate with alow pH of ~3, high concentration factor <strong>for</strong> chloride, and low concentration factor <strong>for</strong> sodium).The most likely <strong>in</strong>terpretation is that hydrochloric acid is added to feedwater to control scal<strong>in</strong>g.Consequently, the pH drops and the chloride concentration factor <strong>in</strong>creases dramaticallyartificially. The Adam facility shows a similar but less pronounced pattern. Sulfuric acid isadded, also to control scal<strong>in</strong>g, as evidenced by the higher concentration factor and the lower pH(5.66). Acid addition translates <strong>in</strong>to a drop <strong>in</strong> alkal<strong>in</strong>ity (from 230 to 37 mg/L, despite an averageconcentration factor larger than 4). The CO 2 /carbonic acid and bicarbonate system has a pKa ofabout 6.4, suggest<strong>in</strong>g that little bicarbonate exists at 5.6, almost one pH cycle lower. The Haimaconcentrate analysis shows no bicarbonate results because there is none <strong>in</strong> solution at pH=3. Theslight drop <strong>in</strong> pH <strong>in</strong> the Abu-Mudhaibi facility also suggests that scal<strong>in</strong>g is controlled by acidaddition (Ahmed, 2000, Table 9). In a closed system, concentrate should have a pH higher thanthat of feedwater because of the <strong>in</strong>crease <strong>in</strong> bicarbonate ions. The Zahar and Hamriyah facilitiesfollow this pattern. The Zahar feedwater is not acidified. Most of these facilities also receivedsodium metabisulfite to control chlor<strong>in</strong>e when chlor<strong>in</strong>ation is used. Most modern membranes arenot chlor<strong>in</strong>e tolerant, and the water stream must be dechlor<strong>in</strong>ated, typically with sodiummetabisulfite.From these observations, it can be concluded that most ions behave conservatively andmechanically <strong>in</strong>crease <strong>in</strong> concentration by an amount consistent with the <strong>in</strong>crease <strong>in</strong> TDS.Chloride or sulfate may not follow this pattern if acid is added. Bicarbonate concentration is afunction of pH and of the open/closed status of the system. If the system is open to atmosphere,bicarbonate concentration is <strong>in</strong> equilibrium with atmospheric CO 2 , as dictated by the solutionpH. If the system is closed and no acid is added, bicarbonate follows a pattern similar to that ofother ions, and the pH <strong>in</strong>creases.41


A Adam FMg80%60%20%20%40%40%SO 4 + Cl80%60%Na + K80%60%40%20%HCO 3OGCa + MgIKLDACEMBJAIPH20%40%I Adam CB Hitam FJ Hitam CC Zahar FK Zahar CD Assadanat FL Assadanat CE Abu-Mudhaibi FM Abu-Mudhai...G Kalba FO Kalba CH Umm-Al-Qw...P Umm-Al-Qw...A Hamriyah FI Hamriyah C80%I60%SO 440%20%OG60%KAI AIPLDCHEMBJ80%60%80%A40%AIPHMKLBCEJDOG20%80%60%40%20%20%40%60%80%CaClSource: Ahmed (2000) and Ahmed et al. (2001)Figure 4-1. Piper plot of feedwater (F) and concentrate (C) of selected desal<strong>in</strong>ation facilities <strong>in</strong>the Middle East.42


Table 4-1. Feedwater and concentrate chemical composition from a few Middle Eastern desal<strong>in</strong>ation facilities.Facility Ca Mg Na K Cl SO 4 Sr Alkal<strong>in</strong>ity Hardness Bicarbonate pH TDSAdamFW 103 70 410 12 506 773 3 195 548 230 8 2,000Conc 417 280 1,670 43 1,964 4,336 13 30 2,211 37 5.56 8,747C/FW 4.05 4.00 4.07 3.72 3.88 5.61 3.95 0.15 4.03 0.16 4.37HaimaFW 652 267 3,340 125 1,697 2,037 16 62 2,748 62 7 8,217Conc 1,020 406 406 174 9,090 3,881 24 0 3958 0 3.07 14,977C/FW 1.56 1.52 0.12 1.39 5.36 1.91 1.54HitamFW 563 382 3,400 124 7,483 2,366 13 125 2,996 135 8 14,451Conc 665 448 4,250 145 8,118 2,466 15 142 3,526 125 7.66 16,142C/FW 1.18 1.17 1.25 1.17 1.08 1.04 1.20 1.14 1.18 0.93 1.12ZaharFW 179 95 746 28 1,408 337 5 244 777 244 7 3,037Conc 612 315 1,980 95 4,367 1,143 16 704 2,846 704 7.32 8,990C/FW 3.42 3.32 2.65 3.36 3.10 3.39 3.47 2.89AssadanatFW 367 174 1,290 12 2,160 417 30 196 1,521 196 8 4,616Conc 923 413 2,780 82 4,532 1,552 28 380 4,041 380 7.21 10,553C/FW 2.51 2.37 2.16 7.03 2.10 3.72 0.93 1.94Abu-MudhaibiFW 294 137 1,360 29 2,151 515 8 200 1,309 245 7 4,651Conc 962 448 4,630 101 7,335 3,296 27 168 4,281 205 6.03 16,960C/FW 3.27 3.27 3.40 3.47 3.41 6.40 3.34 0.84 3.27 0.84 3.65KalbaFW 446 245 536 11 2,103 265 5 109 2,130 133 7.48 3,700Conc 1,180 644 1,170 34 5,413 756 11 285 5,615 347 7.59 9,43243


Facility Ca Mg Na K Cl SO 4 Sr Alkal<strong>in</strong>ity Hardness Bicarbonate pH TDSC/FW 2.65 2.63 2.18 3.09 2.57 2.85 2.12 2.61 2.64 2.61 2.55Umm-Al-Qwa<strong>in</strong>FW 49 110 775 19 1,182 562 5 226 581 275 7.80 2,851Conc 202 510 3,190 85 4,108 2,444 21 538 2,630 656 7.54 10,923C/FW 4.12 4.64 4.12 4.36 3.48 4.35 4.23 2.38 4.53 2.39 3.83HamriyahFW 48 85 498 13 779 407 4 177 474 216 7.31 1,949Conc 173 311 1,930 51 2,933 1,537 14 617 1,730 753 7.66 7,350C/FW 3.60 3.66 3.88 3.84 3.77 3.78 3.81 3.49 3.65 3.77Note: Units are mg/L; FW=Feedwater; Conc=Concentrate; C/FW=Ratio Concentrate / Feedwater; Hardness is sensibly equivalent to CaCO 3 + MgCO 3 (weightbasis); italic (and blue) cells conta<strong>in</strong> data not provided <strong>in</strong> the source but calculated to approximately match TDS and electrical balanceSource: Ahmed et al. (2001) and modified from Mace et al. (2006)Table 4-2. Facility characteristics.Facility Capacity MGD - (m 3 /day) DisposalAdam 0.26 – (1,000) <strong>Evaporation</strong> PondHaima 0.0264 – (100) <strong>Evaporation</strong> PondHitam 0.0264 – (100) Shallow well boreZahar 0.0132 – (50) Shallow well boreAssadanat 0.0132 – (50) Shallow well boreAbu-Mudhaibi 0.0132– (50) Shallow well boreKalba 3.84 – (14,550) Ocean DischargeUmm-Al-Qwa<strong>in</strong> 2.77 – (10,500) Ocean DischargeHamriyah 0.77 – (2,900) Land disposal (dry creek)Note: All source water is brackish groundwater; source: Ahmed et al. (2001)44


4.2.2 <strong>Texas</strong> DataCurrently <strong>in</strong> <strong>Texas</strong> no data contrast<strong>in</strong>g feedwater or concentrate chemical composition arepublicly available, although <strong>in</strong><strong>for</strong>mation about permeate composition is more readily available.In order to partly fill that data gap, we conducted a small field sampl<strong>in</strong>g program that <strong>in</strong>cludedfour facilities (see Appendix E). Feedwater compositions fall with<strong>in</strong> the expected range(Table 4-3), which can be verified by check<strong>in</strong>g their position on the Piper plots of the watergroups presented <strong>in</strong> Appendix A: Figure 8-4 (Rio Grande alluvium <strong>for</strong> Horizon facility),Figure 8-20 (surface-water group <strong>for</strong> Abilene and Brady facilities), and Figure 8-11 (Cretaceouslimestone group <strong>for</strong> River Oaks Ranch –ROR– facility).Conclusions are similar to those obta<strong>in</strong>ed from the Middle East samples. Feedwater andconcentrate fall very close to one another on a Piper plot (Figure 4-2). It should be noted that thedecrease <strong>in</strong> bicarbonate concentration <strong>in</strong> the concentrate visible on Figure 4-2 has not beenmeasured but computed from assumed equilibrium with calcite because alkal<strong>in</strong>ity was notmeasured <strong>in</strong> the field.80%20%20%40%SO 4 + Cl80%60%EM80%60%40%20%HCO 3JBCa + MgCKHP20%ME80%B AbileneFJ AbileneCC BradyFK BradyCH HorizonF1H HorizonF2P HorizonC1P HorizonC2P HorizonC3E RORFM RORCNa + KMg40%20%60%MEJB40%60%80%CKPH60%80%40%60%HPBJSO 440%CK20%80%60%40%20%20%40%60%80%CaClFigure 4-2. Piper plot of feedwater (F) and concentrate (C) of selected <strong>Texas</strong> desal<strong>in</strong>ationfacilities.45


Table 4-3. Feedwater and concentrate chemical composition from selected <strong>Texas</strong> desal<strong>in</strong>ation facilities.Facility SiO 2 Ca Mg Na K Cl SO 4 Sr Alkal<strong>in</strong>ity Hardness Bicarbonate pH TDSAbileneBrady AFW 5.2 86.9 63.6 202.0 10.7 381.9 311.1 NM NM NM 84.4 7.88 1130Conc. 16.0 279.5 206.0 638.3 35.0 1,232.2 1,098.1 NM NM NM 122.9 7.36 3762C/FW 3.0 3.2 3.2 3.2 3.2 3.5 NM NM NM 1.5 3.3FW 10.8 44.9 48.0 317.5 17.5 590.1 139.0 NM NM NM 42.5 8.40 1207Conc. 26.6 109.9 124.7 820.5 46.0 1,596.9 364.6 NM NM NM 29.9 8.32 3166C/FW 2.5 2.4 2.6 2.6 2.6 2.7 2.6 NM NM NM 0.7 2.6HorizonFW 23.5 105.7 27.5 538.4 10.9 419.0 595.3 NM NM NM 76.4 ND 1728FW 31.6 95.4 21.7 479.8 10.9 415.0 593.1 NM NM NM 72.3 7.94 1736Conc. 70.3 244.8 60.6 1202.1 27.1 997.2 1,519.5 NM NM NM 35.1 8.03 4230Conc. 66.3 183.8 45.8 899.6 21.5 958.9 1,461.2 NM NM NM 52.0 7.96 3726Conc. 106.8 319.8 79.6 1,523.1 37.3 1,485.9 2,344.5 NM NM NM 46.0 7.89 5831C/FW 2.9 2.5 2.5 2.4 2.8 3.0 NM NM NM 0.6 2.7River Oaks RanchFW 12.3 323.9 231.5 79.2 24.1 67.3 1,598.4 NM NM NM 23.8 NM 2349Conc. 34.7 1,207.7 796.0 268.9 64.5 203.7 6,832.0 NM NM NM 14.2 NM 9796C/FW 2.8 3.7 3.4 3.4 2.7 3.0 4.3 NM NM NM 0.6 4.2Note: Units are mg/L; FW=Feedwater; Conc.=Concentrate; C/FW=Ratio Concentrate / Feedwater; NM= not measured; italic (and blue) cells conta<strong>in</strong> data notprovided <strong>in</strong> the source but calculated to approximately match TDS and electrical balance—Feedwater K computed from concentrate K by assum<strong>in</strong>g averageconcentrate / feed ratio; bicarbonate computed with PHREEQC assum<strong>in</strong>g equilibrium with calciteA Concentrate obta<strong>in</strong>ed at the Brady facility does not represent the ultimate concentrate but its composition after one pass46


4.2.3 Conclusions on the Range of Likely Membrane Concentrate CompositionsBecause of the straight<strong>for</strong>ward relationship between feedwater and concentrate composition, asdemonstrated <strong>in</strong> the previous two sections, the range of concentrate composition can be wellapproximated by the range <strong>in</strong> composition of feedwater. Appendix A details the results of theanalysis by aquifer. <strong>Texas</strong> is a large state, and thus it is not surpris<strong>in</strong>g that brackish-watercomposition varies with<strong>in</strong> a large range.4.3 <strong>Self</strong>-<strong>Seal<strong>in</strong>g</strong> Geochemical CalculationsGeochemical self seal<strong>in</strong>g can be understood <strong>in</strong> two ways. Solution ions will provide material togrow crack-plugg<strong>in</strong>g material identical to that <strong>in</strong> crack walls, us<strong>in</strong>g the crack walls themselves asphysical support (case of clay l<strong>in</strong>ers). Alternatively, a new material will precipitate from solutionto plug the cracks regardless of the chemical nature of the open<strong>in</strong>g walls (valid <strong>for</strong> both clay andgeomembrane l<strong>in</strong>ers). In order to understand the likelihood of precipitation of self-seal<strong>in</strong>gmaterial and the amount thereof, several sets of geochemical calculations were conducted. Thegeochemical simulations consisted of determ<strong>in</strong><strong>in</strong>g what material could be self seal<strong>in</strong>g, when andhow it can precipitate out of solution with or without additives, and whether there is any area <strong>in</strong><strong>Texas</strong> that would fit these criteria. To better grasp the complexity of the issue, we exploredmultiple ways of access<strong>in</strong>g the technical feasibility of self-seal<strong>in</strong>g evaporation ponds by<strong>in</strong>vestigat<strong>in</strong>g ma<strong>in</strong>ly through a literature search: (1) natural analogs, (2) <strong>in</strong>dustrial analogs, and(3) experiments. Laboratory experiments generally provide a very short time scale (days, weeks,maybe months), whereas the geologic record provides <strong>in</strong><strong>for</strong>mation <strong>in</strong> the very long term(thousands to millions of years). The time frame of the chemical reactions relevant toevaporation ponds ranges from days to years.To be efficient as a l<strong>in</strong>er, precipitate should have a hydraulic conductivity


possibly more likely and certa<strong>in</strong>ly quicker, is the mechanical fill<strong>in</strong>g of the hole by entra<strong>in</strong>ment ofbottom sediments and the plugg<strong>in</strong>g of the open<strong>in</strong>g through filter<strong>in</strong>g of the particulate-richsuspension. This process was not <strong>in</strong>vestigated <strong>in</strong> this study.Turner et al. (1999) categorized several seal<strong>in</strong>g mechanisms by direct precipitation:(1) deposition of a well-<strong>in</strong>dividualized layer on top of the pond bottom; it grows by settl<strong>in</strong>g ofparticles generated <strong>in</strong> the water; (2) clogg<strong>in</strong>g of the pores at the top of pond bottom; this is avariation of the previous case, <strong>in</strong> which reactions still occur <strong>in</strong> the ma<strong>in</strong> water body;(3) precipitation occurs <strong>in</strong> the soil pore space, result<strong>in</strong>g <strong>in</strong> gra<strong>in</strong> growth and lower<strong>in</strong>g ofconductivity. Previous mechanisms are applicable to both a geomembrane or clay l<strong>in</strong>er becausethere is no chemical <strong>in</strong>teraction between the l<strong>in</strong>er and the solution; a simple support is needed. Afourth mechanism can be added that would consist of the solution react<strong>in</strong>g with the clay/soilmatrix to generate solids of larger molar volumes, lead<strong>in</strong>g also to a plugg<strong>in</strong>g of the pores.4.3.2 Literature Review of AnalogsAnalogs to self-seal<strong>in</strong>g evaporation ponds can be found <strong>in</strong> some <strong>in</strong>dustrial ponds, <strong>in</strong> sal<strong>in</strong>e lakes,where sepiolite naturally precipitates, and <strong>in</strong> specifically designed experiments.4.3.2.1 Industrial <strong>Ponds</strong>—LagoonsMany past tests and experiments give anecdotal evidence that precipitated materials can lead to areduction <strong>in</strong> permeability. Jones (1983) studied the impact of sodium-chloride br<strong>in</strong>es on claypermeability at an abandoned pond <strong>in</strong> Carlsbad, NM, and observed a reduction <strong>in</strong> leakage rate byone order of magnitude <strong>in</strong> approximately 20 years (p. 2 and 3). The cause of the decrease wasdescribed as unknown, but two of the four mechanisms put <strong>for</strong>ward (salt deposition and ioniceffects on clay) are relevant to this study. He also mentioned experiments done by the Bureau ofReclamation to seal clay l<strong>in</strong>ers by spray<strong>in</strong>g sodium salts be<strong>for</strong>e use.Industrial ponds of exotic chemical composition also illustrate the different mechanismspresented earlier. A large pond <strong>in</strong> the Crimea of southern Ukra<strong>in</strong>e on the Black Sea developed athick crust of natrojarosite, gypsum, and iron oxides, as evidenced by the large pH contrast oneach side of the crust (Schuil<strong>in</strong>g and van Gaans, 1997). The process started when acidic wastefluid reacted with the calcareous clay l<strong>in</strong>er. This approach of hav<strong>in</strong>g fluids of contrast<strong>in</strong>g naturereact to produce a precipitate can be eng<strong>in</strong>eered. D<strong>in</strong>g et al. (2003) proposed mix<strong>in</strong>g fly ash(alkal<strong>in</strong>e by nature) with acidic fluids to precipitate. Shi and Booth (2005) and Yoon et al. (2003)demonstrated the feasibility of such an approach when the two reactants are conta<strong>in</strong>ed with<strong>in</strong> as<strong>in</strong>gle l<strong>in</strong>er system. A l<strong>in</strong>er rupture will liberate the reactants, which will then react to heal thedefect. The approach, however, does not make use of the pond fluid (except maybe water) anddoes not satisfy the requirement of cost effectiveness sought <strong>in</strong> this work.4.3.2.2 SepioliteThis section describes characteristics of sepiolite and palygorskite (also called attalpugite <strong>in</strong> thepast). They are relatively common silica-rich clay m<strong>in</strong>erals occurr<strong>in</strong>g <strong>in</strong> soils and sediments(Jones and Galan, 1988; S<strong>in</strong>ger, 1989; Galan, 1996). They present a fibrous morphologydifferent from that of other clay m<strong>in</strong>erals, which generally have a more platy structure (seeAppendix F). Sepiolite and palygorskite have a limited cation exchange capacity (4–40meq/100g, compared with >100 meq/100g <strong>for</strong> smectites but 3–15 meq/100 g <strong>for</strong> kaol<strong>in</strong>ite, <strong>in</strong> l<strong>in</strong>ewith that of illites and chlorites). These attributes translate <strong>in</strong>to hav<strong>in</strong>g properties relatively<strong>in</strong>dependent of solution sal<strong>in</strong>ity; that is, they do not flocculate under a change <strong>in</strong> sal<strong>in</strong>ity or ionicmake up. Smectites typically shr<strong>in</strong>k at higher sal<strong>in</strong>ity. On the other hand, their specific surface48


area is large (300 to 600 m 2 /g, Galan, 1996) compared with >600 m 2 /g <strong>for</strong> smectites and9), high magnesium activity, and alum<strong>in</strong>um<strong>in</strong> sufficient amount will favor precipitation of Mg-smectites (Galan and Castillo, 1984, p.115;Keith, 2000, p. 105) and talc (Velde, 1985, p. 31) rather than that of sepiolite. Similarly, highsal<strong>in</strong>ity decreases silica activity and is not as favorable <strong>for</strong> sepiolite precipitation.Poorly crystallized sepiolite precipitates readily <strong>in</strong> alkal<strong>in</strong>e solutions. Wollast et al. (1968) mixedsodium metasilicate (Na 2 SiO 3 ) and magnesium chloride (MgCl 2 ) to precipitate sepiolite. Furtherexperiments showed that sepiolite precipitates readily from seawater with the addition of silica.In both cases, a poorly crystall<strong>in</strong>e gel of sepiolite composition is obta<strong>in</strong>ed. They also observedthat the sepiolite precipitation rate depended on pH. S<strong>in</strong>ger (1989, p.851) cited several otherauthors’ experiments lead<strong>in</strong>g to the same results. Several studies have consistently determ<strong>in</strong>edthe reaction constant <strong>for</strong> sepiolite precipitation (Wollast et al., 1968; Stoessell, 1988). Wollast etal. (1968) also determ<strong>in</strong>ed the <strong>for</strong>mation reaction constant <strong>for</strong> the poorly crystall<strong>in</strong>e <strong>for</strong>m ofsepiolite that has been observed to precipitate <strong>in</strong> laboratory experiments rather than thecrystall<strong>in</strong>e <strong>for</strong>m. Precipitation rates seem fast (Brady, 1992) when adequate ions are present (Siand Mg) <strong>in</strong> sufficient concentration.4.3.2.3 Natural AnalogsMany sal<strong>in</strong>e lakes <strong>in</strong> the western U.S. behave like natural evaporation ponds. The groundwaterthey receive is equivalent to pond feedwater. One difference, though, is the possibility of liquidwater exit<strong>in</strong>g the lake through an outlet or by <strong>in</strong>filtration. Sal<strong>in</strong>e lakes help <strong>in</strong> our understand<strong>in</strong>gof the set of m<strong>in</strong>erals likely to precipitate and, possibly, their seal<strong>in</strong>g efficiency. Sal<strong>in</strong>e lakes aretypically discharge features. Sal<strong>in</strong>e lakes of the <strong>Texas</strong> Panhandle receive groundwater <strong>in</strong>fluxfrom the Ogallala aquifer that is concentrated by evaporation (as opposed to the thousands of49


small circular depressions called playas that are l<strong>in</strong>ed by clays but are the avenue <strong>for</strong> recharge tothe Ogallala aquifer). That same groundwater has a relatively high TDS concentration and is apossible feedwater source <strong>for</strong> Panhandle communities located west and south of Lubbock. Glasset al. (1973) studied analogous sal<strong>in</strong>e-lake clay deposits <strong>in</strong> eastern New Mexico and the <strong>Texas</strong>Panhandle and observed the occasional presence of sepiolite and palygorskite among the mostcommon clays (illite, kaol<strong>in</strong>ite, and montmorillonite). They noted that appearance of sepiolitewas generally correlated with a loss <strong>in</strong> montmorillonite. Montmorillonite is not stable <strong>in</strong> Mg-richwaters favor<strong>in</strong>g sepiolite diagenetic deposition (Parry and Reeves, 1968). They also observedabundant sepiolite <strong>in</strong> Mound Lake (p. 523), especially above a th<strong>in</strong> dolomitic layer and <strong>in</strong>Tahoka Lake. In both cases, sepiolite was conf<strong>in</strong>ed to the surface or a few feet from the surface.Other researchers have also observed sepiolite <strong>in</strong> the High Pla<strong>in</strong>s (e.g., Allen et al., 1972). Thelater bas<strong>in</strong> (see Appendix D) was also sampled <strong>in</strong> the course of our work with no detectablesepiolite. However, our samples were taken on the lake edge. Sepiolite is often described as moreabundant <strong>in</strong> the middle of the bas<strong>in</strong>/lake rather than on its edges because of the <strong>in</strong>flux ofalum<strong>in</strong>ous detrital clay (e.g., Keith, 2000, p. 96). Even without detrital <strong>in</strong>put, this observationstill holds. In the largest world deposit of sepiolite, accumulated <strong>in</strong> a lacustr<strong>in</strong>e environment <strong>in</strong>Spa<strong>in</strong> dur<strong>in</strong>g the Tertiary period, spatial transition (from proximal to distal) from Mg-smectite topalygorskite to sepiolite has been described (Galan and Castillo, 1984, p. 113). Sampl<strong>in</strong>g of thesediments of n<strong>in</strong>e sal<strong>in</strong>e lakes (Appendix D) failed to provide evidence of large-scale sepioliteprecipitation but did show traces of the m<strong>in</strong>eral. Bottom sediments are mostly detrital (abundantquartz and some illite, feldspars, kaol<strong>in</strong>ite, and smectites), with a generally small fraction ofchemical orig<strong>in</strong> (calcite, gypsum, halite). Except <strong>in</strong> one case with a TDS >300 g/L, all watersamples have TDS


pilot scale test <strong>in</strong> the El Paso area. In laboratory experiments, solid calcium carbonate andcalcium sulfates were obta<strong>in</strong>ed by mix<strong>in</strong>g synthetic calcium chloride, diammonium sulfate, andsodium carbonate br<strong>in</strong>es <strong>in</strong> such proportions that supersaturation of these solid compoundsresulted. The column experiments were set to occur <strong>in</strong> a soil matrix of variable composition(sand, sand bentonite), and precipitation occurs with<strong>in</strong> the pore system with repeated addition ofnew batches. The desired conductivity of 10 -7 cm/s was reached <strong>in</strong> only 1 case out of 16experiments. Field experiments proceeded along the same l<strong>in</strong>es with the mix<strong>in</strong>g of two solutions:the membrane concentrate rich <strong>in</strong> sodium, chloride, and sulfate with a calcium and a magnesiumrichsolution—a product of the regeneration of ion exchange columns also used <strong>in</strong> thedesal<strong>in</strong>ation process. The result<strong>in</strong>g solution was then applied to a variety of matrix types held bylarge field conta<strong>in</strong>ers submitted to natural evaporation. Hydraulic conductivity reduction wasachieved but not to the extent desired. In another study, conductivity of a preparation conta<strong>in</strong><strong>in</strong>g20% sepiolite was measured at values of approximately 10 -6 cm/s (Keith, 2000, p. 230), that is,<strong>in</strong> the vic<strong>in</strong>ity of and above the required threshold <strong>for</strong> a prescriptive l<strong>in</strong>er but possibly sufficientto develop conta<strong>in</strong>ment equivalence (see Section 4.4.2). Ca-bentonite yielded similar valuesunder the same laboratory experimental conditions, mimick<strong>in</strong>g a pond l<strong>in</strong>er.Donahe (2006) evaluated the feasibility of sodium silicate as a precursor material <strong>for</strong> a self<strong>for</strong>m<strong>in</strong>gevaporation pond l<strong>in</strong>er. Sodium metasilicate would react with the magnesium andcalcium present <strong>in</strong> the pond concentrate to produce a low-permeability layer rich <strong>in</strong> sepiolite orsimilar material. He used soils sampled near the Tularosa Bas<strong>in</strong> National <strong>Desal<strong>in</strong>ation</strong> ResearchFacility <strong>in</strong> New Mexico, to which he added solutions of different chemical composition to testchanges <strong>in</strong> permeability. His data suggest that sepiolite was produced with an observabledecrease <strong>in</strong> vertical permeability of the soil but still not meet<strong>in</strong>g regulatory requirements.4.3.2.5 AdditivesWollast et al. (1968) used magnesium chloride and sodium metasilicate, both be<strong>in</strong>g laboratoryand <strong>in</strong>dustrial compounds. A source of magnesium, magnesium chloride has a high solubilityand is typically extracted from bitterns. Its cost is <strong>in</strong> the $0.15 to 0.20/lb range (USGS, 2006),not <strong>in</strong>clud<strong>in</strong>g transport costs. Its molar weight is ~95 g/mol, which translates <strong>in</strong>to a price of$0.031 to 0.042/mol Mg. Magnesium chloride is not regulated and is widely available. Epsomsalt (MgSO 4 .7H 2 O) is an alternative magnesium source. Sodium metasilicate (Na 2 SiO 3 —hydrated or not) could be a source of silica. Sodium metasilicate can be used only <strong>in</strong> alkal<strong>in</strong>e pHconditions because it is a regulated hazardous material. Current uses <strong>in</strong>clude detergentcomponents and anticorrosion agents. An approximate cost is $1.50/lb, which is $ 0.40 /mol Si.Each mole of sepiolite conta<strong>in</strong>s 3 moles of Si and 2 moles of Mg (~$1.30 / mol) <strong>for</strong> a molarvolume of 143 cm 3 /mol.A slightly different angle, often taken <strong>in</strong> the <strong>in</strong>dustry, would be to treat the water. Many additivescould gel the water. For example, methyl cellulose is used as a thicken<strong>in</strong>g agent <strong>for</strong> aqueouspreparations. Other polymers as well are used <strong>in</strong> the oil <strong>in</strong>dustry to <strong>in</strong>crease viscosity of aqueouspreparations. However, cost rema<strong>in</strong>s an obstacle.4.3.3 Geochemical Simulation ParametersIn this section, we discuss numerical <strong>in</strong>put to the self-seal<strong>in</strong>g geochemical model. Numerousbooks present geochemistry fundamentals (e.g., Drever, 1988; Stumm and Morgan, 1996;Langmuir, 1997). Bethke (1996, Chapter 1) gives a good general <strong>in</strong>troduction to geochemicalmodel<strong>in</strong>g. There are several geochemical software codes available as well, and the USGS-51


developed freeware PHREEQC (Parkhurst and Appelo, 1999) version 2.12 was used, whosefamily of software products orig<strong>in</strong>ated <strong>in</strong> the late 1970’s. PHREEQC conta<strong>in</strong>s capabilities suchas speciation-solubility and k<strong>in</strong>etically controlled reaction pathway features, which are found <strong>in</strong>many geochemical software packages. It also <strong>in</strong>cludes surface complexation, ion exchange,absorption and solid solutions, and a versatile treatment of rate laws. In addition, PHREEQC hastransport features with handl<strong>in</strong>g of dispersion and diffusion <strong>in</strong> a double-porosity medium. It alsohas <strong>in</strong>verse model<strong>in</strong>g capabilities. PHREEQC supports the use of Davies and B-dot equations(e.g., Bethke, 1996, p. 109; Langmuir, 1997, Chapter 4), as well as Pitzer <strong>for</strong>malism <strong>for</strong> activitycoefficients (Langmuir, 1997, Chapter 4). Pitzer <strong>for</strong>malism and the correspond<strong>in</strong>g Pitzerdatabase are particularly well suited to model<strong>in</strong>g high ionic strength solutions result<strong>in</strong>g fromevaporation (that is, approximately more sal<strong>in</strong>e than seawater). At lower ionic strength, Pitzer<strong>for</strong>malism is equivalent to classic widespread <strong>for</strong>malisms. As <strong>in</strong> any geochemical software, athermodynamics database must be provided. Geochemical simulation results are always afunction of the thermodynamics database used and of its consistency. Downloaded softwareoffers a choice of five databases. Our work uses the Pitzer database, complemented by m<strong>in</strong>eralsand elements imported from the LLNL database (see Appendix E).Geochemical reactions are driven not by ion concentrations but by activities. Activitycoefficients are computed by empirical or semiempirical models. A model used <strong>in</strong> manygeochemical codes is the B-dot model, which is approximately valid up to the ionic strength(~sal<strong>in</strong>ity) of seawater (~35,000 ppm). Geochemical model<strong>in</strong>g beyond the sal<strong>in</strong>ity of seawaterrequires more sophisticated activity models such as the Pitzer model. The classic B-dot approachassumes no specific <strong>in</strong>teraction between ions or same-<strong>in</strong>teraction coefficient <strong>for</strong> all ions. ThePitzer model goes further <strong>in</strong> the analysis and develops a set of b<strong>in</strong>ary <strong>in</strong>teraction coefficientsspecific to a pair of ions (e.g., Na + and Cl - or Na + and SO 2- 4 ). Another important aspect ofgeochemical model<strong>in</strong>g is the assumption of equilibrium or, alternatively, the <strong>in</strong>troduction ofprecipitation or dissolution k<strong>in</strong>etics. Thermodynamics can only suggest f<strong>in</strong>al equilibrium phases.It can specify neither geochemical path nor time to reach equilibrium. It has often been observedthat amorphous phases precipitate first, followed by a slow maturation to more crystall<strong>in</strong>e, lesssoluble phases. In another example, talc may be thermodynamically favored over sepiolite (talcis also composed of only Mg and Si, Mg 3 Si 4 O 10 (OH) 2 ), but sepiolite precipitates because offaster k<strong>in</strong>etics.Numerical geochemical model<strong>in</strong>g consists of mimick<strong>in</strong>g the operation of an evaporation pond.<strong>Evaporation</strong> is modeled by retriev<strong>in</strong>g water from the system, assumed <strong>for</strong> convenience and bydefault by PHREEQC at 1 kg of water, while keep<strong>in</strong>g all the dissolved solids <strong>in</strong> solution.Because the pond design assumes constant water depth on average, the evaporated water mass isreplaced by the exact same mass of concentrate (“mix<strong>in</strong>g parameter”), <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> effect thedissolved solid load<strong>in</strong>g of the system.4.3.3.1 Balance of Influx and <strong>Evaporation</strong> RatesThis section describes how the abstraction of water and the addition of concentrate to mimicevaporation pond operation are modeled. Pond TDS <strong>in</strong>creases ow<strong>in</strong>g to evaporation and thenstabilizes/plateaus because of m<strong>in</strong>eral precipitation. To measure evaporation progress, we firstassume no m<strong>in</strong>eral precipitation. A simple mass balance approach can then quantify theconcentration factor CF, def<strong>in</strong>ed as the ratio of the concentrate concentration C 0 to the pondconcentration C. CF measures evaporation progress. Mass balance on the water is52


In–Out = change <strong>in</strong> storage:dVtQt − Et=dtwhere Q t is the concentrate flow rate and V t is the volume of water conta<strong>in</strong>ed <strong>in</strong> the pond, all attime t. E t is the net evaporation rate computed from fresh-water evaporation E f and precipitationrate P, E t = c×E f – P, where c is the sal<strong>in</strong>ity correction coefficient (taken as 0.9 <strong>in</strong> this work).Assum<strong>in</strong>g constant flow and net evaporation rates, the equation becomesQ t − E t = V(1)tttthat is, Qt≅ Etas t becomes large. Similarly, a mass balance on a generic conservative soluteyieldsQt tC0 − Ett× 0 = VtC(2)Substitut<strong>in</strong>g (1) <strong>in</strong>to (2) yieldsEt t C+0 tor 1 + =(3)V C( V E t) C V Ct t=t0If S is the pond surface area and h the time-averaged depth (h and S are designed so that the pondhas the desirable characteristics of hold<strong>in</strong>g w<strong>in</strong>ter output and precipitation; we assume that thepond is rightly sized and that the pond volume is approximately constant), E=eS where e is thespecific net evaporation rate [L] and V=hS. Equation (3) then becomesC eStCF = = 1+= 1+C hS0ethIf the pond is 10 <strong>in</strong>ches deep and the local evaporation rate is 50 <strong>in</strong>ches/yr, after 10 years theconcentration factor 1+50×10/10=51, still assum<strong>in</strong>g no m<strong>in</strong>eral precipitation. A feedwater of1,500 ppm will yield a concentrate of 6,000 ppm and a pond concentration of 300,000 ppm after10 years (assum<strong>in</strong>g no precipitation). San<strong>for</strong>d and Wood (1991) exam<strong>in</strong>ed the case <strong>in</strong> whichsome outflow is allowed from a closed bas<strong>in</strong> and concluded that the CF tends toward a steadystatelevel.Numerical geochemical model<strong>in</strong>g works simply and assumes that evaporation rate is constantthroughout the year. Volume Vx, where x is the mix<strong>in</strong>g parameter, is added to the pond at everyperiod, should be equal to the amount retrieved by evaporation. For numerical reasons a monthlyperiod is chosen (Figure 4-3).Mix<strong>in</strong>g parameter x is related to the parameter CF byC C= CF =n = 1 nxC C+ . The group et00def<strong>in</strong>ed <strong>in</strong> equation 4 becomes a discretization of the equation ne per , where n is the number ofperiods (e.g., month) and e per the evaporation <strong>for</strong> a unit surface area dur<strong>in</strong>g that period. It ends upthat the mix<strong>in</strong>g parameter is equivalent to x=e per /h. For example, the average evaporation rate <strong>for</strong>the surface-water group is 30.3 <strong>in</strong>ches/yr (Figure 3-5), that is, e per =2.53 <strong>in</strong>ches/month. Assum<strong>in</strong>ga pond depth of 12 <strong>in</strong>ches, the mix<strong>in</strong>g parameter x is x=0.2106 (Table 4-4). PHREEQC assumesa default mass of water of 1 kg <strong>in</strong> the system. It was checked us<strong>in</strong>g conservative solutes that thePHREEQC behaves properly under that scheme.(4).53


Mass m <strong>in</strong>Volume VxMass m <strong>in</strong>Volume VxMass M 0<strong>in</strong>Volume V(1-x)Mass M n-1<strong>in</strong>Volume V(1-x)Time 0Mass M 0<strong>in</strong>Volume VC 0=M 0/VM 0=C 0VTime: end of period 1Mass M 0<strong>in</strong> Volume V*(1-x)Mass m=C 0VxTotal mass M 1=M 0+mC 1=M 1/V=C 0+C 0xFigure 4-3. Mix<strong>in</strong>g scheme of numerical model<strong>in</strong>g.Table 4-4. Mix<strong>in</strong>g parameter <strong>for</strong> monthly periodsFraction Evaporated<strong>in</strong> 1 Period orMix<strong>in</strong>g Parameter(=x)Time: end of period nMass M n-1<strong>in</strong> Volume V*(1-x)Mass m=C 0VxTotal mass M n=M n-1+mC n=M n/V=C n-1+C 0x=C 0(1+nx)Amount of Waterto Be Added<strong>in</strong> 1 PeriodGroup NameMixed Alluvium 0.2238 12.4238Brazos River Alluvium 0.0617 3.4279Rio Grande Alluvium 0.3151 17.4943Seymour 0.2142 11.8917Bolson 0.3377 18.7514Ogallala 0.2897 16.0831Pecos Valley 0.3496 19.4107Gulf Coast Sandstone 0.1575 8.7452Eocene All Samples 0.1333 7.4034Eocene Mixed 0.1333 7.4034Eocene Na Dom<strong>in</strong>ant 0.1333 7.4034Cretaceous Limestone 0.2351 13.0523Cret. Sandst. All samples 0.1663 9.2349Cret. Sandst. Mixed 0.1663 9.2349Cret. Sandst. Na Dom<strong>in</strong>ant 0.1663 9.2349Triassic Sandstone 0.2822 15.6666Permian Evaporite 0.2506 13.9160Permian Limestone 0.2082 11.5601Permian Sandstone 0.2398 13.3145Bone Spr<strong>in</strong>g – Victorio Peak 0.3208 17.8105Capitan Reef 0.2947 16.3607Pennsylvanian 0.1736 9.6398Llano Uplift 0.1618 8.9843Surface Water 0.2106 11.6912Note: It can check that the ratio of column 3 to column 2 is equal to the molar density ofwater (~55.5 moles/kg)4.3.3.2 M<strong>in</strong>erals Allowed to PrecipitateAs <strong>in</strong> all predictive geochemical simulations, the modeler has the difficult choice of decid<strong>in</strong>gwhich m<strong>in</strong>erals are allowed to precipitate. This choice has a large impact on results and is guided54


y experience, conservatism relative to expected results, and consideration of analogs. To assessthe impact of precipitation of some m<strong>in</strong>erals, particularly clays, sensitivity analyses wherevary<strong>in</strong>g m<strong>in</strong>erals are allowed to precipitate were per<strong>for</strong>med. Some m<strong>in</strong>erals arethermodynamically stable but will not precipitate because of k<strong>in</strong>etics reasons. Others, less stable,called metastable m<strong>in</strong>erals, will precipitate <strong>in</strong>stead then evolve at a very slow rate to a morestable <strong>for</strong>m (Ostwald’s step rule, e.g., Bethke, 1996, p. 301). A list of allowed and suppressedm<strong>in</strong>erals is provided <strong>in</strong> Table 4-5. For example, dolomite (CaMg(CO 3 ) 2 ) can use up allmagnesium present <strong>in</strong> solution and keep sepiolite from reach<strong>in</strong>g favorable precipitationconditions. In this particular case, it is generally recognized that dolomite does not precipitate <strong>in</strong>evaporation pond conditions because precipitation k<strong>in</strong>etics are too slow (e.g., Bethke, 1996,p. 86; Drever, 1988, p.65). It would, however, be plausible to consider dolomitization of calcite<strong>in</strong> a magnesium-enriched br<strong>in</strong>e, see<strong>in</strong>g as how it occurs <strong>in</strong> nature. Because of the focus onsepiolite <strong>in</strong> this work, the geochemistry of magnesium-rich m<strong>in</strong>erals is important. Magnesiumrichm<strong>in</strong>erals relevant to this work can be categorized <strong>in</strong>to two groups: magnesium carbonatesand magnesium-rich phyllosilicates/clays. Magnesium sulfates and chlorides are more solubleand require evaporation levels not reached <strong>in</strong> this work to precipitate.Precipitation rates of magnesium-conta<strong>in</strong><strong>in</strong>g carbonates seem to be <strong>in</strong>versely related to theirmagnesium content (calcite > magnesian calcites > dolomite > magnesite) (Arvidson andMackenzie, 2000; Palandri and Kharaka, 2004). Pokrovsky and Schott (1999) estimatedmagnesite precipitation rate to be at least three orders of magnitude lower than that of calcite.This difference <strong>in</strong> rate allows dissolved magnesium to be used <strong>for</strong> precipitation of other m<strong>in</strong>eralsof faster k<strong>in</strong>etics, such as sepiolite. Smith et al. (1995) observed magnesite precipitation <strong>in</strong> only 1sample out of 47 <strong>in</strong> a sampl<strong>in</strong>g of three Central Valley evaporation ponds <strong>in</strong> Cali<strong>for</strong>nia.Consequently, no dolomite or magnesite is allowed to precipitate <strong>in</strong> any run of this work.Hydromagnesite (Mg 5 (CO 3 ) 4 (OH) 2 .4H 2 O) and art<strong>in</strong>ite (Mg 2 CO 3 (OH) 2 .3H 2 O) are generallyassociated with serpent<strong>in</strong>e deposits, although hydromagnesite has been observed <strong>in</strong> caves. Insimilar model<strong>in</strong>g exercises (e.g. Alai et al., 2005, p. 34; Banks et al., 2004, p. 1923, Huff, 2004,p. 287; Smith et al., 1995, p. 133), dolomite, hydromagnesite, and magnesite were not allowed toprecipitate. On the other hand, some hydrated magnesium carbonates are allowed to precipitatebecause hydrated <strong>for</strong>ms generally precipitate first. Nesquehonite (Mg(HCO 3 )OH.2H 2 O) is found<strong>in</strong> dry lakes (e.g., Owens Lake <strong>in</strong> Cali<strong>for</strong>nia—Levy et al., 1999) and more generally <strong>in</strong> evaporiteswhen magnesium is available (Kloprogge et al., 2003). If magnesium sulfates do not precipitateat the sal<strong>in</strong>ity level reached <strong>in</strong> the simulations, calcium and potassium sulfates such as gypsum,anhydrite, syngenite (K 2 Ca(SO 4 ) 2 .H 2 O), and other m<strong>in</strong>or m<strong>in</strong>erals do.Another large group of m<strong>in</strong>erals that could use up magnesium be<strong>for</strong>e sepiolite had any chance toprecipitate is the smectite group and allied m<strong>in</strong>erals. Appendix F gives a succ<strong>in</strong>ct description ofclay m<strong>in</strong>eralogy. Estimat<strong>in</strong>g neo<strong>for</strong>med clay m<strong>in</strong>eralogy through geochemical model<strong>in</strong>g isnotoriously difficult, and the approach taken <strong>in</strong> this work is to assume that mostly sepiolite claywill precipitate. It gives an upper bound on the amount of nonswell<strong>in</strong>g clay that can precipitate.M<strong>in</strong>erals <strong>in</strong>cluded <strong>in</strong> some of the simulations are Ca-montmorillonite (with some magnesium <strong>in</strong>it), celadonite (e.g., Parry and Reeves, 1968; Hover, 2003), talc, and saponite (e.g., Akbulut andKadir, 2003)—all as <strong>in</strong>dividual representatives of different clay/phyllosilicate families. Chemical<strong>for</strong>mulae are given <strong>in</strong> Table 4-5. Many m<strong>in</strong>or silicates could also be <strong>for</strong>med (e.g., albite), buttheir addition to the m<strong>in</strong>eral suite would not add much <strong>in</strong>sight to the results. The focus of thesensitivity runs is on tak<strong>in</strong>g magnesium away from sepiolite and not alum<strong>in</strong>um or silica frommagnesium-rich m<strong>in</strong>erals. In most simulations, no silica is allowed to precipitate as quartz, low-55


temperature phases, or amorphous silica to favor clay precipitation. A sensitivity run was donewith amorphous silica.Table 4-5. Important allowed (“A”) and suppressed (“S”) m<strong>in</strong>eralsStatus M<strong>in</strong>eral Name Formula CommentsA Anhydrite CaSO 4S Art<strong>in</strong>ite Mg 2 CO 3 (OH) 2 .3H 2 OSerpent<strong>in</strong>e alterationproductsA/S Brucite Mg(OH) 2A Calcite / Aragonite CaCO 3 Ubiquitous m<strong>in</strong>eralA/S Ca-montmorilloniteIn phreeqc.datCa 0.165 Al 2.33 Si 3.67 O 10 (OH) 2In LLNL.dat—used <strong>in</strong>Ca 0.165 Mg 0.33 Al 1.67 Si 4 O 10 (OH) 2numerical simulationsA/S Celadonite KMgAlSi 4 O 10 (OH) 2S Chlorite Mg 5 Al 2 Si 3 O 10 (OH) 8S Dolomite CaMg(CO 3 ) 2A Gypsum CaSO 4 .2H 2 OS Hydromagnesite Mg 5 (CO 3 ) 4 (OH) 2 .4H 2 OS Magnesite MgCO 3A Nahcolite NaHCO 3A NesquehoniteMgCO 3 .3H 2 O orMg(HCO 3 )OH.2H 2 OA Sepiolite Mg 4 Si 6 O 15 (OH) 2 .6H 2 OA Syngenite K 2 Ca(SO 4 ) 2 .H 2 OA/S Talc Mg 3 Si 4 O 10 (OH) 2A/S Ca-saponite Ca 0.165 Mg 3 (Si 3.67 Al 0.33 )O 10 (OH) 2Celadonite usually <strong>in</strong>cludesFe <strong>in</strong> its structure. Weassume that Fe doessubstitute <strong>for</strong> Al and Si butthat the proxy <strong>for</strong>mulaaccurately represents majorion consumption.Mostly serpent<strong>in</strong>e alterationproductsPrecipitate from alkalisal<strong>in</strong>e waters <strong>in</strong> aridenvironments4.3.3.3 Simulation ParametersGeochemical simulations made use of water samples, whose composition is available from theTWDB (groundwater) and TCEQ (surface water) Websites. All data available were w<strong>in</strong>noweddown to a s<strong>in</strong>gle representative sample <strong>for</strong> each of the groups def<strong>in</strong>ed and expla<strong>in</strong>ed <strong>in</strong> AppendixA. This simplification was needed to obta<strong>in</strong> a manageable set of samples to analyze.PHREEQC <strong>in</strong>put correspond<strong>in</strong>g to net evaporation rates is provided <strong>in</strong> Table 4-4. Althoughatmospheric temperature <strong>in</strong><strong>for</strong>mation is available on a f<strong>in</strong>e time and spatial scale (Figure 2-6), allsimulations assume a pond temperature of 25 o C. The lack of thermodynamic data <strong>for</strong> othertemperatures largely guided this choice. Because of time and budget constra<strong>in</strong>ts, no seasonal56


variation <strong>in</strong> evaporation or temperature is accounted <strong>for</strong>. Average annual temperature varies from~10 o C <strong>in</strong> the northern Panhandle to >20 o C <strong>in</strong> the valley at the Mexican border. Dur<strong>in</strong>g thesummer ( July taken as representative), the daily average temperature varies from 20 o C to morethan 30 o C. <strong>Evaporation</strong> occurs mostly <strong>in</strong> the summer, and pond temperature rises to 25 o C orabove. <strong>Evaporation</strong> pond temperature is sensitive to atmospheric temperature variations becausethe large aspect ratio of the fluid volume favors easy heat exchange with the atmosphere (bydesign). Despite the nonl<strong>in</strong>earity of thermodynamic systems with temperature and account<strong>in</strong>g <strong>for</strong>all other assumptions and uncerta<strong>in</strong>ties, assum<strong>in</strong>g a constant temperature of 25 o C is thought toyield reasonably accurate results.Assumption of an open/closed system could also potentially br<strong>in</strong>g different sets of results. Thesystem is obviously open <strong>for</strong> water, but the gas-phase behavior is not as clear. The fact thatreduc<strong>in</strong>g or low-O 2 conditions have been observed <strong>in</strong> the sampled ponds and <strong>in</strong> other <strong>Texas</strong>closed water bodies suggests that exchange between the pond bottom, where m<strong>in</strong>eralprecipitation is most likely to take place, and the atmosphere is sometimes slow. Some ponds(e.g., Horizon MUD and Abilene) show abundant marshland vegetation, whose decay expla<strong>in</strong>sthe low dissolved oxygen (DO) read<strong>in</strong>g. Others (e.g., River Oaks Ranch and Brady) displayslimy surfaces, suggest<strong>in</strong>g algal and microbial activity. The evaporation-driven-precipitationmechanism suggests that redox reactions are of m<strong>in</strong>or importance and that DO concentration isnot of direct <strong>in</strong>terest. However, DO can be used as a surrogate to estimate rates of CO 2 exchangewith atmosphere. Large biomass/water coefficients will generate high daily CO 2 variations. The<strong>in</strong>terest <strong>in</strong> CO 2 buildup or lack thereof proceeds from the potential uptake of dissolvedmagnesium to precipitate magnesium-rich carbonates. Bicarbonate/CO 2 concentrations alsocontrol solution pH, and pH has a large impact on the precipitation sequence. Huff (2004, p. 287)assumed a constant CO 2 partial pressure. Banks et al. (2004, p. 1925) also found that theassumption of equilibrium with atmospheric CO 2 <strong>in</strong> geochemical model<strong>in</strong>g of sal<strong>in</strong>e lakes andrivers matches well with the data. CO 2 , as a gas, is gradually less soluble <strong>in</strong> water as sal<strong>in</strong>ity<strong>in</strong>creases, expla<strong>in</strong><strong>in</strong>g the rise <strong>in</strong> pH, as H + is consumed accord<strong>in</strong>g to HCO 3 + H+ = CO 2 + H 2 O.A study of African lakes (Deocampo, 2005) expectedly showed that biological activity, throughits control on CO 2 activity, itself controll<strong>in</strong>g pH, affects sepiolite and other magnesium silicatestability. However, until further studies determ<strong>in</strong>e CO 2 and O 2 gradients <strong>in</strong> ponds, the uncerta<strong>in</strong>tyis addressed <strong>in</strong> our work through a sensitivity analysis. Two cases were considered: (1)bicarbonate/CO 2 be<strong>in</strong>g free to evolve with no <strong>in</strong>teraction with the atmosphere (base case) and (2)bicarbonate concentration be<strong>in</strong>g controlled by atmospheric CO 2 concentration (logP CO2 = -3.42or 380 ppm).Another important parameter is dissolved alum<strong>in</strong>um concentration. Sources of alum<strong>in</strong>um couldbe w<strong>in</strong>dblown dust or material from clay l<strong>in</strong>ers. Dissolved alum<strong>in</strong>um is difficult to determ<strong>in</strong>ebecause colloidal alum<strong>in</strong>um that is not stopped by common laboratory filters (e.g., Hitchon et al.,1999, p. 43 and p. 191; Bethke, 1996, p. 25 and p. 92) could lead to an overestimation ofdissolved concentration. Dissolved alum<strong>in</strong>um concentration, <strong>in</strong> general low, is controlled bycolloids and other small alum<strong>in</strong>um oxyhydroxide particles (AlOx). Common AlOx phases aregibbsite (Al(OH) 3 ), boehmite (AlOOH), and diaspore (AlOOH). Apps et al. (1988, p. 82) statedthat diaspore is the most stable phase. In our work, when clays are added to the list of m<strong>in</strong>eralsallowed to precipitate, the aqueous phase is assumed <strong>in</strong> equilibrium with diaspore. Other workershave used a similar approach. Drever (1988, p. 210) assumed equilibrium with gibbsite, whereasLangmuir (1997) did so with kaol<strong>in</strong>ite <strong>in</strong> a different context. Drever (1988, p. 211) alsosuggested that alum<strong>in</strong>um could orig<strong>in</strong>ate from cation exchange from detrital clays or clays l<strong>in</strong><strong>in</strong>g57


the bottom of the pond. Precipitation of alum<strong>in</strong>um-conta<strong>in</strong><strong>in</strong>g clays (i.e., all of them butsepiolite) can scavenge magnesium and silica, limit sepiolite precipitation, and generatedesiccation-sensitive clays.Another parameter of importance, pH, is <strong>in</strong>tr<strong>in</strong>sically l<strong>in</strong>ked to CO 2 partial pressure. P CO2 , pH,and HCO 3 are uniquely determ<strong>in</strong>ed through the equilibrium constant of the follow<strong>in</strong>g reaction:CO 2 (g) + H 2 O = HCO - 3 + H + but are also impacted by sal<strong>in</strong>ity of the solution through activity ofwater and activity of aqueous components. Values of pH depend on biological activity, k<strong>in</strong>eticsof CO 2 diffusion, and carbonate chemistry—all factors hard to model <strong>in</strong> the current scop<strong>in</strong>ganalysis. Sampled ponds suggest that pond pH is always higher than that of concentrate (Table12-2). Smith et al. (1995, p. 133 & ff), <strong>in</strong> a study of three Cali<strong>for</strong>nia ponds also reported that theponds had a higher pH than that of the <strong>in</strong>flow water (<strong>in</strong>flow pH = 7.63–pond pH = 9.05; 7.32–8.26; 7.61–8.25). In order to maximize sepiolite precipitation dur<strong>in</strong>g the model<strong>in</strong>g exercise, pH isset to the middle of the sepiolite stability pH range at a value of 8.5 by add<strong>in</strong>g either caustic soda(NaOH) if the pH is too low or hydrochloric acid (HCl) if the pH is too high. In mostsimulations, acid generally has to be added.In some circumstances, some m<strong>in</strong>erals may not precipitate despite thermodynamics suggest<strong>in</strong>gotherwise and become supersaturated. Natural waters are usually supersaturated relative tocalcite (e.g., Langmuir, 1997, p. 219); however, many potential precipitation nuclei are present <strong>in</strong>a pond, and it is assumed that calcite and all other m<strong>in</strong>erals will precipitate at a saturation <strong>in</strong>dex(SI) SI=0. Another important aspect, already touched upon, is the impact of k<strong>in</strong>etics andcrystall<strong>in</strong>ity of the precipitates. Poorly crystall<strong>in</strong>e phases precipitate first, followed by an ag<strong>in</strong>gprocess. Poorly crystall<strong>in</strong>e sepiolite (“sepiolite(d)”) is assumed to precipitate <strong>in</strong> all runs.Many other geochemical processes, possibly relevant to the problem at hand, were not<strong>in</strong>corporated <strong>in</strong>to the simulations. Solid solutions (e.g., precipitation of magnesian calcite whenmagnesium precipitates with<strong>in</strong> the calcite structure), cation exchange, or sorption are not<strong>in</strong>cluded <strong>in</strong> this scop<strong>in</strong>g study. Similarly, a lack of data and budget constra<strong>in</strong>ts hamper a morerealistic geochemical understand<strong>in</strong>g, <strong>in</strong> which <strong>in</strong>teractions with the clay l<strong>in</strong>er and with thew<strong>in</strong>dblown dust would be accounted <strong>for</strong>. Nucleation is another important process not studied <strong>in</strong>this work. Direct precipitation from solutions generally requires nucleation sites. A significantfraction of the w<strong>in</strong>dblown dust is clay particles that could provide support <strong>for</strong> the <strong>in</strong>itial clayprecipitate. Addition of crystal seeds of sepiolite/palygorskite to the pond water could alsoenhance precipitation of the right m<strong>in</strong>erals. Fate of chemicals added to the feedwater stream mayalso impact (favorably or not) the self-seal<strong>in</strong>g process. Donahe (2006) <strong>in</strong>vestigated the presenceof an antiscalant (Nalco PermaTreat PC-191) on the precipitation rate of sepiolite. He found thatthe antiscalant did not impact nucleation but generated smaller precipitant particles, lead<strong>in</strong>g to an<strong>in</strong>crease <strong>in</strong> permeability reduction, as opposed to the lack of <strong>in</strong>crease <strong>in</strong> the case with noantiscalant. In the model<strong>in</strong>g runs, pond water is assumed to be well mixed, with no concentrationgradient; this assumption may not be realistic because O 2 gradient was observed <strong>in</strong> several of thesampled ponds.4.3.3.4 Scal<strong>in</strong>g of PHREEQC resultsM<strong>in</strong>eral precipitation volume must be scaled from PHREEQC direct results. Three aspects arerelevant: nature and proportions of precipitates and total volume of precipitates. Results ofsimulation runs are presented <strong>in</strong> terms of concentration factor/evaporation progress, which is al<strong>in</strong>ear function of time and evaporation rate and an <strong>in</strong>verse function of pond depth (recall thatone of the basic assumptions of the model is that the pond is well designed and that its depth is58


approximately constant through time). An additional feature is that the PHREEQC simulationsare framed so that the amount of precipitation is <strong>for</strong> 1 kg. In view of the number of majorassumptions, 1 kg of water is equated to 1 L of water <strong>in</strong> the postprocess<strong>in</strong>g of results. Let M i bethe amount <strong>in</strong> moles of m<strong>in</strong>eral i precipitat<strong>in</strong>g from 1 kg of water at some time t and MV i is itsmolar volume (cm 3 /mol). Total volume precipitated is thenθ ∑ M iMV iiwhere θ is the average porosity of the mix of m<strong>in</strong>erals.PHREEQC results are given <strong>for</strong> 1 L/1 kg of solution as a function of CF=1+et/h, where h is ponddepth, e is net evaporation rate, and t is time. Precipitant is distributed over surface area A so thatAh=10 -3 m 3 (all SI units). It follows that the amount of precipitation per unit area isM i /A = 10 3 ×M i h (mol/m 2 , h <strong>in</strong> m). The customary unit <strong>for</strong> molar volume is cm 3 /mol, and thevolume of precipitation per unit area is then (h <strong>in</strong> m, MV i <strong>in</strong> cm 3 /mol)∑−310 × θh M iMV im 3 /m 2iMickley (2006, p. 162) summarized pond depth constra<strong>in</strong>ts to be <strong>in</strong> the 1- to 18-<strong>in</strong>ch range.<strong>Evaporation</strong> rate is not impacted much by pond depth, and a shallow depth carries the risk offrequent exposure to the atmosphere and subsequent dry<strong>in</strong>g and crack<strong>in</strong>g. In the process<strong>in</strong>g ofsimulation results, we assumed a pond depth of either 3 or 12 <strong>in</strong>ches.A quick calculation can be done to estimate maximum amount of precipitates, assum<strong>in</strong>g that thedissolved amount can be neglected. By construction, net evaporation rate is equal to concentrateflow rate. The mass on a unit surface area at time t is C TDS ×e×t (× 1 m 2 ); that is, with a feedwaterconcentration of 1,500 mg/L, C TDS = 6 kg/m 3 , and a net evaporation rate of 30 <strong>in</strong>ches/year <strong>for</strong>30 years, ~137 kg/m 2 . If material density is ~2,400 kg/m 3 , it translates to ~5.7 cm, or 8.2 cm ifone assumes a porosity of 30%. This calculation is consistent with a plot provided <strong>in</strong> Mickley(2006, p. 164) and results presented <strong>in</strong> the next section.4.3.4 Geochemical Simulation ResultsIn order to test several environmental conditions, several sets of geochemical runs were done(Appendix H); each set is composed of 24 runs: the 20 groups (Appendix A) + 2 subgroups (Nadom<strong>in</strong>antand mixed) added to Eocene and Cretaceous Sandstones groups.As a general rule, the follow<strong>in</strong>g m<strong>in</strong>erals precipitate:- calcite (carbonate with little solubility)- gypsum (an additional s<strong>in</strong>k <strong>for</strong> calcium)- a soluble magnesium carbonate- a clay or claylike m<strong>in</strong>eralCalcite is a s<strong>in</strong>k <strong>for</strong> calcium and is fully or partly replaced by gypsum when sulfate concentrationis high enough. The specific magnesium carbonate is sensitive to the composition of the aqueousphase. It could be nesquehonite, huntite, syngenite…. Each of these m<strong>in</strong>erals occurs <strong>in</strong> specificnatural conditions. For example, it seems that huntite is typically generated by magnesium br<strong>in</strong>esthe same way dolomite is generated from calcite. It was checked, however, that some k<strong>in</strong>d of59


magnesium precipitation occurs <strong>in</strong>dependently of the species specified <strong>in</strong> the geochemicalsimulations and <strong>in</strong> molar amounts sensibly equivalent. The nature of the clay depends on Alavailability, although most clay m<strong>in</strong>erals have alum<strong>in</strong>um <strong>in</strong> their structure. In sensitivity runs(some are presented <strong>in</strong> Appendix H), we assumed that a magnesium member of clay groupsknown to precipitate <strong>in</strong> sal<strong>in</strong>e lakes was allowed to precipitate along with sepiolite. Diaspore(AlOOH) is assumed to be present <strong>in</strong> all clay sensitivity runs and to control aqueous alum<strong>in</strong>umconcentrations. We tested celadonite from the illite group, Ca-montmorillonite, with somemagnesium from the trioctahedral smectite group, and Ca-saponite, which also conta<strong>in</strong>smagnesium, from the dioctahedral smectite group. In presence of alum<strong>in</strong>um, one of thesem<strong>in</strong>erals generally precipitates <strong>in</strong>stead of sepiolite. In general, saponite is the most likely toprecipitate, strongly limit<strong>in</strong>g or prevent<strong>in</strong>g sepiolite deposition. In contrast, sepiolite precipitatespreferentially to talc and kaol<strong>in</strong>ite and often times Ca-montmorillonite. The same is true of Camontmorillonite,even if its precipitation has been made more likely by <strong>in</strong>creas<strong>in</strong>g the reactionconstant by three orders of magnitude.Base-case accumulations were computed with no clay m<strong>in</strong>erals other than sepiolite allowed toprecipitate (by sett<strong>in</strong>g no alum<strong>in</strong>um <strong>in</strong> solution), a fixed pH of 8.5, and CO 2 partial pressure freeto drift. Because these conditions maximize sepiolite precipitation, results represent an upperbound of the likely outcome and are sensitive to the concentrate chemical composition(Table 4-6). Results of some geochemical simulations are presented <strong>in</strong> Appendix H. For thepurpose of compar<strong>in</strong>g results from different groups, durations of 5 and 30 years after facilityopen<strong>in</strong>g are reta<strong>in</strong>ed; 30 years represents a reasonable life span <strong>for</strong> a pond and 5 yearscorresponds to a time <strong>in</strong>terval at which benefits of self seal<strong>in</strong>g should have occurred. With noadditives, the average amount of precipitate at the bottom of a pond is 0.15 <strong>in</strong>ch, with a sepiolitefraction of 7%. The average hides large discrepancies across the state (Table 4-6). Bone Spr<strong>in</strong>g –Victorio Peak brackish water, as well as Permian Evaporite groups, has the highest accumulation(0.7–0.8 <strong>in</strong>ch) after 5 years, but with a small sepiolite fraction. This statistic is due partly to highfeedwater TDS (Table 8-1) and to a lesser degree to their high local evaporation rates. Inaddition, a higher sepiolite fraction corresponds to smaller accumulation thickness, and relativeaccumulation between groups after 30 years parallels that of 5 years. Average accumulationdepth is ~1 <strong>in</strong>ch <strong>in</strong> thickness, with a sepiolite fraction of ~6%. Largest accumulations areproduced by Bone Spr<strong>in</strong>g – Victorio Peak brackish water and Permian Evaporite groups onceaga<strong>in</strong> (5.6 and 4.6 <strong>in</strong>ches, respectively), still with little sepiolite. These accumulation thicknessvalues do not, however, account <strong>for</strong> porosity.A set of runs with the addition of a large amount of sepiolite precursor (0.01 mol/L of a blend ofMgCl 2 and Na 2 SiO 3 <strong>in</strong> 2:3 proportions, which translates <strong>in</strong>to an approximate doubl<strong>in</strong>g of theconcentrate TDS) was per<strong>for</strong>med (see Appendix H), with clear improvement <strong>in</strong> accumulationthickness (Figure 4-4) and sepiolite fraction (Table 4-7 and Table 4-8). In these runs, ifamorphous silica is allowed to precipitate, it does so <strong>in</strong> only two subgroups (Na-dom<strong>in</strong>antsamples from the Eocene and Cretaceous Sandstone groups) and <strong>in</strong> m<strong>in</strong>or quantities, most likelybecause silica solubility is high at alkal<strong>in</strong>e pH’s. This number of sepiolite precursors correspondsto an areal load<strong>in</strong>g of 513 tons/acre over 30 years (338 tons/acre of sodium metasilicate) and85 tons/acre after 5 years. Donahe (2006, p. 65) noted that, <strong>in</strong> his laboratory experiments, at theapplication rate of 35 to 40 tons/acre of sodium silicate, the self-<strong>for</strong>m<strong>in</strong>g l<strong>in</strong>er is capable ofsupply<strong>in</strong>g an added resistance to the soil equivalent to 6 <strong>in</strong>ches of native soil on average.60


M<strong>in</strong>eral Accumulation at 5 years (<strong>in</strong>ch)1.00.80.60.40.20.0Natural systemEng<strong>in</strong>eered systemMixed All.BZ All.RG. AlluviumSeymourBolsonOgallalaPecos Val.GC. SanEoceneCret. Lim.Cret. SanTrias. SanPerm. Ev.Perm. Lim.Perm. San.BS-VPCapitanPenn.LlanoSWFigure 4-4. Comparison of total m<strong>in</strong>eral accumulation (<strong>in</strong>ches) at 5 years <strong>for</strong> noneng<strong>in</strong>eered(“natural”) and eng<strong>in</strong>eered (addition of sepiolite precursor) systems.4.3.5 Conclusions on <strong>Self</strong>-<strong>Seal<strong>in</strong>g</strong> Geochemical CalculationsThe most likely self-seal<strong>in</strong>g mechanism is precipitation of neo<strong>for</strong>med materials from thesolution. The most volumetrically abundant m<strong>in</strong>erals to precipitate are calcite, gypsum, and, ifeng<strong>in</strong>eered correctly, sepiolite. The locus of precipitation is not an output of the geochemicalmodel<strong>in</strong>g, but it is likely to <strong>in</strong>itiate on the geomembrane l<strong>in</strong>er or with<strong>in</strong> the first few millimetersof the clay l<strong>in</strong>er, at least <strong>in</strong>itially. Nevertheless, the amount of precipitated material rema<strong>in</strong>s low,especially early <strong>in</strong> the life of the pond and, despite considerable geographic variability, typicallyonly a fraction of an <strong>in</strong>ch. Addition of chemical additives to the concentrate stream does help <strong>in</strong>produc<strong>in</strong>g a thicker accumulation <strong>in</strong> proportions commensurate to the added amount. Add<strong>in</strong>gapproximately 0.01 mol of sepiolite precursors to 1 L of concentrate is equivalent to 1.3¢ <strong>for</strong> 3 Lof potable water, that is, an <strong>in</strong>creased cost of ~1.5¢/gal attributable to chemical product purchase,notwithstand<strong>in</strong>g operational costs. In the most favorable case, add<strong>in</strong>g such amount of additiveswill cost over $1/1,000 gal.Previous laboratory and field experiments have suggested that precipitation of these compoundsdoes reduce hydraulic conductivity but not to the requested limit of 10 -7 cm/s. The additionalreduction <strong>in</strong> conductivity could, however, help the permittee <strong>in</strong> request<strong>in</strong>g an alternative pondl<strong>in</strong><strong>in</strong>gmethod (alternative l<strong>in</strong>er, option 2; see Appendix C). In summary, the follow<strong>in</strong>gobservations can be made:- the most abundant m<strong>in</strong>erals to precipitate are calcite, gypsum, and, if eng<strong>in</strong>eeredcorrectly, sepiolite- the total amount of precipitate is small (


Table 4-6. Average m<strong>in</strong>eral accumulation thickness and sepiolite fraction at 5 and 30 years <strong>in</strong> a3-<strong>in</strong>ch-depth pond <strong>in</strong> noneng<strong>in</strong>eered conditions (assumes a porosity of 0%).At 5 yearsAt 30 yearsGroupsAcc.Depth(<strong>in</strong>ches)FractionSepiolite(%)Acc.Depth(<strong>in</strong>ches)FractionSepiolite(%)Mixed Alluvium 0.12 9.2 0.81 8.3Brazos River Alluvium 0.03 9.4 0.16 10.3Rio Grande Alluvium 0.21 11.8 1.74 8.3Seymour 0.09 16.3 0.58 14.3Bolson 0.08 31.8 0.92 17.2Ogallala 0.11 34.4 0.64 33.6Pecos Valley 0.47 5.2 3.85 3.8Gulf Coast Sandstone 0.03 28.0 0.26 18.6Eocene All Samples 0.01 27.2 0.08 27.2Eocene Mixed 0.06 17.7 0.43 14.6Eocene Na Dom<strong>in</strong>ant 0.00 31.3 0.02 41.2Cretaceous Limestone 0.10 9.6 0.63 8.8Cret. Sandst. All Samples 0.04 13.4 0.30 10.5Cret. Sandst. Mixed 0.09 5.3 0.63 4.7Cret. Sandst. Na Dom<strong>in</strong>ant 0.00 51.5 0.13 15.0Triassic Sandstone 0.09 8.6 0.57 8.2Permian Evaporite 0.77 1.2 4.61 1.2Permian Limestone 0.09 8.6 0.65 7.5Permian Sandstone 0.10 12.1 0.61 11.3Bone Spr<strong>in</strong>g – Victorio Peak 0.70 1.9 5.60 1.4Capitan Reef 0.17 7.1 1.02 6.8Pennsylvanian 0.04 11.6 0.42 6.3Llano Uplift 0.05 7.6 0.37 6.6Surface Water 0.24 2.1 1.81 1.6Simple Average 0.15 15.1 1.12 12.0Weighted Average 7.0 5.862


Table 4-7. Average m<strong>in</strong>eral accumulation thickness and sepiolite fraction at 5 years <strong>in</strong> a 3–<strong>in</strong>chdepthpond <strong>in</strong> noneng<strong>in</strong>eered and eng<strong>in</strong>eered conditions (assumes a porosity of 0%).Noneng<strong>in</strong>eeredConditionsEng<strong>in</strong>eered (Mg+Si)ConditionsGroupsAcc.Depth(<strong>in</strong>ches)FractionSepiolite(%)Acc.Depth(<strong>in</strong>ches)FractionSepiolite(%)Mixed Alluvium 0.12 9.2 0.41 56.1Brazos River Alluvium 0.03 9.4 0.06 57.9Rio Grande Alluvium 0.21 11.8 0.56 61.0Seymour 0.09 16.3 0.35 63.7Bolson 0.08 31.8 0.52 70.4Ogallala 0.11 34.4 0.57 57.6Pecos Valley 0.47 5.2 0.79 47.5Gulf Coast Sandstone 0.03 28.0 0.17 88.1Eocene All Samples 0.01 27.2 0.13 93.1Eocene Mixed 0.06 17.7 0.18 69.4Eocene Na Dom<strong>in</strong>ant 0.00 31.3 0.12 98.6Cretaceous Limestone 0.10 9.6 0.41 58.6Cret. Sandst. All Samples 0.04 13.4 0.19 82.4Cret. Sandst. Mixed 0.09 5.3 0.25 63.5Cret. Sandst. Na Dom<strong>in</strong>ant 0.00 51.5 0.16 98.7Triassic Sandstone 0.09 8.6 0.48 60.4Permian Evaporite 0.77 1.2 0.82 31.2Permian Limestone 0.09 8.6 0.35 58.5Permian Sandstone 0.10 12.1 0.49 50.6Bone Spr<strong>in</strong>g – Victorio Peak 0.70 1.9 0.77 43.6Capitan Reef 0.17 7.1 0.59 51.7Pennsylvanian 0.04 11.6 0.21 79.5Llano Uplift 0.05 7.6 0.22 69.7Surface Water 0.24 2.1 0.40 51.8Simple Average 0.15 15.1 0.38 65.1Weighted Average 7.0 57.563


Table 4-8. Average m<strong>in</strong>eral accumulation thickness and sepiolite fraction at 30 years <strong>in</strong> a 3-<strong>in</strong>chdepthpond <strong>in</strong> noneng<strong>in</strong>eered and eng<strong>in</strong>eered conditions (assumes a porosity of 0%).Noneng<strong>in</strong>eeredConditionsEng<strong>in</strong>eered (Mg+Si)ConditionsGroupsAcc.Depth(<strong>in</strong>ches)FractionSepiolite(%)Acc.Depth(<strong>in</strong>ches)FractionSepiolite(%)Mixed Alluvium 0.81 8.3 3.18 45.1Brazos River Alluvium 0.16 10.3 0.51 67.0Rio Grande Alluvium 1.74 8.3 5.99 34.6Seymour 0.58 14.3 2.98 46.5Bolson 0.92 17.2 5.99 37.3Ogallala 0.64 33.6 4.88 40.8Pecos Valley 3.85 3.8 11.21 18.6Gulf Coast Sandstone 0.26 18.6 1.88 53.2Eocene All Samples 0.08 27.2 1.24 65.8Eocene Mixed 0.43 14.6 1.41 60.9Eocene Na Dom<strong>in</strong>ant 0.02 41.2 1.38 58.3Cretaceous Limestone 0.63 8.8 4.03 37.0Cret. Sandst. All Samples 0.30 10.5 1.96 53.1Cret. Sandst. Mixed 0.63 4.7 1.96 53.0Cret. Sandst. Na Dom<strong>in</strong>ant 0.13 15.0 2.12 48.6Triassic Sandstone 0.57 8.2 4.66 38.1Permian Evaporite 4.61 1.2 5.56 28.6Permian Limestone 0.65 7.5 2.89 45.6Permian Sandstone 0.61 11.3 3.71 41.4Bone Spr<strong>in</strong>g – Victorio Peak 5.60 1.4 10.93 18.8Capitan Reef 1.02 6.8 6.94 27.0Pennsylvanian 0.42 6.3 2.23 48.3Llano Uplift 0.37 6.6 1.94 51.7Surface Water 1.81 1.6 5.70 23.0Simple Average 1.12 12.0 3.97 43.4Weighted Average 5.8 34.864


4.4 Design Specifics and Cost EstimatesIn previous sections of Chapter 4, we analyzed the regulatory environment, determ<strong>in</strong>ed the likelycomposition of the concentrate, and estimated amount and nature of pond bottom sediments. Inthis section, we exam<strong>in</strong>e design specifics and cost. It is important to note that, by design, selfseal<strong>in</strong>gevaporation ponds have no specific operational features. Additives can be <strong>in</strong>jected <strong>in</strong> theconcentrate stream as any other additive, such as antiscalant or acid. They could be added with<strong>in</strong>the plant itself rather than be<strong>in</strong>g spread over the pond. At this po<strong>in</strong>t of the study, there is no firmconclusion on the need <strong>for</strong> a mix<strong>in</strong>g system to homogenize the pond water because it is unclearwhether a concentration gradient is helpful. Additional features to accelerate evaporation, suchas, <strong>for</strong> example, evaporation nets or a Turbo-mist type of evaporator, may lead to earlier andmore abundant sepiolite precipitation, but aga<strong>in</strong> it is unlikely to be achieved at a cost lower thanthat of the current technology. TCEQ (2006a), Ahmed et al. (2000), and Mickley (2006) gavegeneral guidel<strong>in</strong>es <strong>for</strong> construct<strong>in</strong>g evaporation ponds. The purpose of this section is to presentthe design of a generic evaporation pond <strong>for</strong> outfall from a 1-MGD desal<strong>in</strong>ation facility sited <strong>in</strong><strong>Texas</strong>. The cost difference between us<strong>in</strong>g prescriptive l<strong>in</strong>er technology <strong>for</strong> the pond and us<strong>in</strong>g analternative l<strong>in</strong>er that <strong>in</strong>corporates self-seal<strong>in</strong>g technology is also presented.4.4.1 Pond Siz<strong>in</strong>gThe size of the pond is calculated us<strong>in</strong>g procedures outl<strong>in</strong>ed <strong>for</strong> surface land disposal of effluent(TCEQ, 2006a) and described previously <strong>in</strong> Section 4.1.2.1. As described by Mickley (2006), thesurface area required <strong>for</strong> a pond primarily depends on evaporation rate. The required pond depthis a function of its required liquid storage capacity, storage capacity <strong>for</strong> precipitant, andfreeboard <strong>for</strong> precipitation and wave action. Whereas evaporation rates may be somewhat higher<strong>for</strong> shallower ponds, very shallow ponds may dry and allow l<strong>in</strong>ers to become exposed to theenvironment. Clay l<strong>in</strong>ers exposed to wett<strong>in</strong>g and dry<strong>in</strong>g cycles are more likely to desiccate andcrack than clay l<strong>in</strong>ers protected by an <strong>in</strong>sulation layer, such as a soil layer (Bonaparte et al.,2002). Geomembrane l<strong>in</strong>ers exposed to ultraviolet radiation and high temperatures will loseantioxidants and/or plasticizers faster than geomembrane l<strong>in</strong>ers protected from these conditionsand will have a reduced service life.For this report, the follow<strong>in</strong>g assumptions are made <strong>for</strong> siz<strong>in</strong>g the generic evaporation pond:• 30% of the water treated at the desal<strong>in</strong>ation facility is reject water that is disposed of <strong>in</strong> theevaporation pond;• A sal<strong>in</strong>ity correction factor of 0.9 is appropriate <strong>for</strong> evaluation of evaporation from <strong>Texas</strong>ponds (see Section 3.3.1);• The pond can be sized us<strong>in</strong>g a monthly water balance that considers the past 25 years ofmonthly precipitation and lake evaporation data;• The pond should have no accumulation of liquid under average conditions and should beable to store excess liquid generated under the critical condition of maximum annualprecipitation and m<strong>in</strong>imum evaporation;• Maximum depth of water <strong>in</strong> a pond should be less than 2 ft, and the m<strong>in</strong>imum pondfreeboard is 2 ft; and• The pond must have sufficient capacity to store precipitant until it is removed or the pondhas reached the end of its design life; <strong>for</strong> the report, it is assumed that ~1 <strong>in</strong>ch of precipitant65


is generated over the 30-year design life of the pond (see Table 4-8); this amount ofprecipitant is considered to be negligible with respect to pond storage.Pond sizes were calculated <strong>for</strong> the 1º quadrangles with the four facilities hav<strong>in</strong>g evaporationponds visited <strong>in</strong> this study (River Oaks Ranch <strong>in</strong> Hays County—quadrangle 709, as def<strong>in</strong>ed byTWDB (2006a), Brady <strong>in</strong> McCulloch County—quadrangle 608, Abilene <strong>in</strong> Taylor County—quadrangle 508, and Horizon MUD <strong>in</strong> El Paso County—quadrangle 601. Pond-designspreadsheets are presented <strong>in</strong> Table 4-10 to Table 4-13. The smallest pond, with an area of70.5 acres and depth (<strong>in</strong>clud<strong>in</strong>g freeboard) of 45 <strong>in</strong>ches, was calculated <strong>for</strong> quadrangle 601(Horizon MUD) (Table 4-9). Pond designs <strong>for</strong> the other three quadrangles ranged from 126.6 to175.5 acres <strong>in</strong> surface area, with a depth of 48 <strong>in</strong>ches. They cover a representative sample of netevaporation conditions expected across the state. As expected, calculated pond size isproportional to net evaporation rate. A representative evaporation pond area <strong>for</strong> a 1-MGDdesal<strong>in</strong>ation facility can be estimated at 125 acres.Table 4-9. Generic pond size <strong>for</strong> 1-MGD facilities located near the sampled pondsPublic UtilityPond Area(acres)Representative ofUSGS QuadrangleRiver Oaks Ranch 175.5 709Brady 135.6 608Abilene 126.6 508Horizon MUD 70.5 60166


Table 4-10. Pond water balance <strong>for</strong> quadrangle 709, represent<strong>in</strong>g the River Oaks Ranch sitePRECIPITATION AND EVAPORATION DATA (1980-2004) FROM TWDB (http://hyper20.twdb.state.tx.us/<strong>Evaporation</strong>/evap.html)TEXAS QUADRANGLE NUMBER 709MAX. ANNUAL PRECIPITATION 44.94 (<strong>in</strong>.) MIN. ANNUAL EVAPORATION 48.47 (<strong>in</strong>.)POND AREA175.50 acresPOND FREEBOARD24 <strong>in</strong>.DISPOSAL RATE0.3 MGDPOND EVAPORATION : LAKE EVAPORATION (SALINITY CORRECTION FACTOR) 0.9AVERAGE CONDITIONMONTHAPPLIEDEFFLUENT(<strong>in</strong>.)MEANMONTHLYPRECIP.(<strong>in</strong>.)TOTAL MEANLIQUID MONTHLYTO POND LAKE(<strong>in</strong>.) EVAP. (<strong>in</strong>.)Δ PONDSTORAGE(<strong>in</strong>.)ACCUM.PONDSTORAGE(<strong>in</strong>.)JAN 1.9 1.69 3.6 2.35 1.2 1.2FEB 1.9 2.23 4.1 2.52 1.6 2.8MAR 1.9 2.37 4.3 3.74 0.5 3.3APR 1.9 2.06 3.9 4.69 -0.7 2.6MAY 1.9 4.11 6.0 5.24 0.8 3.4JUN 1.9 4.44 6.3 6.55 -0.2 3.1JUL 1.9 2.03 3.9 7.69 -3.8 -0.6AUG 1.9 1.85 3.7 7.59 -3.9 -4.5SEP 1.9 2.83 4.7 5.72 -1.0 -5.5OCT 1.9 3.62 5.5 4.62 0.9 -4.6NOV 1.9 2.88 4.8 3.39 1.4 -3.2DEC 1.9 2.18 4.1 2.38 1.7 -1.5CHECK ACCUM. POND STORAGE AT END OF YEAR < 0-1.5 <strong>in</strong>.CRITICAL CONDITIONMONTHAPPLIEDEFFLUENT(<strong>in</strong>.)MEANMONTHLYPRECIP.(<strong>in</strong>.)MEANPRECIP.DISTRIB.(%)MAX.MONTHLYPRECIP.(<strong>in</strong>.)TOTALLIQUIDTO POND(<strong>in</strong>.)MEANMONTHLYLAKEEVAP. (<strong>in</strong>.)MEANEVAP.DISTRIB.(%)MIN.MONTHLYPONDEVAP. (<strong>in</strong>.)Δ PONDSTORAGE(<strong>in</strong>.)ACCUM.PONDSTORAGE(<strong>in</strong>.)JAN 1.9 1.69 5% 2.35 4.2 2.35 4% 1.82 2.4 2.4FEB 1.9 2.23 7% 3.10 5.0 2.52 4% 1.95 3.0 5.5MAR 1.9 2.37 7% 3.30 5.2 3.74 7% 2.89 2.3 7.8APR 1.9 2.06 6% 2.87 4.8 4.69 8% 3.62 1.1 8.9MAY 1.9 4.11 13% 5.72 7.6 5.24 9% 4.05 3.6 12.5JUN 1.9 4.44 14% 6.18 8.1 6.55 12% 5.06 3.0 15.5JUL 1.9 2.03 6% 2.83 4.7 7.69 14% 5.94 -1.2 14.2AUG 1.9 1.85 6% 2.57 4.5 7.59 13% 5.86 -1.4 12.8SEP 1.9 2.83 9% 3.94 5.8 5.72 10% 4.42 1.4 14.3OCT 1.9 3.62 11% 5.04 6.9 4.62 8% 3.57 3.4 17.6NOV 1.9 2.88 9% 4.01 5.9 3.39 6% 2.62 3.3 20.9DEC 1.9 2.18 7% 3.03 4.9 2.38 4% 1.84 3.1 24.0CHECK MAX. ACCUM. POND STORAGE < 2 FEET24.0 <strong>in</strong>.NOTES:APPLIED EFFLUENT = DISPOSAL RATE / (12 MONTHS/YEAR) / POND AREAMEAN PRECIPITATION DISTRIBUTION = 100 (MEAN MONTHLY PRECIPITATION / MEAN ANNUAL PRECIPITATION)MAXIMUM MONTHLY PRECIPITATION = MAXIMUM ANNUAL PRECIPITATION X MEAN PRECIPITATION DISTRIBUTIONTOTAL LIQUID TO POND = APPLIED EFFLUENT + MONTHLY PRECIPITATIONMEAN EVAPORATION DISTRIBUTION = 100 (MEAN MONTHLY EVAPORATION / MEAN ANNUAL EVAPORATION)MINIMUM MONTHLY POND EVAPORATION =MINIMUM ANNUAL POND EVAPORATION X MEAN EVAPORATION DISTRIBUTION X SALINITY CORRECTION FACTORCHANGE IN POND STORAGE = TOTAL LIQUID TO POND - MONTHLY POND EVAPORATIONACCUMULATED POND STORAGE = ACCUMULATED POND STORAGE FOR MONTH i-1 + CHANGE IN POND STORAGE FOR MONTH i67


Table 4-11. Pond water balance <strong>for</strong> quadrangle 608, represent<strong>in</strong>g the Brady site.PRECIPITATION AND EVAPORATION DATA (1980-2004) FROM TWDB (http://hyper20.twdb.state.tx.us/<strong>Evaporation</strong>/evap.html)TEXAS QUADRANGLE NUMBER 608MAX. ANNUAL PRECIPITATION 38.82 (<strong>in</strong>.) MIN. ANNUAL EVAPORATION 53.75 (<strong>in</strong>.)POND AREA135.60 acresPOND FREEBOARD24 <strong>in</strong>.DISPOSAL RATE0.3 MGDPOND EVAPORATION : LAKE EVAPORATION (SALINITY CORRECTION FACTOR) 0.9AVERAGE CONDITIONMONTHAPPLIEDEFFLUENT(<strong>in</strong>.)MEANMONTHLYPRECIP.(<strong>in</strong>.)TOTAL MEANLIQUID MONTHLYTO POND LAKE(<strong>in</strong>.) EVAP. (<strong>in</strong>.)Δ PONDSTORAGE(<strong>in</strong>.)ACCUM.PONDSTORAGE(<strong>in</strong>.)JAN 2.4 1.14 3.6 2.49 1.1 1.1FEB 2.4 1.87 4.3 3.16 1.2 2.2MAR 2.4 1.79 4.2 5.2 -1.0 1.3APR 2.4 1.57 4.0 6.93 -2.9 -1.6MAY 2.4 3.46 5.9 8.29 -2.4 -4.0JUN 2.4 3.87 6.3 9.53 -3.2 -7.2JUL 2.4 1.74 4.2 8.77 -4.6 -11.8AUG 2.4 1.97 4.4 7.34 -2.9 -14.7SEP 2.4 2.94 5.4 6.09 -0.7 -15.5OCT 2.4 2.73 5.2 4.87 0.3 -15.1NOV 2.4 1.82 4.3 3.11 1.2 -14.0DEC 2.4 1.46 3.9 2.44 1.5 -12.5CHECK ACCUM. POND STORAGE AT END OF YEAR < 0-12.5 <strong>in</strong>.CRITICAL CONDITIONMONTHAPPLIEDEFFLUENT(<strong>in</strong>.)MEANMONTHLYPRECIP.(<strong>in</strong>.)MEANPRECIP.DISTRIB.(%)MAX.MONTHLYPRECIP.(<strong>in</strong>.)TOTALLIQUIDTO POND(<strong>in</strong>.)MEANMONTHLYLAKEEVAP. (<strong>in</strong>.)MEANEVAP.DISTRIB.(%)MIN.MONTHLYPONDEVAP. (<strong>in</strong>.)Δ PONDSTORAGE(<strong>in</strong>.)ACCUM.PONDSTORAGE(<strong>in</strong>.)JAN 2.4 1.14 4% 1.68 4.1 2.38 3% 1.69 2.4 2.4FEB 2.4 1.87 7% 2.75 5.2 2.55 4% 1.81 3.4 5.8MAR 2.4 1.79 7% 2.64 5.1 4.36 6% 3.09 2.0 7.8APR 2.4 1.57 6% 2.31 4.8 5.92 9% 4.20 0.6 8.4MAY 2.4 3.46 13% 5.10 7.5 6.34 9% 4.50 3.0 11.4JUN 2.4 3.87 15% 5.70 8.1 7.33 11% 5.20 2.9 14.4JUL 2.4 1.74 7% 2.56 5.0 8.57 13% 6.08 -1.1 13.3AUG 2.4 1.97 7% 2.90 5.3 8.00 12% 5.67 -0.3 13.0SEP 2.4 2.94 11% 4.33 6.8 6.17 9% 4.38 2.4 15.4OCT 2.4 2.73 10% 4.02 6.5 4.91 7% 3.48 3.0 18.3NOV 2.4 1.82 7% 2.68 5.1 3.39 5% 2.40 2.7 21.1DEC 2.4 1.46 6% 2.15 4.6 2.37 3% 1.68 2.9 24.0CHECK MAX. ACCUM. POND STORAGE < 2 FEET24.0 <strong>in</strong>.NOTES:APPLIED EFFLUENT = DISPOSAL RATE / (12 MONTHS/YEAR) / POND AREAMEAN PRECIPITATION DISTRIBUTION = 100 (MEAN MONTHLY PRECIPITATION / MEAN ANNUAL PRECIPITATION)MAXIMUM MONTHLY PRECIPITATION = MAXIMUM ANNUAL PRECIPITATION X MEAN PRECIPITATION DISTRIBUTIONTOTAL LIQUID TO POND = APPLIED EFFLUENT + MONTHLY PRECIPITATIONMEAN EVAPORATION DISTRIBUTION = 100 (MEAN MONTHLY EVAPORATION / MEAN ANNUAL EVAPORATION)MINIMUM MONTHLY POND EVAPORATION =MINIMUM ANNUAL POND EVAPORATION X MEAN EVAPORATION DISTRIBUTION X SALINITY CORRECTION FACTORCHANGE IN POND STORAGE = TOTAL LIQUID TO POND - MONTHLY POND EVAPORATIONACCUMULATED POND STORAGE = ACCUMULATED POND STORAGE FOR MONTH i-1 + CHANGE IN POND STORAGE FOR MONTH i68


Table 4-12. Pond water balance <strong>for</strong> quadrangle 508, represent<strong>in</strong>g the Abilene site.PRECIPITATION AND EVAPORATION DATA (1980-2004) FROM TWDB (http://hyper20.twdb.state.tx.us/<strong>Evaporation</strong>/evap.html)TEXAS QUADRANGLE NUMBER 508MAX. ANNUAL PRECIPITATION 39.67 (<strong>in</strong>.) MIN. ANNUAL EVAPORATION 52.33 (<strong>in</strong>.)POND AREA126.60 acresPOND FREEBOARD24 <strong>in</strong>.DISPOSAL RATE0.3 MGDPOND EVAPORATION : LAKE EVAPORATION (SALINITY CORRECTION FACTOR) 0.9AVERAGE CONDITIONMONTHAPPLIEDEFFLUENT(<strong>in</strong>.)MEANMONTHLYPRECIP.(<strong>in</strong>.)TOTAL MEANLIQUID MONTHLYTO POND LAKE(<strong>in</strong>.) EVAP. (<strong>in</strong>.)Δ PONDSTORAGE(<strong>in</strong>.)ACCUM.PONDSTORAGE(<strong>in</strong>.)JAN 2.6 1.15 3.8 2.33 1.4 1.4FEB 2.6 1.82 4.4 2.51 1.9 3.4MAR 2.6 1.90 4.5 4.26 0.3 3.6APR 2.6 1.89 4.5 5.62 -1.1 2.5MAY 2.6 3.47 6.1 5.92 0.2 2.7JUN 2.6 3.75 6.4 7.17 -0.8 1.9JUL 2.6 1.94 4.6 8.22 -3.7 -1.8AUG 2.6 2.32 4.9 7.73 -2.8 -4.6SEP 2.6 2.73 5.3 5.94 -0.6 -5.2OCT 2.6 2.95 5.6 5.02 0.5 -4.6NOV 2.6 1.84 4.5 3.45 1.0 -3.6DEC 2.6 1.57 4.2 2.33 1.9 -1.8CHECK ACCUM. POND STORAGE AT END OF YEAR < 0-1.8 <strong>in</strong>.CRITICAL CONDITIONMONTHAPPLIEDEFFLUENT(<strong>in</strong>.)MEANMONTHLYPRECIP.(<strong>in</strong>.)MEANPRECIP.DISTRIB.(%)MAX.MONTHLYPRECIP.(<strong>in</strong>.)TOTALLIQUIDTO POND(<strong>in</strong>.)MEANMONTHLYLAKEEVAP. (<strong>in</strong>.)MEANEVAP.DISTRIB.(%)MIN.MONTHLYPONDEVAP. (<strong>in</strong>.)Δ PONDSTORAGE(<strong>in</strong>.)ACCUM.PONDSTORAGE(<strong>in</strong>.)JAN 2.6 1.15 4% 1.67 4.3 2.33 4% 1.81 2.5 2.5FEB 2.6 1.82 7% 2.64 5.3 2.51 4% 1.95 3.3 5.8MAR 2.6 1.90 7% 2.76 5.4 4.26 7% 3.32 2.1 7.8APR 2.6 1.89 7% 2.74 5.4 5.62 9% 4.37 1.0 8.8MAY 2.6 3.47 13% 5.04 7.7 5.92 10% 4.61 3.0 11.9JUN 2.6 3.75 14% 5.44 8.1 7.17 12% 5.58 2.5 14.4JUL 2.6 1.94 7% 2.82 5.4 8.22 14% 6.40 -1.0 13.4AUG 2.6 2.32 8% 3.37 6.0 7.73 13% 6.02 0.0 13.4SEP 2.6 2.73 10% 3.96 6.6 5.94 10% 4.62 2.0 15.3OCT 2.6 2.95 11% 4.28 6.9 5.02 8% 3.91 3.0 18.3NOV 2.6 1.84 7% 2.67 5.3 3.45 6% 2.69 2.6 20.9DEC 2.6 1.57 6% 2.28 4.9 2.33 4% 1.81 3.1 24.0CHECK MAX. ACCUM. POND STORAGE < 2 FEET24.0 <strong>in</strong>.NOTES:APPLIED EFFLUENT = DISPOSAL RATE / (12 MONTHS/YEAR) / POND AREAMEAN PRECIPITATION DISTRIBUTION = 100 (MEAN MONTHLY PRECIPITATION / MEAN ANNUAL PRECIPITATION)MAXIMUM MONTHLY PRECIPITATION = MAXIMUM ANNUAL PRECIPITATION X MEAN PRECIPITATION DISTRIBUTIONTOTAL LIQUID TO POND = APPLIED EFFLUENT + MONTHLY PRECIPITATIONMEAN EVAPORATION DISTRIBUTION = 100 (MEAN MONTHLY EVAPORATION / MEAN ANNUAL EVAPORATION)MINIMUM MONTHLY POND EVAPORATION =MINIMUM ANNUAL POND EVAPORATION X MEAN EVAPORATION DISTRIBUTION X SALINITY CORRECTION FACTORCHANGE IN POND STORAGE = TOTAL LIQUID TO POND - MONTHLY POND EVAPORATIONACCUMULATED POND STORAGE = ACCUMULATED POND STORAGE FOR MONTH i-1 + CHANGE IN POND STORAGE FOR MONTH i69


Table 4-13. Pond water balance <strong>for</strong> quadrangle 601, represent<strong>in</strong>g the Horizon MUD site.PRECIPITATION AND EVAPORATION DATA (1980-2004) FROM TWDB (http://hyper20.twdb.state.tx.us/<strong>Evaporation</strong>/evap.html)TEXAS QUADRANGLE NUMBER 601MAX. ANNUAL PRECIPITATION 19.41 (<strong>in</strong>.) MIN. ANNUAL EVAPORATION 61.07 (<strong>in</strong>.)POND AREA70.50 acresPOND FREEBOARD24 <strong>in</strong>.DISPOSAL RATE0.3 MGDPOND EVAPORATION : LAKE EVAPORATION (SALINITY CORRECTION FACTOR) 0.9AVERAGE CONDITIONMONTHAPPLIEDEFFLUENT(<strong>in</strong>.)MEANMONTHLYPRECIP.(<strong>in</strong>.)TOTAL MEANLIQUID MONTHLYTO POND LAKE(<strong>in</strong>.) EVAP. (<strong>in</strong>.)Δ PONDSTORAGE(<strong>in</strong>.)ACCUM.PONDSTORAGE(<strong>in</strong>.)JAN 4.7 0.72 5.4 2.49 2.9 2.9FEB 4.7 0.77 5.5 3.16 2.3 5.2MAR 4.7 0.53 5.2 5.2 0.0 5.3APR 4.7 0.48 5.2 6.93 -1.7 3.5MAY 4.7 0.69 5.4 8.29 -2.9 0.6JUN 4.7 1.16 5.9 9.53 -3.7 -3.0JUL 4.7 1.47 6.2 8.77 -2.6 -5.6AUG 4.7 1.57 6.3 7.34 -1.1 -6.7SEP 4.7 1.43 6.1 6.09 0.0 -6.7OCT 4.7 1.03 5.7 4.87 0.9 -5.8NOV 4.7 0.88 5.6 3.11 2.5 -3.3DEC 4.7 1.04 5.7 2.44 3.3 0.0CHECK ACCUM. POND STORAGE AT END OF YEAR < 00.0 <strong>in</strong>.CRITICAL CONDITIONMONTHAPPLIEDEFFLUENT(<strong>in</strong>.)MEANMONTHLYPRECIP.(<strong>in</strong>.)MEANPRECIP.DISTRIB.(%)MAX.MONTHLYPRECIP.(<strong>in</strong>.)TOTALLIQUIDTO POND(<strong>in</strong>.)MEANMONTHLYLAKEEVAP. (<strong>in</strong>.)MEANEVAP.DISTRIB.(%)MIN.MONTHLYPONDEVAP. (<strong>in</strong>.)Δ PONDSTORAGE(<strong>in</strong>.)ACCUM.PONDSTORAGE(<strong>in</strong>.)JAN 4.7 0.72 6% 1.19 5.9 2.49 4% 2.01 3.9 3.9FEB 4.7 0.77 7% 1.27 6.0 3.16 5% 2.55 3.4 7.3MAR 4.7 0.53 5% 0.87 5.6 5.2 8% 4.19 1.4 8.7APR 4.7 0.48 4% 0.79 5.5 6.93 10% 5.58 -0.1 8.6MAY 4.7 0.69 6% 1.14 5.8 8.29 12% 6.68 -0.8 7.8JUN 4.7 1.16 10% 1.91 6.6 9.53 14% 7.68 -1.1 6.7JUL 4.7 1.47 12% 2.42 7.1 8.77 13% 7.07 0.1 6.8AUG 4.7 1.57 13% 2.59 7.3 7.34 11% 5.91 1.4 8.1SEP 4.7 1.43 12% 2.36 7.1 6.09 9% 4.91 2.2 10.3OCT 4.7 1.03 9% 1.70 6.4 4.87 7% 3.92 2.5 12.8NOV 4.7 0.88 7% 1.45 6.2 3.11 5% 2.51 3.6 16.4DEC 4.7 1.04 9% 1.72 6.4 2.44 4% 1.97 4.5 20.9CHECK MAX. ACCUM. POND STORAGE < 2 FEET20.9 <strong>in</strong>.NOTES:APPLIED EFFLUENT = DISPOSAL RATE / (12 MONTHS/YEAR) / POND AREAMEAN PRECIPITATION DISTRIBUTION = 100 (MEAN MONTHLY PRECIPITATION / MEAN ANNUAL PRECIPITATION)MAXIMUM MONTHLY PRECIPITATION = MAXIMUM ANNUAL PRECIPITATION X MEAN PRECIPITATION DISTRIBUTIONTOTAL LIQUID TO POND = APPLIED EFFLUENT + MONTHLY PRECIPITATIONMEAN EVAPORATION DISTRIBUTION = 100 (MEAN MONTHLY EVAPORATION / MEAN ANNUAL EVAPORATION)MINIMUM MONTHLY POND EVAPORATION =MINIMUM ANNUAL POND EVAPORATION X MEAN EVAPORATION DISTRIBUTION X SALINITY CORRECTION FACTORCHANGE IN POND STORAGE = TOTAL LIQUID TO POND - MONTHLY POND EVAPORATIONACCUMULATED POND STORAGE = ACCUMULATED POND STORAGE FOR MONTH i-1 + CHANGE IN POND STORAGE FOR MONTH i70


4.4.2 Conta<strong>in</strong>ment EquivalenceTCEQ provides exemptions from the prescriptive clay l<strong>in</strong>er or geomembrane required <strong>for</strong>municipal wastewater but only suggested <strong>for</strong> <strong>in</strong>dustrial waste (see regulatory section). Such analternative l<strong>in</strong>er system that <strong>in</strong>corporates self-seal<strong>in</strong>g technology must provide equivalentconta<strong>in</strong>ment capability to the l<strong>in</strong>ers prescribed by TCEQ (alternative l<strong>in</strong>er, option 2; seeAppendix C).4.4.2.1 Equivalence to Clay L<strong>in</strong>erThe prescriptive clay l<strong>in</strong>er must be at least 3-ft thick, with a maximum hydraulic conductivity of1×10 -7 cm/s. The leakage rate through the saturated soil l<strong>in</strong>er can be calculated us<strong>in</strong>g Darcy’sequation: Q / A = k i, where Q is the leakage rate per pond area A, k is the hydraulic conductivityof the clay l<strong>in</strong>er, and i is the hydraulic gradient def<strong>in</strong>ed by i = (h + t)/t, where h is the averagehead of liquid <strong>in</strong> pond and t is thickness of clay l<strong>in</strong>er. For values of k = 1×10 -7 cm/s, h = 1.1 <strong>in</strong>ch(the average pond depth calculated <strong>in</strong> Table 4-10 to Table 4-13), and t = 3 ft, i ~ 1 because h issmall relative to t, and Q/A= k i = 3.4×10 -3 <strong>in</strong>ches/day or 1.2 <strong>in</strong>ches/year.The precipitant generated <strong>in</strong> evaporation ponds may be hydraulically equivalent to a clay l<strong>in</strong>er ifthe th<strong>in</strong> precipitant layer can limit leakage to 1.2 <strong>in</strong>ches/year. Consider<strong>in</strong>g that the averageaccumulation depth of precipitant generated <strong>in</strong> the evaporation ponds was calculated to be about0.15 <strong>in</strong>ch after 5 years of pond operation (Table 4-7), the effective hydraulic conductivity of thislayer at 5 years would have to be


through a geomembrane is flow through geomembrane defects (rather than permeation throughgeomembrane holes) that are <strong>in</strong>flicted dur<strong>in</strong>g <strong>in</strong>stallation or operation. Leakage through a hole <strong>in</strong>a geomembrane overla<strong>in</strong> and underla<strong>in</strong> by relatively high permeability material can be evaluatedus<strong>in</strong>g Bernoulli’s equation (Giroud and Bonaparte, 1989):Q = 0.6a(2gh)0.5where Q is leakage rate through one geomembrane hole (m 3 /s), a is the area of the circular hole(m 2 ), g is the acceleration of gravity (m/s 2 ), and h is the hydraulic head on top of thegeomembrane l<strong>in</strong>er (m). For values of two to four geomembrane holes per acre, a = 1.08×10 -3ft 2 , g = 32.2 ft/s 2 , and h = 1.1 <strong>in</strong>ch (the average pond depth calculated <strong>in</strong> Table 4-10 to Table4-13), the calculated leakage rates range from 27 to 55 <strong>in</strong>ches/year (~14 <strong>in</strong>ches/hole/year). Ifpond-water depth is higher, the leakage rate is higher too (~45 <strong>in</strong>ches/hole/year with a waterdepth of 1 ft).Flow through a geomembrane hole can be impeded if the hole is overla<strong>in</strong> or underla<strong>in</strong> by arelatively low permeability material, that is, either a composite geomembrane l<strong>in</strong>er (that goesbeyond TCEQ requirements) or a prescriptive geomembrane l<strong>in</strong>er and a precipitant layer.Assum<strong>in</strong>g good contact between the geomembrane and the overly<strong>in</strong>g precipitant, leakagethrough a geomembrane hole of a precipitant/geomembrane or composite geomembrane l<strong>in</strong>ercan be calculated us<strong>in</strong>g an equation developed by Giroud (1997):Q = +0.95 0.2 0.9 0.740.204[10.1( h / t)] d h kwhere Q is leakage rate through one geomembrane hole (m 3 /s), h is the hydraulic head on top ofthe composite l<strong>in</strong>er (m), t is the thickness of the precipitant component of the composite l<strong>in</strong>er(m), d is the diameter of the circular hole (m), and k is the hydraulic conductivity of theprecipitant component of the composite l<strong>in</strong>er (m/s). This equation is not dimensionallyhomogeneous and must be used with the specified units.The follow<strong>in</strong>g <strong>in</strong>put parameters were used <strong>in</strong> the analysis: h = 0.028 m (1.1 <strong>in</strong>ches), t = 0.0038m, d = 0.011 m (corresponds to hole area a = 1.08×10 -3 ft 2 ), k = 1×10 -6 to 1×10 -4 cm/s, and twoto four geomembrane holes per acre. With these <strong>in</strong>put parameters, the calculated leakage ratesrange from 0.004 to 0.25 <strong>in</strong>ches/year (0.002 and 0.06 <strong>in</strong>ches/hole/year <strong>for</strong> k = 1×10 -6 and 1×10 -4cm/s, respectively). For a water depth of 1 foot, calculated leakage becomes 0.08 and 2.4<strong>in</strong>ches/hole/year, respectively. These rates are low and significantly lower than leakage throughthe prescriptive clay l<strong>in</strong>er (1.2 <strong>in</strong>ches/year) or the prescriptive geomembrane l<strong>in</strong>er overla<strong>in</strong> andunderla<strong>in</strong> by relatively high permeability material (Table 4-14).4.4.3 Conclusions on Conta<strong>in</strong>ment EquivalenceTable 4-14 summarizes the calculations developed <strong>in</strong> the previous sections on equivalence. Ath<strong>in</strong> precipitant by itself is unlikely to substitute <strong>for</strong> a clay l<strong>in</strong>er: it may, however, help <strong>in</strong>allow<strong>in</strong>g a facility from us<strong>in</strong>g a reduced clay l<strong>in</strong>er thickness rather than the prescriptive thicknessof 3 ft. In the case of a geomembrane l<strong>in</strong>er, the precipitated material could have a large impact <strong>in</strong>reduc<strong>in</strong>g leakage through defects even if its hydraulic conductivity is above that required <strong>for</strong> aclay l<strong>in</strong>er. It can be seen that a s<strong>in</strong>gle hole (~1-cm diameter) <strong>in</strong> a geomembrane will generate amuch higher overall leakage rate than that of a prescriptive clay l<strong>in</strong>er. Conversely, an undamagedgeomembrane will have no leakage. On the other hand, a defective prescriptive geomembranel<strong>in</strong>er act<strong>in</strong>g as a composite geomembrane l<strong>in</strong>er, thanks to a layer of precipitant, could behavemuch better than a prescriptive clay l<strong>in</strong>er.72


Table 4-14. Conta<strong>in</strong>ment equivalence summaryEquivalent Conta<strong>in</strong>ment TypeClay l<strong>in</strong>erPrescriptive geomembrane l<strong>in</strong>er(order of magnitude)3 holes per acre0.15 <strong>in</strong>ches of precipitant withk = 1×10 -4 to 1×10 -6 cm/s andgeomembrane l<strong>in</strong>er(order of magnitude)3 holes per acreIf M<strong>in</strong>imum Pond Depth(1.1 <strong>in</strong>ch)Rate must be


- two or three clay lifts (9 <strong>in</strong>ches thick each) <strong>in</strong>stead of the four lifts (that is, 3 ft) generallyrequired <strong>for</strong> constructed clay l<strong>in</strong>ers.Order of magnitude capital costs can be found <strong>in</strong> Mickley (2006) and, when not provided <strong>in</strong>Mickley’s document, are complemented by standard costs as practiced <strong>in</strong> the <strong>in</strong>dustry. Thegeneral capital cost of an evaporation pond is mostly a function of its size (area and depth). Asdisplayed <strong>in</strong> Table 4-9, area varies as a function of net evaporation rate. Mickley (2006, p. 162)suggested pond depths rang<strong>in</strong>g from 1 to 18 <strong>in</strong>ches, to which a m<strong>in</strong>imum freeboard (heavyprecipitation and wave action comb<strong>in</strong>ed) of 24 <strong>in</strong>ches should be added (Mickley, 2006, p. 163).Major contribut<strong>in</strong>g costs are land, earthwork, l<strong>in</strong><strong>in</strong>g, possibly monitor<strong>in</strong>g system <strong>in</strong>stallation, andmiscellaneous costs (access roads, fences, etc.).Operational costs <strong>for</strong> conventional and self-seal<strong>in</strong>g ponds are essentially the same. However, costof additives (Section 4.3.2.5), not <strong>in</strong>cluded <strong>in</strong> the discussion on capital costs, could beprohibitive. Land and earthwork costs are not significantly different <strong>for</strong> conventional and selfseal<strong>in</strong>gponds. The most ga<strong>in</strong> can be made by do<strong>in</strong>g away <strong>in</strong> full or <strong>in</strong> part with l<strong>in</strong>ers and/orleak-detection systems. Additional costs may be <strong>in</strong>curred by disposal of pond residuals if theyare classified as hazardous material (heavy metals, arsenic). This possibility, however, seemsremote (see Appendix I). Eng<strong>in</strong>eered self-seal<strong>in</strong>g ponds, with their additional material, result <strong>in</strong> athicker layer of bottom sediments and, thus, a reduced toxicity, which could be at a slightadvantage. However, most residuals will be accepted by regular landfills, and cost differentialsrelated to such an issue are not relevant <strong>in</strong> the high-level analysis presented <strong>in</strong> this section.Mickley (2006, p. 171) proposed the rule of thumb of $0.01/mil thickness /ft 2 , that is, ~$0.30/ft 2or ~$13,000/acre <strong>for</strong> a 30-mil geomembrane. Mickley (2006, p. 183) also proposed a simplifiedregression model, mostly valid from 10 to 100 acres, to estimate capital costs of an evaporationpond (no seepage monitor<strong>in</strong>g <strong>in</strong>cluded):( 5406 + 465×mil + 1.07 × LC + 0.931×LCC + 217. × ) × α$ Cost = CI × S ×5 DH− 2( 1 + 0.155 × DH ×1/ )with α = Swhere S is the pond surface area <strong>in</strong> acres, mil is the geomembrane thickness <strong>in</strong> mils, LC is theland cost per acre, LCC is the land clear<strong>in</strong>g cost per acre, DH is the dike height <strong>in</strong> feet (<strong>in</strong>cludesexcavation costs), and CI is the cont<strong>in</strong>gency factor. We set land cost at $0, and clear<strong>in</strong>g costs at am<strong>in</strong>imum of $1,000/acre. Dyke height is taken as 8 ft. The cost can then be written as:− 2( 8077 + 465 × mil) × ( 1+1.24 ×1/ )$ Cost = CI × S ×Sis at most:( 8077 + mil)$ Cost / acre = 1.11×CI × 465×, that is, <strong>for</strong> a 125 acre pond the cost per acreFocus<strong>in</strong>g on the geomembrane itself and not on the other capital costs that need to be <strong>in</strong>curredanyway <strong>in</strong> all cases (“8077” <strong>for</strong> construction costs and 1 .11× CI <strong>for</strong> facilities and accessconstruction), the geomembrane cost reverts to the ~0.01/mil thickness /ft 2 .It can then be determ<strong>in</strong>ed that the percentage of the l<strong>in</strong>er cost is about two-thirds the total cost:465 × mil mil 30% Cost == = = 63%8077 + 465 × mil 17.4 + mil 17.4 + 3074


It follows that, <strong>in</strong> the described conditions, a 30-mil membrane will cost about two thirds of thecapital costs.The cost to supply and <strong>in</strong>stall a state-of-the-art geocomposite (that is, with an additional layer ofhigh-permeability granular material) leak detection system can be estimated at $0.75/ft 2 (Duffy,2005) or $33,000/acre. A more adhoc system, <strong>for</strong> example a slop<strong>in</strong>g surface just beneath thegeomembrane lead<strong>in</strong>g to a sump, would cost much less. It can be estimated at a maximum of$0.20/ft 2 or $8,500/acre. The cost to construct a clay l<strong>in</strong>er with suitable soil excavated from thesite can be estimated as $10/yd 3 (Duffy, 2005), that is, $1.11/ft 2 or $48,400/acre <strong>for</strong> a 3-footthick clay l<strong>in</strong>er or $12,000/acre <strong>for</strong> each 9-<strong>in</strong>ch lift.Table 4-15 illustrates that costs of prescriptive clay or geomembrane l<strong>in</strong>ers are approximatelyequivalent (this, however, may not be true <strong>for</strong> some specific cases). With the values providedabove, estimated costs to construct the prescriptive l<strong>in</strong>ers are:• 3-foot thick clay l<strong>in</strong>er: $48,000/acre; and• 30-mil thick geomembrane l<strong>in</strong>er with geocomposite leak detection system: $46,000/acre.After add<strong>in</strong>g other costs (land clear<strong>in</strong>g, excavation, construction, etc), the approximate totalcapital cost applicable to both l<strong>in</strong>er types is $54,000/acre. As expla<strong>in</strong>ed above, l<strong>in</strong>er constructioncosts could be reduced <strong>for</strong> self-seal<strong>in</strong>g ponds if certa<strong>in</strong> regulatory requirements <strong>for</strong> l<strong>in</strong>ers arewaived. Examples of such waivers are:• use of a 2-foot thick clay l<strong>in</strong>er rather than a 3-foot thick clay l<strong>in</strong>er, which results <strong>in</strong> anestimated sav<strong>in</strong>gs of $16,000/acre;• use of a geomembrane l<strong>in</strong>er with a simple leak detection system, which results <strong>in</strong> anestimated sav<strong>in</strong>gs of $33,000 - $8,500 = $24,500/acre;• use of a geomembrane l<strong>in</strong>er without a leak detection system, which results <strong>in</strong> an estimatedsav<strong>in</strong>gs of $33,000/acre;• use of a 40-mil thick HDPE geomembrane rather than a 60-mil thick HDPE geomembrane,which results <strong>in</strong> an estimated sav<strong>in</strong>gs of $8,700/acre; and• use of an excavation utiliz<strong>in</strong>g the natural soil as a l<strong>in</strong>er with no other work required assuggested by Appendix C (alternative L<strong>in</strong>er, Option 2). Sav<strong>in</strong>gs are approximately 90% ofthe capital cost of a prescriptive l<strong>in</strong>er.The key requirement <strong>for</strong> all these waivers is the conta<strong>in</strong>ment equivalence as detailed <strong>in</strong> Section4.4.2.75


Table 4-15. Summary of approximate costs and cost sav<strong>in</strong>gs features <strong>for</strong> generic evaporationpondsCost <strong>in</strong>dependent of l<strong>in</strong>er typeApproximateCost/(Sav<strong>in</strong>g) perAcreLand cost $0Land clear<strong>in</strong>g, excavation,construction$8,000Percentage SavedRelative toPrescriptive L<strong>in</strong>erCost specific to prescriptive l<strong>in</strong>ersPrescriptive clay l<strong>in</strong>er3-ft-thick l<strong>in</strong>er $48,000Prescriptive geomembrane30-mil-thick geomembrane $13,000Leak-detection system $32,700TOTAL prescriptive l<strong>in</strong>er(regardless of the type)~$54,000 0%Alternative approaches2-ft-thick clay l<strong>in</strong>er ($16,000) 30%20-mil-thick geomembrane ($9,000) 17%30-mil-thick geomembrane andsimple leak detection system30-mil-thick geomembrane andno leak detection systemAlternative l<strong>in</strong>er, option 1(Appendix C)Alternative l<strong>in</strong>er, option 2(Appendix C)($33,000 - $8,500) 46%($33,000) 61%($48,000) 89%($48,000) 89%76


5 Conclusions, Recommendations, and Future WorkIn this section, we summarize conclusions on both the regulatory and technical feasibility of selfseal<strong>in</strong>gevaporation ponds. No significant regulatory barriers exist to prevent approval of selfseal<strong>in</strong>gevaporation pond-l<strong>in</strong>er technologies at desal<strong>in</strong>ation facilities <strong>in</strong> <strong>Texas</strong>. The permitt<strong>in</strong>g ofan evaporation pond is strictly a State issue and TCEQ has considerable latitude <strong>for</strong> approv<strong>in</strong>galternative permit requirements. Rules <strong>for</strong> municipal wastewater treatment are used as guides <strong>for</strong>the evaluation of <strong>in</strong>dustrial permits but do not impose strict regulatory requirements. Currentlyapproved pond l<strong>in</strong>ers <strong>in</strong>clude a 3-foot-thick layer of <strong>in</strong> situ clay or compacted clay or ageomembrane l<strong>in</strong>er (PVC, HDPE, butyl rubber, polypropyle, etc.) of 30 mils (0.76 mm) or morehav<strong>in</strong>g leak-detection monitor<strong>in</strong>g. An alternative l<strong>in</strong>er may be approved by TCEQ if it can bedemonstrated to achieve and ma<strong>in</strong>ta<strong>in</strong> equivalent conta<strong>in</strong>ment to the prescriptive l<strong>in</strong>ers and theresult<strong>in</strong>g l<strong>in</strong>er material(s) will not deteriorate because of reactivity with sal<strong>in</strong>ity or othercompounds <strong>in</strong> the effluent stream or other ambient conditions. The geochemical analysisper<strong>for</strong>med <strong>in</strong> this work suggested that at most a few <strong>in</strong>ches (but typically 1×10 -7 cm/s couldefficiently plug holes and defects of the geomembrane. This plugg<strong>in</strong>g ability, however, needs tobe confirmed by experiments and pilot tests. On the other hand, equivalent conta<strong>in</strong>ment can beachieved <strong>for</strong> clay l<strong>in</strong>ers mostly by sheer accumulation of the precipitated material at the bottomof the pond. The modest thickness of at most a few <strong>in</strong>ches of precipitant after a few years ofoperations suggests that the precipitated material needs to have a hydraulic conductivity muchlower than 1×10 -7 cm/s to impart the required properties to a scaled-down l<strong>in</strong>er and to besubstituted successfully <strong>for</strong> part or all of the clay l<strong>in</strong>er.An immediate benefit of self-seal<strong>in</strong>g properties could be <strong>in</strong>creased confidence <strong>in</strong> permitt<strong>in</strong>g anevaporation pond constructed to municipal wastewater standards and located <strong>in</strong> an77


environmentally sensitive area (such as above a shallow groundwater source of potable water).However, self seal<strong>in</strong>g technology does not seem able to create the sought-after repair effect at acost smaller than traditional techniques <strong>in</strong> these sensitive areas. At the opposite end of theenvironmental spectrum, if the effluent is nonhazardous and local groundwater quality poor, aself-<strong>for</strong>m<strong>in</strong>g s<strong>in</strong>gle l<strong>in</strong>er may be appropriately constructed by, <strong>for</strong> example, <strong>for</strong>c<strong>in</strong>g precipitationof sepiolite through an <strong>in</strong>itially high load<strong>in</strong>g of sepiolite precursors onto a natural clayey or siltysoil. In this work, we focused on precipitation of sepiolite clay because it is one of the simplestand most robust approaches, but many other possibilities of treatment and operational designcould be <strong>in</strong>vestigated. The crux of the problem truly lies <strong>in</strong> cost rather than eng<strong>in</strong>eer<strong>in</strong>gdifficulties.Possible items <strong>for</strong> future studies <strong>in</strong>clude- Investigation of m<strong>in</strong>erals other than sepiolite—specifically the most abundant m<strong>in</strong>erals,calcite and gypsum, whose gra<strong>in</strong> size can be eng<strong>in</strong>eered through additives. In particular,<strong>in</strong>vestigation on how to precipitate calcite <strong>in</strong> particles as small as possible to reduceporosity and permeability of a clay l<strong>in</strong>er.- Investigation of the <strong>in</strong>teractions between eng<strong>in</strong>eered self-seal<strong>in</strong>g m<strong>in</strong>erals and claym<strong>in</strong>erals because most evaporation ponds <strong>in</strong> <strong>Texas</strong> are l<strong>in</strong>ed with clay. Precipitant ismixed with airborne dust, decay<strong>in</strong>g plant matter, and other debris. Physical and chemical<strong>in</strong>teractions at the <strong>in</strong>terface clay l<strong>in</strong>er–bottom sediment may generate under someconditions hydraulic conductivity low enough to apply <strong>for</strong> an alternative l<strong>in</strong>er waiverunder “equivalent conta<strong>in</strong>ment.”- Investigation of the behavior of the precipitant next to a geomembrane defect/hole: willthe precipitant be mechanically entra<strong>in</strong>ed <strong>in</strong>to the hole because of <strong>in</strong>creased flux; willprecipitation be favored <strong>in</strong>side and next to a hole because of an <strong>in</strong>crease <strong>in</strong> chemicalaction?- Study of the impact of regulated trace elements (e.g., arsenic) on this report’sconclusions.- A better understand<strong>in</strong>g of evaporation pond processes, especially those with clay l<strong>in</strong>ers,<strong>in</strong> which chemical <strong>in</strong>teractions between l<strong>in</strong>er and concentrated evaporation pond solutionare relevant to self-seal<strong>in</strong>g mechanisms and pore plugg<strong>in</strong>g. A necessary step of thisadditional study <strong>in</strong>cludes field sampl<strong>in</strong>g. Natural sal<strong>in</strong>e lakes have been studied andsampled but no equivalent fundamental studies exist on <strong>Texas</strong> evaporation ponds.- Study of the impact of temperature on m<strong>in</strong>eral precipitation k<strong>in</strong>etics and of the impact ofseasonal temperature variations.- Study of the impact of biomass, both at the bottom of the pond, where reduc<strong>in</strong>gconditions may exist, and at the surface, where microorganisms such as diatoms maymobilize most of the silica. <strong>Evaporation</strong> ponds do not seem to reach sal<strong>in</strong>ity levels atwhich life is not susta<strong>in</strong>able. Such microorganisms may also mediate the precipitation ofuseful m<strong>in</strong>erals.78


6 ReferencesAhmed, M., 2000. Investigation on the use of evaporation ponds <strong>for</strong> br<strong>in</strong>e disposal <strong>in</strong> <strong>in</strong>landdesal<strong>in</strong>ation plants, MEDRC Series of R&D Reports, MEDRC Project:97-AS-007, The MiddleEast <strong>Desal<strong>in</strong>ation</strong> Research Center, Muscat, Oman, 73 p.Ahmed, M., Shayyab, W. H., Hoey, D., and Juma Al-Handaly, J., 2001. Br<strong>in</strong>e disposal fromreverse osmosis desal<strong>in</strong>ation plants <strong>in</strong> Oman and the United Arab Emirates, <strong>Desal<strong>in</strong>ation</strong>, 133, p.135-147.Ahmed, M.., Shayyab, W. H., Hoey, D., Mahendranc, A., Morris, R., and A1-Handalya, J., 2000.Use of evaporation ponds <strong>for</strong> br<strong>in</strong>e disposal <strong>in</strong> desal<strong>in</strong>ation plants, <strong>Desal<strong>in</strong>ation</strong>, 130, p. 155-168Akbulut, A., and Kadir, S., 2003. The geology and orig<strong>in</strong> of sepiolite, palygorskite and saponite<strong>in</strong> Neogene lacustr<strong>in</strong>e sediments of the Ser<strong>in</strong>hisar-Acipayam bas<strong>in</strong>, Denizli, SW Turkey, Claysand Clay M<strong>in</strong>erals, 51. p. 279-292.Alai, M., Sutton, M., and Carroll, S., 2005. Evaporative evolution of a Na–Cl–NO3–K–Ca–SO4–Mg–Si br<strong>in</strong>e at 95°C: Experiments and model<strong>in</strong>g relevant to Yucca Mounta<strong>in</strong>, Nevada,Geochemical Transactions, 6(2). p. 31-45.Allen, B. L., Harris, B. L., Davis, K. R., and G. B. Miller. 1972. The m<strong>in</strong>eralogy and chemistryof High Pla<strong>in</strong>s playa lake soils and sediments, Agronomy Department, <strong>Texas</strong> Tech University,report prepared <strong>for</strong> Office of Water Resources Research, U.S. Department of Interior undercontract No B-004-TEX, 75 p.Apps, J. A., Neil, J. M., and Jun, C.-H., 1988. Thermochemical properties of gibbsite, bayerite,boehmite, diaspore, and the alum<strong>in</strong>ate ion between 0 and 350 o C, Lawrence Berkeley Laboratory,report LBL-21482, variously pag<strong>in</strong>ated.Arvidson, R. S., and Mackenzie, F. T., 2000. Temperature dependence of m<strong>in</strong>eral precipitationrates along the CaCO 3 -MgCO 3 jo<strong>in</strong>, Aquatic Geochemistry, 6, p. 249-256.Banks, D., Parnachev, V. P., Frengstad, B., Holden, W., Karnachuk, O. V., and Vedernikov, A.A. 2004, The evolution of alkal<strong>in</strong>e, sal<strong>in</strong>e ground- and surface waters <strong>in</strong> the southern Siberiansteppes, Applied Geochemistry, 19, p. 1905-1926.Bethke, C. M., 1996. Geochemical Reaction Model<strong>in</strong>g, Concepts and Applications, Ox<strong>for</strong>dUniversity Press, 397 p.Birzoy, R., 2002. Formation of sepiolite-palygorskite and related m<strong>in</strong>erals from solution, Claysand Clay M<strong>in</strong>erals, 50(6), p.736-748.Bonaparte, R., Daniel, D. E., and Koerner, R. M., 2002, Assessment and Recommendations <strong>for</strong>Optimal Per<strong>for</strong>mance of Waste Conta<strong>in</strong>ment Systems, U.S. Environmental Protection Agency,79


National Risk Management Research Laboratory, C<strong>in</strong>c<strong>in</strong>nati, OH, 2002. EPA/600/R-02/099EPA/600/R-02/099.Boyd, F. M., and Kreitler, C. W., 1986. Hydrogeology of a gypsum playa, Northern Salt Bas<strong>in</strong>,<strong>Texas</strong>, The University of <strong>Texas</strong> at Aust<strong>in</strong>, Bureau of Economic Geology, Report ofInvestigations No. 158, 37 p.Brady, N. C., 1990, The Nature and Properties of Soils, 10 th Edition, McMillan Publish<strong>in</strong>gCompany, New York, 620 p.Brady, P. V. 1992, Surface complexation and m<strong>in</strong>eral growth: sepiolite, <strong>in</strong> Water-RockInteraction, Kharaka, Y., and Maest, A.S., eds., Proc. 7 th International Symposium on Water-Rock Interaction WR1-7, Park City, Utah, 13-18 July, p. 85-88.Daveler, S. A. and Wolery, T. J. 1992. EQPT, A Data File Preprocessor <strong>for</strong> the EQ3/6 SoftwarePackage: User’s Guide and Related Documentation (Version 7.0), UCRL-MA-110662 PT II.Livermore, Cali<strong>for</strong>nia: Lawrence Livermore National Laboratory.Decarreau, A., 1985. Partition<strong>in</strong>g of divalent transition elements between octahedral sheets oftrioctahedral smectites and water, Geochimica et Cosmochimica Acta, 49, p. 1537-1544.Deocampo, D. M., 2005. Evaporative evolution of surface waters and the role of aqueous CO 2 <strong>in</strong>magnesium silicate precipitation: Lake Eyasi and Ngorongoro Crater, northern Tanzania, SouthAfrican Journal of Geology, 108(4), p. 493-504.D<strong>in</strong>g, M., Schuil<strong>in</strong>g R.D., and van der Sloot, H.A., 2003. <strong>Self</strong>-seal<strong>in</strong>g isolation andimmobilization: a geochemical approach to solve the environmental problem of waste acidicjarosite, Applied Geochemistry, 17, p. 93-103.Dixon, J. B., 1989. Kaol<strong>in</strong> and serpent<strong>in</strong>e group m<strong>in</strong>erals, <strong>in</strong> M<strong>in</strong>erals <strong>in</strong> Soil Environments, 2 ndedition, Dixon, J. B., and Weed, S. B., eds., Soil Science Society of America, p. 467-525.Domenico, P. A., and Schwartz, F. W., 1990. Physical and Chemical Hydrogeology, John Wileyand Sons, Inc., 824 p.Donahe, R., 2006. Advective Flow of Sal<strong>in</strong>e Waste through a Contam<strong>in</strong>ant-Induced <strong>Self</strong>-Form<strong>in</strong>g M<strong>in</strong>eral L<strong>in</strong>er: Feasibility of L<strong>in</strong>er Application <strong>for</strong> <strong>Desal<strong>in</strong>ation</strong> Concentrateevaporation ponds, Master’s Thesis, New Mexico State University, Las Cruces, New Mexico,156 p.Drever, J. I., 1988. The Geochemistry of Natural Waters, 2 nd Edition, Prentice Hall, NJ. 437 pDuffy, D.P., 2005. Landfill Economics, Part II: Gett<strong>in</strong>g Down to Bus<strong>in</strong>ess, MSW Management,15(5), http://www.mswmanagement.com/mw_0507_landfill2.html , last accessed March 200780


Eugster, H. P., and Jones, B. F., 1979. Behavior of major solutes dur<strong>in</strong>g closed-bas<strong>in</strong> br<strong>in</strong>eevolution, American Journal of Science, 279, p. 609-631.Evans, B. W., and Guggenheim, S., 1985. Talc, pyrophyllite, and related m<strong>in</strong>erals, <strong>in</strong> Reviews <strong>in</strong>M<strong>in</strong>eralogy, Vol. 19: Hydrous Phyllosilicates (exclusive of micas), S. W. Bailey, ed.,M<strong>in</strong>eralogical Society of America, p. 225-294.Galan, E., 1996, Properties and applications of palygorskite-sepiolite clays, Clay M<strong>in</strong>erals, 31, p.443-453.Galan, E., and Castillo, A., 1984. Sepiolite—palygorskite <strong>in</strong> Spanish Tertiary bas<strong>in</strong>s: geneticalpatterns <strong>in</strong> cont<strong>in</strong>ental environments, <strong>in</strong> Developments <strong>in</strong> sedimentology, 37, Palygorskitesepioliteoccurrences, genesis, and uses, S<strong>in</strong>ger, A., and Galan, E., eds., Elsevier, Amsterdam, p.87-124.Giroud, J. P., 1997. Equations <strong>for</strong> calculat<strong>in</strong>g the rate of leakage migration through compositel<strong>in</strong>ers due to geomembrane defects, Geosynthetics International, 4(3-4), p. 335-348.Giroud, J.P. and Bonaparte, R., 1989. Leakage through l<strong>in</strong>ers constructed with geomembranes,Part I. Geomembrane l<strong>in</strong>ers, Geotextiles and Geomembranes, 8, pp. 27-67.Glass, H. D., Frye, J. C. and Leonard A. B., 1973. Clay m<strong>in</strong>erals <strong>in</strong> east-central New Mexico,The New Mexico Bureau of Geology and M<strong>in</strong>eral Resources, Circular 139, 14 p.Güven, N, 1988. Smectites, <strong>in</strong> Reviews <strong>in</strong> M<strong>in</strong>eralogy, Vol. 19: Hydrous Phyllosilicates(exclusive of micas), S. W. Bailey, ed., M<strong>in</strong>eralogical Society of America, p. 497-559.Harbeck, G. E., Jr., 1955. The effect of sal<strong>in</strong>ity on evaporation, U.S. Geological SurveyProfessional Paper 272-A. 6 p.Hardie, L. A., and Eugster, H. P., 1970. The evolution of closed-bas<strong>in</strong> br<strong>in</strong>es, M<strong>in</strong>eralogicalSociety of America Special Paper No. 3, p. 273-290.Hem, J. D., and L<strong>in</strong>d, C. D., 1974. Kaol<strong>in</strong>ite synthesis at 25°C, Science, 184, p. 1171-1173.Hitchon, B., Perk<strong>in</strong>s, E. H., and Gunter, W. D., 1999. Introduction to Ground WaterGeochemistry, Geoscience Publish<strong>in</strong>g Ltd., Sherwood Park, Alberta, Canada. 310 p.Hover, V. C., 2003. Geochemical signatures of paleodepositional and diagenetic environments; aSTEM/AEM study of authigenic clay m<strong>in</strong>erals from an arid rift bas<strong>in</strong>, Olduvai Gorge, Tanzania,<strong>in</strong> Clays and Clay M<strong>in</strong>erals, United States, Ashley, G M., ed., Clay M<strong>in</strong>erals Society, Clarkson,NY, p. 231.Hudec, P. P. and Sonnenfeld. P., 1980. Comparison of Caribbean solar ponds with <strong>in</strong>land solarlakes of British Columbia, <strong>in</strong> Developments <strong>in</strong> Sedimentology. 28, Hypersal<strong>in</strong>e Br<strong>in</strong>es andEvaporitic Environments, Nissenbaum, A., ed., Proceed<strong>in</strong>gs of the Bat Sheva Sem<strong>in</strong>ar on Sal<strong>in</strong>e81


Lakes and Natural Br<strong>in</strong>es, Bat Sheva Sem<strong>in</strong>ar on Sal<strong>in</strong>e Lakes and Natural Br<strong>in</strong>es (1977),Weizmann Institute of Science, Elsevier, Amsterdam, p.101-117.Huff, G. F., 2004. Use of simulated evaporation to assess the potential <strong>for</strong> scale <strong>for</strong>mation dur<strong>in</strong>greverse osmosis desal<strong>in</strong>ation, <strong>Desal<strong>in</strong>ation</strong>, 160, p. 285-292.Iriarte, I., Petit, S., Huertas, F. J., Fiore, S., Grauby, O., Decarreau, A., and L<strong>in</strong>ares, J., 2005.Synthesis of kaol<strong>in</strong>ite with a high level of Fe 3+ <strong>for</strong> al substitution, Clays and Clay M<strong>in</strong>erals, 53,p. 1-10.Isphord<strong>in</strong>g, W. C., 1984. The clays of Yucatan, Mexico: a contrast <strong>in</strong> genesis, <strong>in</strong> Developments<strong>in</strong> Sedimentology, 37, Palygorskite-Sepiolite Occurrences, Genesis, and Uses, S<strong>in</strong>ger, A., andGalan, E., eds., Elsevier, Amsterdam, p. 59-73.Jones, B. F., and Galan, E., 1988. Sepiolite and palygorskite, <strong>in</strong> Reviews <strong>in</strong> M<strong>in</strong>eralogy, Vol. 19:Hydrous Phyllosilicates (exclusive of micas), Bailey, S. W., ed., M<strong>in</strong>eralogical Society ofAmerica, p. 631-674.Jones, C. W., 1983. Effects of br<strong>in</strong>e on the soil l<strong>in</strong><strong>in</strong>g of an evaporation pond, Advanced EnergyApplications Program, U.S. Department of the Interior, Bureau of Reclamation, Eng<strong>in</strong>eer<strong>in</strong>g andResearch Center, Project DE-28, 77 p.Jordahl, J., 2006. Beneficial and Nontraditional Uses of Concentrate, Report prepared <strong>for</strong> theWateReuse Foundation, Alexandria, VA, by CH2M Hill, 346 p.Keith, K. S., 2000. Characterization and permeability of sepiolite, palygorskite, and othercommercial clays and their applicability <strong>for</strong> use as impermeable barriers <strong>in</strong> waste disposal.Doctoral dissertation, Indiana University, Bloom<strong>in</strong>gton, Indiana. 274 p.Keon, N. E., Swartz, C. H., Brabander, D. J., Harvey, C., and Hemond, H. F., 2001. Validationof an arsenic sequential extraction method <strong>for</strong> evaluat<strong>in</strong>g mobility <strong>in</strong> sediments, EnvironmentalScience and Technology, 35, p. 2778-2784.Kloprogge, J. T., Martens, W. N., Nothdurft, L., Duong, L. V., and Webb, G. E., 2003. Lowtemperature synthesis and characterization of nesquehonite, Journal of Materials Science Letters,22(11), p. 825-829.Langmuir, D., 1997. Aqueous Environmental Geochemistry, Prentice Hall, NJ, 600 p.LBG-Guyton Associates, 2003. Brackish groundwater manual <strong>for</strong> <strong>Texas</strong> Regional WaterPlann<strong>in</strong>g Groups, Report prepared <strong>for</strong> the <strong>Texas</strong> Water Development Board, 188 p.Levy, D. B., Schramke, J. A., Esposito, K. J., Erickson, T. A., and Moore, J. C., 1999. Theshallow groundwater chemistry of arsenic, fluor<strong>in</strong>e, and major elements: Eastern Owens Lake,Cali<strong>for</strong>nia, Applied Geochemistry, 14, p. 53-65.82


Lu, H., Walton, J. C., and He<strong>in</strong>, H., 2002. Thermal <strong>Desal<strong>in</strong>ation</strong> Us<strong>in</strong>g MEMS and Sal<strong>in</strong>ity-Gradient Solar Pond Technology, The University of <strong>Texas</strong> at El Paso, El Paso, <strong>Texas</strong>, reportprepared <strong>for</strong> the Bureau of Reclamation, <strong>Desal<strong>in</strong>ation</strong> Research and Development ProgramReport No. 80, 41 p. + AppendicesMace, R. E., Nicot, J.-P., Chowdhury, A. H., Dutton, A. R., and Kalaswad, Sanjeev, 2006. PleasePass the Salt: Us<strong>in</strong>g Oil Fields <strong>for</strong> the Disposal of Concentrate from <strong>Desal<strong>in</strong>ation</strong> Plants, <strong>Texas</strong>Water Development Board, Report 366, 198 p.Mickley, M. C., 2001. Membrane Concentrate Disposal: Practices and Regulations, <strong>Desal<strong>in</strong>ation</strong>and Water Purification Research and Development Program Report No. 69, U.S. Department ofthe Interior, Bureau of Reclamation, Technical Service Center.Mickley, M.C., 2006. Membrane Concentrate Disposal: Practices and Regulations (SecondEdition), <strong>Desal<strong>in</strong>ation</strong> and Water Purification Research and Development Program Report No.123, U.S. Department of the Interior, Bureau of Reclamation, Technical Service Center.Moore, J., and Runkles, J. R., 1968. <strong>Evaporation</strong> from br<strong>in</strong>e solutions under controlledlaboratory conditions, <strong>Texas</strong> Water Development Board, Report 77, 69 p.Moo-Young H., Johnson B., Johnson A., Carson D., Lew C., Liu S., and Hancock, K., 2004.Characterization of <strong>in</strong>filtration rates from landfills: support<strong>in</strong>g groundwater model<strong>in</strong>g ef<strong>for</strong>ts,Environmental Monitor<strong>in</strong>g and Assessment, 96, p. 283-311.NCDC, 2006. http://lwf.ncdc.noaa.gov/oa/ncdc.html, last accessed December 2006.Nagy, K. L., 1995. Dissolution and precipitation k<strong>in</strong>etics of sheet silicates, <strong>in</strong> ChemicalWeather<strong>in</strong>g Rates of Silicate M<strong>in</strong>erals, White, A. F., and Brantley, S. L., eds., Chapter 5,Reviews <strong>in</strong> M<strong>in</strong>eralogy, 31, M<strong>in</strong>eralogical Society of America, p.173-233.Nicot, J. -P., Walden, S., Greenlee, L., and Els, J., 2005. A <strong>Desal<strong>in</strong>ation</strong> Database <strong>for</strong> <strong>Texas</strong>, TheUniversity of <strong>Texas</strong> at Aust<strong>in</strong>, Bureau of Economic Geology, f<strong>in</strong>al report prepared <strong>for</strong> <strong>Texas</strong>Water Development Board, under contract no. 2004-483-021, 34 p. + attachments.Nordstrom, P. L., and Qu<strong>in</strong>cy, L., 1999. Groundwater Data System Data Dictionary. <strong>Texas</strong>Water Development Board User’s Manual Series No UM-50, variously pag<strong>in</strong>ated.http://www.twdb.state.tx.us/publications/manuals/Manuals.asp, last accessed on September 6,2006.Palandri, J. L. and Kharaka, Y. K., 2004. A compilation of rate parameters of water-m<strong>in</strong>eral<strong>in</strong>teraction k<strong>in</strong>etics <strong>for</strong> application to geochemical model<strong>in</strong>g, U.S. Geological Survey Open-FileReport 2004-1068, 64 p.Parkhurst, D. L. and Appelo, C .A. J., 1999. User’s Guide to PHREEQC (version 2)—AComputer Program <strong>for</strong> Speciation, Batch-Reaction, One-Dimensional Transport, and InverseGeochemical Calculations, U.S. Geological Survey Water-Resources Investigations Report 99-83


4259, 312 p. http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/<strong>in</strong>dex.html, lastaccessed on December 2006.Parry, W. T., and Reeves, C. C., Jr., 1968. Clay m<strong>in</strong>eralogy of pluvial lake sediments, SouthernHigh Pla<strong>in</strong>s, <strong>Texas</strong>, Journal of Sedimentary Petrology, 38(7), p. 516-529Pokrovsky, O. S., and Schott, J., 1999. Processes at the magnesium-bear<strong>in</strong>g carbonates/solution<strong>in</strong>terface. II. k<strong>in</strong>etics and mechanism of magnesite dissolution, Geochimica et CosmochimicaActa, 63(6), p. 881-897San<strong>for</strong>d, W. E., and Wood, W. W., 1991. Br<strong>in</strong>e evolution and m<strong>in</strong>eral deposition <strong>in</strong>hydrologically open evaporate bas<strong>in</strong>s, American Journal of Science, 291, p. 687-710.Scanlon, B. R., Nicot, J. P., Reedy, R., Tachovsky, J. A., Nance, S. H., Smyth, R. C., Keese, K.,Ashburn, and Christian, L., 2005, Evaluation of Arsenic Contam<strong>in</strong>ation <strong>in</strong> <strong>Texas</strong>, The Universityof <strong>Texas</strong> at Aust<strong>in</strong>, Bureau of Economic Geology, f<strong>in</strong>al report prepared <strong>for</strong> <strong>Texas</strong> Commissionon Environmental Quality, under contract no. UT-08-5-70828, 177 p.Scheuerman, R. F., and Bergersen, B. M., 1990, Injection water sal<strong>in</strong>ity, <strong>for</strong>mation pretreatment,and well operations fluid selection guidel<strong>in</strong>es, <strong>in</strong> Society of Professional Eng<strong>in</strong>eers SPE Repr<strong>in</strong>tSeries No. 29, SPE Paper No. 18461, p. 154-170.Schuil<strong>in</strong>g, R. D., and van Gaans, P. F. M., 1997. The waste sulfuric acid lake of the TiO2 plant atArmyansk, Crimea, Ukra<strong>in</strong>e, Part I, <strong>Self</strong>-seal<strong>in</strong>g as an environmental protection mechanism.Applied Geochemistry, 12, p.181-186.Shi, C. and Booth, R., 2005. Laboratory development and field demonstration of selfseal<strong>in</strong>g/self-heal<strong>in</strong>glandfill l<strong>in</strong>er, Waste Management, 25, 231-238S<strong>in</strong>ger, A., 1989. Palygorskite and sepiolite group m<strong>in</strong>erals, <strong>in</strong> M<strong>in</strong>erals <strong>in</strong> Soil Environments,2 nd edition, Dixon, J. B., and Weed, S. B., eds., Soil Science Society of America Book Series 1,p. 829-872.Smith, G. R., Tanji, K. K., Jur<strong>in</strong>ak, J. J. and Burau, R. G. 1995. Applications of the Pitzerequations-based model to hypersal<strong>in</strong>e solutions, Chapter 7, <strong>in</strong> Chemical equilibria and reactionmodels , Loeppert, R. H., Schwab, A. D., and Goldberg, S., eds., Soil Science Society ofAmerica Special Publication 42, Madison, WI, p. 113-141,Sonnenfeld, P., and Hudec, P. P., 1980. Heliothermal lakes, <strong>in</strong> Developments <strong>in</strong> Sedimentology.28, Hypersal<strong>in</strong>e Br<strong>in</strong>es and Evaporitic Environments, Proceed<strong>in</strong>gs of the Bat Sheva Sem<strong>in</strong>ar onSal<strong>in</strong>e Lakes and Natural Br<strong>in</strong>es, Bat Sheva Sem<strong>in</strong>ar on Sal<strong>in</strong>e Lakes and Natural Br<strong>in</strong>es (1977),Weizmann Institute of Science, Elsevier, Amsterdam, p. 93-100.Stoessell, R. K., 1988. 25 o C and 1 atm dissolution experiments of sepiolite and kerolite,Geochimica and Cosmochimica Acta, 32, p. 365-374.84


Stumm W., and Morgan, J. J., 1996. Aquatic Chemistry, 3 rd Edition, John Wiley & Sons, Inc.,1022 p.Swift, A. H. P., Lu, H., and Becerra, H., 2002. Zero Discharge Waste Br<strong>in</strong>e Management <strong>for</strong><strong>Desal<strong>in</strong>ation</strong> Plants, The University of <strong>Texas</strong> at El Paso, El Paso, <strong>Texas</strong>, report prepared <strong>for</strong> theBureau of Reclamation, <strong>Desal<strong>in</strong>ation</strong> Research and Development Program Report No. 89, 41 p.+ AppendicesTCEQ, 2006a. Complet<strong>in</strong>g the Industrial Wastewater Permit Application, Form TCEQ-10411/10055-Instructions. 91 p.http://www.tceq.state.tx.us/assets/public/permitt<strong>in</strong>g/waterquality/<strong>for</strong>ms/10411_10055<strong>in</strong>s.pdf ,last accessed September 2006TCEQ, 2006b. Sampl<strong>in</strong>g Data Query, Surface Water Quality Monitor<strong>in</strong>g,http://www.tceq.state.tx.us/compliance/monitor<strong>in</strong>g/crp/data/samplequery.html, last accessedSeptember 2006.TNRCC, 1994. L<strong>in</strong>er Construction and Test<strong>in</strong>g Handbook Published <strong>in</strong> Accordance with §330.6Municipal Solid Waste Regulations (30 <strong>Texas</strong> Adm<strong>in</strong>istrative Code, Chapter 330), MunicipalSolid Waste Division, July 1, 1994, 44 p.TNRIS, 2006. Digital Data. ftp://ftp.tnris.org/Land_Resources/Soils/, last accessed September2006Tschirhart, W., and Rodriguez, D. A., 1998. ThEvap 1.0: Monthly Reservoir <strong>Evaporation</strong> Rates<strong>for</strong> <strong>Texas</strong> Us<strong>in</strong>g GIS, <strong>Texas</strong> Water Development Board User’s Manual Series No UM-50,variously pag<strong>in</strong>atedTurner, C. D., Walton, J. C., Moncada, J. D., and Tavares, M., 1999. Brackish groundwatertreatment and concentrate disposal <strong>for</strong> the Homestead colonia, El Paso, <strong>Texas</strong>, report prepared byThe University of <strong>Texas</strong> at El Paso <strong>for</strong> the U.S. Bureau of Reclamation, Water TreatmentTechnology Program Report No. 32, 69 p.TWDB, 2006a. <strong>Evaporation</strong>/Precipitation Data <strong>for</strong> <strong>Texas</strong>,http://hyper20.twdb.state.tx.us/<strong>Evaporation</strong>/evap.html, last accessed September 2006.TWDB, 2006b. Groundwater database,http://www.twdb.state.tx.us/publications/reports/GroundWaterReports/GWDatabaseReports/GWdatabaserpt.htm , last accessed September 2006.USGS, 2006. 2005 M<strong>in</strong>eral Yearbook, Magnesium Compounds. U.S. Geological Survey, June2006. http://m<strong>in</strong>erals.er.usgs.gov/m<strong>in</strong>erals/pubs/commodity/magnesium/ last accessed October2006.Velde, B., 1985. Clay M<strong>in</strong>erals: A Physico-Chemical Explanation of Their Occurrence,Developments <strong>in</strong> Sedimentology, 40, Elsevier, Amsterdam, 427 p.85


Vogels, R. J. M. J., Kloprogge, J. T., and Geus, J. W., 2005, Synthesis and characterization ofsaponite clays, American M<strong>in</strong>eralogist, 90, p. 931-944.Walton, J., Rahman, M., Casey, D., Picornell, M., and Johnson, F., 1997. Leakage through flaws<strong>in</strong> geomembrane l<strong>in</strong>ers, Journal of Geotechnical and Geoenvironmental Eng<strong>in</strong>eer<strong>in</strong>g, 123(6), p.534-539.Wangnick, K., 2002. IDA Worldwide <strong>Desal<strong>in</strong>ation</strong> Plants Inventory, Report No. 17, publishedby Wangnick Consult<strong>in</strong>g GMBH <strong>in</strong> cooperation with IDA International <strong>Desal<strong>in</strong>ation</strong> Association(USA).Wollast, R., Mackenzie, F. T., and Bricker, O. P., 1968. Experimental precipitation and genesisof sepiolite at earth-surface conditions, The American M<strong>in</strong>eralogist, 53, p. 1645-1662.Yoon, J. S., Moon, S., Kim, J. Y., Nam, K., and Chung, M., 2003. Mass transport of organiccontam<strong>in</strong>ants through a self-seal<strong>in</strong>g/self-heal<strong>in</strong>g m<strong>in</strong>eral landfill l<strong>in</strong>er, Journal of Material Cyclesand Waste Management, 5(2), 130-136.Zaaboub, N., Abdeljaouad, S., and Lopez-Gal<strong>in</strong>do, A., 2005. Orig<strong>in</strong> of fibrous clays <strong>in</strong> TunisianPaleogene cont<strong>in</strong>ental deposits, Journal of African Earth Sciences, v. 43, p. 491-504.Zelazny, L. W., and White, G. N., 1989. The pyrophyllite-talc group, <strong>in</strong> M<strong>in</strong>erals <strong>in</strong> SoilEnvironments, 2 nd edition, Dixon, J. B., and Weed, S. B., eds., Soil Science Society of America,p.547-550.86


7 Appendix ListAppendix A:Groundwater and Surface-Water Sample Locations and Piper PlotsAppendix B: Relevant TAC/TCEQ Rules and Excerpts from Form TCEQ 10411/10055-InstructionsAppendix CAppendix D:Appendix E:Appendix F:Appendix G:Appendix H:Appendix I:Appendix J:Appendix K:Example of Permit to Discharge Wastewater to an <strong>Evaporation</strong> PondPanhandle Sal<strong>in</strong>e Lake Sampl<strong>in</strong>g<strong>Evaporation</strong> Pond Sampl<strong>in</strong>gA Few Words about Clay M<strong>in</strong>eralsCommented Geochemical Input filesResults of Geochemical RunsDisposal of As-Rich Residuals as Hazardous WastesConceptual Draw<strong>in</strong>gs of <strong>Evaporation</strong> <strong>Ponds</strong>Responses to Review CommentsAppendix L: List of Changes <strong>in</strong> Revision 187


8 Appendix A:Groundwater and Surface-Water Sample Locations andPiper Plots89


This appendix describes <strong>in</strong> detail the geochemical nature of groundwater and surface-waterpotential candidates <strong>for</strong> feedwater of desal<strong>in</strong>ation facilities. It should be noted that thegeochemical nature of the brackish samples does not necessarily represent that of the fresh-watersamples of the same aquifers. One can consult the water quality section of the relevant GAMmodels <strong>for</strong> a better picture of the geochemistry of a given aquifer as a whole(http://www.twdb.state.tx.us/gam/<strong>in</strong>dex.htm ). TDS distribution (Figure 8-1) illustrates thepreem<strong>in</strong>ence <strong>in</strong> the sampl<strong>in</strong>g of low-TDS brackish waters and does not necessarily give anaccurate depiction of the TDS distribution of all brackish water <strong>in</strong> the 1,000- to 5,000-ppm range.Brackish water is distributed all across the state (Figure 8-2). A previous TWDB-sponsoredreport <strong>in</strong>vestigates the availability of brackish water across the state (LBG-Guyton Associates,2003). The workers focused on TDS and did not provide a detailed geochemistry analysis.0.300.25Frequency0.200.150.100.050.001,000-1,2501,250-1,5001,500-1,7501,750-2,0002,000-2,2502,250-2,5002,500-2,7502,750-3,0003,000-3,2503,250-3,5003,500-3,7503,750-4,0004,000-4,2504,250-4,5004,500-4,7504,750-5,000TDS Distribution of Slightly Brackish WatersNumber of b<strong>in</strong>s: 17; B<strong>in</strong> size: 250 ppmFigure 8-1. TDS distribution of slightly brackish watersA piper plot provides a visual aid to understand<strong>in</strong>g and compar<strong>in</strong>g different water samples. Itconsists of two tril<strong>in</strong>ear triangles and a diamond. The triangle on the left shows distribution ofthe cations (calcium, magnesium, and sodium and potassium). The closer a sample is to an apex,the more prevalent the cation is <strong>in</strong> the water chemistry. A sample plott<strong>in</strong>g at the exact middle ofthe triangle will have, on a molar basis, the same amount of calcium, magnesium, and sodiumand potassium. A similar explanation holds <strong>for</strong> the anion triangle of the right-hand side, whichmaps bicarbonate, sulfate, and chloride. Water samples are sometimes described by how theyplot on a Piper plot (e.g., sodium bicarbonate sulfate water). TDS is not captured <strong>in</strong> a Piper plot;only relative ion abundance is shown. A neutral species of <strong>in</strong>terest to this study (silica - SiO 2 ) isnot part of a Piper plot. Also, pH values, that, often times, control precipitation rates and m<strong>in</strong>eralstability doma<strong>in</strong>s are not captured by a Piper plot either, although bicarbonate relative abundancemay, <strong>in</strong> some <strong>in</strong>stances, suggest it. The diamond helps <strong>in</strong> understand<strong>in</strong>g the water sample as awhole and, especially, changes from one sample to the next (e.g., along a flow l<strong>in</strong>e from acalcium bicarbonate chemistry at the surface to a sodium chloride chemistry at depth).Because of the large number of chemical samples to potentially analyze (>13,000), it isimportant to characterize each of the 20 groups by a small number of samples. The differentgroups can be, at m<strong>in</strong>imum, characterized by some central values and a measure of the deviationfrom them. A simplistic approach to obta<strong>in</strong><strong>in</strong>g an average sample would be to compute theaverage of each ion and to assume that the composite sample is representative. However, such a91


composite sample is unlikely to be charge balanced, nor can it be used <strong>in</strong> geochemicalcalculations (e.g., Bethke, 1996, p. 85). A better approach is to determ<strong>in</strong>e which actual samplefrom the data set is the closest <strong>in</strong> some sense to the composite sample. Such a measure is MS1 s ,and <strong>for</strong> any sample s could be def<strong>in</strong>ed by⎡ nMS1s= ⎢∑αi⎢⎣i=1( C − C )where α i is a weigh<strong>in</strong>g factor <strong>for</strong> each ion i (usually taken as equal to 1), n is the number of ionsconsidered (generally eight: SiO 2 , Ca, Mg, Na, K, HCO 3 , SO 4 and Cl), and C s,i is the molarconcentration of ion i <strong>for</strong> sample s. C i,perc represents some chosen molar concentration percentile<strong>for</strong> ion i. For example, the sample best represent<strong>in</strong>g the central value of a data (sub)set wouldhave the smallest measure MS s when the percentile is 0.5 (that is, the median) <strong>for</strong> all ions. Afuller characterization of the data set would also <strong>in</strong>clude po<strong>in</strong>ts located at some distance from thecentral value <strong>in</strong> the eight-dimension space of the major ions, <strong>for</strong> example, with percentile 0.25and 0.75. In a 3D example with ion A, B, and C, the central value would be the sample closest tothe medians of the three ions (A=0.5, B=0.5, C=0.5). A better description of the data set wouldalso <strong>in</strong>clude the 25 th and 75 th percentiles, with the actual samples closest to (A=0.75, B=0.75,C=0.75), (A=0.25, B=0.75, C=0.75), (A=0.75, B=0.25, C=0.75), (A=0.75, B=0.75, C=0.25),(A=0.25, B=0.25, C=0.75), (A=0.25, B=0.75, C=0.25), (A=0.75, B=0.25, C=0.25), (A=0.25,B=0.25, C=0.25), that is a total of eight samples (represent<strong>in</strong>g the apexes of a cube <strong>in</strong> threedimensions). This number also represents the number of permutations with order of three trialswith two outcomes or 2 3 . An eight-dimension cube would still be characterized by a largenumber of samples (2 8 = 256 samples). A compromise can be found by us<strong>in</strong>g 5 (that is, 32samples at most) parameters: SiO 2 , Mg, Ca+Na+K, HCO 3 , and SO 4 . Chloride is conservative andis a dependant variable that can be approximately backcalculated us<strong>in</strong>g the charge balanceequation. Samples best represent<strong>in</strong>g the central value of each group are given <strong>in</strong> Table 8-1.The measure MS1 s is implicitly weighted by the ion abundance. To give equal weight to all ions,a second measure MS2 s can be def<strong>in</strong>ed by⎡ n ⎛ CMS2 ⎢ ⎜s= ∑⎢⎣ ⎝ Ci,perc− Ci=1 i,percs,i2⎞ ⎤⎟ ⎥⎠ ⎥⎦i,perc1/ 2s,i2⎤⎥⎥⎦1/ 2⎛ 1, that is, α ⎜i=⎝ Ci,The measure MS s by which each sample is gaged relative to the median sample and other grouppercentile isMS = rank(MS1 ) + rank( MS2 )swhere “rank” represents the rank of the sample when sorted <strong>in</strong> ascend<strong>in</strong>g measure value.Sepiolite precipitation requires high magnesium and alkal<strong>in</strong>e pH, so samples located near theupper apex of the cation triangle and the lower left-hand side of the anion apex are favored.Figure 8-2 expectedly demonstrates that water chemistry is dom<strong>in</strong>ated by sodium and/orcalcium, with some magnesium with bicarbonate, sulfate, and chloride present <strong>in</strong> anyproportions.ssperc⎞⎟⎠292


Table 8-1. Samples best represent<strong>in</strong>g the central value of each group (units are ppm)Group Name Figure# SiO 2 Ca Mg Na K HCO 3 SO 4 Cl pH TDSMixed Alluvium Figure 8-3 22 166 64 258 1.0 344 353 376 7.5 1,673Brazos River Alluvium Figure 8-4 20 146 43 133 N/A 620 122 138 6.6 1,229Rio Grande Alluvium Figure 8-4 33 182 37 321 N/A 410 497 347 7.9 1,836Seymour Figure 8-5 28 123 51 215 N/A 389 232 261 7.9 1,361Bolson Figure 8-6 34 67.7 20.3 297 10.9 137 210 396 7.7 1,190Ogallala Figure 8-7 54 89 88 189 14.0 245 348 295 8.4 1,346Pecos Valley Figure 8-8 30 277 86 351 17 220 730 650 7.4 2,370Gulf Coast Sandstone Figure 8-9 22 47 22 383 10.8 339 131 431 7.2 1,423All samples12 24 14 376 5.0 264 273 313 8.3 1,289Eocene MixedFigure 8-10 34 150 47 290 2.9 329 490 330 6.5 1,680Na dom<strong>in</strong>ant19 4.5 1 446 N/A 444 200 290 8.2 1,415Cretaceous Limestone Figure 8-11 17 136 60 232 0.6 315 493 237 8.0 1,502All samples14 74 21 271 4.0 371 288 185 8.3 1,242Cret. Sandst. Mixed Figure 8-12 13 167 58 166 N/A 277 433 208 7.3 1,369Na dom<strong>in</strong>ant11 4.4 2.4 411 2.1 510 236 143 7.9 1,330Triassic Sandstone Figure 8-13 12 110 53 281 11 290 410 277 7.0 1,508Permian Evaporite Figure 8-14 16 590 127 99 N/A 196 1810 92 7.4 2,940Permian Limestone Figure 8-15 17 159 56 250 N/A 377 262 324 7.4 1,623Permian Sandstone Figure 8-16 21 130 94 227 N/A 414 391 302 7.6 1,628Bone Spr<strong>in</strong>g – VictorioPeakFigure 8-17 18 439 171 305 16.0 272 1,481 519 6.8 3,250Capitan Reef Figure 8-17 17 152 79 92 N/A 276 439 133 7.4 1,198Pennsylvanian Figure 8-18 11 69 30 348 N/A 405 181 355 7.5 1,417Llano Uplift Figure 8-19 11 112 39 190 8.0 358 15 388 7.7 1,130Surface Water Figure 8-20 9.8 250 86 590 8.0 195 800 940 8.0 2,34193


TDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000Net <strong>Evaporation</strong> Rate Eastern Boundary¹0 45 90 180 270 360MilesFigure 8-2. Map and Piper plot of all groundwater samples on map of Figure 3-194


95Mixed Alluvium Group20%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOTDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000Net <strong>Evaporation</strong> Rate Outl<strong>in</strong>e ¹0 110 220 330 44055MilesFigure 8-3. Map and Piper plot of Mixed Alluvium group


96Rio Grande and Brazos Alluvium Groups20%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJNote: Empty triangles = Brazos and filled circles = Rio GrandeTDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000Brazos AlluviumNet <strong>Evaporation</strong> Rate Outl<strong>in</strong>e¹0 80 160 240 32040MilesFigure 8-4. Map and Piper plot of Rio Grande and Brazos Alluvium groups


97Seymour Group20%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHTDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000SeymourOther Major Aquifers¹0 50 100 150 20025MilesFigure 8-5. Map and Piper plot of Seymour group


98Bolson Group20%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEETDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000Bolson Aquifers ¹0 40 80 120 16020MilesFigure 8-6. Map and Piper plot of Bolson group


9920%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHTDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000Ogallala¹0 30 60 90 12015MilesFigure 8-7. Map and Piper plot of Ogallala group


100Pecos Valley Group20%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEPecos ValleyTDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000¹0 20 40 60 8010MilesFigure 8-8. Map and Piper plot of Pecos Valley group


101Gulf Coast Group20%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGTDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000Gulf Coast AquiferNet <strong>Evaporation</strong> Rate Outl<strong>in</strong>e¹0 40 80 120 16020MilesFigure 8-9. Map and Piper plot of Gulf Coast group


102Eocene Group20%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDTDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000Eocene AquifersNet <strong>Evaporation</strong> Rate Outl<strong>in</strong>e¹0 40 80 120 16020MilesFigure 8-10. Map and Piper plot of Eocene group


103Cretaceous Limestone Group20%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBTDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000Cretaceous AquifersNet <strong>Evaporation</strong> Rate Outl<strong>in</strong>e¹0 80 160 240 32040MilesFigure 8-11. Map and Piper plot of Cretaceous Limestone group


104Cretaceous Sandstone Group20%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCTDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000Cretaceous AquifersNet <strong>Evaporation</strong> Rate Outl<strong>in</strong>e¹0 80 160 240 32040MilesFigure 8-12. Map and Piper plot of Cretaceous Sandstone group


105Triassic Sandstone Group20%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDockum AquiferTDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000¹0 40 80 120 16020MilesFigure 8-13. Map and Piper plot of Triassic Sandstone group


106Permian Evaporite Group20%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJTDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000Bla<strong>in</strong>e AquiferSelected Major Aquifers¹0 60 120 180 24030MilesFigure 8-14. Map and Piper plot of Permian Evaporite group


107Permian Limestone Group20%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKTDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000Selected Major Aquifers¹ 0 60 120 180 24030MilesFigure 8-15. Map and Piper plot of Permian Limestone group


108Permian Sandstone Group20%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLTDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000Selected Major Aquifers¹ 0 60 120 180 24030MilesFigure 8-16. Map and Piper plot of Permian Sandstone group


Bone Spr<strong>in</strong>g and Capitan GroupsMg80%60%20%20%40%D40%DDDDDDDOOODOD DDODOD20%DODDDOOODOOOD40%SO 4 + ClNa + K60%80%80%80%60%40%20%HCO 3O60%DDOODDDDDDDDOODDO O OOODDOODODOOO80%60%Ca + MgO40%20%DO80%DODDDDDDD60%O ODDODOOOODOOD40%DO DDO 20%SO 480%60%40%20%20%40%60%80%CaNote: Blue del symbol = Bone Spr<strong>in</strong>g and red hourglass symbol = Capitan ReefCl¹TDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000Bone Spr<strong>in</strong>g Victoria AquiferCapitan Aquifer0 20 40 80 120 160MilesFigure 8-17. Map and Piper plot of Bone Spr<strong>in</strong>g – Victorio Peak and Capitan groups109


110Pennsylvanian Group20%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIITDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000Selected Major Aquifers¹ 0 60 120 180 24030MilesFigure 8-18. Map and Piper plot of Pennsylvanian group


Llano GroupMg80%60% O20%40%40% AAO O OAAA AA OA OOOAOA20%AOOAA A OOO A A OA O OAAOOAOAOAO80%60%40%20%40%SO 4 + Cl60%Na + K20%80%60%40%20%HCO 360%80%80%AAAAA OA OOA OA O AAO AA OAOOA O A AOAAO OOO O AOAO80%60%20%Ca + MgO AOAOAAO AAAO OAO AOAAAOAOOA40%20%AA40%A80%AA60%60%AO40%O OA A O AA20%AOOOAAOOAA AOOO OAAOOO OOA AAA OAAOOO OOAAA80%SO 4Note: square symbol = limestone and hourglass symbol = sandstoneCaClTDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000Llano Uplift AquifersSelected Major Aquifers¹030 60 120 180 240MilesFigure 8-19. Map and Piper plot of Llano Uplift group111


112Surface Water Group20%20%20%40%40%40%60%60%60%80%80%80%MgCa20%20%20%40%40%40%60%60%60%80%80%80%SO 4ClSO 4 + ClCa + MgNa + KHCO 3 80%80%60%60%40%40%20%20%IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKSource: TCEQ (2006b)Note: Data from Red (red triangles), Colorado (green <strong>in</strong>verted triangles), Canadian (open circles), and Brazos(squares) River bas<strong>in</strong>sTDS (ppm)1,000 - 2,0002,000 - 3,0003,000 - 4,0004,000 - 5,000>5,000¹0 70 140 210 28035MilesFigure 8-20. Map and Piper plot of surface-water group


9 Appendix B:Relevant TAC/TCEQ Rules and Excerpts from FormTCEQ 10411/10055-Instructions113


Excerpts from TCEQ (2006b, p. 11):The owner(s) of an <strong>in</strong>dustrial facility which generates wastewater seek<strong>in</strong>g authorization from the TCEQto 1) discharge wastewater <strong>in</strong>to water <strong>in</strong> the state (TPDES) or 2) dispose of wastewater adjacent towaters <strong>in</strong> the state by irrigation, evaporation, or subsurface disposal (TLAP) must be the applicant<strong>for</strong> a permit.Excerpts from TCEQ (2006b, p. 49):INSTRUCTIONS FOR WORKSHEET 3.1 - SURFACE LAND DISPOSAL OF EFFLUENTREQUIRED FOR ALL RENEWAL, AMENDMENT, AND NEW APPLICATIONS FOR APERMIT TO DISPOSE OF WASTEWATER BY SURFACE LAND DISPOSAL.2. EVAPORATION PONDSFor evaporation ponds, provide a separate eng<strong>in</strong>eer<strong>in</strong>g report of evaporation calculations <strong>for</strong> average longterm conditions and worse case conditions (i.e., maximum ra<strong>in</strong>fall and m<strong>in</strong>imum evaporation from thepast 25 years of climatological data). The calculations will be used to evaluate the suitability of thedisposal volume of the evaporation pond(s). It is necessary to determ<strong>in</strong>e the maximum feasible long-termdisposal volume under average conditions to prevent effluent accumulation as well as to determ<strong>in</strong>e theadequacy of the system under extreme conditions of maximum ra<strong>in</strong>fall and m<strong>in</strong>imum evaporation.The storage volume calculations consist<strong>in</strong>g of items 12 - 20 of the water balance and storage calculations(See Example 6 ) can be used as one method of demonstrat<strong>in</strong>g pond storage capabilities. For column 13,provide the amount of effluent sent to the evaporation pond (normally the permitted flow converted to<strong>in</strong>ches per month per acre of surface area of the evaporation pond(s)).Recommended Data Sources: Data <strong>for</strong> net evaporation values may be obta<strong>in</strong>ed from the <strong>Texas</strong> WaterDevelopment Board’s <strong>Evaporation</strong>/Precipitation Data <strong>for</strong> <strong>Texas</strong>,http://hyper20.twdb.state.tx.us/<strong>Evaporation</strong>/evap.html. Please provide all the appropriate documentation ifdata utilized <strong>in</strong> the water balance/storage calculations are from sources other than these.115


The follow<strong>in</strong>g pages conta<strong>in</strong> the rules (valid as of September 2006) pert<strong>in</strong>ent to evaporationponds: §309.13 (Unsuitable Site Characteristics), §317.1 (General provisions),§317.4(Wastewater Treatment <strong>Facilities</strong>), and §317.5 (Sludge Process<strong>in</strong>g).TITLE 30PART 1CHAPTER 309SUBCHAPTER BRULE §309.13<strong>Texas</strong> Adm<strong>in</strong>istrative CodeENVIRONMENTAL QUALITYTEXAS COMMISSION ON ENVIRONMENTAL QUALITYDOMESTIC WASTEWATER EFFLUENT LIMITATION ANDPLANT SITINGLOCATION STANDARDSUnsuitable Site Characteristics(a) A wastewater treatment plant unit may not be located <strong>in</strong> the 100-year flood pla<strong>in</strong> unless the plant unit isprotected from <strong>in</strong>undation and damage that may occur dur<strong>in</strong>g that flood event.(b) A wastewater treatment plant unit may not be located <strong>in</strong> wetlands. (This prohibition is not applicable toconstructed wetlands.)(c) A wastewater treatment plant unit may not be located closer than 500 feet from a public water well as providedby §290.41(c)(1)(B) of this title (relat<strong>in</strong>g to Ground Water Sources and Development) nor 250 feet from a privatewater well. The follow<strong>in</strong>g separation distances apply to any facility used <strong>for</strong> the storage, process<strong>in</strong>g, or disposal ofdomestic wastewater. Exceptions to these requirements will be considered at the request of a permit applicant on acase-by-case basis, and alternative provisions will be established <strong>in</strong> a permit if the alternative condition providesadequate protection to potable water sources and supplies:(1) A wastewater treatment plant unit, land where surface irrigation us<strong>in</strong>g wastewater effluent occurs, or soilabsorption systems (<strong>in</strong>clud<strong>in</strong>g low pressure dos<strong>in</strong>g systems, drip irrigation systems, and evapotranspiration beds)must be located a m<strong>in</strong>imum horizontal distance of 150 feet from a private water well;(2) A wastewater treatment plant unit, or land where surface irrigation us<strong>in</strong>g wastewater effluent occurs, must belocated a m<strong>in</strong>imum horizontal distance of 500 feet from an elevated or ground potable-water storage tank asprovided by §290.43(b)(1) of this title (relat<strong>in</strong>g to Location of Clear Wells, Standpipes, and Ground Storage andElevated Tanks);(3) A wastewater treatment plant unit, or land where surface irrigation us<strong>in</strong>g wastewater effluent occurs, must belocated a m<strong>in</strong>imum horizontal distance of 500 feet from a public water well site as provided by §290.41(c)(1)(C) ofthis title, spr<strong>in</strong>g, or other similar sources of public dr<strong>in</strong>k<strong>in</strong>g water;(4) A wet well or pump station at a wastewater treatment facility must be located a m<strong>in</strong>imum horizontal distance of300 feet from a public water well site, spr<strong>in</strong>g, or other similar sources of public dr<strong>in</strong>k<strong>in</strong>g water as provided by§290.41(c)(1)(B) of this title; and(5) A wastewater treatment plant unit, or land where surface irrigation us<strong>in</strong>g wastewater effluent occurs must belocated a m<strong>in</strong>imum horizontal distance of 500 feet from a surface water treatment plant as provided by§290.41(e)(3)(A) of this title.(d) A wastewater treatment facility surface impoundment may not be located <strong>in</strong> areas overly<strong>in</strong>g the recharge zonesof major or m<strong>in</strong>or aquifers, as def<strong>in</strong>ed by the <strong>Texas</strong> Water Development Board, unless the aquifer is separated fromthe base of the conta<strong>in</strong>ment structure by a m<strong>in</strong>imum of three feet of material with a hydraulic conductivity towardthe aquifer not greater than 10 -7 cm/sec or a thicker <strong>in</strong>terval of more permeable material which provides equivalentor greater retardation of pollutant migration. A synthetic membrane l<strong>in</strong>er may be substituted with a m<strong>in</strong>imum of 30mils thickness and an underground leak detection system with appropriate sampl<strong>in</strong>g po<strong>in</strong>ts.(e) One of the follow<strong>in</strong>g alternatives must be met as a compliance requirement to abate and control a nuisance ofodor prior to construction of a new wastewater treatment plant unit, or substantial change <strong>in</strong> the function or use of anexist<strong>in</strong>g wastewater treatment unit:(1) Lagoons with zones of anaerobic activity (e.g., facultative lagoons, un-aerated equalization bas<strong>in</strong>s, etc.) maynot be located closer than 500 feet to the nearest property l<strong>in</strong>e. All other wastewater treatment plant units may not belocated closer than 150 feet to the nearest property l<strong>in</strong>e. Land used to treat primary effluent is considered a plantunit. Buffer zones <strong>for</strong> land used to dispose of treated effluent by irrigation shall be evaluated on a case-by-case basis.116


The permittee must hold legal title or have other sufficient property <strong>in</strong>terest to a contiguous tract of land necessary tomeet the distance requirements specified <strong>in</strong> this paragraph dur<strong>in</strong>g the time effluent is disposed by irrigation;(2) The applicant must submit a nuisance odor prevention request <strong>for</strong> approval by the executive director. A request<strong>for</strong> nuisance odor prevention must be <strong>in</strong> the <strong>for</strong>m of an eng<strong>in</strong>eer<strong>in</strong>g report, prepared and sealed by a licensedprofessional eng<strong>in</strong>eer <strong>in</strong> support of the request. At a m<strong>in</strong>imum, the eng<strong>in</strong>eer<strong>in</strong>g report shall address exist<strong>in</strong>gclimatological conditions such as w<strong>in</strong>d velocity and atmospheric stability, surround<strong>in</strong>g land use which exists orwhich is anticipated <strong>in</strong> the future, wastewater characteristics <strong>in</strong> affected units perta<strong>in</strong><strong>in</strong>g to the area of the bufferzone, potential odor generat<strong>in</strong>g units, and proposed solutions to prevent nuisance conditions at the edge of the bufferzone and beyond. Proposed solutions shall be supported by actual test data or appropriate calculations. The requestshall be submitted, prior to construction, either with a permit application and subject to review dur<strong>in</strong>g the permitt<strong>in</strong>gprocess or submitted <strong>for</strong> executive director approval after the permitt<strong>in</strong>g process is completed; or(3) The permittee must submit sufficient evidence of legal restrictions prohibit<strong>in</strong>g residential structures with<strong>in</strong> thepart of the buffer zone not owned by the applicant. Sufficient evidence of legal restriction may, among others, takethe <strong>for</strong>m of a suitable restrictive easement, right-of-way, covenant, deed restriction, deed recorded, or a privateagreement provided as a certified copy of the orig<strong>in</strong>al document. The request shall be submitted, prior toconstruction, either with a permit application and subject to review dur<strong>in</strong>g the permitt<strong>in</strong>g process or submitted <strong>for</strong>executive director approval after the permitt<strong>in</strong>g process is completed.(f) For a facility <strong>for</strong> which a permit application, other than a renewal application, is made after October 8, 1990, ifthe facility will not meet the buffer zone requirement by one of the alternatives described <strong>in</strong> subsection (e) of thissection, the applicant shall <strong>in</strong>clude <strong>in</strong> the application <strong>for</strong> the discharge permit a request <strong>for</strong> a variance. A variancewill be considered on a case-by-case basis and, if granted by the commission, shall be <strong>in</strong>cluded as a condition <strong>in</strong> thepermit. This variance may be granted by the commission, consistent with the policies set out <strong>in</strong> <strong>Texas</strong> Water Code,§26.003.(g) Any approved alternative <strong>for</strong> achiev<strong>in</strong>g the requirements of this subsection must rema<strong>in</strong> <strong>in</strong> effect as long as thewastewater treatment plant is permitted by the commission. To comply with this requirement, the permittee mustcarry out the nuisance odor prevention plan at all times, shall ensure sufficient property ownership or <strong>in</strong>terest andshall ma<strong>in</strong>ta<strong>in</strong> easements prohibit<strong>in</strong>g residential structures, as appropriate.(h) For a permitted facility undergo<strong>in</strong>g renewal of an exist<strong>in</strong>g permit with plans and specifications approved prior toMarch 1, 1990, <strong>for</strong> which no design change is requested, the facility will not be required to comply with therequirements of this subsection.(i) <strong>Facilities</strong> <strong>for</strong> which plans and specifications have been approved prior to March 1, 1990, are not required toresubmit revised plans and specifications to meet changed requirements <strong>in</strong> this section <strong>in</strong> obta<strong>in</strong><strong>in</strong>g renewal of anexist<strong>in</strong>g permit.CHAPTER 317 DESIGN CRITERIA FOR SEWERAGE SYSTEMSRULE §317.1 General Provisions(a) Purpose. These design criteria are m<strong>in</strong>imum guidel<strong>in</strong>es to be used <strong>for</strong> the comprehensive consideration ofdomestic sewage collection, treatment, or disposal systems and establish the m<strong>in</strong>imum design criteria pursuant toexist<strong>in</strong>g state statutes perta<strong>in</strong><strong>in</strong>g to effluent quality necessary to meet state water quality standards. These criteria are<strong>in</strong>tended to promote the design of facilities <strong>in</strong> accordance with good public health and water quality eng<strong>in</strong>eer<strong>in</strong>gpractices. These criteria <strong>in</strong>clude the m<strong>in</strong>imum requirements <strong>for</strong> a prelim<strong>in</strong>ary eng<strong>in</strong>eer<strong>in</strong>g report which provides thegeneral eng<strong>in</strong>eer<strong>in</strong>g concepts underly<strong>in</strong>g the proposed project as well as the f<strong>in</strong>al eng<strong>in</strong>eer<strong>in</strong>g report detail<strong>in</strong>g thefully developed project along with related plans and specifications.(4) Types of approval. Regardless of the type of approval, constructed facilities when <strong>in</strong> operation are required toproduce the quality of effluent specified <strong>in</strong> their discharge permit(s). The types of approvals described <strong>in</strong>subparagraphs (A) - (C) of this paragraph will be utilized by the commission or any other review authority.(A) Standard approval. Plans and specifications found to comply with all applicable parts of these criteria and tocon<strong>for</strong>m to commonly accepted sanitary eng<strong>in</strong>eer<strong>in</strong>g design practices shall be approved <strong>for</strong> construction.(B) Approvals of <strong>in</strong>novative and noncon<strong>for</strong>m<strong>in</strong>g technologies.(i) Technologies considered to be noncon<strong>for</strong>m<strong>in</strong>g or <strong>in</strong>novative <strong>in</strong>clude ones not con<strong>for</strong>m<strong>in</strong>g to or addressed <strong>in</strong>the design criteria of this chapter.(ii) If an approval <strong>for</strong> noncon<strong>for</strong>m<strong>in</strong>g or <strong>in</strong>novative technologies is requested, eng<strong>in</strong>eer<strong>in</strong>g proposals <strong>for</strong>processes, equipment, or construction materials not covered <strong>in</strong> these criteria shall be fully described <strong>in</strong> the submitted117


plann<strong>in</strong>g materials and the reasons <strong>for</strong> their selection clearly outl<strong>in</strong>ed. Processes considered to be noncon<strong>for</strong>m<strong>in</strong>g or<strong>in</strong>novative should also be supported by results of pilot or demonstration studies. Where similarly designed full scaleprocesses exist and are known to have operated <strong>for</strong> a reasonable period of time under conditions similar to thosesuggested <strong>for</strong> the proposed design, per<strong>for</strong>mance data from these exist<strong>in</strong>g full scale facilities shall be required to besubmitted to the executive director <strong>in</strong> addition to, or <strong>in</strong> lieu of, pilot or small scale demonstration studies. Anywarranties or per<strong>for</strong>mance bond agreements offered by the process, equipment, or material manufacturers shall befully described <strong>in</strong> the request.(iii) Approvals of processes, equipment, or construction materials which are considered to be <strong>in</strong>novative ornoncon<strong>for</strong>m<strong>in</strong>g will be granted only <strong>in</strong> cases where the commission or review authority determ<strong>in</strong>es, after aneng<strong>in</strong>eer<strong>in</strong>g evaluation of the support<strong>in</strong>g <strong>in</strong><strong>for</strong>mation provided <strong>in</strong> the submitt<strong>in</strong>g eng<strong>in</strong>eer's design report, that thetechnology will not result <strong>in</strong> a threat to public health or the environment.(iv) The executive director or review authority may require the manufacturer or supplier to obta<strong>in</strong> and furnishevidence of an acceptable two-year per<strong>for</strong>mance bond from an approved surety which <strong>in</strong>sures the per<strong>for</strong>mance ofthe <strong>in</strong>novative or noncon<strong>for</strong>m<strong>in</strong>g technology. The per<strong>for</strong>mance bond shall cover the cost of removal or abandonmentof the <strong>in</strong>novative or noncon<strong>for</strong>m<strong>in</strong>g facility and equipment, replacement with previously agreed upon facilities orequipment, and all associated eng<strong>in</strong>eer<strong>in</strong>g fees necessary <strong>for</strong> the removal and replacement.(v) Approval of <strong>in</strong>novative and noncon<strong>for</strong>m<strong>in</strong>g technologies may <strong>in</strong>clude a condition which states that aftersome predeterm<strong>in</strong>ed period of time after the <strong>in</strong>stallation and startup of the <strong>in</strong>novative or noncon<strong>for</strong>m<strong>in</strong>g technology,requir<strong>in</strong>g an eng<strong>in</strong>eer<strong>in</strong>g report to be submitted after start-up, detail<strong>in</strong>g the per<strong>for</strong>mance of the noncon<strong>for</strong>m<strong>in</strong>g or<strong>in</strong>novative technology. The eng<strong>in</strong>eer<strong>in</strong>g report shall <strong>in</strong>clude unbiased calculations and data support<strong>in</strong>g thetechnology's per<strong>for</strong>mance; and written submittals from the design eng<strong>in</strong>eer and permittee which state that thenoncon<strong>for</strong>m<strong>in</strong>g or <strong>in</strong>novative technology has satisfied its manufacturer's claims.CHAPTER 317RULE §317.4DESIGN CRITERIA FOR SEWERAGE SYSTEMSWastewater Treatment <strong>Facilities</strong>(j) Wastewater stabilization ponds (secondary treatment ponds).(1) Pretreatment. Wastewater stabilization ponds shall be preceded by facilities <strong>for</strong> primary sedimentation of theraw sewage. Aerated lagoons or facultative lagoons may be utilized <strong>in</strong> place of conventional primary treatmentfacilities.(2) Imperviousness. All earthen structures proposed <strong>for</strong> use <strong>in</strong> domestic wastewater treatment or storage shall beconstructed to protect groundwater resources. Where l<strong>in</strong><strong>in</strong>gs are necessary, the follow<strong>in</strong>g methods are acceptable:(A) <strong>in</strong>-situ or placed clay soils hav<strong>in</strong>g the follow<strong>in</strong>g qualities may be utilized <strong>for</strong> pond l<strong>in</strong><strong>in</strong>g:(i) more than 30% pass<strong>in</strong>g a 200-mesh sieve;(ii) liquid limit greater than 30%;(iii) plasticity <strong>in</strong>dex greater than 15; and(iv) a m<strong>in</strong>imum thickness of two feet;(B) membrane l<strong>in</strong><strong>in</strong>g with a m<strong>in</strong>imum thickness of 20 mils, and an underdra<strong>in</strong> leak detection system;(C) other methods with commission approval.(3) Distribution of flow. Stabilization ponds shall be of such shape and size to <strong>in</strong>sure even distribution of thewastewater flow throughout the entire pond. While the shapes of ponds may be dictated to some extent by thetopography of the location, long narrow ponds are preferable and they should be oriented <strong>in</strong> the direction of theprevail<strong>in</strong>g w<strong>in</strong>d such that debris is blown toward the <strong>in</strong>let. <strong>Ponds</strong> with narrow <strong>in</strong>lets or sloughs should be avoided.(4) Access area. Storm water dra<strong>in</strong>age shall be excluded from all ponds. All vegetation shall be removed fromwith<strong>in</strong> the pond area dur<strong>in</strong>g construction. Access areas shall be cleared and ma<strong>in</strong>ta<strong>in</strong>ed <strong>for</strong> a distance of at least 20feet from the outside toes of the pond embankment walls.(5) Multiple ponds. The use of multiple ponds <strong>in</strong> pond systems is required. The operation of the ponds shall beflexible, enabl<strong>in</strong>g one or more ponds to be taken out of service without affect<strong>in</strong>g the operation of the rema<strong>in</strong><strong>in</strong>gponds. The ponds shall be operated <strong>in</strong> series dur<strong>in</strong>g rout<strong>in</strong>e operation periods.(6) Organic load<strong>in</strong>g. The organic load<strong>in</strong>g on the stabilization ponds, based on the total surface area of the ponds,shall not exceed 35 pounds of BOD 5 per acre per day. The load<strong>in</strong>g on the <strong>in</strong>itial stabilization pond shall not exceed75 pounds of BOD 5 per acre per day.(7) Depth. The stabilization ponds or cells shall have a normal water depth of three to five feet.118


(8) Inlets and outlets. Multiple <strong>in</strong>lets and multiple outlets are required. The <strong>in</strong>lets and outlets shall be arranged toprevent short circuit<strong>in</strong>g with<strong>in</strong> the pond so that the flow of wastewater is distributed evenly throughout the pond.Multiple <strong>in</strong>lets and outlets shall be spaced evenly. All outlets shall be baffled with removable baffles to preventfloat<strong>in</strong>g material from be<strong>in</strong>g discharged, and shall be constructed so that the level of the pond surface may be variedunder normal operat<strong>in</strong>g conditions. Submerged outlets shall be used to prevent the discharge of algae.(9) Embankment walls. The embankment walls should be compacted thoroughly and compaction details shall becovered <strong>in</strong> the specifications. Soil used <strong>in</strong> the embankment shall be free of <strong>for</strong>eign material such as paper, brush, andfallen trees. The embankment walls shall have a top width of at least 10 feet. Interior and exterior slope of theembankment wall should be one foot vertical to three feet horizontal. There shall be a freeboard of not less than twofeet nor more than three feet based on the normal operat<strong>in</strong>g depth. All embankment walls shall be protected byplant<strong>in</strong>g grass or riprapp<strong>in</strong>g. Where embankment walls are subject to wave action, riprapp<strong>in</strong>g should be <strong>in</strong>stalled.Erosion stops and water seals shall be <strong>in</strong>stalled on all pip<strong>in</strong>g penetrat<strong>in</strong>g the embankments. Provisions should bemade to change the operat<strong>in</strong>g level of the pond so the pond surface can be raised or lowered at least six <strong>in</strong>ches.(10) Partially mixed aerated lagoons.(A) Horsepower. With partially mixed aerated lagoons, no attempt is made to keep all pond solids <strong>in</strong> suspension.Mechanical or diffused aeration equipment should be sized to provide a m<strong>in</strong>imum of 1.6 pounds of oxygen perpound of BOD 5 applied with the largest unit out of service. Where multiple ponds are used <strong>in</strong> series, the power <strong>in</strong>putmay be reduced as the <strong>in</strong>fluent BOD 5 to each pond decreases. Proposed oxygen transfer rates <strong>in</strong> excess of twopounds per horsepower-hour must be justified by actual per<strong>for</strong>mance data.(B) Pond siz<strong>in</strong>g. Partially mixed aerated lagoons should be sized <strong>in</strong> accordance with the <strong>for</strong>mula <strong>in</strong> subsection(i)(3) of this section us<strong>in</strong>g K-0.28. Pond length to width ratios should be three to one or four to one.(C) Imperviousness. Requirements <strong>for</strong> imperviousness, multiple cells, embankment walls, and <strong>in</strong>lets and outletsshall be the same as <strong>for</strong> other secondaryCHAPTER 317RULE §317.5DESIGN CRITERIA FOR SEWERAGE SYSTEMSSludge Process<strong>in</strong>g(e) Sludge dewater<strong>in</strong>g facilities. Sludge shall be dewatered sufficiently to meet the requirements of the ultimate <strong>for</strong>mof disposal.(1) Sludge dry<strong>in</strong>g beds.(A) Required area. The area of sludge dry<strong>in</strong>g beds to be provided will vary <strong>in</strong> accordance with the averagera<strong>in</strong>fall, average humidity, and type of treatment process used. The required area <strong>for</strong> aerobic sludge dewater<strong>in</strong>g shallbe determ<strong>in</strong>ed from §317.12 of this title (relat<strong>in</strong>g to Appendix D) (<strong>for</strong> anaerobic sludge dewater<strong>in</strong>g, the valueobta<strong>in</strong>ed from §317.12 of this title (relat<strong>in</strong>g to Appendix D)) may be reduced 35% to determ<strong>in</strong>e the required area)us<strong>in</strong>g a waste load based on sewage strength and the daily average flow of the raw sewage. The bed area siz<strong>in</strong>grequirements shown <strong>in</strong> §317.12 of this title (relat<strong>in</strong>g to Appendix D) are <strong>for</strong> sludge dry<strong>in</strong>g beds utiliz<strong>in</strong>g acont<strong>in</strong>uous underdra<strong>in</strong> media as specified <strong>in</strong> this subsection. Concrete (or similar impervious material) sludge dry<strong>in</strong>gbeds which do not use an underdra<strong>in</strong> media may require additional area and will be evaluated on a case-by-casebasis; however, <strong>in</strong> those counties of the state which experience both high ra<strong>in</strong>fall and high relative humidity(Brazoria, Chambers, Fort Bend, Galveston, Hard<strong>in</strong>, Harris, Jasper, Jefferson, Liberty, Newton, and Orange), othermethods of sludge dewater<strong>in</strong>g should be utilized <strong>in</strong> lieu of sludge dry<strong>in</strong>g beds. Where sludge dry<strong>in</strong>g beds are used <strong>in</strong>those counties of high ra<strong>in</strong>fall and humidity, provisions shall be made <strong>in</strong> the design of these beds <strong>for</strong> cover<strong>in</strong>g thebeds, <strong>for</strong> means of accelerated dewater<strong>in</strong>g, or <strong>for</strong> extra storage capacity and alternate dewater<strong>in</strong>g methods toeffectively dewater the sludge dur<strong>in</strong>g <strong>in</strong>clement weather.(B) General design features. At least two sludge dry<strong>in</strong>g beds shall be provided and they shall be constructed atelevations above groundwater level. Construction shall be such as to exclude surface water runoff from the beds andseepage from the beds <strong>in</strong>to the ground. Channels shall be of sufficient grade and size to facilitate the flow of thesludge to the various beds. Runners should be provided to facilitate sludge handl<strong>in</strong>g.(C) Filtrate. The filtrate (or dra<strong>in</strong>age) from the sludge dry<strong>in</strong>g beds shall be returned to the head of the treatmentworks or to the aeration system.(D) Sludge removal. A splash block or slab shall be provided at the po<strong>in</strong>t where digested sludge is dischargedonto each of the beds. Appropriate means shall be provided to facilitate the removal of the dried sludge from thebeds <strong>for</strong> disposal without bed damage result<strong>in</strong>g. Every sludge dry<strong>in</strong>g bed should <strong>in</strong>clude a removal gate or stopplanks <strong>in</strong> one end to provide access <strong>for</strong> mach<strong>in</strong>ery and trucks to remove and haul away the dried sludge.119


(E) Media. A m<strong>in</strong>imum depth of 12 <strong>in</strong>ches of filter<strong>in</strong>g material, of which four to six <strong>in</strong>ches is coarse sand, isrequired. To exclude surface water and eroded earth, the bed shall be protected by a permanent wall which shallextend at least 12 <strong>in</strong>ches but not more than 24 <strong>in</strong>ches above the f<strong>in</strong>ished surface of the beds.(2) Vacuum filters, belt filters, belt filter presses, and other mechanical dewater<strong>in</strong>g filters.(A) Multiple units. Where dewater<strong>in</strong>g of sludge is proposed, the design eng<strong>in</strong>eer shall provide data to documentsufficient capacity, alternate disposal means, or storage facilities capable of ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g normal daily operationsdur<strong>in</strong>g breakdowns, upsets, etc.(B) Filtrate. The filtrate from the filters shall be returned to the head of the treatment works or to the aerationsystem. Consideration shall be given to the impact of the returned filtrate on the treatment units and to provid<strong>in</strong>godor and <strong>in</strong>sect control facilities.(3) Portable dewater<strong>in</strong>g units. If sludge is to be treated us<strong>in</strong>g portable mechanical dewater<strong>in</strong>g units, provisions shallbe made <strong>in</strong> the facility plan or prelim<strong>in</strong>ary eng<strong>in</strong>eer<strong>in</strong>g report <strong>for</strong> the location and connection of the portabledewater<strong>in</strong>g unit(s) dur<strong>in</strong>g facility operation.120


10 Appendix C:Example of Permit to Discharge Wastewater to an<strong>Evaporation</strong> Pond121


The follow<strong>in</strong>g pages show relevant pages extracted from a permit to a recent evaporation pond.In particular it describes the three pond l<strong>in</strong><strong>in</strong>g options <strong>in</strong> Section V-3-a, b, and c.123


124


125


126


11 Appendix D:Panhandle Sal<strong>in</strong>e Lake Sampl<strong>in</strong>g127


A few of the High Pla<strong>in</strong>s sal<strong>in</strong>e lakes were sampled <strong>for</strong> water chemical analyses (Table 11-1) andbottom sediment m<strong>in</strong>eralogical analyses (f<strong>in</strong>e-gra<strong>in</strong>ed fraction, Table 11-2). A location map isgiven <strong>in</strong> Figure 11-1. Because of recent precipitation events at the time of the sampl<strong>in</strong>g, sampleswere taken on the edges of lakes where detrital <strong>in</strong>put is likely important.Table 11-1. Chemical analysis results of Panhandle sal<strong>in</strong>e lake, summer 2006 field sampl<strong>in</strong>gSampl<strong>in</strong>g Location Si* Ca Mg Na K Sr Fe Cl SO 4Baileyboro Lake 6.7 1,435 3,503 9,022 232 105.1 15,633 13,975Goose Lake 48.1 121 85 263 45 4.9 186 163Pauls Lake 2.9 342 1,314 8,257 245 8.5 3.5 10,400 9,410White Lake 852 1,232 11,029 414 21.4 9,468 17,404Double Lake 8.8 65 321 2,954 143 7.7 20.1 1,799 3,227Tahoka Lake 0.3 156 882 3,991 572 26.5 4,034 6,002Guthrie Lake 12.0 107 72 2,551 33 4.2 3,099 1,067Cedar Lake 7.0 216 12,876 73,434 11,747 11.0 154,916 18,294Note: Units are ppm* Silicon (Si) is reported, not silica (SiO 2 ); there are no chemical analysis results <strong>for</strong> Tw<strong>in</strong> Lakesbecause they were dry at the time of sampl<strong>in</strong>g.Table 11-2. X-ray analyses of sal<strong>in</strong>e lake sediments (f<strong>in</strong>e-gra<strong>in</strong>ed fraction)Sampl<strong>in</strong>g Location M<strong>in</strong>eral AbundanceBaileyboro Lake Quartz > calcite; trace of illite and kaol<strong>in</strong>ite, and even less sepiolite or smectiteGoose LakeQuartz>> calcite, dolomite, trace kaol<strong>in</strong>iteQuartz>> calcite>K-feldspar, trace illitePauls LakeQuartz>> calcite, trace feldspar, kaol<strong>in</strong>ite, very small amount of illite and otherclaysWhite LakeQuartz>> calcite, trace of dolomite and kaol<strong>in</strong>iteCalcite>quartz, trace kaol<strong>in</strong>ite and illiteQuartz >> calcite and gypsum, trace of illiteDouble Lake Quartz >> calcite, dolomite trace of feldspar and kaol<strong>in</strong>ite.Halite, quartz>dolomite>calcite, trace illiteTahoka Lake Quartz>> calcite, trace of feldspar, illite and kaol<strong>in</strong>iteGuthrie Lake Quartz>> calcite, trace feldspar and kaol<strong>in</strong>ite, ± gypsumCedar LakeQuartz > calcite; trace of illite, kaol<strong>in</strong>ite and dolomite, and even less sepiolite orsmectiteTw<strong>in</strong> Lakes Quartz>> calcite, trace of feldspar, dolomite, illite and Kaol<strong>in</strong>iteNote: X-Ray analyses per<strong>for</strong>med by J. Krumhansl at Sandia National Laboratories; multiple l<strong>in</strong>es correspond tomultiple samples <strong>in</strong> the same sal<strong>in</strong>e lake; “>” = more abundant than; “>>” = vastly more abundant than.129


¹DEAF SMITHRANDALLARMSTRONGDONLEYMiles0 5 10 20 30 40Sal<strong>in</strong>e LakePARMERCASTROSWISHERBRISCOEHALLOgallalaCityBaileyboro LakeBAILEYLAMBHALEFLOYDMOTLEYGoose LakePauls LakeWhite LakeCOCHRANHOCKLEYLUBBOCKCROSBYDICKENSDouble LakeTahoka LakeYOAKUMTERRYLYNNGARZAKENTTw<strong>in</strong> LakeGuthrie LakeGAINESDAWSONBORDENSCURRYCedar LakeANDREWSMARTINHOWARDMITCHELLLOVINGWINKLERECTORMIDLANDGLASSCOCKSTERLINGCOKNote: Only sampled lakes are named on the mapFigure 11-1. Locations of Panhandle sal<strong>in</strong>e lakes130


12 Appendix E:<strong>Evaporation</strong> Pond Sampl<strong>in</strong>g131


In the summer/fall 2006, four evaporation ponds across <strong>Texas</strong> were sampled (Figure 12-1): RiverOaks Ranch, near Aust<strong>in</strong>; Horizon Regional MUD, near El Paso; and the Abilene and Bradyfacilities. At each location, pond bottom sediment and crust (Table 12-1), as well as well water,desal<strong>in</strong>ation concentrate, and pond water, were sampled (Table 12-2 and Figure 12-2) and X-raydiffraction analyses per<strong>for</strong>med (Figure 12-3). Each sample conta<strong>in</strong>ed approximately 50 to100 cm 3 of water. This observation is particularly important <strong>for</strong> pond samples because theyrepresent an average over some depth and do not fully characterize the vertical gradient obvious<strong>in</strong> some ponds. Conductivity, temperature, dissolved oxygen, and pH were collected directly <strong>in</strong>the field us<strong>in</strong>g a Quanta model from Hydrolab Corporation. The water samples were stored <strong>in</strong> anice chest <strong>for</strong> transport and then <strong>in</strong> a cold room until chemical analyses. Anion analyses wereper<strong>for</strong>med at BEG us<strong>in</strong>g ion chromatography. Cation analyses were per<strong>for</strong>med by the LowerColorado River Authority (LCRA) Environmental Laboratory Services (ELS) us<strong>in</strong>g the ICPmethod. Samples sent to the LCRA-ELS were already filtered and x100-diluted, expla<strong>in</strong><strong>in</strong>g afew miss<strong>in</strong>g sodium analyses when sodium concentrations were low. Silica analyses wereper<strong>for</strong>med at BEG on an LED photometer us<strong>in</strong>g a Vacu-vials ® kit <strong>for</strong> silica.The theoretical precipitation sequence (Figure 12-4), obta<strong>in</strong>ed by runn<strong>in</strong>g PHREEQC, isconsistent with observations. Pond sal<strong>in</strong>ity is low <strong>in</strong> all cases, and only the <strong>in</strong>itial section of thesequence is applicable. Model<strong>in</strong>g of the River Oaks Ranch facility shows that little else thangypsum will precipitate, with very m<strong>in</strong>or calcite and other clays. This f<strong>in</strong>d<strong>in</strong>g is <strong>in</strong> agreementwith the observations presented <strong>in</strong> Table 12-1. Model<strong>in</strong>g of the three horizon MUD samplesshows not only gypsum precipitation, which has not been observed <strong>in</strong> the samples, but alsocalcite and a trace of clays, consistent with observations. The Abilene and Brady samples showmostly calcite with m<strong>in</strong>or clay, as expected by results of evaporation first stages that were<strong>in</strong>dicated by geochemical model<strong>in</strong>g.Table 12-1. X-ray analyses of pond bottom sediments and crustsFacility Sample M<strong>in</strong>eral AbundanceBottom Sediments1RORMostly gypsum with some calcite and no clays or quartz21Hor. MUD 2 Calcite>quartz, trace kaol<strong>in</strong>ite, illite, trace smectite/sepiolite?31Abilene 2 Quartz>calcite, trace illite and kaol<strong>in</strong>ite-like clay3Mostly calcite, a very small addition of quartz and traces of illite andBradykaol<strong>in</strong>iteCrust/efflorescenceRORGypsum and some calcite and no clays and quartzHor. MUDGypsum and quartzNote: X-Ray analyses per<strong>for</strong>med by J. Krumhansl at Sandia National Laboratories; multiple l<strong>in</strong>es correspondto multiple samples <strong>in</strong> the same pondX-ray diffraction analysis is an <strong>in</strong>strumental technique <strong>for</strong> identify<strong>in</strong>g m<strong>in</strong>erals and estimat<strong>in</strong>gtheir degree of crystall<strong>in</strong>ity. An X-ray beam is generated and hits the sample. The beam is thendiffracted accord<strong>in</strong>g to the unique structure of each m<strong>in</strong>eral <strong>in</strong> the sample, produc<strong>in</strong>g adist<strong>in</strong>ctive pattern or f<strong>in</strong>gerpr<strong>in</strong>t on what is generally called the 2-theta scale (Figure 12-3). Thesize of the peak is related to the abundance of the m<strong>in</strong>eral <strong>in</strong> the sample and its sharpness to thecrystall<strong>in</strong>ity of the m<strong>in</strong>eral.133


Table 12-2. <strong>Evaporation</strong> pond sampl<strong>in</strong>g resultsFacilitySampl<strong>in</strong>gLocationTure( o C) pHSiO 2(mg/L)Ca(mg/L)Mg(mg/L)Na(mg/L)K(mg/L)Cl(mg/L)SO 4(mg/L)HCO 3(mg/L)TDS(mg/L)ROR Well Water NM NM 12.3 318.1 227.4 77.8 23.7 67.3 1,598.4 23.8 2,356Concentrate NM NM 34.7 1401.3 923.6 312.0 74.9 203.7 6,832.0 14.2 9,799Pond sample 3 NM NM 4.1 697.9 1662.1 615.3 147.6 441.9 9,651.6 10.2 13,277Pond sample 4 NM NM 4.1 695.4 1770.7 653.2 154.1 439.9 9,509.9 10.3 13,240Pond sample 5 NM NM 4.3 746.7 1782.7 661.3 156.9 441.5 9,643.5 9.6 13,463Pond sample 6 NM NM 4.9 754.7 1758.8 650.5 153.5 435.3 9,547.7 9.5 13,317Hor. Well Water 24.5 7.94 23.5 94.9 24.7 483.7 10.6 419.0 595.3 76.4 1,736MUD Well Water 25.3 7.94 31.6 98.0 22.3 493.1 10.6 415.0 593.1 72.3 1,775Concentrate 24.3 8.03 70.3 256.5 63.5 1259.7 28.4 997.2 1,519.5 35.1 4,230Concentrate 24.7 7.96 66.3 189.7 47.2 928.3 22.2 958.9 1,461.2 52.0 3,731Concentrate 26.0 7.89 106.8 301.5 75.0 1436.3 35.1 1485.9 2,344.5 46.0 5,831Pond sample 1 21.4 8.57 65.7 257.0 62.1 1280.2 32.1 1169.0 1,753.8 12.0 4,664Pond sample 2 22.4 8.53 66.5 322.8 81.6 1603.9 42.1 1023.3 1,517.6 10.2 4,668Pond sample 3 21.3 8.65 47.8 319.3 80.9 1587.0 44.4 1376.6 1,990.7 8.9 5,504Abilene Well Water 23.9 7.88 5.2 82.8 60.6 192.6 10.9 381.9 311.1 84.4 1,130Concentrate 24.5 7.36 16.0 311.7 229.8 712.0 39.1 1,232.2 1,098.1 122.9 3,772Pond sample 2 20.3 8.80 2.8 0.0 48.7 1762.2 28.6 2,717.3 2,127.2 0.0 3,683Pond sample 3 20.8 8.41 0.2 278.4 318.4 1843.6 24.5 2,743.6 2,125.3 8.5 7,318Pond sample 4 20.1 8.31 0.7 292.3 328.0 1895.0 23.2 1,785.0 1,419.7 18.0 7,441Brady A Well Water 25.9 8.40 10.8 44.5 47.6 315.1 17.4 590.1 139.0 42.5 1,245Concentrate 24.4 8.32 26.6 114.5 130.0 855.4 48.0 1,596.9 364.6 29.9 3,180Pond sample 27.5 8.68 12.4 73.8 118.4 810.8 42.5 1,641.6 375.3 19.0 3,108Note: NM= not measured; italic (and blue) cells conta<strong>in</strong> data not provided <strong>in</strong> the source but calculated to approximately match TDS and electrical balance–Feedwater K computed from concentrate K by assum<strong>in</strong>g average concentrate/feed ratio; bicarbonate computed with PHREEQC assum<strong>in</strong>g equilibrium withcalciteA Concentrate obta<strong>in</strong>ed at the Brady facility does not represent the ultimate concentrate but its composition after one pass134


Horizon Regional M.U.D.City of AbileneCity of BradyRiver Oaks Ranch¹0 50 100 200 300 400MilesNote: Symbols are proportional to facility size; area with positive net evaporation rate also shownFigure 12-1. Location map of the four sampled evaporation ponds135


BLIBLIAbilene WellAbilene ConcentrateAbilene PondBrady WellBrady ConcentrateBrady PondBLIBLIHorizon WellHorizon ConcentrateHorizon PondRiver Oaks Ranch WellRiver Oaks Ranch ConcentrateRiver Oaks Ranch Pond80%BLI40%SO 4 + Cl60%80%60%40%HCO 3LIBCa + Mg20%IBLLIB20%80%20%20%LBI80%Na + KMg40%20%60%LBILBI40%60%80%IBLILIB60%80%40%SO 460%LIB40%LB I20%BLI80%60%40%20%20%40%60%80%CaClNote: Circle = feedwater; <strong>in</strong>verted delta = concentrate; square = pond waterFigure 12-2. Piper plots of samples from selected <strong>Texas</strong> desal<strong>in</strong>ation facilities136


(a)Note: Both samples show the presence of calcite (strong peak at 2θ≈29.5 and secondary peaks at ~39.5 and 43, aswell as multiple peaks between 47 and 49) and quartz (strong peak at 2θ≈26.7 and secondary peak at ~21). Sample(a) is dom<strong>in</strong>ated by calcite whereas sample (b) conta<strong>in</strong>s mostly quartz. There are traces of clay m<strong>in</strong>erals as well butno significant amount of sepiolite (no peak at 2θ≈7.4)Figure 12-3. Examples of X-ray diffraction patterns of bottom pond sediments: Horizon MUDsample 3 (a), Abilene sample 1 (b), River Oaks Ranch sample 1 (c) and Brady sample 1 (d)(b)137


(c)(d)Note: Sample (c) from River Oaks Ranch is dom<strong>in</strong>ated by gypsum (strong peaks at ~12, ~21, and strong doublepeak ~30), with some calcite. Sample (d) is dom<strong>in</strong>ated by calcite (strong peak at 2θ≈29.5), with some quartz (strongpeak at 2θ≈26.7). There are traces of clay m<strong>in</strong>erals as well but no significant amount of sepiolite (no peak at 2θ≈7.4)Figure 12-3. Examples of X-ray diffraction patterns of bottom pond sediments (cont<strong>in</strong>ued): RiverOaks Ranch sample 1 (c) and Brady sample 1 (d)138


River Oaks Ranch Conc.1.E+020 100 200 300 400 500 600 700 800 900 1000Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AnhydriteBruciteCalciteGypsum1.E-04<strong>Evaporation</strong> ProgressHorizon Conc. 11.E+020 100 200 300 400 500 600 700 800 900 1000Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AnhydriteCalciteGlauberiteGypsumHaliteLabile_SMirabilite1.E-04<strong>Evaporation</strong> ProgressHorizon Conc. 21.E+020 100 200 300 400 500 600 700 800 900 1000Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteBloediteCalciteGlauberiteGypsumHaliteLabile_S1.E-04<strong>Evaporation</strong> ProgressNote: Brady run had convergence issuesFigure 12-4. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g sampled concentrateas the source.139


Horizon Conc. 31.E+020 100 200 300 400 500 600 700 800 900 1000Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteBloediteCalciteGlauberiteGypsumHaliteLabile_S1.E-04<strong>Evaporation</strong> ProgressAbilene Conc. 11.E+020 100 200 300 400 500 600 700 800 900 1000Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AnhydriteBruciteCalciteGlauberiteGypsumHalite1.E-04<strong>Evaporation</strong> ProgressBrady Conc.1.E+020 100 200 300 400 500 600 700 800 900 1000Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AnhydriteBruciteCalciteGypsumHalite1.E-04<strong>Evaporation</strong> ProgressFigure 12-4. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g sampled concentrateas the source. (cont<strong>in</strong>ued)140


River Oaks Ranch FacilityWe visited the River Oaks Ranch PWS facility (#ID 1050099) on August 29, 2006, at the end ofa summer with no significant precipitation. Sample locations are shown <strong>in</strong> Figure 12-5. Theevaporation pond area is approximately 2 acres. Two groundwater wells (G1050099A and B) tapthe Glenrose–Tr<strong>in</strong>ity aquifer at an approximate depth of 650 to 700 ft. The pond has a l<strong>in</strong>er witha leak-detection system through sumps located on its northeast side. Figure 12-6 shows a whitegypsum crust. Whitish sediments can also be seen at the bottom of the pond, most of whichappears to be w<strong>in</strong>dblown dust. The cover photo of this report shows a large area with novegetative covers and supports this possibility. Figure 12-7 suggests that the pond water depth ismore than 1 ft. It was noted that the well water is high <strong>in</strong> dissolved iron and is treated with agreen sand filter be<strong>for</strong>e it enters the RO system.123465Note: Yellow l<strong>in</strong>e across the pond is ~180 m longFigure 12-5. Aerial view of River Oaks Ranch evaporation pond show<strong>in</strong>g sampl<strong>in</strong>g location(courtesy of Google Earth)141


Figure 12-6. View of River Oaks Ranch evaporation pond from sampl<strong>in</strong>g po<strong>in</strong>t #4 show<strong>in</strong>g thegypsum crustFigure 12-7. View of River Oaks Ranch evaporation pond show<strong>in</strong>g concentrate outfall andwater-level gage142


Horizon Regional MUD FacilityThe feedwater of this facility (PWS#0710005) comes from multiple wells drilled <strong>in</strong>to the RioGrande River Alluvium located about 6 miles away. The concentrate stream of the plant receivesno treatment but the <strong>in</strong>itial filtration of the well water. Sampl<strong>in</strong>g was done on October 10, 2006,1 day after a precipitation event of about ¼ <strong>in</strong>ch and a ra<strong>in</strong>y summer. Concentrate is disposed ofalternatively <strong>in</strong>to two large 20-acre hold<strong>in</strong>g ponds (Figure 12-8). Alternatively and every6 months, the pond bottoms are scraped to get rid of vegetation. None of the ponds was everobserved full, and they are typically partly filled to a depth of a few <strong>in</strong>ches (Figure 12-9 andFigure 12-10). Sediments are locally reduced, as evidenced by the dark coloration and strongodor of the pond-bottom sediment samples. The pond bottoms are composed of a clay l<strong>in</strong>er madeup of a mixture of local clay and bentonite.Note: Yellow l<strong>in</strong>e along the ponds is ~380 m long; blue outl<strong>in</strong>e shows water body at time of sampl<strong>in</strong>g; red outl<strong>in</strong>erepresents approximate location of pond samples.Figure 12-8. Aerial view of Horizon MUD evaporation ponds show<strong>in</strong>g approximate water limitsat time of sampl<strong>in</strong>g and sampl<strong>in</strong>g locations (courtesy of Google Earth)143


Figure 12-9. Horizon City MUD north evaporation pond show<strong>in</strong>g the sampled water; outfall ison the far left-hand side of the picture beh<strong>in</strong>d the trees.Figure 12-10. Horizon MUD south pond (not active) be<strong>in</strong>g scraped144


Abilene FacilityWe visited the recent (2004) facility (PWS#2210001) on October 12, 2006. Figure 12-11 showsit still under construction. Its feedwater comes from nearby Lake Ivie. The evaporation ponds areused only <strong>in</strong>termittently because the city sewer system is used preferentially to dispose of thedesal<strong>in</strong>ation concentrate. Pond samples (Figure 12-12 and Figure 12-13) had been diluted byrecent ra<strong>in</strong>water. Operators noted some barium <strong>in</strong> the water. Pond bottoms are made ofcompacted local clay.1 234Note: Yellow l<strong>in</strong>e along the ponds is ~732 m (2,402 ft) long; blue outl<strong>in</strong>e shows water body at time of sampl<strong>in</strong>g;when picture was taken, the site was still apparently under constructionFigure 12-11. Aerial view of evaporation pond of City of Abilene desal<strong>in</strong>ation facility show<strong>in</strong>gsampl<strong>in</strong>g location (courtesy of Google Earth)145


Figure 12-12. City of Abilene east pond show<strong>in</strong>g some of the sampled water (“2” and “3”)Figure 12-13. City of Abilene west pond show<strong>in</strong>g the l<strong>in</strong>ers emplaced to control wave action146


Brady FacilityThis facility (PWS#1540001) has a dual feedwater system. Water from the Brady reservoir isdesalted and blended with well water from the Hickory aquifer (where radium concentrations arehigh). The blend has a higher proportion of lake water and meets all new radionuclideregulations. The facility is quite recent (2005), as can be seen <strong>in</strong> Figure 12-14. The pond bottomis composed of an <strong>in</strong>-situ l<strong>in</strong>er made up of local clay/silt material (Figure 12-15 and Figure12-16).Note: Yellow l<strong>in</strong>e along the pond is ~582 m (1,911 ft) long; blue outl<strong>in</strong>e shows water body at time of sampl<strong>in</strong>gFigure 12-14. Aerial view of the evaporation pond of City of Brady desal<strong>in</strong>ation facility show<strong>in</strong>gsampl<strong>in</strong>g location (courtesy of Google Earth)147


Figure 12-15. City of Brady evaporation pond show<strong>in</strong>g the sampled waterFigure 12-16. City of Brady evaporation pond seen from the western berm. The pond water isvisible under the l<strong>in</strong>e of vegetation on the right-hand side of the picture.148


13 Appendix F:A Few Words about Clay M<strong>in</strong>erals149


M<strong>in</strong>erals of the clay family can be categorized <strong>in</strong>to five ma<strong>in</strong> groups (Table 13-1): smectites,vermiculites, chlorites, illites, and kaol<strong>in</strong>ites (e.g., Brady, 1990). They all share a sheetlikecrystallographic structure. An elementary layer of a clay m<strong>in</strong>eral is made of either silicontetrahedrons or alum<strong>in</strong>um octahedrons with oxygen atoms at the angles. A separate groupconta<strong>in</strong><strong>in</strong>g sepiolite, palygorskite, and related m<strong>in</strong>erals can be added. They also conta<strong>in</strong>octahedral and tetrahedral sheets, but they are arranged <strong>in</strong> a more complex pattern that translates<strong>in</strong>to a needlelike morphology <strong>in</strong>stead of the typical flat crystallographic structure of most claym<strong>in</strong>erals. In all groups, because of electrical imbalances, cations (Ca 2+ , Mg 2+ , Na + , K + , H + ) areattached to the silicon (Si) or alum<strong>in</strong>um (Al) elementary layers. Substitution of Si or Al by Mg orother cations is possible. The way Si-Al layers are organized, whatever substitutions are madeand whatever cations charge-balance the elementary layers determ<strong>in</strong>e the clay group. Theelementary pattern (called 1:1) of kaol<strong>in</strong>ites is a stack of s<strong>in</strong>gle Si and Al layers; there is noassociated cation. Neither water nor cations can penetrate the <strong>in</strong>terlayer space. In illite clays, twoelementary Si layers sandwich an elementary Al layer (pattern 2:1); some Al is substituted <strong>for</strong> Si,and K ions glue the multiple Si-Al-Si sheets together. Smectites also have a 2:1 pattern but withsome substitution of Mg ++ <strong>for</strong> Al 3+ and/or Al 3+ <strong>for</strong> Si 4+ . The stacked sheets are held together byweakly adsorbed Ca 2+ , Mg 2+ , or Na + cations. The peculiarity of smectites (whose group <strong>in</strong>cludesmontmorillonites as the most common member) is their ability to absorb water between thesheets, the molecular orig<strong>in</strong> of the so-called swell<strong>in</strong>g. Vermiculites have a crystallographicstructure similar to that of smectites, although it does not allow as much swell<strong>in</strong>g. Chlorites havean extra sheet of Mg octahedrons (pattern 2:1:1) that, <strong>in</strong> essence, locked the structure. Chloritescannot undergo layer expansion. Mixed-layer clay m<strong>in</strong>erals are materials <strong>in</strong> which differentk<strong>in</strong>ds of clay layers alternate with one another. The mix<strong>in</strong>g <strong>in</strong> vertical stack<strong>in</strong>g can be regular orrandom. Commonly described mixed-layer clays <strong>in</strong>clude illite-vermiculite, illite-smectite,chlorite-vermiculite, chlorite-smectite, and kaol<strong>in</strong>ite-smectite. If not all clays can undergoswell<strong>in</strong>g, all can be subject to flocculation/deflocculation, although at a much smaller scale <strong>for</strong>sepiolite/palygorskite. Relevant to seal<strong>in</strong>g of evaporation ponds, de-/flocculation impactspermeability of the bottom sediments. When solution sal<strong>in</strong>ity decreases, the exchange cationshave a tendency to diffuse <strong>in</strong>to the bulk solution. Below some sal<strong>in</strong>ity thresholds, diffuse <strong>for</strong>cesovercome attractive Van derWaals <strong>for</strong>ces, and clay particles disperse (Scheuerman andBergersen, 1990). At a given molar concentration, potassium cations are more effective thansodium cations at hold<strong>in</strong>g clay particles together, and calcium cations even more so(Ca 2+ >>K + >Na + ).Kaol<strong>in</strong>ite is <strong>for</strong>med by degradation of feldspars, especially K-feldspars, particularly at low pHs.Illite also results from the degradation of K-feldspar and other K-rich alum<strong>in</strong>o-silicates, but athigher pHs. Smectites commonly result from the alteration of silicates rich <strong>in</strong> Ca and Mg.Smectite and vermiculite clays can exchange those adsorbed cations with their environment,typically, H + , Na + , K + , Ca 2+ , and Mg 2+ . Their ability to do so—reactivity—is measured by cationexchange capacity (CEC). Smectites have a CEC one order of magnitude higher than that ofillites (~1 and 0.1-0.2 moles/kg, respectively) and up to one order of magnitude higher than thatof kaol<strong>in</strong>ites (0.01-0.1 moles/kg). There are several general rules to determ<strong>in</strong>e the cation mostlikely to be accepted <strong>in</strong> the <strong>in</strong>terlayers: the highest charge density w<strong>in</strong>s but only if has not beenoverwhelmed by a higher concentration of an ion with a smaller charge density. For example,Na + will be the most frequent cation <strong>in</strong> the <strong>in</strong>terlayers if the smectite is <strong>in</strong> equilibrium with anNaCl solution with m<strong>in</strong>or CaCl 2 . The percentage of exchange sites occupied by divalent ions<strong>in</strong>creases with decreas<strong>in</strong>g sal<strong>in</strong>ity. The exchange reaction can be written151


2Na-Clay + Ca ++ = Ca-Clay + 2Na +The equilibrium reaction constant can be written asK=(Na + ) 2 (Ca-Clay)/(Ca ++ )(Na-Clay) 2where ( ) represents activity of the reactants. In general, high sal<strong>in</strong>ity, high charge density, andlow pH (specific case of high charge density) favor clay flocculation, whereas low sal<strong>in</strong>ity andlow charge density, <strong>in</strong>clud<strong>in</strong>g high pH, favor deflocculation. Because divalent cations are muchmore effective at keep<strong>in</strong>g clays flocculated, <strong>in</strong>creas<strong>in</strong>g Ca ++ sharply reduces flocculation sal<strong>in</strong>ity(also called the critical salt concentration), that is, the sal<strong>in</strong>ity at which a given type of clay staysflocculated.Table 13-1. Physical characteristics of clay m<strong>in</strong>eralsClay Type CEC 1 Expansion 2 Reactivity 3 FormationKaol<strong>in</strong>ite Very Low None LowIllite Low None LowDegradation of other silicates(K-feldspar, muscovite),precipitate from solutionDegradation of other silicates(micas, feldspars)Chlorite Low None Low Higher temperature clayVermiculite Very High High HighDegradation of other silicates(micas and Fe-Mg silicates)Smectite High High High Degradation of other silicatesSepiolite/Palygorskite(group sometimescalled hormites)Low None Low1 Cation Exchange Capacity2 Expansion of mixed layer clays3 Reaction of solution ions with the clay m<strong>in</strong>eralsKaol<strong>in</strong>ite GroupDegradation of othersilicates, precipitate fromsolutionKaol<strong>in</strong>ite (Al 2 Si 2 O 5 (OH) 4 ) has a relatively simple structure, 1:1 of alternat<strong>in</strong>g octahedral andtetrahedral sheets. A hydrated version of kaol<strong>in</strong>ite, called halloysite, also exists(Al 2 Si 2 O 5 (OH) 4 .2H 2 O). Kaol<strong>in</strong>ite derives ma<strong>in</strong>ly from the degradation of crystall<strong>in</strong>e rocks suchas granites but has been observed to precipitate directly from solution <strong>in</strong> the laboratory (e.g.,Iriarte et al., 2005), and by mix<strong>in</strong>g Na metasilicate and Al chloride <strong>in</strong> adequate proportions atpH~6, a kaol<strong>in</strong>itic gel is obta<strong>in</strong>ed. The reaction rate to obta<strong>in</strong> well-crystallized kaol<strong>in</strong>ite can beslow (years) unless appropriate organics are added (Hem and L<strong>in</strong>d, 1974) or the experimenttemperature is raised (Dixon, 1989, p. 481). An overview of precipitation k<strong>in</strong>etics was given byNagy (1995, p. 219).Illite GroupLow-temperature illite and higher-temperature muscovite have the same ideal chemical <strong>for</strong>mula:KAl 2 SiAlO 10 (OH) 2 , with considerably more substitutions possible <strong>for</strong> illite. Illite is generally theresult of high-temperature silicate degradation, but it can also be neo<strong>for</strong>med. Its <strong>for</strong>mation isfavored by moderate silica concentrations and high potassium concentrations (Langmuir, 1997,p.319).152


Other m<strong>in</strong>erals of <strong>in</strong>terest from the illite group <strong>in</strong>clude celadonite and glauconite. They have ageneral chemical <strong>for</strong>mula K(Mg,Fe 2+ )(Fe 3+ ,Al)(Si 4 O 10 )(OH) 2 , where an octahedral Al site issubstituted <strong>for</strong> an Mg ion, K be<strong>in</strong>g the <strong>in</strong>terlayer cation. A substantial amount of ferrous andferric iron is also generally present. M<strong>in</strong>erals of similar composition, generally described asceladonite, have been observed to precipitate <strong>in</strong> playa/evaporation-pond conditions.Smectite GroupSmectites are classified accord<strong>in</strong>g to the substitution <strong>for</strong> Al and Si <strong>in</strong> the octahedral (Al) andtetrahedral (Si) sheets and to the presence of empty sites (e.g., Güven, 1988). In dioctahedralclays two of the three sites are occupied by Me +++ , where Me is a trivalent cation. While <strong>in</strong>trioctahedral clays, the three sites are occupied by Me ++ , a divalent cation. Their <strong>for</strong>mation isfavored by alkal<strong>in</strong>e pH, high concentrations <strong>in</strong> silica and divalent cations, and low concentrations<strong>in</strong> potassium (Langmuir, 1997, p.319).Dioctahedral SmectitesThe most common dioctahedral smectite clay m<strong>in</strong>erals are from the montmorillonite–beidelliteseries of general <strong>for</strong>mula: E x+y (Al 2-y Mg y )(Si 4-x Al x )O 10 (OH) 2 .nH 2 O, where E represents <strong>in</strong>terlayercations needed to charge balance the substitution of Mg 2+ <strong>for</strong> Al 3+ and/or Al 3+ <strong>for</strong> Si 4+ . Fe 3+ canalso be present <strong>in</strong> significant amounts <strong>in</strong> the octahedral sites. If y>x, the clay is amontmorillonite, if x>y, the clay is a beidellite. In the PHREEQC thermodynamic database,montmorillonites are represented by x=0 and y=0.33—<strong>for</strong> example,Ca 0.165 (Al 1.67 Mg 0.33 )Si 4 O 10 (OH) 2 <strong>for</strong> calcium montmorillonite. The substitution of Mg <strong>for</strong> Alcreates a deficit of charge <strong>in</strong> the octahedral sheet that must be balanced by an <strong>in</strong>terlayer cation. Asodium montmorillonite would have an end-member composition ofNa 0.33 (Al 1.67 Mg 0.33 )Si 4 O 10 (OH) 2 . Similarly, magnesium and potassium montmorillonite can bedef<strong>in</strong>ed.Bentonite is a rock composed of a large fraction of montmorillonite, especially Namontmorillonite(Na-bentonite or swell<strong>in</strong>g bentonite) or Ca-montmorillonite (Ca-bentonite ornonswell<strong>in</strong>g bentonite). Only Na-bentonite expands greatly when wet. Na-bentonites are oftenused as a barrier to transport. They are also called swell<strong>in</strong>g bentonites because they can absorb(and lose) a lot of water. They occur naturally <strong>in</strong> the U.S. <strong>in</strong> Wyom<strong>in</strong>g and other northwesternstates, deriv<strong>in</strong>g mostly from the degradation of volcanic ash layers. Ca-bentonites do not swell asmuch and are sometimes called “nonswell<strong>in</strong>g” bentonites, and they have a higher Mg/Al ratio.Commercial Na-bentonites have a low Mg/Al ratio. Ca-bentonites are more common worldwideand occur <strong>in</strong> the U.S. <strong>in</strong> the Gulf Coast area, also deriv<strong>in</strong>g from material of volcanic orig<strong>in</strong>.Monovalent ions (Na + ) are generally less strongly attracted to the surface of clays, allow<strong>in</strong>g morewater to slip <strong>in</strong> and yield<strong>in</strong>g a higher swell<strong>in</strong>g capacity. High-sal<strong>in</strong>ity solutions, especially thoserich <strong>in</strong> divalent ions, lead to a compression of the double layer of smectites and an <strong>in</strong>crease <strong>in</strong>permeability. Sepiolite is not subject to this effect.At the other end of the dioctahedral smectite series is beidellite, a common example of which isthe case with x=0.33 and y=0. The chemical <strong>for</strong>mula of Ca-beidellite isCa 0.165 Al 2 (Si 3.67 Al 0.33 )O 10 (OH) 2 , that is, Ca 0.165 Al 2.33 Si 3.67 O 10 (OH) 2 . In the beidellite case,substitution occurs <strong>in</strong> the tetrahedrons (Al 3+ <strong>for</strong> Si 4+ ), as opposed to the montmorillonite case,where substitution occurs <strong>in</strong> the octahedrons (Mg 2+ <strong>for</strong> Al 3+ ). However, similar tomontmorillonite, the <strong>in</strong>terlayer cations can be Na + , K + , Ca 2+ , Mg 2+ , H + , NH 4 + , Fe 2+ , or another153


trace element. Nontronite is equivalent to a Fe-rich beidellite. It is clear that beidellites have ahigher Al/Si ratio (e.g., 2.33/3.67=0.64) than that of montmorillonites (e.g., 1.67/4=0.42).Trioctahedral SmectitesMagnesium and ferrous ions are common trioctahedral substitution cations. A general <strong>for</strong>mula<strong>for</strong> those Fe-Mg trioctahedral smectites is E x (Fe 2+ , Mg) 3 (Si 4-x Al x )O 10 (OH) 2 with x


14 Appendix G:Commented Geochemical Input Files155


The follow<strong>in</strong>g pages present one of the PHREEQC <strong>in</strong>put files. Input file statements are <strong>in</strong> Arial10, whereas comments are <strong>in</strong> Time New Roman 12. The expressions @text@ are placeholders<strong>for</strong> actual values read from a central manager rout<strong>in</strong>e that allows many cases to run automaticallyand processes them with limited ef<strong>for</strong>t.All items <strong>in</strong> “SOLUTION_MASTER_SPECIES,” “SOLUTION_SPECIES,” and “PHASES”were added to complement the Pitzer database, which is lack<strong>in</strong>g data on Si and Al and theirassociated aqueous species and m<strong>in</strong>erals. Results of such a hybrid database are not as accurate asthose from a stand-alone Pitzer database, but they give semiquantitative <strong>in</strong><strong>for</strong>mationDATABASE pitzer.datSOLUTION_MASTER_SPECIES#add those elements not present <strong>in</strong> pitzer.datAl Al+3 0.0 Al 26.9815Si H4SiO4 0.0 SiO2 28.0843#use same molecular weight as <strong>in</strong> llnl.dat <strong>for</strong> easier handl<strong>in</strong>g of templatesH H+ -1. H 1.0079H(1) H+ -1. 0.0E e- 0.0 0.0 0.0O H2O 0.0 O 15.994O(-2) H2O 0.0 0.0#to compute how much caustic/acid is addedNx Nx+ 0.0 Nx 22.9898Cx Cx- 0.0 Cx 35.453SOLUTION_SPECIESNx+ = Nx+-llnl_gamma 4.0000log_k 0Cx- = Cx--llnl_gamma 4.0000log_k 0Al+3 = Al+3log_k 0.000-gamma 9.0000 0.0000H4SiO4 = H4SiO4log_k 0.000Al+3 + H2O = AlOH+2 + H+log_k -5.00delta_h 11.49 kcal-analytic -38.253 0.0 -656.27 14.327Al+3 + 2 H2O = Al(OH)2+ + 2 H+log_k -10.1delta_h 26.90 kcal-analytic 88.500 0.0 -9391.6 -27.121Al+3 + 3 H2O = Al(OH)3 + 3 H+log_k -16.9delta_h 39.89 kcal-analytic 226.374 0.0 -18247.8 -73.597Al+3 + 4 H2O = Al(OH)4- + 4 H+log_k -22.7delta_h 42.30 kcal-analytic 51.578 0.0 -11168.9 -14.865Al+3 + SO4-2 = AlSO4+157


log_k 3.5delta_h 2.29 kcalAl+3 + 2SO4-2 = Al(SO4)2-log_k 5.0delta_h 3.11 kcalAl+3 + HSO4- = AlHSO4+2log_k 0.46H4SiO4 = H3SiO4- + H+log_k -9.83delta_h 6.12 kcal-analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0H4SiO4 = H2SiO4-2 + 2 H+log_k -23.0delta_h 17.6 kcal-analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0PHASESGibbsiteAl(OH)3 + 3 H+ = Al+3 + 3 H2Olog_k 8.110delta_h -22.800 kcalAl(OH)3(a)Al(OH)3 + 3 H+ = Al+3 + 3 H2Olog_k 10.800delta_h -26.500 kcalKaol<strong>in</strong>iteAl2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3log_k 7.435delta_h -35.300 kcalAlbiteNaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4log_k -18.002delta_h 25.896 kcalAnorthiteCaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4log_k -19.714delta_h 11.580 kcalK-feldsparKAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4log_k -20.573delta_h 30.820 kcalK-micaKAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4log_k 12.703delta_h -59.376 kcalChlorite(14A)Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2Olog_k 68.38delta_h -151.494 kcalCa-MontmorilloniteCa0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+log_k -45.027delta_h 58.373 kcalTalcMg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4log_k 21.399158


delta_h -46.352 kcalIlliteK0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 +1.2H+log_k -40.267delta_h 54.684 kcalSepioliteMg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4log_k 15.760delta_h -10.700 kcalSepiolite(d)Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4log_k 18.660AluniteKAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2Olog_k -1.400delta_h -50.250 kcallog_k -0.1delta_h -14.74 kcalSiO2(a)SiO2 + 2 H2O = H4SiO4log_k -2.710delta_h 3.340 kcal-analytic -0.26 0.0 -731.0ChalcedonySiO2 + 2 H2O = H4SiO4log_k -3.550delta_h 4.720 kcal-analytic -0.09 0.0 -1032.0QuartzSiO2 + 2 H2O = H4SiO4log_k -3.980delta_h 5.990 kcal-analytic 0.41 0.0 -1309.0Diaspore #translated from llnl.dat (provided with PHREEQC download)AlHO2 + 3. H+1 = Al+3 + 2. H2Olog_k 7.757000The follow<strong>in</strong>g fictitious species allow keep<strong>in</strong>g pH at the chosen value by add<strong>in</strong>g either acid if thepH is too high, or caustic if the pH is too low.###Fictituous phases <strong>for</strong> constant pHFix_H+H+ = H+log_k 0.0BaseNaNxOH = Nx+ + OHlog_k0.0AcidHCl#HCx = H+ + Cx-HCl = H+ + Cllog_k0.0This is the beg<strong>in</strong>n<strong>in</strong>g of the simulations. “SOLUTION 0” is the concentrate water set atequilibrium with CO 2 and, depend<strong>in</strong>g on the run, with diaspore (AlOOH). In addition, sepiolite159


precursors are also added at this stage when warranted. In the follow<strong>in</strong>g simulations, the amountof water treated by PHREEQC will rema<strong>in</strong> constant as some “SOLUTION 0” (that is,concentrate) is added to replenish the water lost through evaporation. As pure water is lost andreplaced by an aqueous solution, the sal<strong>in</strong>ity <strong>in</strong> the pond (“SOLUTION 1”) will progressively<strong>in</strong>crease.SOLUTION 0 Outfall Water-units ppmpH @pH@#pe @pe@temp @T_C@Ca @Ca@Mg @Mg@Na @Na@K @K@Si @Si@Cl @Cl@Alkal<strong>in</strong>ity @HCO3@ as HCO3S(6) @SO4@Nx 1.e-16Cx 1.e-16REACTION 0MgCl2 @MgReact@Na2SiO3 @SiReact@@MoleReact@ molesSOLUTION_SPECIESH2O + 0.01e- = H2O-0.01 # helps convergencelog_k -9.EQUILIBRIUM_PHASES 0CO2(g) @CO2@ 99#diaspore 0 99SAVE SOLUTION 0END“SOLUTION 1” is the pond water whose sal<strong>in</strong>ity slowly <strong>in</strong>creases as pure water is removed andreplaced by concentrate water and its companion ions. This section of the <strong>in</strong>put file dictates what<strong>in</strong><strong>for</strong>mation to send to the output file and how often and <strong>in</strong> what <strong>for</strong>mat (“USER_PUNCH” and“SELECTED_OUTPUT”) to facilitate the user’s <strong>in</strong>terpretation of the results. The“EQUILIBRIUM_PHASES” field lists the species allowed to precipitate or to have the solutionequilibrated with.SOLUTION 1 Pond Water (<strong>in</strong>itially same as outfall water)-units ppmpH @pH@#pe @pe@temp @T_C@Ca @Ca@Mg @Mg@Na @Na@K @K@Si @Si@160


Cl @Cl@Alkal<strong>in</strong>ity @HCO3@ as HCO3S(6) @SO4@USER_PUNCH-head<strong>in</strong>gs AcidAdded(moles) BaseAdded(moles) TDS(g.L-1) Time(yr) Vol.M<strong>in</strong>.(cm3.L-1)Prec.Height(<strong>in</strong>ch) Sepiol.Vol.frac%-start#10 REM convert to ppm20 PUNCH TOT("Cx")25 PUNCH TOT("Nx")# TDS <strong>in</strong> mg/L60 TDS=40.08*TOT("Ca")+24.305*TOT("Mg")+22.9898*TOT("Na")+22.9898*TOT("Nx")+39.0983*TOT("K")+35.453*TOT("Cl")+96.064*TOT("S")+61.0111*TOT("C")+60.0843*TOT("Si")+26.9815*TOT("Al")70 PUNCH TDS# time <strong>in</strong> years80 MYTIME=(SIM_NO-1)*@height@/(@evap@/12)/1290 PUNCH MYTIME# precipitate volume <strong>in</strong> cm3100 VOLUME=142.8*EQUI("sepiolite(d)")+150*EQUI("Ca-Montmorillonite")+45.94*EQUI("Anhydrite")+34.15*EQUI("Aragonite")+65.5*EQUI("Arcanite")+129.57*EQUI("Bischofite")+149.98*EQUI("Bloedite")+24.63*EQUI("Brucite")+151.19*EQUI("Burkeite")+36.934*EQUI("Calcite")+172.58*EQUI("Carnallite")+64.365*EQUI("Dolomite")+146.8*EQUI("Epsomite")+148.15*EQUI("Gaylussite")+246.23*EQUI("Glaserite")+101.12*EQUI("Glauberite")+74.69*EQUI("Gypsum")+27.015*EQUI("Halite")+132.58*EQUI("Hexahydrite")+115.3*EQUI("Ka<strong>in</strong>ite")+46.14*EQUI("Kalic<strong>in</strong>ite")+56.6*EQUI("Kieserite")+182.504*EQUI("Labile_S")+95.74*EQUI("Leonhardite")+166.3*EQUI("Leonite")+28.018*EQUI("Magnesite")+219.8*EQUI("Mirabilite")+427.275862068966*EQUI("Misenite")+38.62*EQUI("Nahcolite")+195.99*EQUI("Natron")+74.79*EQUI("Nesquehonite")+110.76*EQUI("Pentahydrite")+102.3*EQUI("Pirssonite")+218.1*EQUI("Polyhalite")+33.056*EQUI("Portlandite")+197.5*EQUI("Schoenite")+37.524*EQUI("Sylvite")+124.2*EQUI("Syngenite")+29*EQUI("SiO2(a)")105 IF (VOLUME>0) THEN sepiolvolume =142.8*EQUI("sepiolite(d)")/VOLUME*100 ELSEsepiolvolume=-99110 VOLUME=VOLUME/((1+(SIM_NO-1)*@mixkw@)/SIM_NO)120 PUNCH VOLUME130 VOLUME=VOLUME/1000*@height@140 PUNCH VOLUME150 PUNCH sepiolvolume-endSELECTED_OUTPUT-file @file.xls@-totals Ca Mg Na Nx K Cl Cx S C Si Al-equilibrium_phases sepiolite(d) Ca-Montmorillonite Anhydrite Aragonite Arcanite BischofiteBloedite Brucite Burkeite Calcite Carnallite Dolomite Epsomite Gaylussite Glaserite Glauberite GypsumHalite Hexahydrite Ka<strong>in</strong>ite Kalic<strong>in</strong>ite Kieserite Labile_S Leonhardite Leonite Magnesite Mirabilite MiseniteNahcolite Natron Nesquehonite Pentahydrite Pirssonite Polyhalite Portlandite Schoenite SylviteSyngenite SiO2(a)-saturation_<strong>in</strong>dices CO2(g) sepiolite(d) Ca-Montmorillonite Anhydrite Aragonite ArcaniteBischofite Bloedite Brucite Burkeite Calcite Carnallite Dolomite Epsomite Gaylussite Glaserite GlauberiteGypsum Halite Hexahydrite Ka<strong>in</strong>ite Kalic<strong>in</strong>ite Kieserite Labile_S Leonhardite Leonite Magnesite MirabiliteMisenite Nahcolite Natron Nesquehonite Pentahydrite Pirssonite Polyhalite Portlandite Schoenite SylviteSyngenite SiO2(a)-time true-step true-ionic_strength true_charge_balance true161


_percent_error true-water truePRINT-saturation_<strong>in</strong>dices-species trueKNOBS-logfile false-diagonal_scale truetrueMIX 11 10 @mixkw@REACTION 1H2O -1.0@reactkw@ moles #mix=@mixkw@EQUILIBRIUM_PHASES 1sepiolite(d) 0 0Ca-Montmorillonite 0 0Anhydrite 0 0Aragonite 0 0Arcanite 0 0Bischofite 0 0Bloedite 0 0#Brucite 0 0Burkeite 0 0Calcite 0 0Carnallite 0 0#Dolomite 0 0Epsomite 0 0Gaylussite 0 0#CO2(g) @CO2@ 99#diaspore 0 99#Fix_H+ -@fixph@ BaseNa 99Fix_H+ -@fixph@ AcidHCl 99SAVE SOLUTION 1SAVE EQUILIBRIUM_PHASES 1ENDGlaserite 0 0Glauberite 0 0Gypsum 0 0Halite 0 0Hexahydrite 0 0Ka<strong>in</strong>ite 0 0Kalic<strong>in</strong>ite 0 0Kieserite 0 0Labile_S 0 0Leonhardite 0 0Leonite 0 0#Magnesite 0 0Mirabilite 0 0Misenite 0 0Nahcolite 0 0Natron 0 0Nesquehonite 0 0Pentahydrite 0 0Pirssonite 0 0Polyhalite 0 0Portlandite 0 0Schoenite 0 0Sylvite 0 0Syngenite 0 0#Trona 0 0SiO2(a) 0 0Hundreds of the follow<strong>in</strong>g simulations are added to the <strong>in</strong>put file, each correspond<strong>in</strong>g to a s<strong>in</strong>glepo<strong>in</strong>t along the evaporation progress l<strong>in</strong>e.USE SOLUTION 1USE EQUILIBRIUM_PHASES 1MIX 11 10 @mixkw@REACTION 1H2O -1.0@reactkw@ moles #mix=@mixkw@SAVE SOLUTION 1SAVE EQUILIBRIUM_PHASES 1END162


15 Appendix H:Results of Some Geochemical Runs163


Precipitation sequence is a function of the ratio e/h, where e is the net evaporation rate (<strong>in</strong><strong>in</strong>ches/month) and h is the pond depth. For easy scal<strong>in</strong>g, results are presented <strong>in</strong> terms ofevaporation progress (Figure 15-1). As an example, if a pond depth of 3 <strong>in</strong>ches is assumed, anevaporation progress of 500 corresponds to duration values shown <strong>in</strong> Table 15-1, accord<strong>in</strong>g tothe <strong>for</strong>mula: e/h=(CF-1)/t, where CF is the concentration factor (equivalent to the moredescriptive term of evaporation progress) and t is time.Table 15-1. Correspondence table between evaporation progress as given <strong>in</strong> plot abscissa andduration (calendar years)Annual<strong>Evaporation</strong>Rate(<strong>in</strong>ches/yr)Duration(years)Correspond<strong>in</strong>gto <strong>Evaporation</strong>Progress = 500<strong>Evaporation</strong>Progress ValueCorrespond<strong>in</strong>gto Duration =30 yearsPond DepthGroup(<strong>in</strong>ches)Mixed Alluvium 3 32.2 47 322Brazos River Alluvium 3 8.9 169 89Rio Grande Alluvium 3 45.4 33 454Seymour 3 30.8 49 308Bolson 3 48.6 31 486Ogallala 3 41.7 36 417Pecos Valley 3 50.3 30 503Gulf Coast Sandstone 3 22.7 66 227Eocene All Samples 3 19.2 78 192Eocene Mixed 3 19.2 78 192Eocene Na Dom<strong>in</strong>ant 3 19.2 78 192Cretaceous Limestone 3 33.8 44 339Cret. Sandst. All Samples 3 23.9 63 240Cret. Sandst. Mixed 3 23.9 63 240Cret. Sandst. Na Dom<strong>in</strong>ant 3 23.9 63 240Triassic Sandstone 3 40.6 37 406Permian Evaporite 3 36.1 42 361Permian Limestone 3 30.0 50 300Permian Sandstone 3 34.5 43 345Bone Spr<strong>in</strong>g – Victorio Peak 3 46.2 32 462Capitan Reef 3 42.4 35 424Pennsylvanian 3 25.0 60 250Llano Uplift 3 23.3 64 233Surface Water 3 30.3 49 303Because runs <strong>for</strong> two groups (Permian Limestone and Permian Sandstone) did not convergeproperly with the Pitzer database, we used the less appropriate LLNL database as a substitute. Toassess the importance of the exchange, comparison of results from two groups (Mixed Alluviumand Surface Water) with similar evaporation rates were run successively with the Pitzer andLLNL databases, as presented <strong>in</strong> Figure 15-2. Differences, although not negligible, are m<strong>in</strong>or,most likely because ionic strength has not built up too high yet. Figure 15-3 displays the m<strong>in</strong>eralvolume accumulation <strong>for</strong> two pond depths (3 and 12 <strong>in</strong>ches). Figure 15-4 presents a set of resultssimilar to that <strong>in</strong> Figure 15-1. Runs were done by add<strong>in</strong>g 0.01 mol/L of sepiolite precursor (2165


moles of Mg and 3 moles of Si /mol of precursor). Figure 15-5 is equivalent to Figure 15-3 <strong>for</strong>runs with the addition of the sepiolite precursor. The impact of add<strong>in</strong>g Ca-montmorillonite to them<strong>in</strong>eral list is displayed <strong>in</strong> Figure 15-6. In some <strong>in</strong>stances, sepiolite is still the major clay toprecipitate; <strong>in</strong> others, only Ca-montmorillonite is. In most cases when Ca-montmorillonite isallowed to precipitate, it precipitates <strong>in</strong> the early stages of evaporation, and sepiolite precipitateslater than <strong>in</strong> the no Ca-montmorillonite case.166


Mixed Alluvium1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteGlauberiteGypsum1.E-04<strong>Evaporation</strong> ProgressBrazos River Alluvium1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)CalciteNesquehonite1.E-04<strong>Evaporation</strong> ProgressRio Grande Alluvium1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteBloediteCalciteGlauberiteGypsumLabile_S1.E-04<strong>Evaporation</strong> ProgressFigure 15-1. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions167


Seymour1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteNesquehonite1.E-04<strong>Evaporation</strong> ProgressBolson1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteGlauberiteGypsumHaliteLabile_S1.E-04<strong>Evaporation</strong> ProgressOgallala1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)BloediteCalciteNesquehonite1.E-04<strong>Evaporation</strong> ProgressFigure 15-1. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions (cont<strong>in</strong>ued)168


Pecos Valley1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AnhydriteAragoniteCalciteGlauberiteGypsumHalite1.E-04<strong>Evaporation</strong> ProgressGulf Coast Sandstone1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressEocene All samples1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressFigure 15-1. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions (cont<strong>in</strong>ued)169


Eocene Mixed1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteGypsum1.E-04<strong>Evaporation</strong> ProgressEocene Na dom<strong>in</strong>ant1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)CalciteNahcolite1.E-04<strong>Evaporation</strong> ProgressCretaceous Limestone1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteGlauberiteGypsum1.E-04<strong>Evaporation</strong> ProgressFigure 15-1. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions (cont<strong>in</strong>ued)170


Cret. Sandst. All samples1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteNesquehonite1.E-04<strong>Evaporation</strong> ProgressCret. Sandst. Mixed1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteGypsum1.E-04<strong>Evaporation</strong> ProgressCret. Sandst. Na dom<strong>in</strong>ant1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)CalciteNahcolite1.E-04<strong>Evaporation</strong> ProgressFigure 15-1. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions (cont<strong>in</strong>ued)171


Triassic Sandstone1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)BloediteCalciteNesquehonite1.E-04<strong>Evaporation</strong> ProgressPermian Evaporite1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)CalciteEpsomiteGlauberiteGypsum1.E-041.E+02<strong>Evaporation</strong> ProgressPermian Limestone*0 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)CalciteGlauberiteGypsum*1.E-04<strong>Evaporation</strong> ProgressResults obta<strong>in</strong>ed with the LLNL database not the Pitzer databaseFigure 15-1. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions (cont<strong>in</strong>ued)172


1.E+02*Permian Sandstone0 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)CalciteNesquehonite1.E-04<strong>Evaporation</strong> ProgressBone Spr<strong>in</strong>g – Victorio PeakAccumulation (mol/L)1.E+021.E+011.E+001.E-011.E-021.E-031.E-040 50 100 150 200 250 300 350 400 450 500<strong>Evaporation</strong> ProgressCapitan Reefsepiolite(d)AnhydriteAragoniteBloediteCalciteGlauberiteGypsumHalitePolyhalite1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)CalciteGypsum*1.E-04<strong>Evaporation</strong> ProgressResults obta<strong>in</strong>ed with the LLNL database not the Pitzer databaseFigure 15-1. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions (cont<strong>in</strong>ued)173


Pennsylvanian1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressLlano Uplift1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteNesquehonite1.E-04<strong>Evaporation</strong> ProgressSurface Water1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AnhydriteAragoniteCalciteGlauberiteGypsumHalite1.E-04<strong>Evaporation</strong> ProgressFigure 15-1. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions (cont<strong>in</strong>ued)174


Mixed AlluviumAccumulation (mol/L)0 50 100 150 200 250 300 350 400 450 5001.E+021.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteGlauberiteGypsum1.E-04<strong>Evaporation</strong> ProgressMixed Alluvium(a)Accumulation (mol/L)0 50 100 150 200 250 300 350 400 450 5001.E+021.E+011.E+001.E-011.E-021.E-03sepiolite(d)CalciteGlauberiteGypsum1.E-04<strong>Evaporation</strong> ProgressSurface Water(b)Accumulation (mol/L)0 50 100 150 200 250 300 350 400 450 5001.E+021.E+011.E+001.E-011.E-021.E-03sepiolite(d)AnhydriteAragoniteCalciteGlauberiteGypsumHalite1.E-04<strong>Evaporation</strong> ProgressSurface Water(c)Accumulation (mol/L)0 50 100 150 200 250 300 350 400 450 5001.E+021.E+011.E+001.E-011.E-021.E-03sepiolite(d)AnhydriteCalciteGlauberiteGypsum1.E-04<strong>Evaporation</strong> Progress(d)Figure 15-2. Comparison of results of selected groups run with different databases: mixedalluvium with Pitzer (a), mixed alluvium with LLNL (b), surface water with Pitzer (c), andsurface water with LLNL (d)175


Mixed Alluvium2.0Total M<strong>in</strong>eral Accumulation (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)20Accumulation (<strong>in</strong>ch)1.51.00.5Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Brazos River Alluvium2.0Total M<strong>in</strong>eral Accumulation (12"-deep pond)20Accumulation (<strong>in</strong>ch)1.51.00.5Total M<strong>in</strong>eral Accumulation (3"-deep pond)Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Rio Grande Alluvium2.0Total M<strong>in</strong>eral Accumulation (12"-deep pond)20Total M<strong>in</strong>eral Accumulation (3"-deep pond)Accumulation (<strong>in</strong>ch)1.51.00.5Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Figure 15-3. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> two ponddepths (3 and 12 <strong>in</strong>ches) <strong>for</strong> all water groups176


Seymour2.020Accumulation (<strong>in</strong>ch)1.51.00.5Total M<strong>in</strong>eral Accumulation (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Bolson2.040Accumulation (<strong>in</strong>ch)1.51.00.5Total M<strong>in</strong>eral Accumulation (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)302010Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Ogalalla2.040Accumulation (<strong>in</strong>ch)1.51.00.5Total M<strong>in</strong>eral Accumulation (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)302010Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Figure 15-3. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> two ponddepths (3 and 12 <strong>in</strong>ches) <strong>for</strong> all water groups (cont<strong>in</strong>ued)177


Pecos Valley4.0Total M<strong>in</strong>eral Accumulation (12"-deep pond)20Accumulation (<strong>in</strong>ch)3.02.01.0Sepiolite Volume Fraction (3"-deep pond)Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Gulf Coast Sandstone2.040Accumulation (<strong>in</strong>ch)1.51.00.5Total M<strong>in</strong>eral Accumulation (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)302010Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Eocene All Samples1.0040Accumulation (<strong>in</strong>ch)0.750.500.25Total M<strong>in</strong>eral Accumulation (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)302010Sepiolite Fraction (%)0.000 5 10 15 20 25 300Time (year)Figure 15-3. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> two ponddepths (3 and 12 <strong>in</strong>ches) <strong>for</strong> all water groups (cont<strong>in</strong>ued)178


Eocene Mixed2.020Accumulation (<strong>in</strong>ch)1.51.00.5Total M<strong>in</strong>eral Accumulation (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Eocene Na Dom<strong>in</strong>ant0.04Total M<strong>in</strong>eral Accumulation (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)60Accumulation (<strong>in</strong>ch)0.030.020.01Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)453015Sepiolite Fraction (%)0.000 5 10 15 20 25 300Time (year)Cretaceous Limestone2.0Total M<strong>in</strong>eral Accumulation (12"-deep pond)20Sepiolite Volume Fraction (3"-deep pond)Accumulation (<strong>in</strong>ch)1.51.00.5Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Figure 15-3. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> two ponddepths (3 and 12 <strong>in</strong>ches) <strong>for</strong> all water groups (cont<strong>in</strong>ued)179


Accumulation (<strong>in</strong>ch)2.01.51.00.5Cret. Sandst. All samplesTotal M<strong>in</strong>eral Accumulation (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)2015105Sepiolite Fraction (%)0.00 5 10 15 20 25 30Time (year)0Accumulation (<strong>in</strong>ch)2.01.51.00.5Cret. Sandst. MixedTotal M<strong>in</strong>eral Accumulation (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)2015105Sepiolite Fraction (%)0.00 5 10 15 20 25 30Time (year)0Accumulation (<strong>in</strong>ch)0.200.150.100.05Cret. Sandst. Na dom<strong>in</strong>antTotal M<strong>in</strong>eral Accumulation (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)100755025Sepiolite Fraction (%)0.000 5 10 15 20 25 30Time (year)0Figure 15-3. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> two ponddepths (3 and 12 <strong>in</strong>ches) <strong>for</strong> all water groups (cont<strong>in</strong>ued)180


Triassic Sandstone2.0Total M<strong>in</strong>eral Accumulation (12"-deep pond)20Sepiolite Volume Fraction (3"-deep pond)Accumulation (<strong>in</strong>ch)1.51.00.5Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Permian Evaporite8Total M<strong>in</strong>eral Accumulation (12"-deep pond)20Accumulation (<strong>in</strong>ch)642Sepiolite Volume Fraction (3"-deep pond)Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)00 5 10 15 20 25 300Time (year)Permian Limestone2.0Total M<strong>in</strong>eral Accumulation (12"-deep pond)20Sepiolite Volume Fraction (3"-deep pond)Accumulation (<strong>in</strong>ch)1.51.00.5Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Figure 15-3. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> two ponddepths (3 and 12 <strong>in</strong>ches) <strong>for</strong> all water groups (cont<strong>in</strong>ued)181


Permian Sandstone2.0Total M<strong>in</strong>eral Accumulation (12"-deep pond)20Sepiolite Volume Fraction (3"-deep pond)Accumulation (<strong>in</strong>ch)1.51.00.5Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Bone Spr<strong>in</strong>g – Victorio Peak8.020Total M<strong>in</strong>eral Accumulation (12"-deep pond)Accumulation (<strong>in</strong>ch)6.04.02.0Sepiolite Volume Fraction (3"-deep pond)Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Capitan Reef2.020Total M<strong>in</strong>eral Accumulation (12"-deep pond)Accumulation (<strong>in</strong>ch)1.51.00.5Sepiolite Volume Fraction (3"-deep pond)Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Figure 15-3. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> two ponddepths (3 and 12 <strong>in</strong>ches) <strong>for</strong> all water groups (cont<strong>in</strong>ued)182


Pennsylvanian2.0Total M<strong>in</strong>eral Accumulation (12"-deep pond)20Sepiolite Volume Fraction (3"-deep pond)Accumulation (<strong>in</strong>ch)1.51.00.5Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Llano Uplift2.0Total M<strong>in</strong>eral Accumulation (12"-deep pond)20Sepiolite Volume Fraction (3"-deep pond)Accumulation (<strong>in</strong>ch)1.51.00.5Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Surface Water2.0Total M<strong>in</strong>eral Accumulation (12"-deep pond)20Accumulation (<strong>in</strong>ch)1.51.00.5Sepiolite Volume Fraction (3"-deep pond)Sepiolite Volume Fraction (12"-deep pond)Sepiolite Volume Fraction (3"-deep pond)15105Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Figure 15-3. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> two ponddepths (3 and 12 <strong>in</strong>ches) <strong>for</strong> all water groups (cont<strong>in</strong>ued)183


Mixed Alluvium1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteBurkeiteCalciteHaliteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressBrazos River Alluvium1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)CalciteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressRio Grande Alluvium1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteBurkeiteCalciteHaliteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressFigure 15-4. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> eng<strong>in</strong>eered conditions (0.01 mol/L of sepiolite precursorcompounds)184


Seymour1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteHaliteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressBolson1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteHaliteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressOgallala1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-031.E-04sepiolite(d)AragoniteBurkeiteCalciteHaliteNahcoliteNesquehonitePirssonite<strong>Evaporation</strong> ProgressFigure 15-4. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> eng<strong>in</strong>eered conditions (0.01 mol/L of sepiolite precursorcompounds) (cont<strong>in</strong>ued)185


Pecos ValleyAccumulation (mol/L)1.E+021.E+011.E+001.E-011.E-021.E-031.E-040 50 100 150 200 250 300 350 400 450 500<strong>Evaporation</strong> ProgressGulf Coast Sandstonesepiolite(d)AragoniteBloediteBurkeiteCalciteGlaseriteGypsumHaliteLabile_SMirabiliteNesquehonite1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteHaliteNahcoliteNesquehonitePirssonite1.E-04<strong>Evaporation</strong> ProgressEocene All samples1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteNahcoliteNesquehonitePirssonite1.E-04<strong>Evaporation</strong> ProgressFigure 15-4. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> eng<strong>in</strong>eered conditions (0.01 mol/L of sepiolite precursorcompounds) (cont<strong>in</strong>ued)186


Eocene Mixed1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressEocene Na dom<strong>in</strong>ant1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteNahcolite1.E-04<strong>Evaporation</strong> ProgressCretaceous Limestone1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteBurkeiteCalciteHaliteMirabiliteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressFigure 15-4. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> eng<strong>in</strong>eered conditions (0.01 mol/L of sepiolite precursorcompounds) (cont<strong>in</strong>ued)187


Cret. Sandst. All samples1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressCret. Sandst. Mixed1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteMirabiliteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressCret. Sandst. Na dom<strong>in</strong>ant1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteNahcolite1.E-04<strong>Evaporation</strong> ProgressFigure 15-4. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> eng<strong>in</strong>eered conditions (0.01 mol/L of sepiolite precursorcompounds) (cont<strong>in</strong>ued)188


Triassic SandstoneAccumulation (mol/L)1.E+021.E+011.E+001.E-011.E-021.E-031.E-040 50 100 150 200 250 300 350 400 450 500<strong>Evaporation</strong> ProgressPermian Evaporitesepiolite(d)AragoniteBurkeiteCalciteGlaseriteHaliteMirabiliteNahcoliteNatronNesquehonitePirssoniteTrona1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteBloediteCalciteGlauberiteGypsum1.E-04<strong>Evaporation</strong> ProgressPermian Limestone1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteHaliteNahcoliteNesquehonitePirssonite1.E-04<strong>Evaporation</strong> ProgressFigure 15-4. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> eng<strong>in</strong>eered conditions (0.01 mol/L of sepiolite precursorcompounds) (cont<strong>in</strong>ued)189


Permian Sandstone1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteBurkeiteCalciteHaliteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressBone Spr<strong>in</strong>g – Victorio Peak1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteBloediteCalciteGlauberiteGypsumHalite1.E-04<strong>Evaporation</strong> ProgressCapitan Reef1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteBurkeiteCalciteMirabiliteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressFigure 15-4. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> eng<strong>in</strong>eered conditions (0.01 mol/L of sepiolite precursorcompounds) (cont<strong>in</strong>ued)190


Pennsylvanian1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteHaliteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressLlano Uplift1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressSurface Water1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)AragoniteCalciteHaliteLabile_SMirabiliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressFigure 15-4. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> eng<strong>in</strong>eered conditions (0.01 mol/L of sepiolite precursorcompounds) (cont<strong>in</strong>ued)191


Mixed Alluvium4.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)100Sepiolite Volume Fraction (natural)Accumulation (<strong>in</strong>ch)3.02.01.0Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Brazos River Alluvium2.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)Total M<strong>in</strong>eral Accumulation (natural)100Accumulation (<strong>in</strong>ch)1.51.00.5Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Rio Grande Alluvium8.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)Total M<strong>in</strong>eral Accumulation (natural)100Accumulation (<strong>in</strong>ch)6.04.02.0Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Figure 15-5. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> all watergroups <strong>in</strong> eng<strong>in</strong>eered and natural sett<strong>in</strong>gs (pond depth is 3 <strong>in</strong>ches)192


Seymour4.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)100Sepiolite Volume Fraction (natural)Accumulation (<strong>in</strong>ch)3.02.01.0Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Bolson8.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)100Sepiolite Volume Fraction (natural)Accumulation (<strong>in</strong>ch)6.04.02.0Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Ogalalla8.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)100Accumulation (<strong>in</strong>ch)6.04.02.0Sepiolite Volume Fraction (natural)Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Figure 15-5. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> all watergroups <strong>in</strong> eng<strong>in</strong>eered and natural sett<strong>in</strong>gs (pond depth is 3 <strong>in</strong>ches) (cont<strong>in</strong>ued).193


Pecos Valley16.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)100Accumulation (<strong>in</strong>ch)12.08.04.0Sepiolite Volume Fraction (natural)Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Gulf Coast Sandstone2.0100Accumulation (<strong>in</strong>ch)1.51.00.5Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Eocene All Samples2.00100Accumulation (<strong>in</strong>ch)1.501.000.50Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.000 5 10 15 20 25 300Time (year)Figure 15-5. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> all watergroups <strong>in</strong> eng<strong>in</strong>eered and natural sett<strong>in</strong>gs (pond depth is 3 <strong>in</strong>ches) (cont<strong>in</strong>ued)194


Eocene Mixed2.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)100Accumulation (<strong>in</strong>ch)1.51.00.5Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Eocene Na Dom<strong>in</strong>ant2.0100Accumulation (<strong>in</strong>ch)1.51.00.5Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Cretaceous Limestone4.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)100Sepiolite Volume Fraction (natural)Accumulation (<strong>in</strong>ch)3.02.01.0Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Figure 15-5. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> all watergroups <strong>in</strong> eng<strong>in</strong>eered and natural sett<strong>in</strong>gs (pond depth is 3 <strong>in</strong>ches) (cont<strong>in</strong>ued)195


Cret. Sandst. All samples2.0100Accumulation (<strong>in</strong>ch)1.51.00.5Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Cret. Sandst. Mixed2.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)100Sepiolite Volume Fraction (natural)Accumulation (<strong>in</strong>ch)1.51.00.5Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Cret. Sandst. Na dom<strong>in</strong>ant4.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)100Accumulation (<strong>in</strong>ch)3.02.01.0Sepiolite Volume Fraction (natural)Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Figure 15-5. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> all watergroups <strong>in</strong> eng<strong>in</strong>eered and natural sett<strong>in</strong>gs (pond depth is 3 <strong>in</strong>ches) (cont<strong>in</strong>ued)196


Triassic Sandstone6.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)100Sepiolite Volume Fraction (natural)Accumulation (<strong>in</strong>ch)4.53.01.5Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Permian Evaporite8.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)100Accumulation (<strong>in</strong>ch)6.04.02.0Sepiolite Volume Fraction (natural)Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Permian Limestone4.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)100Sepiolite Volume Fraction (natural)Accumulation (<strong>in</strong>ch)3.02.01.0Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Figure 15-5. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> all watergroups <strong>in</strong> eng<strong>in</strong>eered and natural sett<strong>in</strong>gs (pond depth is 3 <strong>in</strong>ches) (cont<strong>in</strong>ued)197


Permian Sandstone4.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)100Accumulation (<strong>in</strong>ch)3.02.01.0Sepiolite Volume Fraction (natural)Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Bone Spr<strong>in</strong>g – Victorio Peak12.0100Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)Accumulation (<strong>in</strong>ch)9.06.03.0Sepiolite Volume Fraction (natural)Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Capitan Reef8.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)100Accumulation (<strong>in</strong>ch)6.04.02.0Sepiolite Volume Fraction (natural)Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Figure 15-5. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> all watergroups <strong>in</strong> eng<strong>in</strong>eered and natural sett<strong>in</strong>gs (pond depth is 3 <strong>in</strong>ches) (cont<strong>in</strong>ued)198


Pennsylvanian4.0100Accumulation (<strong>in</strong>ch)3.02.01.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Llano Uplift2.0Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)100Accumulation (<strong>in</strong>ch)1.51.00.5Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Surface Water8.0100Total M<strong>in</strong>eral Accumulation (Eng<strong>in</strong>eered)Accumulation (<strong>in</strong>ch)6.04.02.0Sepiolite Volume Fraction (natural)Sepiolite Volume Fraction (Eng<strong>in</strong>eered)Sepiolite Volume Fraction (natural)755025Sepiolite Fraction (%)0.00 5 10 15 20 25 300Time (year)Figure 15-5. Specific accumulation (<strong>in</strong>ches) and sepiolite fraction <strong>in</strong> accumulation <strong>for</strong> all watergroups <strong>in</strong> eng<strong>in</strong>eered and natural sett<strong>in</strong>gs (pond depth is 3 <strong>in</strong>ches) (cont<strong>in</strong>ued)199


Mixed Alluvium1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAragoniteCalciteGlauberiteGypsum1.E-04<strong>Evaporation</strong> ProgressBrazos River Alluvium1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03Ca-MontmorilloniteCalciteNesquehonite1.E-04<strong>Evaporation</strong> ProgressRio Grande Alluvium1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAragoniteBloediteCalciteGlauberiteGypsumLabile_S1.E-04<strong>Evaporation</strong> ProgressFigure 15-6. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions—Ca-Montmorillonite(d) is allowed toprecipitate200


Seymour1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAragoniteCalciteNesquehonite1.E-04<strong>Evaporation</strong> ProgressBolson1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAragoniteCalciteGlauberiteGypsumHaliteLabile_S1.E-04<strong>Evaporation</strong> ProgressOgallala1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAragoniteBloediteCalciteNesquehonite1.E-04<strong>Evaporation</strong> ProgressFigure 15-6. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions—Ca-Montmorillonite(d) is allowed toprecipitate (cont<strong>in</strong>ued)201


Pecos Valley1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAnhydriteAragoniteCalciteGlauberiteGypsumHalite1.E-04<strong>Evaporation</strong> ProgressGulf Coast Sandstone1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAragoniteCalciteNahcoliteNesquehonite1.E-041.E+02<strong>Evaporation</strong> ProgressEocene All samples*0 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03Ca-MontmorilloniteCalciteNesquehonite1.E-04<strong>Evaporation</strong> Progress*Results obta<strong>in</strong>ed with the LLNL database not the Pitzer databaseFigure 15-6. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions—Ca-Montmorillonite(d) is allowed toprecipitate (cont<strong>in</strong>ued)202


Eocene Mixed1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAragoniteCalciteGypsumPortlandite1.E-04<strong>Evaporation</strong> ProgressEocene Na dom<strong>in</strong>ant1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03Ca-MontmorilloniteCalciteNahcolite1.E-04<strong>Evaporation</strong> ProgressCretaceous Limestone1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAragoniteCalciteGlauberiteGypsumPortlandite1.E-04<strong>Evaporation</strong> ProgressFigure 15-6. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions—Ca-Montmorillonite(d) is allowed toprecipitate (cont<strong>in</strong>ued)203


Cret. Sandst. All samples1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03Ca-MontmorilloniteAragoniteCalciteNesquehonite1.E-04<strong>Evaporation</strong> ProgressCret. Sandst. Mixed1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAragoniteCalciteGypsum1.E-04<strong>Evaporation</strong> ProgressCret. Sandst. Na dom<strong>in</strong>ant1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAragoniteCalciteNahcoliteNesquehonite1.E-04<strong>Evaporation</strong> ProgressFigure 15-6. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions—Ca-Montmorillonite(d) is allowed toprecipitate (cont<strong>in</strong>ued)204


Triassic Sandstone1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAragoniteBloediteCalciteNesquehonite1.E-04<strong>Evaporation</strong> ProgressPermian Evaporite1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteCalciteEpsomiteGlauberiteGypsum1.E-04<strong>Evaporation</strong> ProgressPermian Limestone1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAragoniteCalciteGlauberiteGypsumPortlandite1.E-04<strong>Evaporation</strong> ProgressFigure 15-6. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions—Ca-Montmorillonite(d) is allowed toprecipitate (cont<strong>in</strong>ued)205


Permian Sandstone1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAragoniteBloediteCalciteNesquehonite1.E-04<strong>Evaporation</strong> ProgressBone Spr<strong>in</strong>g – Victorio PeakAccumulation (mol/L)1.E+021.E+011.E+001.E-011.E-021.E-031.E-040 50 100 150 200 250 300 350 400 450 500<strong>Evaporation</strong> ProgressCapitan Reefsepiolite(d)Ca-MontmorilloniteAnhydriteAragoniteBloediteCalciteEpsomiteGlauberiteGypsumHalitePolyhalitePortlandite1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteCalciteGypsum1.E-04<strong>Evaporation</strong> ProgressFigure 15-6. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions—Ca-Montmorillonite(d) is allowed toprecipitate (cont<strong>in</strong>ued)206


1.E+02Pennsylvanian*0 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteCalciteNesquehonite1.E-04<strong>Evaporation</strong> ProgressLlano Uplift1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAragoniteCalciteNesquehonite1.E-04<strong>Evaporation</strong> ProgressSurface Water1.E+020 50 100 150 200 250 300 350 400 450 500Accumulation (mol/L)1.E+011.E+001.E-011.E-021.E-03sepiolite(d)Ca-MontmorilloniteAnhydriteAragoniteCalciteGlauberiteGypsumHalite1.E-04<strong>Evaporation</strong> Progress*Results obta<strong>in</strong>ed with the LLNL database not the Pitzer databaseFigure 15-6. M<strong>in</strong>eral precipitation sequence as evaporation progresses us<strong>in</strong>g computedconcentrate as the source <strong>in</strong> noneng<strong>in</strong>eered conditions—Ca-Montmorillonite(d) is allowed toprecipitate (cont<strong>in</strong>ued)207


16 Appendix I:Disposal of As-Rich Residuals as Hazardous Wastes209


Residuals from the desal<strong>in</strong>ation process that accumulate on the bottom of evaporation pondsmust be removed and disposed of dur<strong>in</strong>g facility closure activities and, possibly, periodically aspart of normal ma<strong>in</strong>tenance. The disposal of residual waste may be needed <strong>for</strong> all conventionaland alternative l<strong>in</strong>er technologies <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> the effective volume of the evaporationponds. If the water be<strong>in</strong>g processed conta<strong>in</strong>s contam<strong>in</strong>ants, such as arsenic, heavy metals,radionuclides, etc., these constituents will concentrate <strong>in</strong> the residual sediments. Once theseresiduals have been removed from the evaporation ponds, they may be considered HazardousWaste under the Resource Conservation and Recovery Act (RCRA), if the concentrations ofcerta<strong>in</strong> contam<strong>in</strong>ants exceed levels of toxicity prescribed by Federal regulations (40 CFR 261). Ifthis is <strong>in</strong>deed the case, some stabilization method would have to be used be<strong>for</strong>e the pondresiduals are sent to an RCRA landfill. The relevant metric is not the amount of contam<strong>in</strong>ant <strong>in</strong>the sludge but the amount that is expected to be mobilized and leached under the aggressiveconditions found <strong>in</strong> a landfill.A solid waste, <strong>in</strong>clud<strong>in</strong>g evaporation pond sludge, exhibits the characteristic of toxicity if, us<strong>in</strong>gthe Toxicity Characteristic Leach<strong>in</strong>g Procedure (TCLP), test Method 1311 <strong>in</strong> “Test Methods <strong>for</strong>Evaluat<strong>in</strong>g Solid Waste, Physical/Chemical Methods,” EPA Publication SW–846, the extractfrom a representative sample of the waste conta<strong>in</strong>s any of the contam<strong>in</strong>ants at a concentrationequal to or greater than the respective value given <strong>in</strong> the table <strong>in</strong> 40 CFR 261.24. Most of thecontam<strong>in</strong>ants listed are manufactured, organic compounds, but also <strong>in</strong>clude arsenic (5.0 mg/L),barium (100.0 mg/L), cadmium (1.0 mg/L), lead (5.0 mg/L), mercury (0.2 mg/L), selenium(1.0 mg/L), and silver (5.0 mg/L). Radionuclides are not <strong>in</strong>cluded. Those regulatory levels <strong>for</strong>contam<strong>in</strong>ants <strong>in</strong> the extract were typically derived by comput<strong>in</strong>g 100 times the MCL. As far aswe can tell so far, the regulatory limit <strong>for</strong> arsenic is still 5.0 mg/L (<strong>in</strong> accordance with 40 CFR261.24) us<strong>in</strong>g the TCLP Method 1311, despite the decrease of the arsenic MCL from 50 to10 mg/L. The TCLP procedure is commonly applied on a variety of wastes and consists oftest<strong>in</strong>g the fluid leached from the waste <strong>in</strong> a 20:1 liquid:solid ratio (weight basis). Nonvolatilewaste samples with <strong>in</strong>terstitial water at pH>5 (as it is likely <strong>for</strong> evaporation pond sludges) aresubmitted to hot acid (50 o C) at low concentration <strong>for</strong> a short duration (10 m<strong>in</strong>utes). Althoughmost of the arsenic is typically sorbed onto m<strong>in</strong>eral surfaces (clay and metal oxides), such atreatment will most likely desorb most of it. Typical sequence extraction procedures to desorbarsenic from crystall<strong>in</strong>e Fe and Mn oxides <strong>in</strong>volve aggressive conditions (low pH andtemperature <strong>in</strong> the range of 70 to 100 o C <strong>for</strong> several hours) (e.g., Keon et al., 2001, and referencesthere<strong>in</strong>). The TCLP procedure is likely to mobilize all arsenic recently attached to particles, thatis, most of the amount discharged <strong>in</strong>to the pond.Consultation of Scanlon et al. (2005) suggests that an upper bound <strong>for</strong> average arsenicconcentration <strong>in</strong> the feedwater <strong>for</strong> those aquifers located <strong>in</strong> areas with elevated arsenicconcentrations (Panhandle and south Gulf coast) is 50 ppb, which translates <strong>in</strong>to an arsenicconcentration <strong>for</strong> the concentrate of C As =200 ppb. The amount on a pond unit surface area attime t is C As ×e×t ×ρ w (× 1 m 2 ), where e is the net evaporation rate (30 <strong>in</strong>ches/year), t=30 years isthe facility life time, and ρ w =1kg/L is feedwater density. Section 4.3.4 of the ma<strong>in</strong> report showsthat a precipitate thickness of h=1 <strong>in</strong>ch after 30 years is reasonable. It is conservative to use asmall bottom sediment thickness because it will yield a larger arsenic concentration <strong>in</strong> the solidphase. If material density (not account<strong>in</strong>g <strong>for</strong> porosity) is about ρ ssl =2,400 kg/m 3 , the arsenicconcentration <strong>in</strong> the solid sludge CSl As is given by211


CSlC× e × t × ρAswAs= <strong>in</strong> a consistent system of units.h × ρsslThe regulations call <strong>for</strong> analyz<strong>in</strong>g the liquid extract obta<strong>in</strong>ed with a 20:1 liquid:solid ratio. Theresult<strong>in</strong>g arsenic concentration <strong>in</strong> the liquid extract CLe As is CLe As =MF×CSl As /20, where MF isthe fraction of arsenic mobilized dur<strong>in</strong>g the extraction procedure. The result<strong>in</strong>gCLeAsMF × CAs× e × t × ρw=


17 Appendix J:Conceptual Draw<strong>in</strong>gs of <strong>Evaporation</strong> <strong>Ponds</strong>213


This appendix presents a conceptual draw<strong>in</strong>g of a generic evaporation pond modeled afterprecipitation / evaporation characteristics of quadrangle 608 (as def<strong>in</strong>ed by TWDB, 2006a),correspond<strong>in</strong>g to the Brady site (Figure 17-1).450 ft2 ft Freeboard2 ft Depth (avg. max)12 ft Top of Dike (typ.)Pond l<strong>in</strong>er systemQAd5743cFigure 17-1. Conceptual draw<strong>in</strong>g (layout and cross-section) of evaporation pond <strong>for</strong> genericfacility <strong>in</strong> quadrangle 608The pond’s shape is assumed square with an area of 135.60 acres (~2430 ft × ~2430 ft) but itcould be rectangular depend<strong>in</strong>g on local conditions (access, presence of build<strong>in</strong>gs, topography,215


optimization of excavation costs, prevail<strong>in</strong>g w<strong>in</strong>d directions, etc.). The use of multiple pondsseparated by baffles with a total area equal to that of the s<strong>in</strong>gle bas<strong>in</strong> presented <strong>in</strong> Figure 17-1 isalso possible. The slope of each side of the berm is determ<strong>in</strong>ed by the geotechnicalcharacteristics of the material used to construct the pond. The pond is generally built with aslight slope to the pond bottom <strong>for</strong> easier ma<strong>in</strong>tenance. Maximum pond depth and freeboardheight (to accommodate storm ra<strong>in</strong>fall) are generally imposed <strong>in</strong> the permit and are determ<strong>in</strong>edby local weather conditions. The pond l<strong>in</strong>er system can be either a geomembrane, generallycoupled with a leak detection system, or a clay l<strong>in</strong>er (<strong>in</strong>-situ clay or native clay). The details ofthe l<strong>in</strong>er construction vary accord<strong>in</strong>g to the nature of the material used.216


18 Appendix K:Responses to Review Comments217


Responses to Review CommentsThe report deals with a complex subject, and it was difficult <strong>for</strong> reviewers to clearly understandthe conclusions of the study. Please revise the report to expla<strong>in</strong> the study’s f<strong>in</strong>d<strong>in</strong>gs andrecommendations. The report needs edit<strong>in</strong>g to correct the typos, and to improve its structure andreadability.The structure of the report was revised follow<strong>in</strong>g TWDB’s request. Conclusions were rephrasedand could be summarized by the follow<strong>in</strong>g: (1) There is no regulatory barrier. (2) Although thereare many feasible techniques (some described <strong>in</strong> the report), they all come at an extra cost. Onlythe “do almost noth<strong>in</strong>g” approach, that is, add some cheap additives to the concentrate stream,satisfies the requirement of no cost <strong>in</strong>crease (case of prescriptive l<strong>in</strong>ers).Executive Summary - The executive summary needs to be re-written to better summarize the studyf<strong>in</strong>d<strong>in</strong>gs and recommendations <strong>for</strong> a wider, non-scientific audience.The executive summary has been rewritten.Please provide specific <strong>in</strong><strong>for</strong>mation and recommendations on sealants that could be used <strong>for</strong>evaporation ponds, and pert<strong>in</strong>ent construction details.We do not th<strong>in</strong>k that the word “sealant” properly describes the additives that could be used <strong>in</strong>the self-seal<strong>in</strong>g process. It is true that sealants can be added after construction and be<strong>for</strong>e thestart of operations. Many other improvements can also be executed, and some are described <strong>in</strong>the report. However, and this is a common thread throughout the report, those improvements alladd to the cost of the pond. They go aga<strong>in</strong>st the premise of this report and the whole idea of selfseal<strong>in</strong>g, which is to let the concentrate do the work. This is also the reason that there are NOconstruction details specific to a self-seal<strong>in</strong>g pond when compared to a conventional pond.Please provide complete <strong>in</strong><strong>for</strong>mation on the types of permits required <strong>for</strong> self-seal<strong>in</strong>g evaporationponds (please <strong>in</strong>clude details such as the name of the Division to be contacted at the <strong>Texas</strong>Commission on Environmental Quality (TCEQ), permit requirements, and permit procedures).In<strong>for</strong>mation added.It is <strong>in</strong>dicated <strong>in</strong> the report that sepiolite has many advantages, however, the techniques on howsepiolite (and any other sealants) can be beneficially used <strong>for</strong> self-seal<strong>in</strong>g of ponds are notdiscussed. Please <strong>in</strong>clude this <strong>in</strong><strong>for</strong>mation.There is no specific technique to be used. Sepiolite precursors are added to the concentratestream. Sepiolite is a self-seal<strong>in</strong>g material; that is, it will precipitate by itself, <strong>in</strong>itially seal thebottom l<strong>in</strong>er, and seal any open<strong>in</strong>g that may appear dur<strong>in</strong>g the life of the pond. Manyoperational comb<strong>in</strong>ations of additive concentrations, amounts, products aid<strong>in</strong>g nucleation canbe tried, they, however, require laboratory and pilot scale work. The whole issue of this reportlies <strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g ponds at a cost no higher than that of ponds constructed us<strong>in</strong>g commonpractices. Although many additives could seal the l<strong>in</strong>ers, they will not be “self seal<strong>in</strong>g” and willbe more expensive than the conventional approach.Please clarify the significance of the statement “<strong>Self</strong>-seal<strong>in</strong>g properties appear to be most usefulwith constructed clay l<strong>in</strong>er”.Sentence changed; the statement contrasted usefulness of self-seal<strong>in</strong>g properties <strong>for</strong> clay l<strong>in</strong>ersand geomembranes.219


Please be specific on the additives/compounds you recommend <strong>for</strong> "self-seal<strong>in</strong>g" of pondsThe report focuses on one type of additive: Mg (magnesium chloride) and silica (sodiummetasilicate) because their comb<strong>in</strong>ation generates sepiolite, a potential self-seal<strong>in</strong>g agent.However, chemical composition of the concentrate is very specific to each evaporation pond,suggest<strong>in</strong>g that additives could be tailored to each pond. There is no across-the-board, costeffectivesolution that would work <strong>in</strong> each and every evaporation pond.Look at both currently operat<strong>in</strong>g evaporation ponds and hypothetical ponds <strong>in</strong> West <strong>Texas</strong>:Partially Addressed (could not f<strong>in</strong>d section on hypothetical ponds <strong>in</strong> West <strong>Texas</strong>)The whole report is about evaporation ponds <strong>in</strong> West <strong>Texas</strong> and elsewhere <strong>in</strong> the state.Additives needed to reduce hydraulic conductivity to 10 -9 m/s: Not clearly addressed orexpla<strong>in</strong>edAdditives will favor precipitation of material that should show a conductivity


Help <strong>in</strong> gett<strong>in</strong>g samples from actual evaporation ponds: Not be<strong>in</strong>g done by consultant, most sitevisits had to be arranged by TWDBFour sites were sampled; two visits were arranged by TWDB after a suggestion by TWDB tofacilitate the sampl<strong>in</strong>g. However, BEG did all physical sampl<strong>in</strong>g, chemical analyses, and<strong>in</strong>terpretation of the data.Determ<strong>in</strong>e general pond size requirements <strong>for</strong> a 1-MGD facility us<strong>in</strong>g Mickley work sheets: Notadequately AddressedGeneral pond size requirements <strong>for</strong> a 1-MGD facility us<strong>in</strong>g Mickley’s work were calculated. Asrealistic examples, areas of generic ponds hav<strong>in</strong>g the climatic characteristics of the fourfacilities hav<strong>in</strong>g evaporation ponds visited (and an average <strong>in</strong>flow rate of 0.3 MGD ofconcentrate) were computed. The area varies between 2.35 (Horizon MUD) and 5.85 (RiverOaks Ranch) acres. As noted <strong>in</strong> the report, a self-seal<strong>in</strong>g pond is no different from a regularpond.Prepare conceptual draw<strong>in</strong>gs to illustrate plan view and cross-section of evaporation pond: NotAddressed, Need draw<strong>in</strong>gs/bluepr<strong>in</strong>tsSeveral techniques and processes are available to self-seal ponds; however, the request ofhav<strong>in</strong>g them constructed and operated cheaper than a regular pond severely constra<strong>in</strong>savailable approaches. Only the chemical nature of the pond <strong>in</strong>flux will differentiate a genericconventional pond and a cheaper, generic, self-seal<strong>in</strong>g one. A self-seal<strong>in</strong>g evaporation pondwould not be constructed differently from a regular evaporation pond. Generic draw<strong>in</strong>g/bluepr<strong>in</strong>tof a generic self-seal<strong>in</strong>g evaporation pond has been added.Develop prelim<strong>in</strong>ary cost estimates <strong>for</strong> materials <strong>in</strong>clud<strong>in</strong>g additives: Not Addressed, Need costestimatesCost of additives had been given <strong>in</strong> report. General costs of a regular evaporation pond havebeen added.If appropriate, consider novel technologies such as solar ponds: Not AddressedAs noted <strong>in</strong> the report, solar ponds are noth<strong>in</strong>g like self-seal<strong>in</strong>g evaporation ponds. Solar pondscould be an energy-sav<strong>in</strong>g feature but have little to do with self-seal<strong>in</strong>g characteristics, aredelicate to operate properly, and are unlikely to be a money-sav<strong>in</strong>g measure <strong>for</strong> dispos<strong>in</strong>g of theconcentrate. This is not the direction that self-seal<strong>in</strong>g should be tak<strong>in</strong>g.p.8. In all figures start<strong>in</strong>g from this one, the Source must be shown BELOW the figure caption(not above the caption).I could not f<strong>in</strong>d such a requirement <strong>in</strong> the TWDB suggested <strong>for</strong>matp.13. What is llnl ?llnl (changed to LLNL) stands <strong>for</strong> Lawrence Livermore National Laboratory. LLNL.dat is adatabase generated by us<strong>in</strong>g data put together by LLNL.p.18. Consider chang<strong>in</strong>g the second green and red dots <strong>in</strong> legend: hard to dist<strong>in</strong>guish shades ofgreen and red221


Fig. 3-4 has been changed. In addition, Fig. 3-5 has been updated (Brady feedwater source isSW, not GW—see note at bottom of Table 3-2)p.31. Expla<strong>in</strong> <strong>in</strong> simple language why TLAP is required (self-seal<strong>in</strong>g ponds do not <strong>in</strong>volve landapplication,such as animal waste and sludge)See <strong>in</strong>serted text.p.35. Please specify clearly what permits are required, which division, etc. Are these pondsconsidered "no-discharge" facilities? Regulatory/Legal aspects need to be re-written moreclearly.See <strong>in</strong>serted text. Only a State TLAP permit is needed from the “Water Quality” division.<strong>Evaporation</strong> ponds are "no-discharge" facilities.p.37. Summarize and state exactly what you recommend to be added <strong>for</strong> "self-seal<strong>in</strong>g ofevaporation ponds" (the ma<strong>in</strong> objective of this study)The report does not recommend specific additives. Each evaporation pond is a specific case. Thereport does suggest that sepiolite precursors could work, but this small project did not per<strong>for</strong>mthe field tests needed to give true recommendations. Suggestions <strong>for</strong> future studies that couldlead to explicit recommendations are presented <strong>in</strong> the conclusions section.p.39. Expla<strong>in</strong> the significance of any of the constituents <strong>in</strong> this table to "self-seal<strong>in</strong>g". What doesthe table show?This table has no particular significance relative to self-seal<strong>in</strong>g. It shows that concentrate has achemical composition similar to that of feedwater; that is, the ratio of major ion concentration <strong>in</strong>the concentrate to that of the feedwater is more or less constant. This ratio is used as a general<strong>in</strong>put to the geochemical calculation <strong>in</strong> which the assumption that the concentrate chemicalcomposition can be derived simply from the chemical composition of the feedwater is made.p.43. "Analogs" is unusual term<strong>in</strong>ology. Replace with more understandable terms.Analog is an accepted geologic and eng<strong>in</strong>eer<strong>in</strong>g term, it is now def<strong>in</strong>ed at the first <strong>in</strong>stance of itsuse <strong>in</strong> the report.p.43. Consider replac<strong>in</strong>g "permeability" with "hydraulic conductivity"Change made when “permeability” was associated with a value <strong>in</strong> cm/s; cm/s is not an <strong>in</strong>tr<strong>in</strong>sicpermeability unit but a (hydraulic) conductivity unit. However, official TCEQ permits do usepermeability (as opposed to <strong>in</strong>tr<strong>in</strong>sic permeability) as synonymous with hydraulic conductivity.p.61. Conclusions unclear - Please state your recommendations clearly <strong>for</strong> the average readerExplanations addedp.61. <strong>Desal<strong>in</strong>ation</strong> spell<strong>in</strong>g is <strong>in</strong>correct !<strong>Desal<strong>in</strong>ation</strong>, desal<strong>in</strong>ization, and desalt<strong>in</strong>g are perfectly correct and accepted words describ<strong>in</strong>gthe same process. Changed to desal<strong>in</strong>ation <strong>for</strong> consistencyp.62. Provide specific recommendations on the chemical amendments needed <strong>for</strong> self-seal<strong>in</strong>g ofponds.222


This section does not discuss the specific nature of the additives. Some are suggested elsewhere<strong>in</strong> the report. However, this report cannot pretend to give an exhaustive list of possible additives.p.86-104. Please consider remov<strong>in</strong>g symbols <strong>in</strong> legend (e.g., blue dots) that do not appear on themapsAll blue dot symbols (“>5,000ppm TDS”) removed from legendsp.115. Tw<strong>in</strong> Lakes reported <strong>in</strong> Table 10-2 is not shown <strong>in</strong> Table 10-1 and Figure 10-1. Please<strong>in</strong>clude.Tw<strong>in</strong> Lakes location has been added to Figure 10-1. No water analysis had been per<strong>for</strong>med onthis sal<strong>in</strong>e lake. It was dry at the time bottom sediment samples were takenp.120. Please expla<strong>in</strong> the significance of the different size of circles on the map. Explanation isgiven <strong>in</strong> note: “symbols are proportional to the facility size”. It has no special significance and is only arem<strong>in</strong>der <strong>for</strong> the reader of the relative size of the facilities.p.122. Please expla<strong>in</strong> the blank page or remove.“Blank page” was expla<strong>in</strong>ed <strong>in</strong> the short note. Some X-ray diffraction patterns added.223


19 Appendix L:List of Changes <strong>in</strong> Revision 1225


List of Changes <strong>in</strong> Revision 1:S<strong>in</strong>ce the publication of the <strong>in</strong>itial version of this report <strong>in</strong> March 2007, a few errors have beenfound and corrected <strong>in</strong> this new revised version. It should be noted that no additional work wasper<strong>for</strong>med, only corrections to the <strong>in</strong>itial report. This appendix documents the changes duemostly to a typo <strong>in</strong> excel spreadsheets comput<strong>in</strong>g the size of evaporation ponds.Cover page and title page:Added revision numberTable of contents:Added this appendixAbstract:Deleted the follow<strong>in</strong>g text:“Cost of a 5-acre evaporation pond, follow<strong>in</strong>g prescriptive rules <strong>for</strong> municipal wastewater is <strong>in</strong>the $250,000-350,000 range, not account<strong>in</strong>g <strong>for</strong> land purchase.”Section 4.4.1 Pond Siz<strong>in</strong>g and Table 4-9 (p.66):The follow<strong>in</strong>g text:“The smallest pond, with an area of 2.35 acres and depth (<strong>in</strong>clud<strong>in</strong>g freeboard) of 45 <strong>in</strong>ches, wascalculated <strong>for</strong> quadrangle 601 (Horizon MUD) (Table 4-9). Pond designs <strong>for</strong> the other threequadrangles ranged from 4.22 to 5.8 acres <strong>in</strong> surface area, with a depth of 48 <strong>in</strong>ches. They covera representative sample of net evaporation conditions expected across the state. As expected,calculated pond size is proportional to net evaporation rate. A representative evaporation pondarea <strong>for</strong> a 1-MGD desal<strong>in</strong>ation facility can be estimated at 5 acres.Table 4-9. Generic pond size <strong>for</strong> 1-MGD facilities located near the sampled pondsPublic UtilityPond Area(acres)Representative ofUSGS QuadrangleRiver Oaks Ranch 5.85 709Brady 4.52 608Abilene 4.22 508Horizon MUD 2.35 601“was substituted by:The smallest pond, with an area of 70.5 acres and depth (<strong>in</strong>clud<strong>in</strong>g freeboard) of 45 <strong>in</strong>ches, wascalculated <strong>for</strong> quadrangle 601 (Horizon MUD) (Table 4-9). Pond designs <strong>for</strong> the other threequadrangles ranged from 126.6 to 175.5 acres <strong>in</strong> surface area, with a depth of 48 <strong>in</strong>ches. Theycover a representative sample of net evaporation conditions expected across the state. Asexpected, calculated pond size is proportional to net evaporation rate. A representativeevaporation pond area <strong>for</strong> a 1-MGD desal<strong>in</strong>ation facility can be estimated at 125 acres.Table 4-9. Generic pond size <strong>for</strong> 1-MGD facilities located near the sampled pondsPublic UtilityPond Area(acres)Representative ofUSGS QuadrangleRiver Oaks Ranch 175.5 709Brady 135.6 608Abilene 126.6 508Horizon MUD 70.5 601227


Table 4-10, 4-11, 4-12, and 4-13 (p. 67 to 70):These tables now display the correct pond areaTable 4-14 (p. 73):Changed from:Equivalent Conta<strong>in</strong>ment TypeClay l<strong>in</strong>erIf M<strong>in</strong>imum Pond Depth(1.1 <strong>in</strong>ch)Rate must be


$ Cost / acre = 1.392 × CI × ( 8077 + 465 × mil)and Cost / acre = 1.55×CI × ( 8077 + 465 × mil)been replaced by: Cost / acre = 1.11×CI × ( 8077 + 465×mil)$ have$ reflect<strong>in</strong>g the smallest cost per acre<strong>for</strong> a larger pond.Table 4-15 (p.76):The table now focuses on the cost per acre. Column with total cost <strong>for</strong> a 5-acre pond was deleted.Conclusions (p.77):Total cost changed to cost/acre.Appendix list:New Appendix L addedAppendix J: Conceptual Draw<strong>in</strong>gs of <strong>Evaporation</strong> <strong>Ponds</strong>Dimensions corrected from 450 ft × 450 ft (4.52 acres) to 2430 ft × 2430 ft (135.6 acres)229

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!