11.07.2015 Views

Topic: Critical phenomena in Optics - Graduiertenkolleg 695

Topic: Critical phenomena in Optics - Graduiertenkolleg 695

Topic: Critical phenomena in Optics - Graduiertenkolleg 695

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Graduiertenkolleg</strong> <strong>695</strong>Nichtl<strong>in</strong>earitäten optischer MaterialienArbeits- und Ergebnisbericht01.01.2001 – 31.03.2003Teil 1(Anhänge s<strong>in</strong>d im Teil 2 zu f<strong>in</strong>den)Gefördert vonder Deutschen Forschungsgeme<strong>in</strong>schaftund dem Land Niedersachsen1


1. Umsetzung der Zielsetzung und Konzeption des Kollegs1.1 Kurzberichte zu den Forschungsbeiträgen der beteiligten HochschullehrerProf. Dr. Klaus Bärw<strong>in</strong>kel,Apl. Prof. Dr. He<strong>in</strong>z-Jürgen Schmidt,Priv.-Doz. Dr. Jürgen SchnackForschungsübersichtNeben den bisherigen Arbeitsgebieten (Transporttheorie, Quantenthermostaten,Thermodynamik kle<strong>in</strong>er Quantensysteme, Fermionische Molekulardynamik, Relativitätstheorie)ist seit 1999 die theoretische Behandlung kle<strong>in</strong>er Sp<strong>in</strong>systeme und magnetischerMoleküle e<strong>in</strong> neuer Schwerpunkt der Arbeitsgruppe. Hier werden mit exaktenund approximativen Methoden die Eigenschaften des Energiespektrums undthermodynamische Eigenschaften e<strong>in</strong>schließlich Sp<strong>in</strong>-Sp<strong>in</strong>-Korrelationsfunktionenuntersucht. Wichtige Teilergebnisse s<strong>in</strong>d z. B. Regeln für die k-Quantenzahlen vonrelativen Grundzuständen <strong>in</strong> Sp<strong>in</strong>r<strong>in</strong>gen, die Entdeckung spezieller exakter Grundzustände(<strong>in</strong>dependent magnon states), die zu makroskopischen Magnetisierungssprüngenführen sowie die Erklärung von Rotationsbändern im Spektrum vieler Sp<strong>in</strong>systeme.Forschung im KollegSeit 2001 werden im Zusammenhang mit dem <strong>Graduiertenkolleg</strong> <strong>695</strong> zusätzlich optischeund magnetische Solitonen untersucht, wobei durchaus <strong>in</strong>haltliche und methodischeZusammenhänge mit den oben genannten Themen bestehen. Für die Untersuchungvon magnetischen Solitonen (Stipendiat Pavlo Shchelokovskyy) ist dies offensichtlich:Hier sollen quantenmechanische Analoga zu den bekannten klassischenSolitonen <strong>in</strong> Sp<strong>in</strong>r<strong>in</strong>gen gefunden und deren experimentelle Realisierung diskutiertwerden.E<strong>in</strong> zweites Projekt (Stipendiat Felix Homann) ist der Entwicklung von Näherungsmethodenfür die Beschreibung von Solitonen gewidmet, die auch <strong>in</strong> solchen Fällen Ergebnisseliefert, <strong>in</strong> denen die exakten Methoden der <strong>in</strong>versen Streutheorie versagen.Hier werden Ideen aus der Fermionischen Molekulardynamik und Methoden der analytischenMechanik Hamiltonscher Systeme verwendet.Kooperationen im KollegNeben der engen Zusammenarbeit <strong>in</strong>nerhalb der Arbeitsgruppe gab es Berührungspunkteund Diskussionen mit den von Prof. Schürmann betreuten Projekten und Kollegiat(<strong>in</strong>n)ensowie mit der Arbeitsgruppe von Prof. R<strong>in</strong>ghofer zum Thema „Metamaterialien“.Publikationen im Zusammenhang mit dem <strong>Graduiertenkolleg</strong> (ab 2000)K. Bärw<strong>in</strong>kel, H.-J. Schmidt, J. Schnack, Energy bounds for n-partite sp<strong>in</strong> systems,Eur. Phys. J. B (2003) submitted4


H.-J. Schmidt, J. Schnack, Symmetric polynomials <strong>in</strong> physics,Plenary talk at the G24 conference, Paris, 2002, contribution to the proceed<strong>in</strong>gs 2003H.-J. Schmidt, M. Luban, Classical ground states of symmetrical Heisenberg sp<strong>in</strong>systems, J. Phys. A: Math. Gen. (2003) submittedM. Exler, J. Schnack, Evaluation of the low-ly<strong>in</strong>g energy spectrum of magnetic Kepleratemolecules with DMRG, Phys. Rev. B (2003), submittedH.-J. Schmidt, L<strong>in</strong>ear energy bounds for Heisenberg sp<strong>in</strong> systems, J. Phys. A: Math.Gen. 35 (2002) 6545-6555J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Macroscopicmagnetization jumps due to <strong>in</strong>dependent magnons <strong>in</strong> frustrated quantum sp<strong>in</strong> lattices,Phys. Rev. Lett. 88 (2002) 167207H.-J. Schmidt, J. Schnack, Partition functions and symmetric polynomials,Am. J. Phys. 70 (2002) 53-57J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Independent magnon states onmagnetic polytopes, Eur. Phys. J. B 24 (2001) 475J. Schnack, M. Luban, R. Modler, Quantum rotational band model for the Heisenbergmolecular magnet Mo_72Fe_30, Europhysics Letters 56 (2001) 863D. Mentrup, J. Schnack, Isothermal quantum dynamics: Nosé-Hoover method forcoherent states, <strong>in</strong> Advances <strong>in</strong> Quantum Many-Body Theory, Proceed<strong>in</strong>gs of "The11th International Conferences on Recent Progress <strong>in</strong> Many-Body Theories",Manchester, edited by Raymond F. Bishop, Tobias Brandes, Klaus A. Gernoth, NielsR. Walet, and Yang Xian (UMIST, Manchester, UK, 2001), World ScientificJ. Schnack, M. Luban, R. Modler, Rotational band structure of low-ly<strong>in</strong>g excitations <strong>in</strong>small Heisenberg systems, <strong>in</strong> Advances <strong>in</strong> Quantum Many-Body Theory, Proceed<strong>in</strong>gsof "The 11th International Conferences on Recent Progress <strong>in</strong> Many-BodyTheories", Manchester, edited by Raymond F. Bishop, Tobias Brandes, Klaus A.Gernoth, Niels R. Walet, and Yang Xian (UMIST, Manchester, UK, 2001), World ScientificH.-J. Schmidt, J. Schnack, M. Luban, Heisenberg exchange parameters of molecularmagnets from the high-temperature susceptibility expansion, Phys. Rev. B 64 (2001)224415A. Müller, M. Luban, C. Schröder, R. Modler, P. Kögerler, M. Axenovich, J. Schnack,P.C. Canfield, S. Bud'ko, and Neil Harrison, Classical and Quantum Magnetism <strong>in</strong>Giant Keplerate Magnetic Molecules, Chem. Phys. Chem. 2 (2001) 517D. Mentrup, J. Schnack, Nose-Hoover dynamics for coherent states, Physica A 297(2001) 337-347H.-J. Schmidt, J. Schnack, M. Luban, Bound<strong>in</strong>g and approximat<strong>in</strong>g parabolas for thespectrum of Heisenberg sp<strong>in</strong> systems, Europhysics Letters 55 (2001) 105 –1115


H.-J. Schmidt, M. Luban, Cont<strong>in</strong>uous families of isospectral Heisenberg sp<strong>in</strong> systemsand the limits of <strong>in</strong>ference from measurements, J. Phys. A: Math. Gen. 34 (2001)2839-2858J. Schnack, M. Luban, Rotational modes <strong>in</strong> molecular magnets with antiferromagneticHeisenberg exchange, Phys. Rev. B 63 (2001) 014418J. Schnack, Properties of the first excited state of nonbipartite Heisenberg sp<strong>in</strong> r<strong>in</strong>gs,Phys. Rev. B 62 (2000) 14855-14859H.-J. Schmidt, F. Homann, Photon Stars, General Relativity and Gravitation (GRG)Vol. 32, No. 5 (May 2000) 919 – 931H. Feldmeier, J. Schnack, Molecular Dynamics for Fermions, Rev. Mod. Phys. 72(2000) 655-688K. Bärw<strong>in</strong>kel, H.-J. Schmidt, J. Schnack, Ground state properties of antiferromagneticHeisenberg sp<strong>in</strong> r<strong>in</strong>gs, Journal of Magnetism and Magnetic Materials 220 (2000) 227D. Mentrup, H.-J. Schmidt, J. Schnack, M. Luban, Transition from quantum to classicalHeisenberg trimers: Thermodynamics and time correlation functions,Physica A 278 (2000) 214-221Y. Furukawa, M. Luban, F. Borsa, D.C. Johnston, A.V. Mahajan, L.L. Miller, D. Mentrup,J. Schnack, A. B<strong>in</strong>o, Sp<strong>in</strong> dynamics of the magnetic cluster[Cr_4S(O_2CCH_3)_8(H_2O)_4](NO_3)_2H_2O, Phys. Rev. B 61 (2000) 8635K. Bärw<strong>in</strong>kel, H.-J. Schmidt, J. Schnack, Structure and relevant dimension of theHeisenberg model and applications to sp<strong>in</strong> r<strong>in</strong>gs, Journal of Magnetism and MagneticMaterials 212 (2000) 240-2506


Publikationen im Zusammenhang mit dem <strong>Graduiertenkolleg</strong>K. Betzler, H. Hesse, R. Jaquet, D. Lammers: Optical second-harmonic generation <strong>in</strong>lead formate. J. Appl. Physics 87, 22 (2000).D. Xue, K. Betzler, H. Hesse, D. Lammers, S. Zhang: Theoretical studies of nonl<strong>in</strong>earoptical properties of compounds K 4 Ln 2 (CO 3 ) 3 F 4 (Ln=Pr, Nd, Sm, Eu, Gd). J. Appl.Physics 87, 2849 (2000).D. Xue, K. Betzler, H. Hesse: Structural characteristics and second order nonl<strong>in</strong>earoptical properties of borate crystals. Trends <strong>in</strong> <strong>Optics</strong> and Photonics Series 34, 542(2000).D. Xue, K. Betzler, H. Hesse: Dielectric constants of b<strong>in</strong>ary rare-earth compounds. J.Phys.: Condens. Matter 12, 3113 (2000).D. Xue, K. Betzler, H. Hesse, D. Lammers: Nonl<strong>in</strong>ear optical properties of boratecrystals. Solid State Communications 114, 21 (2000).D. Xue, K. Betzler, H. Hesse: Chemical bond analysis of the second order nonl<strong>in</strong>earoptical behavior of Mg-doped lithium niobate. J. Phys.: Condens. Matter, 12, 6245(2000).D. Xue, K. Betzler, H. Hesse: Dielectric properties of lithium niobate-tantalate crystals.Solid State Communications, 115, 581 (2000).D. Xue, K. Betzler, H. Hesse: Chemical bond analysis of the second order nonl<strong>in</strong>earoptical behavior of Zn-doped lithium niobate. <strong>Optics</strong> Communications, 182, 167(2000).D. Lammers, K. Betzler, D. Xue, J. Zhao: Optical Second-Harmonic Generation <strong>in</strong>Benzophenone. physica status solidi (a) 180/2, R5 (2000).D. Xue, K. Betzler, H. Hesse: Dielectric properties of I-III-VI 2 type chalcopyrite semiconductors.Physical Review B15, 62, 13546 (2000).D. Xue, K. Betzler, H. Hesse, D. Lammers: Temperature dependence of the dielectricresponse of lithium niobate. J. Phys. Chem. Solids 62, 973 (2001).D. Xue, K. Betzler, H. Hesse: Second order nonl<strong>in</strong>ear optical properties of In-dopedlithium niobate. J. Appl. Phys. 89, 849 (2001).D. Xue, K. Betzler, H. Hesse: Induced Li-site vacancies and nonl<strong>in</strong>ear optical behaviorof doped lithium niobate crystals. Optical Materials 16, 381 (2001).D. Xue, K. Betzler: Influence of optical-damage resistant dopants on the nonl<strong>in</strong>earoptical properties of lithium niobate. Applied Physics B 72, 641 (2001).D. Xue, K. Betzler, H. Hesse, H. Ratajczak: Theoretical analysis of the chemicalbond<strong>in</strong>g behavior and the dielectric properties of different phases of ice. Bullet<strong>in</strong> ofthe Polish Academy of Sciences Chemistry 49, 289 (2001).D. Xue, K. Betzler, H. Hesse, D. Lammers: L<strong>in</strong>ear and nonl<strong>in</strong>ear optical susceptibilitiesof orthorhombic rare earth molybdates RE 2 (MoO 4 ) 3 . J. Phys. Chem. Solids 63,359 (2002).D. Xue, K. Betzler, H. Hesse, H. Ratajczak: Chemical bond analysis on second ordernonl<strong>in</strong>ear optical properties of Na 2 SeO 4·H 2 SeO 4·H 2 O. Bullet<strong>in</strong> of the Polish Academyof Sciences Chemistry 50, 289 (2002).D. Xue, K. Betzler, H. Hesse: Chemical bond analysis of the nonl<strong>in</strong>ear optical propertiesof the borate crystals LiB 3 O 5 , CsLiB 6 O 10 , and CsB 3 O 5 . Applied Physics A 74,779 (2002).K.-U. Kasemir, K. Betzler: Detect<strong>in</strong>g ellipses of limited eccentricity <strong>in</strong> images withhigh noise levels. Image and Vision Comput<strong>in</strong>g, 21, 223 (2002).Ch. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, M. Wöhlecke:Composition dependence of the ultraviolet absorption edge <strong>in</strong> lithium tantalate.J. Appl. Physics, <strong>in</strong> pr<strong>in</strong>t (2003).8


Prof. Dr. Peter HertelWegen der Übernahme des Amtes des Vizepräsidenten der Universität Osnabrückim Herbst 2000 konnte das <strong>Graduiertenkolleg</strong> lediglich durch die Vorlesung „Nonl<strong>in</strong>earresponse theory“ im WS 2001/02 sowie durch Diskussionen und Beratungenunterstützt werden.11


Prof. Dr. Siegmar KapphanForschungsübersichtDie Arbeitsgruppe "Laseroptik" beschäftigt sich mit störstellenrelevanten Problemen,<strong>in</strong>sbesondere <strong>in</strong> oxidischen Kristallen die für photorefraktive und laseroptische Anwendungenvon Interesse s<strong>in</strong>d. Mit Fourier-IR Spektroskopie UV-VISAbsorptionsmessungen, Lum<strong>in</strong>eszenz und optischer Frequenzverdopplung werden<strong>in</strong> e<strong>in</strong>em großen Temperatur- und Spektralbereich die physikalischen Eigenschaftenund das Zusammenspiel von Störstellen und Wirtsgitter untersucht. Vor allem dieFourier IR-Spektroskopie hat sich <strong>in</strong> den letzten Jahren für die Untersuchung vonlicht<strong>in</strong>duzierten polaronischen Zuständen als sehr nützlich erwiesen, da diesePolaronen charakteristische optische Übergänge <strong>in</strong> Nah-Infrarot Bereich besitzen.Forschung im KollegDas Forschungsprojekt im Kolleg konzentriert sich auf licht<strong>in</strong>duzierte Absorptionseffekte<strong>in</strong> Sr x Ba 1-x Nb 2 O 6 (SBN) und <strong>in</strong> Ba 1-y Ca y TiO 3 (BCT) Kristallen. Diese Kristallekönnen <strong>in</strong> der Kristallzucht (Dr. Pankrath) <strong>in</strong> e<strong>in</strong>er kongruenten Zusammensetzung(x = 0,61 für SBN und y = 0,23 für BCT) gezogen werden. In dieser Zusammensetzungs<strong>in</strong>d große homogene Kristalle hoher Qualität möglich, die für Anwendungengute Voraussetzungen bietet. Die photorefraktiven Eigenschaften können durch passendeDotierungen (z. B. Cer und Chrom) erhöht und optimiert werden. E<strong>in</strong> licht<strong>in</strong>duzierterLadungstransport von den Dotierungsstörstellen zu polaronischen Zentren,der vere<strong>in</strong>facht als Cr 3+ + Nb 5+ ↔ Cr 4+ + Nb 4+ (z.B. für SBN:Cr) skizziert werdenkann, ist als erster Schritt <strong>in</strong> der Kette identifiziert worden die zum Aufbau von Raumladungsfeldernführt, die den Brechungs<strong>in</strong>dex modifizieren. Die Nb 4+ -Elektronenpolaronen (Ti 3+ -Polaronen <strong>in</strong> BCT) besitzen charakteristische breite Absorptionenim NIR deren Eigenschaften und nichtl<strong>in</strong>eare Abhängigkeiten von Licht<strong>in</strong>tensität,Dotierung und Temperaturen es zu beschreiben gilt. Neben den NIR-Absorptionen treten weitere breite Absorptionen <strong>in</strong> VIS-Bereich auf, deren Natur sichnoch <strong>in</strong> der Diskussion bef<strong>in</strong>det. Beide Zentrenarten zeigen bei Raumtemperatur e<strong>in</strong>ehohe thermisch-<strong>in</strong>duzierte Beweglichkeit, die zu e<strong>in</strong>er raschen Abnahme der Zentrenkonzentration<strong>in</strong> den beleuchteten Zonen führt. Dieses thermisch-<strong>in</strong>duzierte "Hopp<strong>in</strong>g"ist bei tiefen Temperaturen unterdrückt, so dass im Tieftemperaturbereich h<strong>in</strong>reichendgroße polaronische Zentrenkonzentration spektroskopisch untersucht werdenkönnen. Mit Frau Inna Kislova konnten wir kürzlich (2002) qualitativeUntersuchungen zu e<strong>in</strong>er erstmals beobachteten Kr + -Laser <strong>in</strong>duzierten Dissoziationvon VIS-Zentren durchführen, die als Dissoziationsprodukt freie Nb 4+ (bzw. Ti 3+ )Polaronen-Absorptionen ergab und damit erste experimentelle H<strong>in</strong>weise auf dieNatur dieser VIS-Zentren. Frau Kislova beendete ihren Aufenthalt <strong>in</strong> Deutschland auspersönlichen, familiären Gründen und das Promotionsvorhaben musste dahervorzeitig abgebrochen werden (Okt. 2002).Die Untersuchungen zu diesem Zentren und <strong>in</strong>sbesondere zu der Dissoziation derVIS-Zentren sollen mit Herrn A. Goubaev fortgesetzt (Beg<strong>in</strong>n 12/02) und mit Methodender Photoleitfähigkeit und des Photo-Hall-Effektes ergänzt werden, um e<strong>in</strong>e Klärungder licht<strong>in</strong>duzierten Vorgänge und ihres E<strong>in</strong>flusses auf Aufbau (E<strong>in</strong>schreiben)und Speicherung von photorefraktiven Prozessen <strong>in</strong> diesen Materialien zu erzielen.Kooperationen im KollegE<strong>in</strong>e enge Zusammenarbeit besteht <strong>in</strong>sbesondere mit der Abteilung Kristallzüchtung(H. Hesse, R. Pankrath), die die benötigten dotierten Kristalle <strong>in</strong> hoher Qualität herzustellenvermögen. Darüber h<strong>in</strong>aus bestehen enge Kontakte mit den Forschungsgruppenvon E. Krätzig, K. Betzler und M. Wöhlecke für die zum Teil auch Messun-12


gen im IR Bereich mit dem Fourierspektrometer durchgeführt werden. E<strong>in</strong>e Kooperationzur theoretischen Modellbetrachtung von polaronischer Zentren und zu dennichtl<strong>in</strong>earen Eigenschaften optischer Materialien besteht mit Prof. Dr. V. Vikhn<strong>in</strong> undProf. V. Trepakov, Ioffe Inst., RAS, St. Petersburg, RusslandPublikationen im Zusammenhang mit dem <strong>Graduiertenkolleg</strong>M. Gao, S. Kapphan, R. Pankrath, J. Zhao, ‘NIR-Absorption of Nb 4+ -Polarons <strong>in</strong> ReducedSBN-Crystals’, phys. stat. sol. (b), Vol. 217, 999 (2000)V. Vikhn<strong>in</strong>, S. Kapphan, H. Liu, W. Jia, V. Trepakov, L. Jastrabik, ‘Polaron andCharge Transfer Vibronic Exciton Phenomena <strong>in</strong> Ferroelectrics’, Ferroelectrics, 237,81-88 (2000)I. I. Tupitsyn, A. De<strong>in</strong>eka, V. Trepakov, L. Jastrabik and S. Kapphan, ‘Li-Dop<strong>in</strong>g Effecton the Energy Structure of KTaO 3 ’, Ferroelectrics, Vol. 237, 9-16 (2000)V. Trepakov, A. Skvortsov, S. Kapphan, L. Jastrabik and V. Vorlíček, ‘ComparativeStudies of Lum<strong>in</strong>escence <strong>in</strong> Congruent and Stoichiometric VTE-Treated LiNbO 3 :Cr’,Ferroelectrics, Vol. 239, 297-304, 1167 - 1174 (2000)M<strong>in</strong>g Gao, S. Kapphan, R. Pankrath, Xiqi Feng, Yuanfen Tang, V. Vikhn<strong>in</strong>, ‘Light<strong>in</strong>ducedVIS-absorption and light-<strong>in</strong>duced charge transfer <strong>in</strong> pure and doped SBNcrystals’, J. of Phys. Chem. Sol., 61, 1775-1787 (2000)M. Gao, S. Kapphan, R. Pankrath, ‘Photolum<strong>in</strong>escence and thermolum<strong>in</strong>escence <strong>in</strong>SBN:Cr crystals’, J. of Phys. Chem. Sol., 61, 1959-1971 (2000)M. Gao, S.Kapphan, R. Pankrath, J. Zhao, ‘NIR Absorption of Nb 4+ Polarons <strong>in</strong> reducedSBN crystals’, Ferroelectrics, 239, 251-256, 1121 - 1126 (2000)S. A. Basun, A. A. Kaplyanskii, A. B. Kutsenko, V. Dierolf, T. Tröster, S. E. Kapphan,and K. Polgar, ‚Dom<strong>in</strong>ant Cr 3+ Centers <strong>in</strong> LiNbO 3 under Hydrostatic Pressure’ Phys.of Sol. State, Vol. 43, No. 6, 1043-1051 (2001)V. S. Vikhn<strong>in</strong>, R. I. Eglitis, E. A. Kotom<strong>in</strong>, S. Kapphan, G. Borstel, ‚New Polaronic-Type Excitons <strong>in</strong> Ferroelectric Oxides: INDO-Calculations and Experimental Manifestation’,Mat. Res. Soc. Symp. Proc., Vol. 677, AA 4.15.1 (2001)Zhao Jian-L<strong>in</strong>, Wang B<strong>in</strong>, Wu Jian-Jun, Yang De-X<strong>in</strong>g, S. Kapphan, R. Pankrath, ‚Investigationof photorefractive Two-Wave Coupl<strong>in</strong>g <strong>in</strong> Cr-doped Strontium BariumNiobate Crystal’, Ch<strong>in</strong>. Phys. Soc., Vol. 10, 739 – 742 (2001)V. S. Vikhn<strong>in</strong>, R. I. Eglitis, S. E. Kapphan, E. A. Kotom<strong>in</strong>, G. Borstel, ‚A new phase <strong>in</strong>ferroelectric oxides: The phase of charge transfer vibronic excitons’, Europhys. Lett.,56, 702 – 708 (2001)S. A. Basun, A. A. Kaplyanskii, A. B. Kutsenko, V. Dierolf, T. Troester, S. E. Kapphan,K. Polgar, ‚Optical characterization of Cr 3+ centers <strong>in</strong> LiNbO 3 ’, Appl. Phys. B,73, 453 – 461 (2001)Zhao Jianl<strong>in</strong>, Wu Jianjun, Wang B<strong>in</strong>, Yang Dex<strong>in</strong>g, S. Kapphan, R. Pankrath, ‚ImageEdge-Enhancement us<strong>in</strong>g photorefractive Two-Wave Coupl<strong>in</strong>g <strong>in</strong> Cr:SBNCrystal’,Acta Optica S<strong>in</strong>ica, Vol. 21, No. 11, 1343 (2001)M. Wierschem, T. L<strong>in</strong>demann, R. Pankrath, S. E. Kapphan, ‚NIR Absorption andlight-<strong>in</strong>duced charge transfer <strong>in</strong> photorefractive Ba 0.77 Ca 0.23 TiO 3 crystals doped withiron’, Ferroelectrics, Vol. 264, pp. 315-324 (2001)13


V. S. Vikhn<strong>in</strong>, S. E. Kapphan, ‚Local Configuration <strong>in</strong>stability as an orig<strong>in</strong> of Relaxor-Type Properties of Ferroelectric solid solutions SBN, SCT and KLTN, FerroelectricsLetters’, Vol. 28(5-6), pp. 123-133 (2001)V. S. Vikhn<strong>in</strong>, A. A. Kaplyanskii, A. B. Kutsenko, G. K. Liu, J. V. Beitz, S. E. Kapphan,,"Charge transfer-lattice" clusters <strong>in</strong>duced by charged impurities’, Journal of Lum<strong>in</strong>escence94-95, 775-779 (2001)V. S. Vikhn<strong>in</strong>, I. Kislova, A. B. Kutsenko, S. E. Kapphan, ‚Charge transfer vibronicexcitons and excitonic-type polaron states: photolum<strong>in</strong>escence <strong>in</strong> SBN’, Solid StateComm., 121, 83 – 88 (2002)V. S. Vikhn<strong>in</strong>, R. I. Eglitis, S. E. Kapphan, G. Borstel, E. A. Kotom<strong>in</strong>, ‚Polaronic-typeexcitons <strong>in</strong> ferroelectric oxides: Microscopic calculations and experimental manifestation’,Physical Review B. Vol. 65, 104304 (2002)V. S. Vikhn<strong>in</strong>, R. I. Eglitis, S. E. Kapphan, ,Charge Transfer Vibronic Excitons <strong>in</strong> IncipientFerroelectrics and Related Problems’, Ferroelectrics, Vol. 265, pp. 177 –178(2002)R. I. Eglitis, V. S. Vikhn<strong>in</strong>, E. A. Kotom<strong>in</strong>, S. E. Kapphan, G. Borstel, ,TheoreticalPrediction and Experimental Confirmation of Charge Transfer Vibronic Excitons andTheir phase <strong>in</strong> ABO 3 Perovskite Crystals’, Mat. Res. Soc. Symp. Proc., Vol. 718(2002)I. L. Kislova, M. Gao, S. E. Kapphan, R. Pankrath, A. B. Kutsenko, V. S. Vikhn<strong>in</strong>,,Photo- and Thermolum<strong>in</strong>escence <strong>in</strong> congruent SBN Crystals doped with Ce and Cr’,Ferroelectrics, Vol. 273, pp. 187-192 (2002)V. S. Vikhn<strong>in</strong>, S. Avanesyan, H. Liu, S. E. Kapphan, ,An orig<strong>in</strong> of light <strong>in</strong>duced centers<strong>in</strong> the visible range <strong>in</strong> ferroelectric oxides: possible role of the states of chargetransfer vibronic excitons’, Journal of Physics and Chemistry of Solids, Vol. 63, 1677-1683 (2002)Z. Bryknar, V. Trepakov, Z. Potucek, L. Jastrabik, S. Kapphan, ‘Photolum<strong>in</strong>escenceSpectroscopy of Chromium doped Cd 2 Nb 2 O 7 ’, Ferroelectrics, Vol. 272, 363 - 368(2002)V. S. Vikhn<strong>in</strong>, R. Bl<strong>in</strong>c, R. Pirc, S. E. Kapphan, I. L. Kislova, P. A. Markov<strong>in</strong>, ‘A Modelof Polar Clusters <strong>in</strong> Ferroelectric Relaxors of PMN-Type: Polaronic and ChargeTransfer Effects’, Ferroelectrics, Vol. 268, 257 – 262 (2002)R. I. Eglitis, E. A. Kotom<strong>in</strong>, V. A. Trepakov, S. E. Kapphan and G. Borstel, ‚Quantumchemical modell<strong>in</strong>g of electron polarons and ‚green’ lum<strong>in</strong>escence <strong>in</strong> PbTiO 3perovskite crystals’, J. Phys.: Condens. Matter, 14, L 647 – L 653 (2002)D. Millers, L. Grigorjeva, V. Pankratov, V. A. Trepakov, S. E. Kapphan, ‘Pulsed electronbeam excited transient absorption <strong>in</strong> SrTiO 3 ’, NIM B, 194, 469 – 473 (2002)A. G. Badalyan, P. G. Baranov, V. A. Trepakov, C. B. Azioni, P. Gab<strong>in</strong>etto, M. C.Mozzati, L. Jastrabik, J. Rosa, M. Hrabovský, ‘Recent researches of the Copper Centres<strong>in</strong> Potassium Tantalate S<strong>in</strong>gle Crystals’, Ferroelectrics, Vol. 272, 205 – 210(2002)14


Prof. Dr. Detlef KipForschungsübersichtNach der Habilitation <strong>in</strong> der Arbeitsgruppe Elektrooptik von E. Krätzig im Jahre 1999hat Detlef Kip im Sommer 2002 e<strong>in</strong>en Ruf auf e<strong>in</strong>e Professur für Optische Technologienan die TU Clausthal angenommen. Die Forschung der noch <strong>in</strong> Osnabrückdurchgeführten Arbeiten sowie der <strong>in</strong> Clausthal im Aufbau bef<strong>in</strong>dlichen Abteilung OptischeTechnologien beschäftigt sich mit verschiedenen Bereichen der Photonik. Ine<strong>in</strong>em ersten Schwerpunkt geht es um die Entwicklung und Optimierung oxidischerKristalle. Für Anwendungen im Bereich der Integrierten Optik entwickeln wir Wellenleiter,z.B. <strong>in</strong> den Substratmaterialien Lithiumniobat, Lithiumtantalat und Strontium-Barium-Niobat. Unser besonderes Interesse gilt hier der Entwicklung von schmalbandigen<strong>in</strong>tegriert-optischen Wellenlängenfiltern für Anwendungen <strong>in</strong> der optischenNachrichtentechnik und der effizienten Frequenzverdopplung <strong>in</strong> optischen Wellenleitern.In e<strong>in</strong>em weiteren Schwerpunkt geht es um die Erzeugung und Untersuchungvon optischen räumlichen Solitonen. Konkret untersuchen wir hierbei die Existenzbereicheund Wechselwirkungseigenschaften solcher räumlicher Solitonen <strong>in</strong> photorefraktivenKristallen, die <strong>in</strong> diesem Zusammenhang e<strong>in</strong> ausgezeichnetes, experimentellvergleichsweise leicht zugängliches Modellsystem für die universellen Eigenschaftenvon Solitonen darstellen.Forschung im KollegIm <strong>Graduiertenkolleg</strong> wird von uns das Themengebiet der optischen Frequenzverdopplung(SHG) <strong>in</strong> oxidischen Wellenleitern bearbeitet. Hierbei konzentrieren wir unsauf die Kristalle LiNbO 3 und LiTaO 3 , die kommerziell als Wafer <strong>in</strong> hervorragenderoptischer Qualität erhältlich s<strong>in</strong>d. In beiden Materialien ist für e<strong>in</strong>e effiziente Frequenzverdopplungund der Nutzung des größten SHG-Koeffizienten d 33 e<strong>in</strong>e Quasi-Phasenanpassung durch räumlich periodische Modulation der ferroelektrischen Domänennotwendig. Das Schalten der Domänen geschieht mit Hilfe von Hochspannungspulsenund lithographisch strukturierten F<strong>in</strong>gerelektroden mit Gitterperiodenvon e<strong>in</strong>igen Mikrometern. Die Wellenleiterherstellung erfolgt durch E<strong>in</strong>diffusion vonTitanstreifen <strong>in</strong> das Substratmaterial. Besonderes Augenmerk gilt der Vermeidungvon photorefraktiven Effekten im Wellenleiter. Hierzu werden Substratmaterialien mitveränderter, nahezu stöchiometrischer Zusammensetzung durch VTE-Behandlung(Vapor Transport Equilibration) untersucht. Nähere Informationen zu den laufendenund geplanten Arbeiten enthält der entsprechende Bericht.Kooperationen im KollegDie Untersuchungen <strong>in</strong> diesem Projekt werden <strong>in</strong> enger Zusammenarbeit mit denForschungsgruppen von E. Krätzig, M. Imlau und K. Buse (jetzt Universität Bonn)sowie mit der Abteilung Kristallzüchtung (H. Hesse, R. Pankrath) durchgeführt.Publikationen <strong>in</strong> Zusammenhang mit dem <strong>Graduiertenkolleg</strong>V. Shandarov, M. Wesner, J. Hukriede und D. Kip: „Observation of dark spatial photovoltaicsolitons <strong>in</strong> planar waveguides <strong>in</strong> lithium niobate“. J. Opt. A: Pure Appl. Opt.2, 500 (2000)15


J. Hukriede, D. Kip und E. Krätzig: “Investigation of titanium- and copper-<strong>in</strong>diffusedchannel waveguides <strong>in</strong> lithium niobate and their application as holographic filters for<strong>in</strong>frared light”. J. Opt. A: Pure Appl. Opt. 2, 481 (2000)M. Wesner, C. Herden, D. Kip und P. Moretti: “Photorefractive steady-state solitonsup to telecommunication wavelengths <strong>in</strong> planar SBN waveguides”. Opt. Commun.188, 69 (2001)M. Wesner, C. Herden und D. Kip: “Electrical fix<strong>in</strong>g of waveguide channels <strong>in</strong> srontium-bariumniobate crystals”. Appl. Phys. B 72, 733 (2001)M. Wesner, C. Herden, R. Pankrath, D. Kip und P. Moretti: “Temporal development ofphotorefractive solitons up to telecommunication wavelengths <strong>in</strong> SBN”. Phys. Rev. E64, 36613 (2001)J. Hukriede, D. Kip und E. Krätzig: "Permanent narrow-band reflection holograms for<strong>in</strong>frared light recorded <strong>in</strong> LiNbO 3 :Ti:Cu channel waveguides". Appl. Phys. B 72, 749(2001)D. Kip, C. Herden und M. Wesner: “All-optical signal rout<strong>in</strong>g us<strong>in</strong>g <strong>in</strong>teraction of mutually<strong>in</strong>coherent spatial solitons”. Ferroelectrics 274, 135 (2002)J. Xu, V. Shandarov, M. Wesner und D. Kip: “Observation of two-dimensional spatialsolitons <strong>in</strong> iron-doped barium-calcium titanate crystals”. phys. stat. sol. (a) 189, R4(2002)J. Imbrock, A. Wirp, D. Kip und E. Krätzig: “Photorefractive properties of lithium andcopper <strong>in</strong>-diffused lithium niobate crystals”. J. Opt. Soc. Am. B 19, 1822 (2002)16


Prof. Dr. Eckhard KrätzigForschungsübersichtUnserer Gruppe „Angewandte Physik: Elektrooptik“ beschäftigt sich mit den Schwerpunkten„Photorefraktive Effekte“ und „Integrierte Optik“. Photorefraktive Effektebraucht man zur Aufzeichnung von Volumenphasenhologrammen, die etwa zur Speicherungvon Information, zur optischen Phasenkonjugation, zur Lichtverstärkung undOszillation, zur Bild- und Signalverarbeitung, zur holographischen Interferometrie o-der zur Filterung herangezogen werden können. Die Integrierte Optik zielt darauf ab,möglichst viele optische Komponenten auf e<strong>in</strong>em geme<strong>in</strong>samen Substrat zu vere<strong>in</strong>en.In elektrooptischen Materialien kann man mit verschiedenen Methoden - derE<strong>in</strong>diffusion, der Ionenimplantation oder dem Ionenaustausch - Wellenleiter mit relativger<strong>in</strong>ger Dämpfung erzeugen. Im Berichtszeitraum haben wir folgende Themenbearbeitet (http://www.physik.uni-osnabrueck.de/elektrooptik):•••••••Der licht<strong>in</strong>duzierte Ladungstransport <strong>in</strong> elektrooptischen KristallenHolographische Streuung, Lichtverstärkung und OszillationPhotorefraktives Schreiben mit IR-Licht und HologrammstabilisierungReduktion licht<strong>in</strong>duzierter Brechungs<strong>in</strong>dexänderungenRaumladungswellen <strong>in</strong> photorefraktiven KristallenPhotorefraktive WellenleiterSolitonen <strong>in</strong> photorefraktiven KristallenForschung im KollegIm Kolleg behandeln wir die Projekte „Raumladungswellen <strong>in</strong> photorefraktiven Kristallen“und „Nichtl<strong>in</strong>eare optische Eigenschaften photorefraktiver SBN-Kristalle“. Beimersten Projekt (Stipendiat F. Rahe) liegt der Schwerpunkt auf der Erforschung nichtl<strong>in</strong>earerWechselwirkungen der Raumladungswellen <strong>in</strong> photorefraktiven Kristallen, die<strong>in</strong> Analogie zur „Nichtl<strong>in</strong>earen Optik“ zur Frequenzverdopplung und zur optischenGleichrichtung führen. Daneben treten aber auch Effekte auf, die <strong>in</strong> der „Nichtl<strong>in</strong>earenOptik“ nicht bekannt s<strong>in</strong>d, nämlich räumliche Gleichrichtung ohne zeitlicheGleichrichtung und räumliche Verdopplung ohne zeitliche Verdopplung. Im zweitenProjekt (Kollegiat<strong>in</strong> M. Wesner) geht es um die Untersuchung des attraktiven photorefraktivenMaterials Strontium-Barium-Niobat <strong>in</strong> Bezug auf aktuelle Fragestellungender nichtl<strong>in</strong>earen Optik und deren Anwendungen. Interessant s<strong>in</strong>d <strong>in</strong>sbesondere dieErzeugung optischer Solitonen bis zu Wellenlängen von 1.5 µm und e<strong>in</strong>e neue Methodedes elektrischen Fixierens. - Weitere Informationen s<strong>in</strong>d <strong>in</strong> den Berichten derKollegiat(<strong>in</strong>n)en zu f<strong>in</strong>den.Kooperationen im KollegObige Projekte werden <strong>in</strong> Zusammenarbeit mit den Gruppen von K. H. R<strong>in</strong>ghofer sowieK. Betzler, S. Kapphan und M. Wöhlecke durchgeführt. Weiter arbeiten wir <strong>in</strong> engerKooperation mit den früheren Gruppenmitgliedern K. Buse (jetzt UniversitätBonn) und D. Kip (jetzt Universität Clausthal). Die Kristalle erhalten wir von derGruppe von H. Hesse und R. Pankrath, die vielfach Proben auf unseren Wunsch h<strong>in</strong>modifiziert haben. Weitere Kooperationen gibt es mit M. P. Petrov (Ioffe Institute,St.Petersburg, Russland), P. Moretti (Universität Lyon, Frankreich), S. Odoulov (Academyof Sciences, Kiev, Ukra<strong>in</strong>e), V. Shandarov (Universität Tomsk, Russland) undJ<strong>in</strong>jun Xu (Universität, Tianj<strong>in</strong>, VR Ch<strong>in</strong>a).17


Publikationen <strong>in</strong> Zusammenhang mit dem <strong>Graduiertenkolleg</strong>• S, Odoulov, B. Sturman, E. Krätzig, Seeded and Spontaneous Light Hexagons <strong>in</strong>LiNbO 3 :Fe, Appl. Phys. B 70, 645 (2000)• M. P. Petrov, A. P. Paugurt, V. V. Bryks<strong>in</strong>, S. Wever<strong>in</strong>g, E. Krätzig, Spatial Rectificationof the Electric Field of Space Charge Waves, Phys. Rev. Lett. 84, 5114(2000)• M. P. Petrov, V. V. Bryks<strong>in</strong>, V. M. Petrov, S. Wever<strong>in</strong>g, E. Krätzig, Spectra ofSpace Charge Waves <strong>in</strong> Photorefractive Crystals, Technical Digest CLEOEurope, 121 (2000)• J. Hukriede, D. Kip und E. Krätzig: “Investigation of titanium- and copper<strong>in</strong>diffusedchannel waveguides <strong>in</strong> lithium niobate and their application as holographicfilters for <strong>in</strong>frared light”. J. Opt. A: Pure Appl. Opt. 2, 481 (2000)• M. P. Petrov, A. P. Paugurt, V. V. Bryks<strong>in</strong>, S. Wever<strong>in</strong>g, E. Krätzig, Spatial Rectificationof the Electric Field of Space Charge Waves <strong>in</strong> Sillenites, Technical DigestCLEO Europe, 377 (2000)• M. Goul'kov, S. Odoulov, O. Sh<strong>in</strong>karenko, E. Krätzig, R. Pankrath, Threshold ofOscillation <strong>in</strong> a R<strong>in</strong>g-Loop Phase Conjugator as a Second Order Optical PhaseTransition, Appl. Phys. B 72, 187 (2001)• M. Wesner, C. Herden, D. Kip, E. Krätzig, P. Moretti, Photorefractive Steady StateSolitons up to Telecommunication Wavelengths <strong>in</strong> Planar SBN Waveguides, <strong>Optics</strong>Commun. 188, 69 (2001)• M. P. Petrov, A. P. Paugurt, V. V. Bryks<strong>in</strong>, S. Wever<strong>in</strong>g, E. Krätzig, Dynamic ElectroopticEffect Induced by Space Charge Waves <strong>in</strong> Sillenites, Optical Materials 18,99 (2001)• J. Hukriede, D. Kip und E. Krätzig: "Permanent narrow-band reflection hologramsfor <strong>in</strong>frared light recorded <strong>in</strong> LiNbO 3 :Ti:Cu channel waveguides". Appl. Phys. B 72,749 (2001)• M. P. Petrov, V. V. Bryks<strong>in</strong>, S. Wever<strong>in</strong>g, E. Krätzig, Nonl<strong>in</strong>ear Interactions andScatter<strong>in</strong>g of Space Charge Waves <strong>in</strong> Sillenites, Appl. Phys. B 73, 669 (2001)• M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Krätzig, C. Bäumer,H. Hesse, Holographic Light Scatter<strong>in</strong>g <strong>in</strong> Photorefractive Crystals with Local Response,Phys. Rev. B 65, 195111 (2002)• M. P. Petrov, V. V. Bryks<strong>in</strong>, H. Vogt, F. Rahe, E. Krätzig, Optically InducedNonl<strong>in</strong>ear Wave Processes <strong>in</strong> Photorefractive Crystals, Technical Digest IQEC2002, 375 (2002)• S. Schwalenberg, F. Rahe, E. Krätzig, Record<strong>in</strong>g Mechanisms of AnisotropicHolographic Scatter<strong>in</strong>g Cones <strong>in</strong> Photorefractive Crystals, <strong>Optics</strong> Commun. 209,467 (2002)• M. P. Petrov, V. V. Bryks<strong>in</strong>, H. Vogt, F. Rahe, E. Krätzig, Overall Rectification andSecond Harmonic Generation of Space Charge Waves, Phys. Rev. B 66, 085107(2002)• J. Imbrock, A. Wirp, D. Kip, E. Krätzig, Photorefractive Properties of Lithium andCopper In-diffused Lithium Niobate Crystals, J. Opt. Soc. Am. B 19, 1822 (2002)• Ch. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, M. Wöhlecke,Composition Dependence of the Ultraviolet Absorption Edge <strong>in</strong> Lithium TantalateJ. Appl. Phys., <strong>in</strong> pr<strong>in</strong>t (2003)• M. P. Petrov, V. V. Bryks<strong>in</strong>, F. Rahe, C. E. Rüter, E. Krätzig, Space Charge RectificationEffects <strong>in</strong> Photorefractive Bi 12 TiO 20 Crystals, <strong>Optics</strong> Commun., submitted18


Dr. Ra<strong>in</strong>er PankrathForschungsübersichtDie Arbeitsgruppe Kristallzucht beschäftigt sich mit der Herstellung oxidischer Kristalleaus Schmelzen oder Schmelzlösungen für photorefraktive Anwendungen sowie fürdie optische Frequenzverdopplung (SHG). Dabei lag der Schwerpunkt im Berichtszeitraumauf:• Züchtung von Ba x Ca 1-x TiO 3 mit verschiedenen Dotierungen für Grundlagenuntersuchungenund photorefraktive Anwendungen.• Züchtung von LiTaO 3 mit verschiedenen Dotierungen für photorefraktive Anwendungensowie von re<strong>in</strong>en Kristallen für die SHG.• Vapour transport equilibration-Behandlungen dieser Kristalle mit dem Ziel, das„optical damage“ zu m<strong>in</strong>imieren.• Herstellung von Gläsern im System Bi 2 O 3 -B 2 O 3 mit verschiedenen Dotierungen(z.B.: Er, Nd).• Optimierung von Sr 2 FeMoO 6 -Keramiken für Untersuchungen der magnetischenEigenschaften.• Züchtung von Sr x Ba 1-x Nb 2 O 6 (SBN).Forschung im KollegIm Rahmen des Projektes „Growth and characterization of Sr x Ba 1-x Nb 2 O 6 crystalswith x rang<strong>in</strong>g from 0.2 to 0.8“ (Stipendiat M. Ulex) werden undotierte Sr x Ba 1-x Nb 2 O 6 -Mischkristalle über den gesamten Bereich der Mischkristallbildung hergestellt. Dabeigeht es unter anderem darum, den Existenzbereich der Mischkristalle abzugrenzenund das Phasendiagramm des Systems zu bestimmen. Zu diesem Zweck wurde e<strong>in</strong>bereits vorhandener Ofen modifiziert, <strong>in</strong> dem Liquidustemperaturen bestimmt werdenkönnen. Die Zusammensetzung der gezüchteten Kristalle wird mit der Röntgenfluoreszenzbestimmt.Während Sr x Ba 1-x Nb 2 O 6 mit kongruent schmelzender Zusammensetzung (x=0.61) <strong>in</strong>unseren Anlagen mit hoher optischer Qualität gezüchtet werden kann, ist die optischeQualität von Kristallen mit höherer und niedrigerer Sr-Konzentration <strong>in</strong> der Regeldeutlich verm<strong>in</strong>dert. Ursache ist die An- oder Abreicherung bestimmter Komponentenan der Phasengrenze zwischen Kristall und Schmelze. Durch Variation derRotationsgeschw<strong>in</strong>digkeit und der vertikalen Temperaturgradienten <strong>in</strong> der Schmelzewird versucht, die Inhomogenitäten zu verr<strong>in</strong>gern.Die Charakterisierung der gezüchteten Kristalle erfolgt <strong>in</strong> anderen Arbeitsgruppen imHause und <strong>in</strong> Kooperation mit Arbeitsgruppen an anderen Universitäten (siehe Kooperationenim Kolleg).Kooperationen im KollegDas Projekt wird <strong>in</strong> enger Zusammenarbeit mit den Gruppen von K. Betzler und M.Wöhlecke durchgeführt. E<strong>in</strong>e Kooperation zur Bestimmung der Gitterkonstanten undder Sr,Ba-Verteilung zwischen den entsprechenden kristallographischen Positionenbesteht mit Prof. Dr. Schmahl (Ruhr-Universität Bochum). Die spezifische Dichte derKristalle wird <strong>in</strong> Zusammenarbeit mit Prof. Dr. Bohaty (Universität zu Köln) bestimmt.19


Publikationen <strong>in</strong> Zusammenhang mit dem <strong>Graduiertenkolleg</strong>• J. Dec, W. Kleemann, Th. Woike, R. Pankrath: Phase transitions <strong>in</strong>Sr 0.61 Ba 0.39 Nb 2 O 6 :Ce 3+ : I. Susceptibility of clusters and doma<strong>in</strong>s. Eur. Phys. J.B14, 627-632 (2000)• J. Dec, W. Kleemann, Th. Woike, R. Pankrath: Phase transitions <strong>in</strong>Sr 0.61 Ba 0.39 Nb 2 O 6 :Ce 3+ : II. L<strong>in</strong>ear birefr<strong>in</strong>gence studies of spontaneous andprecursor polarization. Eur. Phys. J. B14, 633-637 (2000)• Th. Woike, T. Granzow, U. Dörfler, Ch. Poetsch, M. Wöhlecke, R. Pankrath:Refractive Indices of congruently melt<strong>in</strong>g Sr 0.61 Ba 0.39 Nb 2 O 6 . phys. stat. sol. (a)186, R13 (2001)• T. Granzow, U. Dörfler, T. Woike, M. Wöhlecke, R. Pankrath, M. Imlau, W.Kleemann: Influence of p<strong>in</strong>n<strong>in</strong>g effects on the ferroelectric hysteresis <strong>in</strong> cerium-dopedSr 0.61 Ba 0.39 Nb 2 O 6 . Phys. Rev. B 6317, art. no. 174101 (2001).• T. Woike, U. Dörfler, L. Tsankov, G. Weckwerth, D. Wolf, M. Wöhlecke,T.Granzow, R. Pankrath, M. Imlau, W. Kleemann: Photorefractive properties ofCr-doped Sr 0.61 Ba 0.39 Nb 2 O 6 related to crystal purity and dop<strong>in</strong>g concentration.Appl. Phys. B-Lasers Opt. 72, 661-666 (2001).• W. Kleemann, P. Lic<strong>in</strong>io, T. Woike, R. Pankrath: Dynamic light scatter<strong>in</strong>g atdoma<strong>in</strong>s and nanoclusters <strong>in</strong> a relaxor ferroelectric. Phys. Rev. Lett. 86, 6014-6017 (2001).• T. Woike, T. Granzow, U. Dörfler, C. Pötsch, M. Wöhlecke, R. Pankrath: Refractive<strong>in</strong>dices of congruently melt<strong>in</strong>g Sr 0.61 Ba 0.39 Nb 2 O 6 . Phys. Status Solidi(a) 186, R13-R15 (2001).• J.L. Zhao, B. Wang, J.J. Wu, D.X. Yang, S. Kapphan, R. Pankrath: Investigationof photorefractive two-wave coupl<strong>in</strong>g <strong>in</strong> Cr-doped strontium barium niobatecrystal. Ch<strong>in</strong>. Phys. 10, 739-742 (2001).• J. Dec, W. Kleemann, V. Bobnar, Z. Kutnjak, A. Levstik, R. Pirc, R. Pankrath:Random-field Is<strong>in</strong>g-type transition of pure and doped SBN from the relaxor <strong>in</strong>tothe ferroelectric state. Europhys. Lett. 55, 781-787 (2001).• M. Wesner, C. Herden, R. Pankrath, D. Kip, P. Moretti: Temporal developmentof photorefractive solitons up to telecommunication wavelengths <strong>in</strong> strontiumbariumniobate waveguides. Phys. Rev. E 6403, art. no. 036613 (2001).• T. Volk, L.Ivleva, P. Lykov, N. Polozkov, V. Salobut<strong>in</strong>, R. Pankrath, M.Wöhlecke: Effects of rare-earth impurity dop<strong>in</strong>g on the ferroelectric andphotorefractive properties of strontium-barium niobate crystals. Opt. Mater. 18,179-182 (2001).• R. Bl<strong>in</strong>c, A. Gregorovic, B. Zalar, R. Pirc, J. Seliger, W. Kleemann, S.G. Lushnikov,R. Pankrath: Nb-93 NMR of the random-field-dom<strong>in</strong>ated relaxor transition<strong>in</strong> pure and doped SBN. Phys. Rev. B 6413, art. no. 134109 (2001).• V.V. Gladkii, V.A. Kirikov, E.V. Pron<strong>in</strong>a, T.R. Volk, R. Pankrath, M. Wöhlecke:Anomalies <strong>in</strong> the slow polarization k<strong>in</strong>etics of a ferroelectric relaxor <strong>in</strong> the temperatureregion of a diffuse phase transition. Phys. Solid State 43, 2140-2145(2001).• P. Lehnen, E. Beckers, W. Kleemann, T. Woike, R. Pankrath: Ferroelectricdoma<strong>in</strong>s <strong>in</strong> the uniaxial relaxor system SBN:Ce, Cr and Co. Ferroelectrics 253,567-575 (2001).• W. Kleemann, V. Bobnar, J. Dec, P. Lehnen, R. Pankrath, S.A. Prosandeev:Relaxor properties of dilute and concentrated polar solid solutions. Ferroelectrics261, 707-716 (2001).20


• P. Lehnen, W. Kleemann, T. Woike, R. Pankrath: Ferroelectric nanodoma<strong>in</strong>s<strong>in</strong> the uniaxial relaxor system Sr 0.61-x Ba 0.39 Nb 2 O 6 :Ce -x (3+) . Phys. Rev. B 6422,art. no. 224109 (2001).• T. Granzow, U. Dörfler, T. Woike, M. Wöhlecke, R. Pankrath, M. Imlau, W.Kleemann: Local electric-field-driven repol<strong>in</strong>g reflected <strong>in</strong> the ferroelectric polarizationof Ce-doped Sr 0.61 Ba 0.39 Nb 2 O 6 . Appl. Phys Lett. 80, 470-472 (2002).• W. Kleemann, J. Dec, P. Lehnen, R. Bl<strong>in</strong>c, B. Zalar, R. Pankrath: Uniaxial relaxorferroelectrics: The ferroic random-field Is<strong>in</strong>g model materialized at last.Europhys. Lett. 57, 14-19 (2002).• T. Granzow, U. Dörfler, T. Woike, M. Wöhlecke, R. Pankrath, M. Imlau, W.Kleemann: Evidence of random electric fields <strong>in</strong> the relaxor-ferroelectricSr 0.61 Ba 0.39 Nb 2 O 6 . Europhys. Lett. 57, 597-603 (2002).• P. Lehnen, J. Dec, W. Kleemann, T. Woike, R. Pankrath: Doma<strong>in</strong> responsefeatures of SBN:Ce. Ferroelectrics 268, 533-538 (2002).• W. Kleemann, J. Dec, R. Bl<strong>in</strong>c, B. Zalar, R. Pankrath: Random fields at transitionsfrom relaxor to glassy and ferroelectric states. Ferroelectrics 267, 157-164 (2002).• W. Kleemann, J. Dec, S. Miga, T. Woike, R. Pankrath: Non-Debye doma<strong>in</strong>wall-<strong>in</strong>duceddielectric response <strong>in</strong> Sr 0.61-x Ce x Ba 0.39 Nb 2 O 6 . Phys. Rev. B 65,art. no. 220101 (2002).• I.L. Kislova, M. Gao, S.E. Kapphan, R. Pankrath, A.B. Kutsenko, V.S. Vikhn<strong>in</strong>:Photo- and thermolum<strong>in</strong>escence <strong>in</strong> congruent SBN crystals doped with Ce andCr. Ferroelectrics 273, 2565-2570 (2002).• H.L. Zhao, Q.T. Xu, W.M. Zhou, D.S. Yang, S. Kapphan, R. Pankrath:Photorefractive edge-enhancement jo<strong>in</strong>t transform correlator. Opt. Commun.212, 287-292 (2002).• S. Kapphan, B. Pedko, V. Trepakov, M. Sav<strong>in</strong>ov, R. Pankrath, I. Kislova:Variation of dop<strong>in</strong>g-dependent properties <strong>in</strong> photorefractive Sr x Ba 1-x Nb 2 O 6 :Ce,Cr, Ce+Cr. Radiat. Eff. Defects Solids 157, 1033-1037 (2002).• I.L. Kislova, M. Gao, S.E. Kapphan, R. Pankrath, A.B. Kutsenko, V.S. Vikhn<strong>in</strong>:Congruent Sr 0.61 Ba 0.39 Nb 2 O 6 doubly doped with Ce and Cr: Photo- and thermolum<strong>in</strong>escence<strong>in</strong>vestigations. Radiat. Eff. Defects Solids 157, 1015-1020(2002).21


Prof. Dr. Klaus R<strong>in</strong>ghofer, Dr. Maxim GorkounovForschungsübersichtDie Arbeitsgruppe Theoretische Optik beschäftigt sich mit der Beschreibung nichtl<strong>in</strong>eareroptischer Effekte <strong>in</strong> photorefraktiven Kristallen. In solchen Kristallen verursachte<strong>in</strong>e Intensitätsmodulation, die von zwei <strong>in</strong>terferierenden Lichtstrahlen erzeugtwird, e<strong>in</strong> moduliertes elektrisches Raumladungsfeld, das e<strong>in</strong>e entsprechende Modulationdes Brechungs<strong>in</strong>dex hervorruft. Wir modellieren derartige nichtl<strong>in</strong>eare Wechselwirkungenoptischer Strahlen <strong>in</strong> Kristallen mit unterschiedlichen Symmetrien unterverschieden externen Bed<strong>in</strong>gungen. Außerdem beteiligen wir uns an der Forschungelektromagnetischer Eigenschaften der neuen Metamaterialen, die als Analoga optischerKristalle im Mikrowellenfrequenzbereich gelten. Die mikroskopischen Eigenschaftensolcher künstlich hergestellten Materialen s<strong>in</strong>d relativ leicht kontrollierbar,während die makroskopischen Eigenschaften alle praktischen Anwendungenbestimmen. Unser Ziel ist es, den Zusammenhang zu beschreiben und optimale Metamaterialienvorzuschlagen.Forschung im KollegIm Kolleg werden die beiden Projekte „Vectorial beam coupl<strong>in</strong>g <strong>in</strong> fast photorefractivecrystals with AC-enhanced response (Oleg Filippov)“ und „Microwave <strong>in</strong>teractions <strong>in</strong>nonl<strong>in</strong>ear metamaterials (Mikhail Lap<strong>in</strong>e)“ durchgeführt (s. Berichte der Stipendiaten).Kooperationen im KollegDie Projekte werden <strong>in</strong> enger Zusammenarbeit mit B. Sturman (International Institutefor Nonl<strong>in</strong>ear Studies, Novosibirsk, Russland) und E. Shamon<strong>in</strong>a (Universität Oxford,England) bearbeitet. Außerdem gibt es Kooperationen mit den Gruppen von K. Betzlerund E. Krätzig.Publikationen <strong>in</strong> Zusammenhang mit dem <strong>Graduiertenkolleg</strong>• V. P. Kamenov, Yi Hu, E. Shamon<strong>in</strong>a, K. H. R<strong>in</strong>ghofer, and V. Ya. Gayvoronsky,“Two-wave mix<strong>in</strong>g <strong>in</strong> (111)-cut Bi 12 SiO 20 and Bi 12 TiO 20 crystals: Characterizationand comparison with the general orientation”, Phys. Rev. E 62, 2863 (2000).• E. V. Podivilov, B. I. Sturman, S. G. Odoulov, S. Pavlyuk, K. V. Shcherb<strong>in</strong>, V. Ya.Gayvoronsky, K. H. R<strong>in</strong>ghofer, and V. P. Kamenov, „Attractors and autooscillationsfor feedback controlled photorefractive beam coupl<strong>in</strong>g“, Opt. Comm.192, 399 (2001).• E. V. Podivilov, B. I. Sturman, S. G. Odoulov, S. Pavlyuk, K. V. Shcherb<strong>in</strong>, V. Ya.Gayvoronsky, K. H. R<strong>in</strong>ghofer, and V. P. Kamenov, „Dynamics of feedback controlledphotorefractive beam coupl<strong>in</strong>g“, Phys. Rev. A 63, 053805 (2001).• V.P. Kamenov , E. Shamon<strong>in</strong>a, K.H. R<strong>in</strong>ghofer, E. Nippola<strong>in</strong>en, V.V. Prokofiev,and A.A. Kamshil<strong>in</strong>, „Photorefractive light scatter<strong>in</strong>g families <strong>in</strong> (111)-cut Bi 12 TiO 20crystals with an external electric ac field“, Phys. Rev. E 63 (1), 016607 (2001).• M.V. Gorkunov, E.V. Podivilov and B.I.Sturman, “<strong>Critical</strong> enhancement of nonl<strong>in</strong>earresponse <strong>in</strong> fast photorefractive crystals”, JETP 94, 470-481 (2002).22


• E.V. Podivilov, B.I. Sturman, M.V. Gorkunov, V.P. Kamenov, and K.H. R<strong>in</strong>ghofer,“Theory of critical enhancement of photorefractive beam coupl<strong>in</strong>g”, Phys. Rev. E,65 046623 (2002).• E. Shamon<strong>in</strong>a E, V.A. Kal<strong>in</strong><strong>in</strong>, K.H. R<strong>in</strong>ghofer, L. Solymar, „Magneto-<strong>in</strong>ductivewaveguide“, Electronics Lett. 38 (8), 371 (2002).• E. Shamon<strong>in</strong>a, V.A. Kal<strong>in</strong><strong>in</strong>, K.H. R<strong>in</strong>ghofer, and L. Solymar, „Magneto<strong>in</strong>ductivewaves <strong>in</strong> one, two, and three dimensions“, J. Appl. Phys. 92, 6252 (2002).• Gorkunov M., Lap<strong>in</strong>e M., Shamon<strong>in</strong>a E., R<strong>in</strong>ghofer K.H., “Effective magneticproperties of a composite material with circular conductive elements”, Eur. Phys. J.B 28, 263 (2002).• B. I. Sturman, V. Kamenov, M. Gorkunov, and K. H. R<strong>in</strong>ghofer, “Formation ofmov<strong>in</strong>g light doma<strong>in</strong>s dur<strong>in</strong>g photorefractive feedback-controlled beam coupl<strong>in</strong>g”,Opt. Comm. 216, 225 - 231 (2003)Leider verlor Klaus R<strong>in</strong>ghofer im Dezember 2002 endgültig den Kampf gegen denKrebs. Die Betreuung der Stipendiaten im Kolleg wird von M. Gorkounov, K. Betzlerund E. Krätzig weitergeführt.23


Prof. Dr. Eckart Rühl,Dr. Roman FleschForschungsübersichtDas Ziel der Forschungsvorhaben im <strong>Graduiertenkolleg</strong> bestand dar<strong>in</strong>, neue Quellenzur Erzeugung von kurzwelliger Strahlung im Bereich des Vakuum-UV zu entwickeln.Dies sollte mit Hilfe von Clustern und Aerosolen erfolgen, die als Medium für nichtl<strong>in</strong>eareoptische Prozesse dienen. Ausgangspunkt waren Arbeiten zur Erzeugung derdritten Harmonischen <strong>in</strong> atomaren Gasen, wie z. B. Edelgasen [1, 2]. KomplementäreArbeiten erfolgten im Rahmen des <strong>Graduiertenkolleg</strong>s zur Erzeugung von hochenergetischerXUV-Strahlung aus e<strong>in</strong>er Laser-Plasma-Quelle.Forschung im KollegDie Experimente zur nichtl<strong>in</strong>earen Optik, die im Rahmen des <strong>Graduiertenkolleg</strong>sdurchgeführt wurden, hat Herr Dr. A. Pramann maßgeblich vorangetrieben (s. Berichtvon Dr. A. Pramann). Ebenso war Herr J. Plenge im <strong>Graduiertenkolleg</strong> tätig, der aufbauendauf ersten Arbeiten zur Frequenzverdreifachung an atomaren Gasen e<strong>in</strong>eXUV-Plasmaquelle unter Nutzung metallischer Targets zur Erzeugung von durchstimmbarerXUV-Strahlung aufgebaut und genutzt hat [3-9] (vgl. Bericht von J. Plenge).Während der Beschäftigungszeit von Herrn Dr. Pramann von November 2001 bisJanuar 2003 hat er erfolgreich e<strong>in</strong>e gepulste Gasexpansion zur Erzeugung von freienClustern <strong>in</strong> Verb<strong>in</strong>dung mit nichtl<strong>in</strong>earen optischen Effekten aufgebaut. Herrn Pramannist es vor allem gelungen, e<strong>in</strong>en kompakten Versuchsaufbau zu realisieren, deres ermöglicht, ohne jegliche Reflexionsoptiken kurzwellige Strahlung zu erzeugenund nachzuweisen. Dies geht über vorhergehende Arbeiten h<strong>in</strong>aus, <strong>in</strong> denen e<strong>in</strong>komplizierter und verhältnismäßig <strong>in</strong>effizient arbeitender Aufbau genutzt wurde, <strong>in</strong>dem lange Wege und zahlreiche Reflexionen mit steilem E<strong>in</strong>fallsw<strong>in</strong>kel sowie e<strong>in</strong> Vakuum-UV-Monochromatorgenutzt wurden [2]. Das Experiment von Herrn Pramannhat erste Funktionstests bestanden. Er konnte zunächst anhand von atomaren Gasenzeigen, dass es Frequenzverdreifachung <strong>in</strong> bisher unbekannten spektralen Regionengibt. Der nächste Schritt besteht <strong>in</strong> der Kühlung der Düsenstrahlexpansion, damit effizientCluster entstehen und nichtl<strong>in</strong>eare optische Prozesse gemäß dem Projektantraguntersucht werden können.Kooperationen im KollegDie vorgeschlagenen Experimente s<strong>in</strong>d als komplementär zu den übrigen Vorhabendes <strong>Graduiertenkolleg</strong>s anzusehen, die im Projektbereich Frequenzkonversion angesiedelts<strong>in</strong>d. An Stelle von kristall<strong>in</strong>en Festkörpern standen Cluster und flüssige Partikelim Vordergrund der Untersuchungen. Ebenso hatte das Vorhaben als e<strong>in</strong>ziges zurAufgabe, sehr kurzwellige Strahlung im XUV zu erzeugen. Daher fand e<strong>in</strong>e Kooperation<strong>in</strong>nerhalb des Kollegs primär auf der Ebene e<strong>in</strong>es <strong>in</strong>tensiven Erfahrungsaustauschessowie während der geme<strong>in</strong>samen Sem<strong>in</strong>are statt. Zur Intensivierung der Diskussionwurden gezielt Vortragende aus dem Umfeld des Arbeitsgebietes <strong>in</strong> das Sem<strong>in</strong>ardes <strong>Graduiertenkolleg</strong>s e<strong>in</strong>geladen, wie Prof. Dr. L. Wöste (Berl<strong>in</strong>) und Prof.Dr. B. Wellegehausen (Hannover).24


Literatur1. R. Flesch, B. Wassermann, B. Rothmund und E. Rühl, J. Phys. Chem. 98, 6263(1994).2. R. Flesch, M.C. Schürmann, J. Plenge, M. Hunnekuhl, H. Meiss, M. Bischof und E.Rühl, Phys. Chem. Chem. Phys. 1, 5423 (1999).3. R. Flesch, M.C. Schürmann, M. Hunnekuhl, H. Meiss, J. Plenge und E. Rühl, Rev.Sci. Instrum. 71, 1319 (2000).4. R. Flesch, M.-C. Schürmann, H. Meiss, J. Plenge, M. Hunnekuhl und E. Rühl,Phys. Rev. A 62, 52723 (2000).5. J. Plenge, R. Flesch, M.-C. Schürmann und E. Rühl, J. Phys. Chem. A 105, 4844(2001).6. R. Flesch, J. Plenge, M.-C. Schürmann, S. Kühl, M. Klusmann und E. Rühl, Surf.Rev. Lett. 9, 105 (2002).7. R. Flesch, J. Plenge, S. Kühl, M. Klusmann und E. Rühl, J. Chem. Phys. 117, 9663(2002).8. J. Plenge, R. Flesch, S. Kühl, B. Vogel, R. Müller, F. Stroh und E. Rühl, Geophys.Res. Lett., zur Veröffentlichung e<strong>in</strong>gereicht (2002).9. J. Plenge, Dissertation, Universität Osnabrück (2002).Publikationen <strong>in</strong> Zusammenhang mit dem <strong>Graduiertenkolleg</strong>1. R. Flesch, M.C. Schürmann, M. Hunnekuhl, H. Meiss, J. Plenge und E. Rühl, Rev.Sci. Instrum. 71, 1319 (2000).2. R. Flesch, M.-C. Schürmann, H. Meiss, J. Plenge, M. Hunnekuhl und E. Rühl,Phys. Rev. A 62, 52723 (2000).3. J. Plenge, R. Flesch, M.-C. Schürmann und E. Rühl, J. Phys. Chem. A 105, 4844(2001).4. R. Flesch, J. Plenge, M.-C. Schürmann, S. Kühl, M. Klusmann und E. Rühl, Surf.Rev. Lett. 9, 105 (2002).5. R. Flesch, J. Plenge, S. Kühl, M. Klusmann und E. Rühl, J. Chem. Phys. 117, 9663(2002).6. J. Plenge, R. Flesch, S. Kühl, B. Vogel, R. Müller, F. Stroh und E. Rühl, Geophys.Res. Lett., zur Veröffentlichung e<strong>in</strong>gereicht (2002).6. J. Plenge, Dissertation, Universität Osnabrück (2002).E. Rühl folgte im Herbst 2002 e<strong>in</strong>em Ruf an die Universität Würzburg. Se<strong>in</strong>e Projekteim <strong>Graduiertenkolleg</strong> ‚Nonl<strong>in</strong>ear optical processes <strong>in</strong> atomic and molecular clusters’und ‘Frequency conversion, nonl<strong>in</strong>ear optical processes <strong>in</strong> atomic and molecularclusters’ schloss er im Januar 2003 erfolgreich ab (Berichte J. Plenge und A. Pramann).25


Prof. Dr. Hans Werner SchürmannForschungEntsprechend dem E<strong>in</strong>richtungsantrag s<strong>in</strong>d untersucht worden:Existenz- und Stabilitätskriterien für Solitonenlösungen der nichtl<strong>in</strong>earen Schröd<strong>in</strong>ger-GleichungStreuung am nichtl<strong>in</strong>earen Film mit unterschiedlichen DielektrizitätsfunktionenNichtl<strong>in</strong>eare Wellenleitung bei ortsabhängiger DielektrizitätsfunktionElliptische Lösungen der Kadomtsev-Petviashvili-GleichungSemianalytische Lösungen der Wellengleichung bei photorefraktiver Nichtl<strong>in</strong>earitätDie Untersuchungen fanden <strong>in</strong> Kooperation mit den Professoren Serov und Shestopalov(Lomonosov Universität Moskau) sowie <strong>in</strong>nerhalb des Kollegs statt; die Ergebnisses<strong>in</strong>d publiziert und auf <strong>in</strong>ternationalen Konferenzen vorgestellt worden.Publikationen im Zusammenhang mit dem <strong>Graduiertenkolleg</strong>H. W. Schürmann, V. S. Serov, Criteria for existence and stability of soliton solutionsof the cubic-qu<strong>in</strong>tic nonl<strong>in</strong>ear Schröd<strong>in</strong>ger equation, Phys. Rev. E 62,2, pp. 2821-2826 (2000).H. W. Schürmann, V. S. Serov and Y. V. Shestopalov, Reflection and transmission ofa plane TE-wave at a lossless nonl<strong>in</strong>ear dielectric film, Physica D, Vol. 158, pp. 197-215 (2001).H. W. Schürmann, V. S. Serov and Y. V. Shestopalov, Solutions to the Helmholtzequation for TE-guided waves <strong>in</strong> a three-layer structure with Kerr-type nonl<strong>in</strong>earity, J.Phys. A: Math. Gen., 35, 10789 – 10801 (2002).H. W. Schürmann, V. S.. Serov and Y. V. Shestopalov, On the theory of TE polarizedwaves guided by a lossless nonl<strong>in</strong>ear three-layer structure, Proc. Progress <strong>in</strong> ElectromagneticsResearch Symposium (PIERS), Osaka, Japan, July 18-22, 2001, p.670.H. W. Schürmann, V. S. Serov and Y. V. Shestopalov, Waves <strong>in</strong> three-layer structureswith Kerr-type nonl<strong>in</strong>earity and variable permittivity, Proc. Conf. on MathematicalModell<strong>in</strong>g of Wave Phenomena, Växjö University, Sweden, November 3 – 8, 2002(<strong>in</strong> press; available on www.masda.vxu.se/bni/wae<strong>phenomena</strong>.htm)26


Apl. Prof. Dr. Manfred WöhleckeForschungsübersichtDie Arbeitsgruppe beschäftigt sich mit den optischen und dielektrischen Eigenschaftenvon Oxiden mit Niob-Sauerstoff oder Tantal-Sauerstoff Oktaederbauste<strong>in</strong>enunter besonderer Berücksichtigung des E<strong>in</strong>flusses der Phasenübergänge mit Relaxor-Charakterund arbeitet eng mit der Gruppe Nichtl<strong>in</strong>eare Optik (Betzler) zusammen.Ferroelektrische Phasenübergänge können <strong>in</strong> sehr engen (LiNbO 3 und LiTaO 3 )und breiten (SBN) Temperaturbereichen auftreten und bee<strong>in</strong>flussen über e<strong>in</strong>e starkeÄnderung der Dielektrizitätskonstante alle damit zusammenhängenden physikalischenEigenschaften. Da die kongruente Schmelze der Kristalle nicht der stöchiometrischenZusammensetzung entspricht, werden viele Eigenschaften durch die aktuelleKristallzusammensetzung bestimmt. Im Berichtszeitraum wurden untersucht:• E<strong>in</strong>fluss der Dotierung auf die fotorefraktiven und ferroelektrischen Eigenschaftenvon SBN• Dynamik ferroelektrischer Relaxoren• Grundlegende optische Parameter wie Brechungs<strong>in</strong>dex und Bandkante• OH - - Streckschw<strong>in</strong>gung <strong>in</strong> OxidenForschung im KollegIm Rahmen des Kollegs wurden verschiedene computergesteuerte Messplätze neuaufgebaut oder aktualisiert. Dazu zählen e<strong>in</strong>e Anordnung zur Raman-Streuung, e<strong>in</strong>ezur Dotierung von Kristallen mit Wasserstoff und e<strong>in</strong> Messplatz zur Bestimmung derDielektrizitätskonstanten und der pyroelektrischen Koeffizienten bei verschiedenenTemperaturen. E<strong>in</strong>e systematische Untersuchung der Dotierung von SBN unterschiedlicherZusammensetzung mit Wasserstoff erlaubt e<strong>in</strong>e Interpretation des rechtunstrukturierten OH-Streckschw<strong>in</strong>gungsspektrums auf der Ebene von Details derKristallstruktur. Die Bandkante hängt <strong>in</strong> Sr x Ba 1-x Nb 2 O 6 für x= 0,25 - 0,8 nur ger<strong>in</strong>gfügigvon der Zusammensetzung ab. Dagegen wird für LiTaO 3 e<strong>in</strong>e ausgeprägte Abhängigkeitgefunden, die sich sehr gut zur zerstörungsfreien Bestimmung der Zusammensetzungdes Kristalls eignet. Dielektrische Charakterisierungen vonSr x Ba 1-x Nb 2 O 6 liegen für x-Werte oberhalb x=0,45 vor, für solche unterhalb muss derTemperaturbereich des Messplatzes erweitert werden.Kooperationen im KollegDie Projekte werden <strong>in</strong> enger Zusammenarbeit mit den Gruppen von K. Betzler undR. Pankrath (SBN-Kristalle) durchgeführt. Die LiTaO 3 Kristalle unterschiedlicher Zusammensetzungwurden von Ch. Bäumer (Kristallzucht H. Hesse) präpariert. E<strong>in</strong>e<strong>in</strong>tensive Zusammenarbeit besteht mit der Gruppe Th. Woike (Universität zu Köln).Kooperationen im Rahmen e<strong>in</strong>es INTAS-Projekts gibt es mit T. Volk und L. Ivleva(Russian Academy of Science, Moscow). E<strong>in</strong> bilaterales Projekt existiert mit L.Kovács (Hungarian Academy of Sciences, Budapest).27


Publikationen <strong>in</strong> Zusammenhang mit dem <strong>Graduiertenkolleg</strong>Zeitschriftenartikel• Ch. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, M. WöhleckeComposition dependence of the ultraviolet absorption edge <strong>in</strong> lithium tantalateJ. Appl. Phys. March 1, 2003 issue• T. Granzow, U. Dörfler, Th. Woike, M. Wöhlecke, R. Pankrath, M. Imlau ,W.KleemannLocal electric-field-driven repol<strong>in</strong>g reflected <strong>in</strong> the ferroelectric polarization ofCe-doped Sr 0.61 Ba 0.39 Nb 2 O 6 .Appl. Phys. Letters 80, 470 - 472 (2002)• T. Granzow, U. Dörfler, Th. Woike, M. Wöhlecke, R. Pankrath, M. Imlau ,W.KleemannEvidence of random electric fields <strong>in</strong> the relaxor-ferroelectric Sr 0.61 Ba 0.39 Nb 2 O 6Europhysics Letters 57, 597 - 603 (2002)• T. Granzow, Th. Woike, M. Wöhlecke, M. Imlau, W. KleemannPolarization-Based Adjustable Memory Behavior <strong>in</strong> Relaxor FerroelectricsPhys. Rev. Lett. 89, 127601 (2002)• V. V. Gladkii, V. A. Kirikov, E. V. Pron<strong>in</strong>a, T. R. Volk, R. Pankrath, M.WöhleckeAnomalies <strong>in</strong> the Slow Polarisation K<strong>in</strong>etics of a Ferroelectric relaxor <strong>in</strong> theTemperature Region of a Diffuse Phase TransitionPhysics of the Solid State 43, 2140-2145 (2001)• Th. Woike, T. Granzow, U. Dörfler, Ch. Poetsch, M. Wöhlecke, R. PankrathRefractive Indices of congruently melt<strong>in</strong>g Sr 0.61 Ba 0.39 Nb 2 O 6phys. stat. sol. (a) 186, R13 (2001)• T. Volk, L. Ivleva , P. Lykov, D. Isakov, V. Osiko, M. WöhleckeModification of the optical and photorefractive properties of Ce-doped strontium-bariumniobate by co-dop<strong>in</strong>g with a nonphotorefractive La impurityAppl. Phys. Letters 79, 854 (2001)• T. Volk, L. Ivleva, P. Lykov, N. Pollok, V. Salobut<strong>in</strong>, R. Pankrath, M. WöhleckeEffects of rare-earth impurity dop<strong>in</strong>g on the ferroelectric and photorefractiveproperties of strontium-barium niobate crystalsOptical Materials 18, 179 (2001)• T. Granzow, U. Dörfler, Th. Woike, M. Wöhlecke, R. Pankrath, M. Imlau, W.KleemannInfluence of p<strong>in</strong>n<strong>in</strong>g effects on the ferroelectric hysteresis <strong>in</strong> cerium-dopedSr x Ba 1-x Nb 2 O 6Phys. Rev B 63, 174101 (2001)• Th. Woike, U. Dörfler, L. Tsankov, G. Weckwerth, D. Wolf, M. Wöhlecke, T.Granzow, R. Pankrath, M. Imlau, W. KleemannPhotorefractive properties of Cr-doped Sr 0.61 Ba 0.39 Nb 2 O 6 related to crystal purityand dop<strong>in</strong>g concentrationAppl. Phys. B 72, 661 (2001)28


1.2 E<strong>in</strong>zelberichte der <strong>in</strong> der vergangenen Periode geförderten Kollegiat(<strong>in</strong>n)enDipl.-Phys. Cal<strong>in</strong> Adrian David<strong>Topic</strong>: Dielectric and optical properties of doped SBNAbstractThe subject of the project has been extended to members of the ferroelectric lithiumniobate family, because such crystals were available when the project started with adelay of n<strong>in</strong>e months. In the course of the project new experimental set-ups havebeen designed and realized, exist<strong>in</strong>g arrangements have been updated or partiallyrenewed <strong>in</strong>clud<strong>in</strong>g modern computer controll<strong>in</strong>g us<strong>in</strong>g C++ or MatLab. Optical anddielectric properties were measured <strong>in</strong> compounds of different composition of SBNand LiTaO 3 . Special emphasis was placed on the optical band edge <strong>in</strong> SBN andLiTaO 3 with various composition and the OH-stretch<strong>in</strong>g vibration <strong>in</strong> SBN as well asthe phase transition properties.Construction and rebuild<strong>in</strong>g of set-upsIn the group existed an old double-grat<strong>in</strong>g spectrometer (Spex 14018) with some mechanicaldeficiency and an obsolete controll<strong>in</strong>g system, but new un<strong>in</strong>stalled holographicgrat<strong>in</strong>gs and freshly coated mirrors.After mount<strong>in</strong>g the new grat<strong>in</strong>gs <strong>in</strong> the old holders and pre-align<strong>in</strong>g them, the mirrorswere <strong>in</strong>stalled and then the whole system was aligned accord<strong>in</strong>g to the <strong>in</strong>structions ofthe manufacturer until a resolution better than that guaranteed by the Spex companyhas been achieved. For this task basic procedures of a Visual C++ programme wereused to control the spectrometer and allow simple signal detection with a photomultiplier.Later on the programme has been considerably extended to perform Ramanscatter<strong>in</strong>g <strong>in</strong>clud<strong>in</strong>g data accumulation and standard view<strong>in</strong>g of the spectrum.The system will be used <strong>in</strong> the next future to measure the Raman scatter<strong>in</strong>g of variousundoped Sr x Ba 1-x Nb 2 O 6 crystals with x vary<strong>in</strong>g between 0.25 and 0.8.We used the basics of a set-up to measure the spontaneous polarization as a functionof temperature, which was designed <strong>in</strong> the group of Th. Woike (Cologne), to buildan improved version with state of the art computer controll<strong>in</strong>g. The system is quiteversatile and can be equipped with different meters to measure the dielectric constantand the conductivity. The set-up is built up of an electrometer charge measur<strong>in</strong>gdevice (Keithley 6514), a temperature controller (PRO800 from Profile), a high voltageamplifier (610C from Trek). Aga<strong>in</strong> a Visual C++ programme with an IEEE 488<strong>in</strong>terface card was <strong>in</strong>stalled. With this setup pol<strong>in</strong>g of the sample, measur<strong>in</strong>g the conductivityand hysteresis like properties is possible.In the near future we will collaborate with the group of M. Imlau to extend the frequencyrange down to the sub-Hertz regime. Prelim<strong>in</strong>ary results <strong>in</strong> Sr x Ba 1-x Nb 2 O 6<strong>in</strong>dicated that an extension of the set-up to more than 300 °C is necessary.29


Determ<strong>in</strong>ation of the band edge of LiTaO 3 of various compositions andSr x Ba 1-x Nb 2 O 6LiTaO 3 has like LiNbO 3 a congruently melt<strong>in</strong>g composition which does not co<strong>in</strong>cidewith the stoichiometric one, but shows a Li-deficiency. The more perfect lattice ofstoichiometric samples m<strong>in</strong>imizes the l<strong>in</strong>e broaden<strong>in</strong>g <strong>in</strong> many spectral features and,from an application po<strong>in</strong>t of view even more important, makes the material less susceptibleto optical damage. Furthermore, a reduction of the coercive field is obta<strong>in</strong>ed,which is a significant parameter for the production of periodically poled nonl<strong>in</strong>ear opticaldevices [1]. All available reports on composition controlled features of LiTaO 3suffer from their very limited compositional resolution. A set of well characterizedplates of LiTaO 3 with various compositions have been prepared by Ch. Bäumer. Thepolarized absorption was measured with a Bru<strong>in</strong>s Instruments Omega 10 spectrometerwith a wavelength accuracy of 0.1 nm, us<strong>in</strong>g mercury emission l<strong>in</strong>es for the wavelengthcalibration. Polished y- and z-cut samples of about 0.5 mm thickness with adensity of scratches not exceed<strong>in</strong>g 1 % of the illum<strong>in</strong>ated area were measured at22 °C with high spectral resolution (0.1 nm). The absorption data have been correctedfor reflection losses. The <strong>in</strong>dex of refraction has been taken from [2]. We neglectedthe variation of the <strong>in</strong>dex of refraction with composition and temperature, becauseits <strong>in</strong>fluence on the reflection is very weak.As <strong>in</strong> the case of LiNbO 3 , the position of the absorption edge is a very sensitivemeasure for the composition of LiTaO 3 crystals and thus can be used to determ<strong>in</strong>ethe composition of a crystal with a non-destructive method. In addition, the experimentaldata show that the Li-content is limited to 50.0 mol %, <strong>in</strong>dicat<strong>in</strong>g that regularLi sites can be occupied by Ta ions, but no Li can substitute regular Ta ions. The dependenceof the polarized absorption can be described by an exponential fit functionwith three parameters and <strong>in</strong>terpreted with a simple model calculation us<strong>in</strong>g an appropriateoverlay of an additional near ultraviolet absorption, caused by tantalum antisiteions, and the base absorption. The concentration of tantalum antisite ions <strong>in</strong>creasesfor Li concentrations below 50 %.Similar measurements have been carried out with ord<strong>in</strong>arily polarized light forSr x Ba 1-x Nb 2 O 6 over the whole x-range. Only a very weak non-monotonic dependenceof the band edge energy for a given absorption was found (see Figure 1), thus <strong>in</strong>dicat<strong>in</strong>gthat for this light polarisation even for larger absorption coefficients no convenientcomposition determ<strong>in</strong>ation will work.The situation may change for extraord<strong>in</strong>ary light polarization, because the <strong>in</strong>dex ofrefraction data vary for this light polarization, see the report of A. Tunyagi. Suchmeasurements will be performed <strong>in</strong> the near future after prepar<strong>in</strong>g suitable a-cutsamples.30


Figure 1: Wavelength dependence of the absorption as afunction of composition for certa<strong>in</strong> absorption coefficients.OH-stretch<strong>in</strong>g modes <strong>in</strong> Sr x Ba 1-x Nb 2 O 6Hydroxyl ions are often present <strong>in</strong> as-grown oxide crystals [3]. Their stretch<strong>in</strong>g vibrationalmode at about 3495 cm -1 can be detected by <strong>in</strong>frared (IR) absorption spectroscopy.As-grown SBN crystals conta<strong>in</strong>, however, only a small amount of hydroxyl ions.Thus we had to use temperature treatments under wet atmosphere to <strong>in</strong>crease thehydroxyl ions. We adopted procedures reported <strong>in</strong> the literature [4,5] and optimizedthem by treat<strong>in</strong>g the samples at about 900 °C for 10 h with oxygen flow<strong>in</strong>g through awater bottle held at 80 °C. These parameters guarantee a strong dop<strong>in</strong>g but avoidsignificant reduction result<strong>in</strong>g <strong>in</strong> disturb<strong>in</strong>g polaron absorption. Treat<strong>in</strong>g ten samplesof different composition (0.3 < x 0.8) <strong>in</strong> this manner yields a strong dependence ofthe maximum absorption on composition. Sr-rich samples accept three times morehydrogen than Ba-rich ones.The IR absorption of the stretch<strong>in</strong>g mode had been measured <strong>in</strong> pure and Ce-dopedcongruent (Sr 0.61 Ba 0.39 Nb 2 O 6 ) crystals [4,5]. A relatively broad absorption band hasbeen detected which is composed of a ma<strong>in</strong> l<strong>in</strong>e at about 3495 cm -1 and a broadshoulder at the low energy side expand<strong>in</strong>g up to about 3000 cm -1 . The shoulder wasassumed to conta<strong>in</strong> of least two [5] or three [4] bands due to the existence of differenthydrogen environments <strong>in</strong> the unfilled tungsten bronze structure. The aim of ourstudy was to <strong>in</strong>vestigate the OH band shape <strong>in</strong> SBN crystals with different compositions<strong>in</strong> order to obta<strong>in</strong> more <strong>in</strong>formation about the relation between the band componentsand the crystal structure.We observed a significant <strong>in</strong>fluence of the composition on the OH-stretch mode absorptionspectra. With ris<strong>in</strong>g x, the absorption of the ma<strong>in</strong> band at about 3495 cm -1<strong>in</strong>creases, the low energy shoulder decreases and an additional broad absorption isbuilt up. For a decomposition and comparison the spectra were normalized with re-31


spect to the area. This clearly shows that the high energy w<strong>in</strong>g of the ma<strong>in</strong> absorptiondoes not depend on the composition, see Figure 2.Figure 2: Normalized absorption of the OH-absorption <strong>in</strong>Sr x Ba 1-x Nb 2 O 6 for (0.3 < x 0.8).Spectra for compositions with x above the value of the congruently melt<strong>in</strong>g composition(0.61) <strong>in</strong>tersect at about 3380 cm -1 , while those for x below 0.61 at about3430 cm -1 . Sr-rich compositions cause spectra consist<strong>in</strong>g of an almost symmetricalma<strong>in</strong> band and a broad low energy feature. In Ba-rich compositions this feature isweak, but the ma<strong>in</strong> band is highly asymmetric. Extensive decomposition trials haveshown, that the spectra can be very well described with three transitions, if we neglecta weak transition at about 3222 cm -1 . The transition I describ<strong>in</strong>g the ma<strong>in</strong> bandvaries so weakly with composition that we fixed it at 3492.7 cm -1 , the same is true forsecond transition II at 3454.5 cm -1 , while the third transition III shifts more than 50cm -1 with composition. The three transitions can be ascribed to hydrogen bond tooxygen <strong>in</strong> three different environments. Transition I is probably caused by a hydrogenvibrat<strong>in</strong>g towards an oxygen which belongs to a niobium octahedron and is located <strong>in</strong>the ab-plane. Transition II may be due to an OH-stretch<strong>in</strong>g mode <strong>in</strong>fluenced by Ba,while type III is a mode related to Sr, which changes its position with respect to x thuscaus<strong>in</strong>g a frequency shift.References[1] K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, T. E. Mitchell, Applied PhysicsLetters 73, 3073-3075, (1998)[2] K. S. Abed<strong>in</strong>, H. Ito, J. Appl. Physics 80, 6561-6563 (1996)32


[3] M. Wöhlecke, L. Kovács,<strong>Critical</strong> Reviews <strong>in</strong> Solid State and Materials Sciences, 26(1), 1 - 86 (2001)[4] S. Hunsche, A. Gröne, G. Greten, S. Kapphan, R. Pankrath, J. Segl<strong>in</strong>s, PhysicaStatus Solidi A-Applied Research 148, 629 (1995).[5] M. Lee, H. S. Lee, R. S. Feigelson, J. Applied Physics 84, 1558 (1998).PublicationsCh. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, M. Wöhlecke:Composition dependence of the ultraviolet absorption edge <strong>in</strong> lithium tantalite:J. Appl. Physics 93, <strong>in</strong> pr<strong>in</strong>t (2003).C. David, A. Tunyagi et al.: OH stretch<strong>in</strong>g modes <strong>in</strong> Sr x Ba 1-x Nb 2 O 6 (<strong>in</strong> preparation)Attended lecturesWS 01/02 : P. Hertel: L<strong>in</strong>ear response theory.SS 02: E. Krätzig, K. R<strong>in</strong>ghofer: The photorefractive nonl<strong>in</strong>earity.WS 02/03: H.-J. Schmidt: Nonl<strong>in</strong>ear wave equationsWS 01/02: V. Trepakov: <strong>Optics</strong> and Spectroscopy of semiconductors and <strong>in</strong>sulatorsWorkshop “Photorefractive Nonl<strong>in</strong>earities” (October 2001, Osnabrück).Workshop “SBN - a typical relaxor?” (May 2002, University of Osnabrück).Workshop “SBN: Crystal Growth and Details of the Structure” (July 2002, Universityof Osnabrück).Sem<strong>in</strong>ars of the Graduate College <strong>695</strong> (WS 01/02 SS 02 WS 02/03).Sem<strong>in</strong>ars of the Research Group “Optical Materials” (WS 01/02, SS 02, WS 02/03 ).Contribution to the Sem<strong>in</strong>arsSem<strong>in</strong>ary Talk on 27.01.2003 “Optical Properties of as grown and Hydrogen dopedSr x Ba 1-x Nb 2 O 6 ”Various short talks <strong>in</strong> the sem<strong>in</strong>ar of the research groupExternal research stayIR-absorption Measurements performed on SZFKI <strong>in</strong>stitute <strong>in</strong> Budapest (08.07.2002– 19.07.2002)Duration of the dissertation: Start 01.10.2001, term<strong>in</strong>ation expected 30.09.2004Period of support <strong>in</strong> the College: 01.10.2001 – 31.12.2003Supervisor: apl. Prof. Dr. Manfred Wöhlecke33


Dipl.-Phys. Oleg Filippov<strong>Topic</strong>: Vectorial beam coupl<strong>in</strong>g <strong>in</strong> fast photorefractive crystals with ACenhancedresponseResultsUp to now, the ma<strong>in</strong> results of our <strong>in</strong>vestigations can be divided <strong>in</strong>to two parts:“Polarization properties of light-<strong>in</strong>duced scatter<strong>in</strong>g <strong>in</strong> Bi 12 TiO 20 ” (see Section I),“Photorefractive AC-enhanced nonl<strong>in</strong>ear response <strong>in</strong> sillenites” (see Section II). Theresults obta<strong>in</strong>ed are of <strong>in</strong>terest for the use of fast photorefractive materials for variousapplications such as grat<strong>in</strong>g record<strong>in</strong>g, l<strong>in</strong>ear detection of weak signals, and for characterizationpurposes. The work has been performed <strong>in</strong> close cooperation with Dr.B.I.Sturman, International Institute for Nonl<strong>in</strong>ear Studies, Novosibirsk, Russia.I. Polarization properties of light-<strong>in</strong>duced scatter<strong>in</strong>g <strong>in</strong> Bi 12 TiO 20Cubic crystals of the sillenite family (Bi 12 SiO 20 , Bi 12 TiO 20 , and Bi 12 GeO 20 ) andsemiconductors like GaAs, CdTe, InP are the fastest photorefractive materials, whichmakes them attractive for numerous applications. Some techniques are used to enhancethe weak nonl<strong>in</strong>ear response of these materials. The most appropriate forpractical proposes is the AC-technique and therefore the photorefractive responseunder this technique was considered.Strong spatial amplification achieved <strong>in</strong> sillenite crystals manifests itself <strong>in</strong> pronouncedlight-<strong>in</strong>duced (nonl<strong>in</strong>ear) scatter<strong>in</strong>g [1,2]. The underly<strong>in</strong>g mechanism of thisphenomenon is not complicated: Weak seed waves, aris<strong>in</strong>g due to the surface andbulk crystal imperfections, experience then a strong spatial amplification at the expenseof the pump.Due to the vectorial character of beam coupl<strong>in</strong>g <strong>in</strong> cubic crystals it is not possibleto separate the spatial changes of the light energy and polarization. Furthermore, thelight-<strong>in</strong>duced scatter<strong>in</strong>g <strong>in</strong> this case is highly sensitive to the orientation of the electricfield about the pr<strong>in</strong>cipal crystal directions. This means that one must use the vectorialtheory of beam coupl<strong>in</strong>g for the description of scatter<strong>in</strong>g light phenomenon <strong>in</strong> such asystem [3].In contrast to the angular <strong>in</strong>tensity distribution, the polarization states of the scatteredlight <strong>in</strong> cubic crystals were not yet analyzed theoretically. We have applied thevectorial theory of beam coupl<strong>in</strong>g [3] to describe the polarization properties of smallangle,light-<strong>in</strong>duced scatter<strong>in</strong>g <strong>in</strong> cubic AC-biased BTO crystals for different polarizationstates of the <strong>in</strong>cident pump beam [A1]. The diagonal geometry, dist<strong>in</strong>guished bythe strongest vectorial coupl<strong>in</strong>g, was chosen for comparison between theory and experiment.We have found the angular <strong>in</strong>tensity distribution for several representative casesof the pump beam. We have revealed that <strong>in</strong> the case of a horizontal pump beampolarization the scattered light has a pronounced horizontal right lobe. The maximumrate of spatial amplification (<strong>in</strong>crement) is Γ max ≈ 48 cm -1 . The light-<strong>in</strong>duced scatter<strong>in</strong>gis strongest <strong>in</strong> this case. For the vertical polarization of the pump beam the <strong>in</strong>tensitydistribution is quite different: it possesses one tilted left lobe at the azimuth angle ψ ≈150 0 . The maximum value of the <strong>in</strong>crement is noticeably smaller here,Γ max ≈ 27 cm -1 .To analyze the effect of pump polarization on the scatter<strong>in</strong>g characteristics <strong>in</strong> moredetail, we have considered the cases of right and left circular pump polarization and34


also two cases of l<strong>in</strong>ear polarization with a polarization angle ±45 0 . Our theoreticalprediction is that the <strong>in</strong>crement is almost the same for these four cases. We haveshown that the value of the <strong>in</strong>crement <strong>in</strong> these cases can be represented as a halfsumof the <strong>in</strong>crements for the cases of horizontal and vertical pump beam polarization.Hence the angular distribution consists of two lobes: the strongest one is tiltedby ≈15 0 to the horizontal axis, the weakest lobe is tilted ≈160 0 . The maximum valuesof the <strong>in</strong>crement are Γ max ≈ 30 cm -1 and Γ max ≈ 8 cm -1 , respectively.Com<strong>in</strong>g to the polarization properties of scattered light we have found that they aremore sensitive to the choice of the experimental and material parameters than the<strong>in</strong>tensity distributions. This is especially true with respect to the weakest lobes.In cases of the horizontal and vertical pump beam polarization we have shown thatfor the horizontal lobe the scatter<strong>in</strong>g polarization has to be horizontal and for the tiltedlobe is vertical. Experimental polarization measurements confirm this prediction withhigh accuracy.For mixed pump polarization we have obta<strong>in</strong>ed that the polarization of the scatteredlight depends on the azimuth angle and does not depend on the polar angle.S<strong>in</strong>ce the most important propagation directions correspond to the maximum of the<strong>in</strong>crement we have determ<strong>in</strong>ed the scatter<strong>in</strong>g light polarization for the azimuth angles,which correspond to the maximal <strong>in</strong>tensity of the scattered light. For the ma<strong>in</strong>(strongest) scatter<strong>in</strong>g lobe, the polarization is almost horizontal for right-, left-circularand ±45 0 -pump polarizations. Experimental polarization measurements confirm thisresult. For the weakest lobe the <strong>in</strong>tensity ratio of vertical/horizontal components of thescattered light is sufficiently small and therefore cannot be considered as big enoughto expect a quasi-vertical polarization of the scatter<strong>in</strong>g lobe. This theoretical predictionhas found only a qualitative experimental confirmation. Experiments show thatthe polarization of the weakest lobe is vertical for the cases of mixed pump polarization.II. Photorefractive AC-enhanced nonl<strong>in</strong>ear response <strong>in</strong> sillenitesDur<strong>in</strong>g the last decade, the enhancement of photorefractive response <strong>in</strong> fastphotorefractive crystals by the application of external AC fields is the subject of numerousexperimental and theoretical studies. Large applied fields (up to 50 kV/cm)have become available for AC-experiments. It was established that the low-contrastrange, where the fundamental component of the space-charge field grows l<strong>in</strong>earlywith light contrast (m), is very narrow. Furthermore, the region of large light contrasthas become important <strong>in</strong> connection with the soliton propagation problem. Lastly, anumber of applications of fast photorefractive materials, such as detection of weaksignals and grat<strong>in</strong>g record<strong>in</strong>g, are relevant to high-contrast effects.Particularly, it was found that a square-wave shape of the AC-field provides for thebest enhancement [4]. The enhancement properties are closely related to the presenceof weakly damped low-frequency eigenmodes (space-charge waves) and spatialsubharmonics generation. The results of numerical simulations of the largecontrasteffects <strong>in</strong> the AC-biased sillenites [5,6] are <strong>in</strong> good agreement with the experiments,but the understand<strong>in</strong>g of physical background lacked.An analytical approach has been employed recently for the AC-enhancement description[7]. It is based on averag<strong>in</strong>g over the fast AC-oscillations. Us<strong>in</strong>g this procedureit is possible to come to a rather general equation for the space-charge field profile.It was shown that the low and high contrast effects <strong>in</strong> AC-enhanced spacecharge formation could be uniformly described by a simple differential equation for35


the space-charge field. This equation was used recently for the description of beampropagation effects [7].We have applied this promis<strong>in</strong>g approach to the analysis of space-charge fieldformation dur<strong>in</strong>g grat<strong>in</strong>g record<strong>in</strong>g [A2]. We have obta<strong>in</strong>ed the contrast dependenceof the fundamental harmonic E 1 , the second E 2 and third E 3 harmonics of the spacechargefield <strong>in</strong> the whole range of light contrast. It was found that the photorefractiveresponse rema<strong>in</strong>s non-local with<strong>in</strong> the whole contrast range. We have revealed thatthe quality factor Q (<strong>in</strong>troduced <strong>in</strong> the low-contrast limit) determ<strong>in</strong>es the photorefractivenonl<strong>in</strong>ear response <strong>in</strong> the whole contrast range and the dependence of this responseon Q is saturated for Q >> 1. This means that for different values of modelparameters correspond<strong>in</strong>g to the same value of Q, the contrast dependence of thefundamental harmonic E 1 (m) is the same with<strong>in</strong> good accuracy. The limit<strong>in</strong>g value ofthe fundamental harmonic (for m close to unity) is also quite universal E 1 ≈ 0.64E 0(where E 0 is the amplitude of the external AC-field).For application purposes one should dist<strong>in</strong>guish between low and high contrastregions. The region of small light contrast (m < 0.05) is the best for spatial amplification.For larger contrast, the amplification becomes smaller but this region is the mostappropriate one for grat<strong>in</strong>g record<strong>in</strong>g. Redistribution of the light pattern is relativelyharmless here.Apart from the fundamental harmonic E 1 , responsible for beam-coupl<strong>in</strong>g effects,the first higher harmonics E 2 and E 3 are of practical <strong>in</strong>terest. These harmonics can bemeasured with the help of auxiliary Bragg-matched light beams. They are very importantfor characterization purposes. We have found that higher harmonics of thespace-charge field become sufficiently large (up to 0.2-0.4E 0 ) already for relativelysmall values of light contrast. S<strong>in</strong>ce they are not weak, their direct measurementsshould not be difficult. We have revealed that the contrast dependence of the secondharmonic peaks at m ≈ 0.5 and then turns to zero at m = 1. We have also found thatthe contrast dependences of higher harmonics of the space-charge field correspondto the formation of the step-like field profile with <strong>in</strong>creas<strong>in</strong>g m.III. Future plansOur <strong>in</strong>vestigation of the space-charge field formation <strong>in</strong> the low- and the highcontrastregions allows to generalize on the whole contrast range the theory of vectorialbeam coupl<strong>in</strong>g, which was developed up to now only for the low-contrast case [3].The theory to be developed will describe fully the two-beam coupl<strong>in</strong>g <strong>in</strong> fast photorefractivecrystals under AC-enhancement <strong>in</strong> the whole contrast range. Unlike the scalartheory, the vectorial one allows to def<strong>in</strong>e <strong>in</strong> addition to <strong>in</strong>tensity distributions ofbeams also their polarization properties. This is especially important for the caseswhere the optical activity essentially <strong>in</strong>fluences the beam coupl<strong>in</strong>g process. Theplaned generalization of the beam coupl<strong>in</strong>g theory would allow to f<strong>in</strong>d new conservationlaws, <strong>in</strong>clud<strong>in</strong>g the polarization degrees of freedom, and new regimes of polarization-dependentbeam coupl<strong>in</strong>g <strong>in</strong> cubic crystals of the sillenite family or <strong>in</strong> semiconductors.A prom<strong>in</strong>ent application of such effects is the l<strong>in</strong>ear detection of weak oscillat<strong>in</strong>gsignals by means of polarization filter<strong>in</strong>g. This new effect is feasible exclusivelydue to the vectorial character of beam coupl<strong>in</strong>g <strong>in</strong> cubic crystals. Its efficiency is expectedto ga<strong>in</strong> because of the saturation of the space-charge field fundamental harmonic<strong>in</strong> the region of large contrasts. On the basis of the generalized vectorial theoryit is possible to optimize the detection technique.36


Another apparent manifestation of the AC-enhanced beam coupl<strong>in</strong>g is thelight-<strong>in</strong>duced (nonl<strong>in</strong>ear) scatter<strong>in</strong>g <strong>in</strong> sillenites. Application of the vectorial theory tothe analysis of scatter<strong>in</strong>g characteristics was restricted to the low-contrast limit. Ourapproach would allow expla<strong>in</strong><strong>in</strong>g the effects of saturation, which are clearly seen <strong>in</strong>experiments but are miss<strong>in</strong>g <strong>in</strong> exist<strong>in</strong>g theoretical considerations.In summary, the ma<strong>in</strong> directions of our future <strong>in</strong>vestigations are:1. (2003) The generalization of the vectorial beam coupl<strong>in</strong>g theory on the wholelight contrast range. Explanation of the saturation effects <strong>in</strong> photorefractivescatter<strong>in</strong>g <strong>in</strong> sillenites.2. (2004) Theoretical study of the optimization of the l<strong>in</strong>ear detection technique.References[1] E. Raita, A. A. Kamshil<strong>in</strong>, and T. Jaaskela<strong>in</strong>en, ”Polarization properties offann<strong>in</strong>g light <strong>in</strong> fiberlike bismuth titanium oxide crystals”, Opt. Lett. 21, 1897-1899 (1996).[2] A. A. Kamshil<strong>in</strong>, V. V. Prokofiev, and T. Jaaskela<strong>in</strong>en, ”Beam fann<strong>in</strong>g anddouble phase conjugation <strong>in</strong> a fiber-like photorefractive sample”, IEEE J.Quant. Electron. 31, 1642-1647 (1995).[3] B. I. Sturman, E. V. Podivilov, K. H. R<strong>in</strong>ghofer, E. Shamon<strong>in</strong>a, V. P.Kamenov, E. Nippola<strong>in</strong>en, V. V. Prokofiev, and A. A. Kamshil<strong>in</strong>, ”Theory ofphotorefractive vectorial wave coupl<strong>in</strong>g <strong>in</strong> cubic crystals”, Phys. Rev. E 60,3332-3352 (1999).[4] S. I. Stepanov and M. P. Petrov, Opt. Commun. 53, 292, 1985.[5] J. E. Millerd, E. M. Garmire, M. B. Kle<strong>in</strong>, B. A. Wechsler, F. P. Strohkendl,and G. A. Brost, J. Opt. Soc. Am. B ,1449, 1992.[6] G. I. Brost, J. Opt. Soc. Am. B 9, 1454, 1992.[7] G. F. Calvo, B. I. Sturman, F. Agull-Lpez, and M. Carrascosa, Phys. Rev.Lett. 84, 3839, 2000.Publications:[A1] O. Filippov, K. H. R<strong>in</strong>ghofer, M. Shamon<strong>in</strong>, E. Shamon<strong>in</strong>a, A. A. Kamshil<strong>in</strong>, E.Nippola<strong>in</strong>en, B. I. Sturman, “Polarization properties of light-<strong>in</strong>duced scatter<strong>in</strong>g<strong>in</strong> Bi 12 TiO 20 crystals: Theory and experiment for the diagonal geometry”, acceptedby JOSA B.[A2] O. Filippov, K. H. R<strong>in</strong>ghofer, B. I. Sturman, “Photorefractive ac-enhancednonl<strong>in</strong>ear response of sillenites: Low- and high-contrast effects”, accepted byEuropean Physical Journal D.37


Attended lectures, conference visits, research stays:1.2.3.P. Hertel: L<strong>in</strong>ear response theoryE. Krätzig, K. R<strong>in</strong>ghofer: The photorefractive nonl<strong>in</strong>earityH.-J. Schmidt: Nonl<strong>in</strong>ear wave equationsSem<strong>in</strong>ars and workshops of the Graduate College <strong>695</strong>Duration of the dissertation: Start 15.11.2001, term<strong>in</strong>ation expected 15.11.2004Period of support <strong>in</strong> the College: 15.11.2001 - 31.12.2003Supervisors: Prof. Dr. K. H. R<strong>in</strong>ghofer , Dr. M. Gorkounov, Prof. Dr. E. Krätzig38


Dipl.-Phys. Andreas Geisler<strong>Topic</strong>: Properties of one-dimensional spatial solitons <strong>in</strong> photorefractive mediaResults39


Attended lecturesWS 01/02: P. Hertel, L<strong>in</strong>ear response theorySS 02: E. Krätzig/K. R<strong>in</strong>ghofer, The photorefractive nonl<strong>in</strong>earityWS 02/03: H.-J. Schmidt, Nonl<strong>in</strong>ear wave equations- Workshop "Photorefractive Nonl<strong>in</strong>earities" (October 2001, Osnabrück)- AMOP (March 2002, Osnabrück)Duration of the dissertation: start WS 2000, term<strong>in</strong>ation expected SS 2004Period of support <strong>in</strong> the college: -Supervisor: Prof. Dr. H. W. Schürmann43


Dipl.-Phys. Airat Gubaev<strong>Topic</strong>: Light-Induced absorption changes <strong>in</strong> the visible and <strong>in</strong>frared range <strong>in</strong>ferroelectric crystals.ResultsIntroductionThe photorefractive crystals Sr x Ba 1-x Nb 2 O 6 (SBN) and Ba 1-y Ca y TiO 3 (BCT)can be grown <strong>in</strong> a congruent composition (melt and crystal have the same composition<strong>in</strong> SBN for x-0,61 and <strong>in</strong> BCT for y=0,23), which allows to produce large, homogeneoussamples ideally suited for applications. The photorefractive properties canbe enhanced by dop<strong>in</strong>g with polyvalent ions like Ce, Cr etc.. The light-<strong>in</strong>duced chargetransport from the dop<strong>in</strong>g ions and trapp<strong>in</strong>g <strong>in</strong> shallow polaronic states has beenidentified by photo EPR [1] and optical experiments [2] to constitute the underly<strong>in</strong>gprocess. The trapp<strong>in</strong>g of those photo-<strong>in</strong>duced charge carriers <strong>in</strong> specific centers canbe studied especially well at low temperatures, where the centers display a ratherlong lifetime and the build-up of the result<strong>in</strong>g space charge field, which is modify<strong>in</strong>gthe refractive <strong>in</strong>dex, can be <strong>in</strong>vestigated with various spectroscopic techniques. Thepolaronic NIR absorption centers have been studied already <strong>in</strong> some detail [3],whereas the thermally more stable VIS centers are more difficult to describe by theoreticalmodels and need further experimental <strong>in</strong>vestigation to clarify the situation.Experimental techniquesFor the detailed spectral measurements a Fourier spectrometer (Bruker IFS120HR) and a Beckman Acta VII grat<strong>in</strong>g spectrometer are used to cover the spectralrange from UV to FIR. A liquid helium bath cryostat (Leybold) is employed <strong>in</strong> the absorptionmeasurements and the crystals are immersed <strong>in</strong> superfluid helium (at 2K) or<strong>in</strong> helium exchange gas.As illum<strong>in</strong>ation source, we use a Ar + - and a Kr + - laser (spectra physics 171).Experimental results.In cont<strong>in</strong>uation of the work of I.Kislova we studied the light-<strong>in</strong>duced (Ar + -laser) absorption charges <strong>in</strong> SBN:Ce to yield a quantitative description of the nonl<strong>in</strong>ear<strong>in</strong>tensity and temperature dependence of the relevant physical parameters. Thespecific cerium–related FIR bands <strong>in</strong> SBN:Ce have been <strong>in</strong>vestigated at first to yielda quantitative description of the Cerium-center properties and its concentration andtemperature dependence.As a next step we plan to <strong>in</strong>vestigate the light-<strong>in</strong>duced dissociation (underKr + - laser light) of VIS centers <strong>in</strong> SBN:Ce. This dissociation under simultaneous buildupof a transient NIR-Polaron population has qualitatively be seen and described byI.Kislova [4], but it needs further quantitative work to elaborate the underly<strong>in</strong>g processes.Besides additional optical absorption measurements we plan to <strong>in</strong>vestigatethe photoconductivity and the photo-Hall effect under Kr + - laser illum<strong>in</strong>ation, to getnew <strong>in</strong>formation about the charge carriers created. We hope that these results willthen yield clear evidence for the nature of the VIS centers, which are currently be<strong>in</strong>gdiscussed as either bipolarons (<strong>in</strong> analogy to such centers <strong>in</strong> LiNbO 3 ) or polaronstrapped at charged centers, or charge transfer vibronic exitons (CTVE) be<strong>in</strong>g trappedat charged centers [5].[1] A.Mazur, C.Veber, O.F.Schirmer, C.Kuper, and H.Hesse. J.Appl.Phys. 85, 6751(1999)44


[2] M.Gao, R.Pankrath, S.Kapphan, V.Vikhn<strong>in</strong>. Appl.Phys. B. 68, 849 (1999)[3] M.Gao, S.Kapphan,R.Pankrath, X.Feng, Y.Tang, V.Vikhn<strong>in</strong>. J.Phys.Chem..Sol.,61, 1775 (2002)[4] I.Kislova report to Grad.Koll <strong>695</strong> and S.Kapphan, I.Kislova, M.Wierschem,T.L<strong>in</strong>demann, M.Gao, R.Pankrath, V.Vikhn<strong>in</strong>, A.Kutsenko. Rad.Eff. and Defects <strong>in</strong>Solids, 2003 (<strong>in</strong> pr<strong>in</strong>t)[5] V.S.Vikhn<strong>in</strong>, S.Avanesyan, H.Liu, S.E.Kapphan. J.Phys. and Chem. of Solids, 63,1677 (2002)Duration of the dissertation: Start 05.12.02 , term<strong>in</strong>ation expected end 2005Period of support <strong>in</strong> the College: 05.12.02 - 31.12.03Supervisor: Prof. Dr. S. KapphanA. Gubaev cont<strong>in</strong>ues the project of I. Kislova who returned to her home country Russiafor personal reasons. Hence he started only <strong>in</strong> December 2002.45


Dr. Vladimir Kamenov<strong>Topic</strong>: <strong>Critical</strong> <strong>phenomena</strong> <strong>in</strong> <strong>Optics</strong>ResultsThe <strong>in</strong>vestigations are divided <strong>in</strong>to two ma<strong>in</strong> fields: “<strong>Critical</strong> enhancement of photorefractiveresponse” (see Section I) and “<strong>Critical</strong> <strong>phenomena</strong> for feedback-controlledphotorefractive beam coupl<strong>in</strong>g” (see Section II).I. <strong>Critical</strong> enhancement of photorefractive responseThe cubic crystals of the sillenite family [e.g., Bi 12 SiO 20 (BSO), Bi 12 TiO 20 (BTO), andBi 12 GeO 20 (BGO)] are attractive because of their fast photorefractive response. Thema<strong>in</strong> disadvantage of sillenites is their weak photorefractive response. There are twoconvenient methods (DC and AC) for enhancement of the photorefractive responseof cubic crystals [1, 2]. These methods employ a DC or AC external electric field anda proper frequency detun<strong>in</strong>g between the <strong>in</strong>teract<strong>in</strong>g light beams. The enhanced exponentialga<strong>in</strong> factor reaches the values of a few tens of cm -1 .It is well known that the enhanced two-beam coupl<strong>in</strong>g is often accompanied by subharmonicgeneration ow<strong>in</strong>g to a parametric excitation of weakly damped lowfrequencyspace-charge waves (SCWs) [3, 4]. In the most important case, the fundamentalspace-charge grat<strong>in</strong>g with grat<strong>in</strong>g vector K, recorded by a pair of pumpbeams, becomes unstable aga<strong>in</strong>st the spontaneous growth of a SCW with the spatialfrequency K/2 (the subharmonic grat<strong>in</strong>g). This <strong>in</strong>stability is a threshold phenomenon:the light contrast m has to exceed a certa<strong>in</strong> threshold value mth≈ 3/ Q, where Q is thequality factor of the fundamental SCW. An important feature of the subharmonic generationis that the K/2-grat<strong>in</strong>g becomes very pliable to any driv<strong>in</strong>g force when approach<strong>in</strong>gthe threshold of subharmonic generation.Recently, it was proposed to use this pliancy of the subharmonic grat<strong>in</strong>g for an additional(critical) enhancement of the photorefractive response [5]. In contrast with theabove enhancement methods [1,2], the exponential ga<strong>in</strong> factor for the critical enhancementcan basically be arbitrary large. Approach<strong>in</strong>g the threshold of the subharmonicgeneration, the ga<strong>in</strong> factor grows <strong>in</strong>f<strong>in</strong>itely. This novel critical effect hasbeen missed <strong>in</strong> the previous studies because some important terms related to theeffect of the material nonl<strong>in</strong>earity had been omitted <strong>in</strong> the <strong>in</strong>itial equations.Unfortunately, the model considered <strong>in</strong> [5] does not <strong>in</strong>clude such important attributesof the coupl<strong>in</strong>g experiments <strong>in</strong> cubic photorefractive crystals as the vectorial characterof the beam coupl<strong>in</strong>g and the longitud<strong>in</strong>al <strong>in</strong>homogeneity of the pump <strong>in</strong>tensityow<strong>in</strong>g to light absorption. The first factor produces spatial oscillations of the coupl<strong>in</strong>gstrength and the second one makes the resonance value of the frequency detun<strong>in</strong>gdependent on the propagation coord<strong>in</strong>ate (i.e., broadens the resonance) [6,7]. Therefore,there was a gap between the basic idea of the critical enhancement expressed<strong>in</strong> cite [5] and the capability of the theory to <strong>in</strong>dicate the necessary conditions for detectionand possible utilization of this novel phenomenon.Our work [A1, A2] aims for an extended analysis of the critical enhancement by tak<strong>in</strong>g<strong>in</strong>to account the above attributes. This <strong>in</strong>cludes the formulation of a vectorial52


model of the critical enhancement <strong>in</strong>corporat<strong>in</strong>g the effect of spatial <strong>in</strong>homogeneity,an analytical treatment of this model, and a numerical characterization of the criticalspatial amplification. We have shown that the real attributes of subharmonic experimentsaffect considerably the apparent characteristics of the critical enhancement butdo not suppress this effect. Our analytical and numerical results have allowed to optimizethe conditions for detection of the critical enhancement <strong>in</strong> BSO crystals and topredict the ma<strong>in</strong> observable features <strong>in</strong>clud<strong>in</strong>g polarization, spectral, and orientationproperties. The possibility to achieve a very strong spatial amplification <strong>in</strong> th<strong>in</strong> crystals( d ≈1mm ) and to avoid <strong>in</strong> this way numerous extraneous effects is an importantprediction of our theory.II.<strong>Critical</strong> <strong>phenomena</strong> for feedback-controlled photorefractive beam coupl<strong>in</strong>gWhen phase volume holograms are recorded <strong>in</strong> photorefractive crystals, a 100% diffractivityof the recorded grat<strong>in</strong>g is often desirable. It has been shown [8] that whenan active feedback stabilization is applied to LiNbO 3 crystals, a diffraction efficiencyof unity can be achieved for a wide range of experimental parameters. This factopens new possibilities for thermal fix<strong>in</strong>g [9] and for reduc<strong>in</strong>g the light scatter<strong>in</strong>g [10].The ma<strong>in</strong> function of the feedback loop is to keep the phase difference between thetransmitted signal beam and the diffracted pump beam <strong>in</strong> the direction of the signalbeam equal to π /2. This is realized by a proper phase modulation of the <strong>in</strong>put signalbeam.In our work [A3, A4], we <strong>in</strong>vestigate the dynamics of the feedback-assisted beamcoupl<strong>in</strong>g. We show that two qualitatively different modes of operation are possiblewhen feedback stabilization is applied to photorefractive crystals with local response.If the <strong>in</strong>itial <strong>in</strong>tensity ratio, β > 1, is bigger than some threshold value, βth, the feedbackchanges the phase of the signal beam l<strong>in</strong>early <strong>in</strong> time. The correspond<strong>in</strong>g diffractionefficiency of the photorefractive grat<strong>in</strong>g is less than 100%. For β < βth, the<strong>in</strong>itial signal phase consists of an oscillation periodic <strong>in</strong> time superimposed on l<strong>in</strong>eargrowth. In this case, the diffractivity of the recorded photorefractive grat<strong>in</strong>g is 100%.We show that the transition between these two modes of operation is similar to aphase transition, with a critical slow<strong>in</strong>g down of the periodic phase variations. For thecase with periodic phase variations of the signal beam, the system undergoes severaladditional phase transitions: we have found a variety of qualitatively different periodicmodes and non-trivial transitions between them. Good qualitative agreementbetween theory and experiment is obta<strong>in</strong>ed for LiNbO 3 crystals.[1] P. Refregier, L. Solymar, H. Rajenbach, and J. P. Hiugnard, „Two-beam coupl<strong>in</strong>g<strong>in</strong> photorefractive Bi 12 SiO 20 crystals with mov<strong>in</strong>g grat<strong>in</strong>g: theory and experiment”,J. Appl. Phys. 58, 45-57 (1985).[2] S. I. Stepanov and M. P. Petrov, „Efficient unstationary holographic record<strong>in</strong>g<strong>in</strong> photorefractive crystals under alternat<strong>in</strong>g electric field” Opt. Commum. 53,292-295 (1985).[3] B. I. Sturman, M. Mann, J. Otten, and K. H. R<strong>in</strong>ghofer, “Space-charge waves<strong>in</strong> photorefractive crystals and their parametric excitation”, J. Opt. Soc. Am. B10, 1919-1932 (1993).53


[4] L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, “The Physics and Applicationsof Photorefractive Materials “, Claredon, Oxford, 1996.[5] E. V. Podivilov, B. I. Sturman, H. C. Pedersen, and P. M. Johansen, “<strong>Critical</strong>enhancement of photorefractive beam coupl<strong>in</strong>g”, Phys. Rev. Lett. 85, 1867-1870 (2000).[6] D. J. Webb and L. Solymar, “The effects of optical activity and absorption ontwo-wave mix<strong>in</strong>g <strong>in</strong> Bi 12 SiO 20 ”, Opt. Commun. 83, 287-294 (1991).[7] B. I. Sturman, A. I. Chernykh, V. P. Kamenov, E. Shamon<strong>in</strong>a, and K. H. R<strong>in</strong>ghofer,“Resonant vectorial wave coupl<strong>in</strong>g <strong>in</strong> cubic photorefractive crystals“ J.Opt. Soc. Am. B 17, 985-996 (2000).[8] A. A. Freschi and J. Frejlich, “Stabilized photorefractive modulation record<strong>in</strong>gbeyond 100% diffraction efficiency <strong>in</strong> LiNbO 3 :Fe crystals”, J. Opt. Soc. Am. B11, 1837-1841 (1994).[9] S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Krätzig, “Stabilized record<strong>in</strong>gand thermal fix<strong>in</strong>g of holograms <strong>in</strong> photorefractive lithium niobate crystals”,Ref. Sci. Instrum. 68, 1591-1594 (1998).[10] P. M. Garcia, A. A. Freschi, J. Frejlich, and E. Krätzig, “Scatter<strong>in</strong>g reduction forhighly diffractive holograms <strong>in</strong> LiNbO 3 crystals”, Appl. Phys. B 63, 207-208(1996).Publications[A1] E. V. Podivilov, B. I. Sturman, K. H. R<strong>in</strong>ghofer, M. V. Gorkunov, and V. P.Kamenov, “Theory of critical enhancement of the photorefractive response”,Phys. Rev. E, 65 046623 (2002).[A2] E. V. Podivilov, B. I. Sturman, K. H. R<strong>in</strong>ghofer, M. V. Gorkunov, V. P.Kamenov, H. C. Pedersen, and P. M. Johansen “Model<strong>in</strong>g of critical enhancementof photorefractive response <strong>in</strong> cubic crystals”, OSA TOPS 62, p. 230(2000).[A3]E. V. Podivilov, B. I. Sturman, S. G. Odoulov, S. M. Pavlyuk, K. V. Shcherb<strong>in</strong>,V. Ya. Gayvoronsky, K. H. R<strong>in</strong>ghofer, and V. P. Kamenov, “Wealth of dynamicregimes for feedback-controlled photorefractive beam coupl<strong>in</strong>g”, OSA TOPS 62,p. 221 (2000).[A4] K. V. Shcherb<strong>in</strong>, S. M. Pavlyuk, S. G. Odoulov, K. H. R<strong>in</strong>ghofer, V. P.Kamenov, E. V. Podivilov, and B. I. Sturman, “<strong>Critical</strong> <strong>phenomena</strong> for feedbackassistedphase grat<strong>in</strong>g record<strong>in</strong>g”, OSA TOPS 62, p. 616 (2000).Duration of the dissertation: PostdocPeriod of support <strong>in</strong> the College: 01.01.01 - 30.08.2001Supervisors: Prof. Dr. K. H. R<strong>in</strong>ghofer, E. KrätzigDr. Kamenov left the Graduate College 30.08.01 to start an activity at the Carl ZeissAG, Oberkochen.54


Dipl.-Phys. Inna Kislova<strong>Topic</strong>: Light-<strong>in</strong>duced absorption changes <strong>in</strong> ferroelectric crystalsI. ResultsIntroductionOur research project is aimed at <strong>in</strong>vestigat<strong>in</strong>g the optical and dielectric properties ofthe crystals Sr x Ba 1-x Nb 2 O 6 (SBN, x=0.61) pure, doped with Ce, Cr ions or doublydoped with Ce and Cr and of the Ba 1-y Ca y TiO 3 (BCT, y=0,23) crystals doped with Fe.Both promis<strong>in</strong>g photorefractive crystal systems Ba 1-Y Ca Y TiO 3 and Sr x Ba 1-x Nb 2 O 6possess a congruently melt<strong>in</strong>g mixture (for SBN x=0,61 and for BCT y=0,23) [1,2].This allows to grow large, homogeneous crystals of excellent optical quality, which isthe basis for a wide range of optical applications [3]. Due to the statistical distributionof the constituents and a partially unfilled (tungsten bronze) structure for SBN, theferroelectric phase transition (T c ≈373 K for congruent BCT pure and T c ≈353 K forcongruent SBN pure) shows a relaxor type character with polar contributions wellabove T c . The electro-optical coefficients of the pure crystals are already large andcan be enhanced considerably by suitable dop<strong>in</strong>g with polyvalent ions like thosementioned above [4,5]. For some of the dopants (like Ce and Cr <strong>in</strong> SBN) a majoritycharge state 3+ has been determ<strong>in</strong>ed [6,7], however with an <strong>in</strong>dividual site occupancy,Ce 3+ replac<strong>in</strong>g Sr 2+ ions and Cr 3+ sitt<strong>in</strong>g on the Nb 5+ sites [8,9]. These dopantscan be identified by their broad impurity <strong>in</strong>duced absorption bands <strong>in</strong> the visiblerange, a shift of the UV- absorption edge to longer wavelength <strong>in</strong> the case of Cr dop<strong>in</strong>gand additional Far-IR bands (near 2000cm -1 ) <strong>in</strong> the case of Ce-dop<strong>in</strong>g [6]. A light<strong>in</strong>ducedcharge transport from these dop<strong>in</strong>g ions and trapp<strong>in</strong>g <strong>in</strong> shallow polaronicstates (Ti 3+ <strong>in</strong> BCT respectively Nb 4+ <strong>in</strong> SBN) has been identified by photo-EPR [10]and optical experiments [11] to constitute the underly<strong>in</strong>g processes for the enhancedphotorefractive properties <strong>in</strong> doped crystals. The majority of photo-excited chargecarriers have been determ<strong>in</strong>ed by laser beam coupl<strong>in</strong>g experiments [12] and Halleffect[13] measurements to be electrons. The trapp<strong>in</strong>g of these photo-<strong>in</strong>ducedcharge carriers <strong>in</strong> certa<strong>in</strong> centers can be considered as the first step <strong>in</strong> the build-up ofspace charge fields which modify the refractive <strong>in</strong>dex and are the basis of thephotorefractive effect under non-uniform spatial illum<strong>in</strong>ation. The properties and thephysical nature of the centers created under illum<strong>in</strong>ation have been identified so faronly to some extent and are <strong>in</strong>vestigated further <strong>in</strong> this study with several techniques.Experimental techniquesA Fourier spectrometer (Bruker IFS 120 HR) and a Beckman Acta VII grat<strong>in</strong>g spectrophotometerwere used to measure the absorption spectra from the UV to the FIRregion. A Helium bath cryostat (Leybold) was employed <strong>in</strong> absorption measurementsand the crystals were immersed <strong>in</strong> superfluid helium (2 К) or <strong>in</strong> Helium exchange gas.A Ar + - and Kr + - laser (spectra physics 171) were used as illum<strong>in</strong>ation sources.Photolum<strong>in</strong>escence and excitation spectra were measured us<strong>in</strong>g a photon count<strong>in</strong>gsystem. A high pressure Xenon lamp was used as the excitation source. A closedcycle cryostat (Leybold) was used for the Photolum<strong>in</strong>escence and Thermolum<strong>in</strong>escencemeasurements.Dielectric susceptibility near Tc was measured <strong>in</strong> a temperature variable set-up with aHP 4270A automatic bridge.55


Experimental resultsa) Variation of dop<strong>in</strong>g-dependent properties <strong>in</strong> photorefractive Sr x Ba 1-x Nb 2 O 6 : Ce, Cr,Ce+CrDop<strong>in</strong>g SBN crystals with Ce and Cr <strong>in</strong>duces broad dichroic absorption bands. Theabsorption coefficients <strong>in</strong> the visible region (at 514 nm) for SBN s<strong>in</strong>gle crystals <strong>in</strong>creasel<strong>in</strong>early with the Ce or Cr (up to ~ 20 000 ppm., p.f.u., (per Nb 2 )) concentration.In Ce-doped crystals the <strong>in</strong>tegral FIR absorption of the Ce 3+ bands near 2000cm -1 also vary l<strong>in</strong>early with the Ce concentration <strong>in</strong> the crystal, provid<strong>in</strong>g an <strong>in</strong>dependentmethod to estimate the Ce 3+ - content <strong>in</strong> double doped crystals even wherethe UV-VIS absorption bands of Cr and Ce <strong>in</strong> SBN overlap. Comparison of <strong>in</strong>dividualconcentrations determ<strong>in</strong>ed <strong>in</strong> double doped SBN:Ce+Cr and of s<strong>in</strong>gle dop<strong>in</strong>g casesshows no <strong>in</strong>crease <strong>in</strong> the respective built-<strong>in</strong> coefficients of Ce and Cr for co-dop<strong>in</strong>g,giv<strong>in</strong>g no evidence of a self compensation of Cr by Ce centres. For the Cr-dopedcrystals a shift of the UV-absorption edge to longer wavelength with <strong>in</strong>creas<strong>in</strong>g Crdop<strong>in</strong>gis observed as well.Fe 2+/ 3+ centers <strong>in</strong> BCT have been detected <strong>in</strong> photo-EPR experiments with absorptionbands at 2eV and 3.5eV, respectively [10].b) Dielectric measurements <strong>in</strong> the SBN crystals doped with Cr and CeThe dielectric measurements show for both Ce and Cr dop<strong>in</strong>g about the same shift ofthe phase transition temperature Tc, decreas<strong>in</strong>g with <strong>in</strong>creas<strong>in</strong>g dopant concentration.The concentration dependence of the transition temperature for co-doped SBN:Ce+Cr appears to be nearly the same as for s<strong>in</strong>gle dop<strong>in</strong>g cases tak<strong>in</strong>g <strong>in</strong>to accountthe total impurity centre concentrations [publ.3]. For values of about 20000 ppm(p.f.u.) Tc reaches about room temperature. The width at half maximum of the dielectricpermitivity (ε 33 ) versus temperature <strong>in</strong>creases considerably with <strong>in</strong>creas<strong>in</strong>g concentration.c) Photo- and thermolum<strong>in</strong>escence <strong>in</strong> the SBN crystalsOne can observed a broadband green (λ em about 490nm) and a redphotolum<strong>in</strong>escence(red-PL) band (λ em about 765nm) with UV excitation (λex=350nm). The green-photolum<strong>in</strong>escence (green-PL) can be excited only at the UV-bandedge, whereas the red-PL can be excited also at longer wavelength. The red(765nm) emission <strong>in</strong>tensity is <strong>in</strong>creas<strong>in</strong>g l<strong>in</strong>early with the Cr-dop<strong>in</strong>g for concentrationsup to about 5000 ppm Cr, with <strong>in</strong>creas<strong>in</strong>g deviations at higher concentrations. Theexcitation spectra of the red lum<strong>in</strong>escence, follow closely the shape of the Cr or Ce<strong>in</strong>ducedabsorption band and the Cr-<strong>in</strong>duced shift of the UV-band edge. The timedependence of the decay of the PL emission after excitation shut-off is nearly monoexponential.The decay time constant is about 3msec at 20 K, gett<strong>in</strong>g shorter athigher temperatures. In s<strong>in</strong>gle doped Cr,Ce SBN as well as <strong>in</strong> SBN:Ce+Cr two wellseparated Thermolum<strong>in</strong>escence-peaks can be observed at about 90 K and at about220 K, after low temperature (10K) excitation with a Xenon-lamp and a subsequentwait<strong>in</strong>g period of about 10 m<strong>in</strong>utes before measurement with a heat<strong>in</strong>g rate of 5K/m<strong>in</strong>from 10 to 320 K. The spectral distribution of the l<strong>in</strong>e shape of the PL and of the TLemission are at first sight the same, <strong>in</strong>dicat<strong>in</strong>g a similar emission process after theliberation of the respective charge carriers. However, a closer <strong>in</strong>spection yields aspectral f<strong>in</strong>e-structure with at least three strong emission subbands at 766nm, 775nmand at 830nm. These sub bands decay with different time constants (λ em = 766nmwith τ=3,7ms and λ em= 775nm with τ=4,4 ms at 10K). The sub band at 766nm can bepreferentially excited <strong>in</strong> two spectral regions λ ex =350nm and λ ex =650nm, whereas56


the subband at 775nm is more prom<strong>in</strong>ent for excitations at wavelength λ ex =470nm.This longer wavelength subband also is gett<strong>in</strong>g more <strong>in</strong>tensive with <strong>in</strong>creas<strong>in</strong>g Crdop<strong>in</strong>g <strong>in</strong> the crystals. Both Thermolum<strong>in</strong>escence emission peaks, at 90 K and at 220K, show roughly the same spectral distribution <strong>in</strong> agreement with the Photolum<strong>in</strong>escenceemission band, po<strong>in</strong>t<strong>in</strong>g at only slightly different recomb<strong>in</strong>ation processes evenfor the doubly doped SBN:Ce+Cr crystals.d) Light-<strong>in</strong>duced absorption changesUnder illum<strong>in</strong>ation with Ar + - laser light (488 nm) at low temperature (2K, crystal immersed<strong>in</strong> superfluid liquid He) two broad dichroitic light-<strong>in</strong>duced absorption bandscan be observed <strong>in</strong> BCT:Fe and similarly <strong>in</strong> SBN:Cr,Ce. The first absorption band(VIS centers) is observed around 2eV and the second <strong>in</strong> the NIR around 0.7eV (6000cm-1). The NIR absorption has been identified previously by photo-EPR as belong<strong>in</strong>gto Ti 3+ small polarons <strong>in</strong> BCT or to Nb 4+ small polarons <strong>in</strong> SBN [10]. The centers responsiblefor the VIS absorption have not been identified yet, but obviously are producedsimultaneously with the NIR polarons. Both, the VIS and the NIR light-<strong>in</strong>ducedabsorption bands depend on polarization and nonl<strong>in</strong>early on illum<strong>in</strong>ation <strong>in</strong>tensity.The temperature dependence <strong>in</strong> the production of these centers shows a steepchange at about 100K for the NIR polarons <strong>in</strong> SBN (at about 40 K for BCT) and atabout 200K for the VIS centers (at about 80 K for BCT). These characteristic temperaturesare also revealed <strong>in</strong> thermolum<strong>in</strong>escence studies of SBN:Ce, Cr as <strong>in</strong>tensitypeaks, where charge carriers (electron-polarons) are thermally excited <strong>in</strong> shallowtraps, followed by a hopp<strong>in</strong>g mobility of the liberated polarons till radiative recomb<strong>in</strong>ationwith deep trapp<strong>in</strong>g centers is occurr<strong>in</strong>g. The steady state of the light-<strong>in</strong>duced absorptionunder illum<strong>in</strong>ation and the k<strong>in</strong>etics of its decay after a switch-off of the illum<strong>in</strong>ation, can be described by a simple model of charge transport from dop<strong>in</strong>g centers(Fe 2+ + Ti 4+ ↔ Fe 3+ + Ti 3+ <strong>in</strong> BCT, Ce 3+ + Nb 5+ ↔Ce 4+ + Nb 4+ <strong>in</strong> SBN) with subsequentrecomb<strong>in</strong>ation as reported previously for SBN [11, 14].e) Light-<strong>in</strong>duced dissociation of VIS centersThe Ar + light-<strong>in</strong>duced VIS centers are rather stable at 2 K, whereas the NIR centersdecay rather fast and disappear completely with<strong>in</strong> less than 50 sec <strong>in</strong> BCT:Fe (100sec <strong>in</strong> SBN:Ce) [14, 15]. This allows to perform experiments <strong>in</strong> the follow<strong>in</strong>g way. Aftercreat<strong>in</strong>g a sizeable population of NIR polarons and of VIS centers at 2 K, the Ar + -laser was switched-off. After wait<strong>in</strong>g about 7 m<strong>in</strong>. to let the NIR-polarons decay completely,then a Kr + - laser was switched-on. First a build-up of NIR polaron absorptionand then a transient decay of this NIR absorption (depend<strong>in</strong>g strongly on the Kr + -laser <strong>in</strong>tensity) with a simultaneous decay <strong>in</strong> the VIS-absorption is observed.After switch<strong>in</strong>g-off the Kr + -laser, the NIR polaron absorption decays with its own,characteristic recomb<strong>in</strong>ation decay time. This clearly demonstrates the dissociation ofthe VIS centers <strong>in</strong>to small polarons and has been observed both, <strong>in</strong> BCT:Fe and <strong>in</strong>SBN:Ce.ConclusionsThe nature of the NIR centers as small polaron centers is well established <strong>in</strong> crystalslike BaTiO 3 [16] or LiNbO 3 [17], and similarly <strong>in</strong> SBN [11] and BCT [10]. Their characteristicNIR-absorption exhibits <strong>in</strong> SBN and BCT a temperature- and <strong>in</strong>tensity dependentbehaviour, the details of which are not fully understood yet and warrant furtherstudies.The VIS-centers are discussed as possibly be<strong>in</strong>g either bipolarons (<strong>in</strong> analogy tosuch centers <strong>in</strong> LiNbO 3 ), or polarons trapped at charged centers, or charge transfer57


vibronic excitons (CTVE) be<strong>in</strong>g trapped at charged centers [15]. The present experimentsdo not yet allow to draw unambiguous conclusions – but one of the dissociationproducts must be an electron polaron.References1.C.Kuper, R.Pankrath, H.Hesse, Appl.Phys. A65, 301 (1997)2.R.Neurgaonkar, W.Cory, J.Oliver, H.Ewbank, W.Hall, Opt.Eng.26, 392 (1987)3.P.Guenter, J.P.Huignard, Top. In Appl. Phys.:Photorefr. Mat. 61/62(Spr<strong>in</strong>ger-Berl<strong>in</strong>)(1988)4.C.Kuper, K.Buse, U.v.Stevendaal, M.Weber, T.Leidlo, H.Hesse, E.Krätzig, Ferroelectrics,208/209,213(1998)5.Y.Tomita, A.Suzuki, Appl.Phys., A 59, 579 (1994)6.G.Greten, S.Hunsche, U.Knuepfer, R.Pankrath, U.Siefker, N.Wittler, S.Kapphan,Ferroelectrics 185,289 (1996)7.R.Niemann, K.Buse, R.Pankrath, M.Neuman, Sol. St. Commun.98, 209(1996)8.T.Woike, G.Wekwerth, H.Palme, R.Pankrath, Solid St. Comm.102, 743 (1997)9.T.Woike, U.Doerfler, L.Tsankov, G.Weckwerth, D.Wolf, M.Woelecke, T.Granzow,R.Pankrath, M.Jmlau, W.Kleemann, Appl.Phys.B72, 661 (2001)10.A.Mazur, C.Veber, O.Schirmer, C.Kuper, H.Hesse, J.Appl.Phys.,85,6751 (1999)11.M.Gao, R.Pankrath, S.Kapphan, V.Vikhn<strong>in</strong>, Appl.Phys. B68, 849 (1999)12.M.Ewbank, R.Neurgaonkar, W.Cory, J.Fe<strong>in</strong>berg, J.Appl.Phys.62, 374 (1987)13.A.Gerwens, K.Buse, E.Kraetzig. J. Opt. Soc. Am.B15, 2143 (1998)14.M.Wierschem, T.L<strong>in</strong>demann, R.Pankrath, S.Kapphan, Ferroelectrics 264, 315(2001)15.M.Gao, S.Kapphan, R.Pankrath, X.Fenq, Y.Tang, V.Vikhn<strong>in</strong>, J. Phys. Chem. Sol.61, 1775 (2002)16. S.Koehne, O.F.Schirmer et.al., J.Supercond., 12, 19 (1999)17.E.Krätzig, O.F.Schirmer <strong>in</strong> “Photorefractive Materials and their Applications”(Ed.P.Guenter,J.P.Huignard) <strong>Topic</strong>s <strong>in</strong> Appl.Phys., Vol. 61, Spr<strong>in</strong>ger Berl<strong>in</strong> (1988)III.Publications1. “Photo- and thermolum<strong>in</strong>escence <strong>in</strong> congruent SBN crystals doped with Ce andCr.” I.L. Kislova, M. Gao, S.E. Kapphan, R. Pankrath, A. B. Kutsenko, V. S.Vikhn<strong>in</strong>.Ferroelectrics, 2002, Vol.273, pp.187-192.2.”Charge transfer vibronic excitons and excitonic-type polaron states: photolum<strong>in</strong>escence<strong>in</strong> SBN.” Vikhn<strong>in</strong> V.S., Kislova I., Kutsenko A.B., Kapphan S.E.Solid State Communications 121 (2002) 83-88.3. “Variation of dop<strong>in</strong>g-dependent properties <strong>in</strong> photorefractive Sr x Ba 1-x Nb 2 O 6 : Ce,Cr, Ce+Cr.” S. Kapphan, B. Pedko, V. Trepakov, M. Sav<strong>in</strong>ov, R. Pankrath and I. Kislova.Rad. Effects and Defects <strong>in</strong> Solids, 2002 (<strong>in</strong> pr<strong>in</strong>t).4. “Congruent Sr 0.61 Ba 0.39 Nb 2 O 6 doubly doped with Ce and Cr: photo- and thermolum<strong>in</strong>escence<strong>in</strong>vestigations.” I.L. Kislova, M. Gao, S.E. Kapphan, R. Pankrath, A.B.Kutsenko, V.S.Vikhn<strong>in</strong>. Rad. Effects and Defects <strong>in</strong> Solids, 2002 (<strong>in</strong> pr<strong>in</strong>t).5. “Light-<strong>in</strong>duced plaronic absorption at low temperature <strong>in</strong> pure and (Fe, Ce, Cr)doped Sr x Ba 1-x Nb 2 O 6 or Ba 1-y Ca y TiO 3 crystals and photodissociation of VIS centers<strong>in</strong>to small polarons.” S. E. Kapphan, I. Kislova, M. Wierschem, T. L<strong>in</strong>demann, M.Gao, R. Pankrath, V. S. Vikhn<strong>in</strong> ,A. B. Kutsenko. Rad. Effects and Defects <strong>in</strong> Solids,2002 (<strong>in</strong> pr<strong>in</strong>t).58


IV.Attended lecturesWS 01/02 : P. Hertel: L<strong>in</strong>ear response theory.SS 02: E. Krätzig, K. R<strong>in</strong>ghofer: The photorefractive nonl<strong>in</strong>earity.WS 01/02: V.Trepakov: <strong>Optics</strong> and Spectroscopy of semiconductors and <strong>in</strong>sulatorsWorkshop “Photorefractive Nonl<strong>in</strong>earities” (October 2001, Osnabrueck).Workshop “SBN - a typical relaxor?” (May 2002, University of Osnabrueck).Sem<strong>in</strong>ars “Laser <strong>Optics</strong>” (WS 01/02 SS 02).Sem<strong>in</strong>ars of the Graduate College <strong>695</strong> (WS 01/02 SS 02).V. Conference visits1. 10 th International Meet<strong>in</strong>g on Ferroelectricity (IMF-10) (September 2001, Madrid,Spa<strong>in</strong>). (2 posters).2. 9 th Europhysical conference on defects <strong>in</strong> <strong>in</strong>sulat<strong>in</strong>g materials (EURODIM 2002,July 2002, Wroclaw, Poland). (2 posters and 1 oral contribution).3. 16 th Russian Conference on Physics of Ferroelectrics (September 2002. Tver,Russia). (1 report).VI.Duration of the dissertation: Start 01.08.01 - The candidate was leav<strong>in</strong>g forpersonal reasons 31.10.02 (Serious illness of her father <strong>in</strong> Tver, Russia).VII. Period of support <strong>in</strong> the College: 01.08.01 - 31.10.02Supervisor: Prof. Dr. Siegmar Kapphan59


Dipl.-Phys. Mikhail Lap<strong>in</strong>e<strong>Topic</strong>: Microwave <strong>in</strong>teractions <strong>in</strong> nonl<strong>in</strong>ear metamaterialsResultsThe work was performed <strong>in</strong> close collaboration with Prof. L. Solymar and Dr.E. Shamon<strong>in</strong>a from the Dept. of Eng<strong>in</strong>eer<strong>in</strong>g Science of the University of Oxford.Metamaterials are artificial structures, composed as a regular lattice of identicalelements. They attracted grow<strong>in</strong>g <strong>in</strong>terest <strong>in</strong> the recent years. This was motivatedby <strong>in</strong>creas<strong>in</strong>g attention to the microwave range <strong>in</strong> electromagnetics, as metamaterialsoffer new possibilities for manipulations with microwaves.Common pr<strong>in</strong>ciples of structural organization make metamaterials similar tocrystals. However, the scale is different, and this shifts the applicable range of electromagneticradiation to microwaves.In most cases the suggested applications of metamaterials (e.g., magneticfield guides [1] are concerned with the l<strong>in</strong>ear properties. Analogy between crystalsand metamaterials encourages us to consider also the nonl<strong>in</strong>ear properties.The most promis<strong>in</strong>g metamaterial among the suggested ones [2], which wasalso experimentally studied [3], is based on circular conductive elements. However,<strong>in</strong> the current literature no proper theory describ<strong>in</strong>g metamaterials was given andprior to the analysis of nonl<strong>in</strong>ear properties we had to develop a l<strong>in</strong>ear theory for theresponse of a similar metastructure, which allows for analytical consideration [A1, A2,A3]. The metamaterial we consider is assembled as a regular lattice of split conductiver<strong>in</strong>gs. The developed theory is based on the same pr<strong>in</strong>ciples as the theory of opticall<strong>in</strong>ear response <strong>in</strong> crystal optics. The microscopic problem on the level of structureelements is solved with the help of the impedance matrix, assum<strong>in</strong>g that the responseis local and the mutual <strong>in</strong>teraction is described <strong>in</strong> the quasi-static limit. Thenmacroscopic averag<strong>in</strong>g yields the effective parameters. The obta<strong>in</strong>ed permeabilityshows frequency dispersion with the resonance frequency of the metamaterial be<strong>in</strong>gshifted from the resonance of a s<strong>in</strong>gle element. This shift depends on the lattice constantsand type. The effect is very remarkable, but it was not taken <strong>in</strong>to account byother authors due to rather rough approximations and doubtful assumptions they followed.Above the resonance the real part of permeability is negative. The frequencyrange of negative values depends strongly on the lattice type. We found that thisrange is most extended for a hexagonal arrangement of r<strong>in</strong>gs <strong>in</strong> a plane with theneighbor<strong>in</strong>g layers be<strong>in</strong>g maximally shifted with respect to each other. We supportedthe analytical consideration with numerical calculations. These were performed by ab<strong>in</strong>itio solv<strong>in</strong>g Maxwell's equations for a f<strong>in</strong>ite structure consist<strong>in</strong>g of a few thousandelements and subsequent numerical averag<strong>in</strong>g. The permeability obta<strong>in</strong>ed <strong>in</strong> this wayis <strong>in</strong>dependent of the shape of the sample and appears to be <strong>in</strong> an excellent agreementwith the analytical results.In order to provide nonl<strong>in</strong>earity to the response of the structure element it wassuggested to use diode <strong>in</strong>clusions [4]. The aris<strong>in</strong>g multi-wave <strong>in</strong>teractions allow toaffect the wave propagation directly <strong>in</strong> a convenient “all-optical” manner, i.e., withoutconversion <strong>in</strong>to electronic signals.To calculate the nonl<strong>in</strong>ear susceptibility of the metamaterial with the diode <strong>in</strong>sertionswe generalize the approach, which we developed for the l<strong>in</strong>ear case. Weconsider [A4] a weak nonl<strong>in</strong>earity, for which the current-voltage characteristic of adiode <strong>in</strong>cludes a quadratic nonl<strong>in</strong>ear term. This leads to the coupl<strong>in</strong>g of the Fouriercomponents of the fields and currents at different frequencies. A detailed analysisshows that a three-wave <strong>in</strong>teraction occurs. We f<strong>in</strong>ally obta<strong>in</strong> the magnetization of the60


metamaterial <strong>in</strong> a form analogous to the polarization of an optical medium with aquadratic dielectric nonl<strong>in</strong>earity, and we derive an analytical expression for the quadraticnonl<strong>in</strong>ear susceptibility. It is determ<strong>in</strong>ed by the properties of a s<strong>in</strong>gle element aswell as by the l<strong>in</strong>ear properties of the metamaterial. Like the optical nonl<strong>in</strong>earity, thenonl<strong>in</strong>earity of the magnetic metamaterial <strong>in</strong>creases resonantly as one of the frequencies<strong>in</strong>volved approaches the resonance of the l<strong>in</strong>ear susceptibility.The general symmetry of Maxwell's equations with respect to the magneticfield - electric field transposition allows to expect that one can deal with the nonl<strong>in</strong>ear<strong>in</strong>teraction of electromagnetic waves <strong>in</strong> the proposed metamaterial us<strong>in</strong>g the welldevelopedapparatus of nonl<strong>in</strong>ear optics. The whole variety of known nonl<strong>in</strong>ear opticalprocesses can have the correspond<strong>in</strong>g analogues <strong>in</strong> metamaterials.For practical estimations we consider an example of metastructure made ofr<strong>in</strong>gs with radius r 0 = 2mm, arranged with the density n ~ r 0 -3 . Choos<strong>in</strong>g backwarddiodes as nonl<strong>in</strong>ear <strong>in</strong>sertions, as they possess the best sensitivity and the highestnonl<strong>in</strong>earity, we estimate that a nonl<strong>in</strong>ear contribution to the susceptibility of the orderof 0.001 can be achieved. However, this is accompanied by significant losses. Tomake use of a nonl<strong>in</strong>ear metamaterial we have to ensure that the ratio of the nonl<strong>in</strong>earcontribution to the damp<strong>in</strong>g (the latter be<strong>in</strong>g determ<strong>in</strong>ed essentially by the imag<strong>in</strong>arypart of the l<strong>in</strong>ear susceptibility) is as high as possible. This figure of merit appearsto be proportional to the ratio of the impedance of the diode to its resistance,|Z(ω)|/R. For backward diodes it is of the order of unity, and their usage can be limitedby losses. A promis<strong>in</strong>g opportunity is offered by varactors. For varactors the capacitiveimpedance can be much higher than the resistance and it is only necessaryto ensure that this condition is fulfilled <strong>in</strong> the desired frequency range.It is clear that nonl<strong>in</strong>ear metamaterials open vast possibilities for the applicationstak<strong>in</strong>g the advantage of “all-optical” manipulations with microwaves. The developedtheory covers an important particular case of weak nonl<strong>in</strong>earity, which allowsfor comprehensible theory, analogous to nonl<strong>in</strong>ear optics. However, the use of diodes<strong>in</strong> the mode of strong nonl<strong>in</strong>earity is quite desirable for the applications. Thiscase cannot be described <strong>in</strong> a way similar to optics, and requires an extended theory,which we plan to develop <strong>in</strong> 2003. The detailed analysis of practically <strong>in</strong>terest<strong>in</strong>gnonl<strong>in</strong>ear processes with microwaves, such as parametric amplification, frequencyconversion, phase conjugation, etc., will be carried out <strong>in</strong> 2004.[1] E. Shamon<strong>in</strong>a, V. A. Kal<strong>in</strong><strong>in</strong>, K. H. R<strong>in</strong>ghofer and L. Solymar, J. Appl. Phys. 92,6252 (2002).[2] J. B. Pendry, A. J. Holden, D. J. Robb<strong>in</strong>s, and W. J. Stewart, IEEE Trans. MicrowaveTheory Techn. 47, 2075 (1999).[3] R. A. Shelby, D. R. Smith, S. Schultz, Science 292, 77 (2001).[4] V. A. Kal<strong>in</strong><strong>in</strong> and V. V. Shtykov, Sov. J. Commun. Technol. Electron. 36, 96(1991).Publications:[A1] M. Lap<strong>in</strong>e, M. Gorkunov, E. Shamon<strong>in</strong>a, and K. H. R<strong>in</strong>ghofer, “Permeability of ametamaterial made of conductive r<strong>in</strong>gs”, Proc. of 9th Int. Conf. on Electromagneticsof Complex Media, 65 (2002).61


[A2] M. Gorkunov, M. Lap<strong>in</strong>e, E. Shamon<strong>in</strong>a, and K. H. R<strong>in</strong>ghofer, “Effective magneticproperties of a composite material with circular conductive elements”, Eur.Phys. J. B, 28, 263 (2002).[A3] E. Shamon<strong>in</strong>a, L. Solymar, V. A. Kal<strong>in</strong><strong>in</strong>, M. Lap<strong>in</strong>e, and K. H. R<strong>in</strong>ghofer, “Fluxdistributions <strong>in</strong> a non-resonant magnetic metamaterial”, Proceed<strong>in</strong>gs of theProgress <strong>in</strong> Electromagnetics Research Symposium PIERS 2002, July 1-52002, Cambridge, Massachusetts, USA, p. 249[A4] M. Lap<strong>in</strong>e, M. Gorkunov, and K. H. R<strong>in</strong>ghofer, “Nonl<strong>in</strong>earity of a metamaterialaris<strong>in</strong>g from diode <strong>in</strong>sertions <strong>in</strong>to resonant conductive elements”, (submitted toPhys. Rev. E, 2003).Visited conferences9th Int. Conf. on Electromagnetics of Complex Media (“Bianisotropics-2002”),8-11 May 2002, Marrakech, Morocco (poster presentation).Attended lectures- P. Hertel: L<strong>in</strong>ear response theory (WS 01/02)- E. Krätzig, K. R<strong>in</strong>ghofer: The photorefractive nonl<strong>in</strong>earity (SS 02)- H.-J. Schmidt: Nonl<strong>in</strong>ear wave equations (WS 02/03)- Sem<strong>in</strong>ars of the Graduate College <strong>695</strong>- Workshops of the Graduate College <strong>695</strong>Duration of the dissertation: Start 01.11.01, term<strong>in</strong>ation expected 31.10.04.Period of support <strong>in</strong> the College: 01.11.01 - 31.12.03Supervisors: Prof. Dr. Klaus R<strong>in</strong>ghofer, Prof. K. Betzler, Dr. M. Gorkounov62


Dipl.-Phys. Manfred MüllerImprovement of lithium niobate crystals for frequency conversionLithium niobate (LiNbO 3 ) is the material of choice for many <strong>in</strong>tegrated-optical devices.Due to large nonl<strong>in</strong>ear-optical effects it is also now widely used for second-harmonicgeneration(SHG), for optical parametrical oscillation (OPO), as well as for optical parametricalamplification (OPA). This has been made possible through quasi phasematch<strong>in</strong>g (QPM) with periodically-poled lithium niobate (PPLN), which allows frequencyconversion over a wide range of light wavelengths and enables utilization of the nonl<strong>in</strong>earoptical coefficient d 33 , which is especially high <strong>in</strong> LiNbO 3 [1].However, most nonl<strong>in</strong>ear-optical devices us<strong>in</strong>g LiNbO 3 crystals operate <strong>in</strong> the near tomiddle IR region. Extension of this technology to smaller wavelengths is impeded by theemergence of photo-<strong>in</strong>duced refractive <strong>in</strong>dex and absorption changes (so called “opticaldamage”) and the difficulty to produce PPLN with an adequately short period length.Periodically-poled components were be fabricated with period lengths down to 4 µmus<strong>in</strong>g special lithographic techniques [2]. An alternative method for fabrication of doma<strong>in</strong>swith shorter period lengths was presented for lithium tantalate crystals (LiTaO 3 ).There the direct transfer of a light pattern <strong>in</strong>to a doma<strong>in</strong> structure is demonstrated. Afterreversal of the doma<strong>in</strong>s the coercive field is transiently reduced. In LiTaO 3 it was shownthat illum<strong>in</strong>ation can accelerate the recovery of the coercive field to the orig<strong>in</strong>al value.Thus illum<strong>in</strong>ation with a light pattern causes for some time a spatially modulated coercivefield, and application of a homogeneous external electrical field of proper strengthdur<strong>in</strong>g this time yields the desired doma<strong>in</strong> pattern [3,4]. However, no such effects havebeen reported for LiNbO 3 , although LiNbO 3 and LiTaO 3 are isomorphic.With<strong>in</strong> the scope of this project Dipl.-Phys. Manfred Müller has <strong>in</strong>vestigated methods toavoid optical damage as well as the pol<strong>in</strong>g characteristics of LiNbO 3 crystals while illum<strong>in</strong>at<strong>in</strong>gthem with <strong>in</strong>tense laser light over a wide spectral range. Most of the resultsthat are obta<strong>in</strong>ed so far are related to the properties and physics beh<strong>in</strong>d "doma<strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g"of LiNbO 3 . The goal is to f<strong>in</strong>d a way to control optically the result<strong>in</strong>g doma<strong>in</strong>structure and hence the nonl<strong>in</strong>ear optical properties. Furthermore, s<strong>in</strong>ce the doma<strong>in</strong>structure of LiNbO 3 is not directly visible, new techniques were developed that enableimproved monitor<strong>in</strong>g of the pol<strong>in</strong>g process.Experimental setup: Figure 1 shows the standard setup used <strong>in</strong> the experiments. Theelectric field is applied to the crystal with transparent liquid electrodes (water), whichallow the necessary illum<strong>in</strong>ation. Dur<strong>in</strong>g the experiments an external electric field is cont<strong>in</strong>uously<strong>in</strong>creased with a rate of 30 V/(s mm) up to values well above the coercive field(about 20 kV/mm). The displacement current due to the change of the spontaneous polarizationis used to monitor the pol<strong>in</strong>g process <strong>in</strong> time. To get spatially-resolved <strong>in</strong>formationthe holder is <strong>in</strong>tegrated <strong>in</strong>to a Mach-Zehnder <strong>in</strong>terferometer. In LiNbO 3 the63


HVLiquidelectrodesDMPump lightLiNbO crystal3c-axisBSorientation of a ferroelectric doma<strong>in</strong>determ<strong>in</strong>es the sign of the electroopticcoefficient and therefore, if ahomogeneous electric field is applied,the sign of the electro-optic refractive<strong>in</strong>dex change. This leads to a noticeablediscont<strong>in</strong>uity <strong>in</strong> the <strong>in</strong>terferencepattern.Test lightGuardr<strong>in</strong>gBSFused silica slabsDMO r<strong>in</strong>gFig. 1. Schematic representation of the pol<strong>in</strong>g setup(BS: beam splitter, DM: dielectric mirror)All LiNbO 3 crystals described <strong>in</strong> thisreport are congruently melt<strong>in</strong>g, undoped,z-cuts with a thickness of 0.5mm (supplier: Crystal TechnologyInc.).Influence of illum<strong>in</strong>ation on the pol<strong>in</strong>g characteristics of lithium niobate crystals: LiNbO 3shows like LiTaO 3 a transient reduction of the coercive field immediately after a pol<strong>in</strong>gevent. However, full recovery of the coercive field takes only 20-30 s and is thus muchfaster than <strong>in</strong> LiTaO 3 . It was found that unlike <strong>in</strong> LiTaO 3 the relaxation of the coercivefield <strong>in</strong> LiNbO 3 is <strong>in</strong>dependent of illum<strong>in</strong>ation (except for light-<strong>in</strong>duced thermal effects).20.0Coercive field [kV/mm]19.519.018.518.017.517.0λ = 351 nm λ = 351 nmI = 3 W/ cm 2 I = 6 W/cm 2Inside laser beamOutside laser beamλ = 334 nmI = 3 W/cm 20 10 20 30 40 50 60Number of pol<strong>in</strong>g cycleFig. 2. Coercive field versus number of pol<strong>in</strong>g cycles for the forward pol<strong>in</strong>g direction measured <strong>in</strong>terferometrically<strong>in</strong>side (circles) and outside (triangles) the illum<strong>in</strong>ated area. For the time periods <strong>in</strong>dicatedby the gray bars the sample is illum<strong>in</strong>ated by a laser beam with wavelength λ and <strong>in</strong>tensity I.There is always a 6 m<strong>in</strong> wait<strong>in</strong>g time between two pol<strong>in</strong>g processes to avoid measurement of transienteffects. Illum<strong>in</strong>ation at the wavelength λ = 351 nm changes the coercive field only temporarilybecause the crystal temperature <strong>in</strong>creases. Illum<strong>in</strong>ation at the wavelength λ = 334 nm, however,yields a strong change of the coercive field, which is significant even after one hour without illum<strong>in</strong>ation.Miss<strong>in</strong>g data po<strong>in</strong>ts <strong>in</strong>dicate that the <strong>in</strong>terferometer couldn’t clearly resolve the phase jump dur<strong>in</strong>gpol<strong>in</strong>g.64


Fig. 3. Photo-<strong>in</strong>duced doma<strong>in</strong> pattern illum<strong>in</strong>ated with twoapproximately 40 µm wide stripes of UV-light as <strong>in</strong>dicatedon the right side.However, it was also found that if the crystal is not illum<strong>in</strong>ated between but dur<strong>in</strong>g thepol<strong>in</strong>g events with light of the wavelength 334 nm or shorter a considerable reductionof the coercive field occurs (see Fig. 2). Even after the laser illum<strong>in</strong>ation is stopped, asignificant quasi-permanent decreaseof the coercive field ofabout 800 V/mm persists andrema<strong>in</strong>s for hours without appreciablechange. Therefore it canbe ruled out that the observedchange of the coercive field is ofthermal orig<strong>in</strong>. Furthermore, thiseffect is present only if illum<strong>in</strong>ationtakes place dur<strong>in</strong>g the pol<strong>in</strong>gprocess. Illum<strong>in</strong>ation before orafter the pol<strong>in</strong>g has no impact onthe coercive field. The orig<strong>in</strong> ofthe effect is still under <strong>in</strong>vestigation.Possibly the <strong>in</strong>tense UV illum<strong>in</strong>ation<strong>in</strong>duces defects <strong>in</strong> thecrystal that assist doma<strong>in</strong> nucleationor otherwise lower the coercivefield.The observed effect is used torealize light-controlled doma<strong>in</strong> pattern<strong>in</strong>g <strong>in</strong> lithium niobate. A crystal is illum<strong>in</strong>atedthrough a b<strong>in</strong>ary grat<strong>in</strong>g for four pol<strong>in</strong>g cycles. The laser is turned off, and a follow<strong>in</strong>gforward pol<strong>in</strong>g process is aborted immediately after the doma<strong>in</strong>s start to switch. Etch<strong>in</strong>gof the crystal with hydrofluoric acid reveals the presence of a doma<strong>in</strong> pattern,which is approximately a replica of the illum<strong>in</strong>ation pattern. Figure 3 shows a magnifiedphotograph of the crystal: it can clearly be seen that ferroelectric doma<strong>in</strong>s havebegun grow<strong>in</strong>g <strong>in</strong> the illum<strong>in</strong>ated areas where the coercive field is lowest.By optimization of the effect one should be able to generate doma<strong>in</strong> patterns on themicrometer scale utiliz<strong>in</strong>g an <strong>in</strong>terferometrical light pattern and homogeneous electricfields. In do<strong>in</strong>g so it is especially important to time the abortion of the f<strong>in</strong>al pol<strong>in</strong>gprocess precisely, so that the doma<strong>in</strong>s <strong>in</strong> the illum<strong>in</strong>ated regions had time to enoughto coalesce but that no extension <strong>in</strong>to the unillum<strong>in</strong>ated parts of the crystal occurred.In order to do so, a monitor<strong>in</strong>g technique able to resolve even such small doma<strong>in</strong>sizes must to be developed.Monitor<strong>in</strong>g of the pol<strong>in</strong>g process through light diffraction at doma<strong>in</strong> boundaries: Tomonitor the pol<strong>in</strong>g process, the crystal is placed <strong>in</strong>to the holder and is illum<strong>in</strong>atedalong the z-axis with a plane wave of light from an Ar + laser. The generated light patternis observed on a screen that is positioned beh<strong>in</strong>d the crystal holder. Figures 4 a-h show for ultraviolet light (wavelength λ = 351.1 nm) the light pattern that is observeddur<strong>in</strong>g the various stages of the pol<strong>in</strong>g process. Well below the coercive field,only diffuse scatter<strong>in</strong>g is present. When the pol<strong>in</strong>g starts (i.e. a displacement currentarises) a dist<strong>in</strong>ct r<strong>in</strong>g structure at an 8° open<strong>in</strong>g angle appears. With <strong>in</strong>creas<strong>in</strong>g voltagethe r<strong>in</strong>g turns <strong>in</strong>to 6 dots, which transform <strong>in</strong>to a star with a 6-fold symmetry. Insidethe star a f<strong>in</strong>e structure is dist<strong>in</strong>ctly visible. The star disappears abruptly with65


completion of the pol<strong>in</strong>g process, and only the simple transmitted plane wave rema<strong>in</strong>spresent.Fig. 4. Light pattern observed on a screen beh<strong>in</strong>d the crystal dur<strong>in</strong>g various stages of the pol<strong>in</strong>g processwhile the applied field was <strong>in</strong>creased at a rate of 30 V/(s mm). The pictures were taken at a)E = 19.08 kV/mm; b) E = 19.30 kV/mm; c) E = 19.38 kV/mm; d) E = 19.53 kV/mm; e) E = 19.57 kV/mm; f) E = 19.67 kV/ mm; g) E = 19.69 kV/ mm; h) E = 19.72 kV/mm, respectively.If the pol<strong>in</strong>g process is aborted and the voltage turned off while the star is visible, thedoma<strong>in</strong> pattern is frozen. Therefore, it is possible to study the result<strong>in</strong>g star patternthat arises from the same doma<strong>in</strong> pattern for different light wavelengths, different <strong>in</strong>cidentangles of the light and different external electrical fields. For example Figures5 b and c show the wavelength dependence of the star for the same external electricfield, while Fig. 5 a shows a part of the correspond<strong>in</strong>g doma<strong>in</strong> pattern. In accordancewith the crystal symmetry of LiNbO 3 , doma<strong>in</strong> boundaries appear along six preferentialdirections with multiples of 60° between them.To determ<strong>in</strong>e whether diffraction at doma<strong>in</strong> boundaries is responsible for this effect, as<strong>in</strong>gle doma<strong>in</strong> wall of macroscopic length is illum<strong>in</strong>ated through a p<strong>in</strong> hole. Figure 6shows the light pattern that is observed on a screen beh<strong>in</strong>d the sample. Diffraction bythe wall is clearly present with a maximum diffraction angle similar the one observedfor the star. However, a surpris<strong>in</strong>g feature is that the direction of the diffracted beamsdepends on the sign of the applied field.Fig. 5. a) Frozen doma<strong>in</strong> pattern revealed after etch<strong>in</strong>g the crystal <strong>in</strong> 48 % hydrofluoric acid for 90 m<strong>in</strong>b) The correspond<strong>in</strong>g light pattern for an external electric field of -14 kV/mm seen at a wavelength of351.1 nm and c) seen at a wavelength of 501.7 nm66


0,14s<strong>in</strong>( α )0,120,100,08350 400 450 500λ [nm]Fig. 6 Light pattern created by illum<strong>in</strong>ation of a s<strong>in</strong>gledoma<strong>in</strong> boundary through a circular aperture for variouselectrical fields E a) E = -12 kV/mm; b) E = -8 kV/mm;c) E = -4 kV/mm; d) E = 0 kV/mm; e) E = 4 kV/mm;f) E = 8 kV/mm; g) E = 12 kV/mm.Fig. 7. S<strong>in</strong>e of the open<strong>in</strong>g angle α of thestar versus wavelength λ. The l<strong>in</strong>e serves asa guide for the eye.This diffraction effect, together with the hexagonal symmetry of the doma<strong>in</strong> structure,can qualitatively expla<strong>in</strong> the emergence of the star pattern dur<strong>in</strong>g the pol<strong>in</strong>g process,although the physical reason beh<strong>in</strong>d the diffraction at the doma<strong>in</strong> boundaries is stillunclear. We suppose that the doma<strong>in</strong> walls have a certa<strong>in</strong> thickness and that thephase jump of the transmitted wave is cont<strong>in</strong>uous and not abrupt. Therefore shortwavelengthlight, where the phase jump is larger, should be diffracted with a largerangle, which agrees with the experimental observation (see Fig. 7).However, it is clear that the star gives us <strong>in</strong>formation about the directions of the doma<strong>in</strong>boundaries, irrespective of the doma<strong>in</strong> size. This can be a very valuable tool formonitor<strong>in</strong>g of the light-controlled pol<strong>in</strong>g process expla<strong>in</strong>ed above. — Based on theachievements we are pretty optimistic that the PhD thesis of Dipl.-Phys. ManfredMüller will help to realize improved optical parametric oscillators.1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phased-matchedsecond harmonic generation: tun<strong>in</strong>g and tolerances", IEEE J. Quant. Electron. 28,2631-2654 (1992)2. R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, "Backswitch pol<strong>in</strong>g <strong>in</strong> lithiumniobate for high-fidelity doma<strong>in</strong> pattern<strong>in</strong>g and efficient blue light generation",Appl. Phys. Lett. 75, 1673-1675 (1999)3. S. Chao and C. Hung, "Large photo<strong>in</strong>duced ferroelectric coercive field <strong>in</strong>creaseand photodef<strong>in</strong>ed doma<strong>in</strong> pattern <strong>in</strong> lithium-tantalate crystal", Appl. Phys. Lett. 69,3803-3805 (1996)4. P. Brown, G. Ross, R. Eason, and A. Pogosyan, "Control of doma<strong>in</strong> structures <strong>in</strong>lithium tantalate us<strong>in</strong>g <strong>in</strong>terferometric optical pattern<strong>in</strong>g", Opt. Comm. 163, 310-316 (1999)67


Publications1. I. Nee, M. Müller, K. Buse, E. Krätzig, "Role of iron <strong>in</strong> lithium-niobate crystals forthe dark-storage time of holograms", J. Appl. Phys. 88, 4282-4286 (2000)2. I. Nee, M. Müller, and K. Buse, "Development of thermally fixed photorefractiveholograms without light", Appl. Phys. B 72, 195-200 (2001)3. M. Wengler, M. Müller, E. Soergel, and K. Buse, "Dynamics of ferroelectric doma<strong>in</strong>reversal <strong>in</strong> lithium niobate crystals", Appl. Phys. B, accepted4. M. Müller, E. Soergel, M. Wengler, and K. Buse, "Star-shaped light diffractionfrom ferroelectric boundaries", submitted5. M. Müller, E. Soergel, M. Falk, J. Hukriede, and K. Buse, "Reduction of opticaldamage <strong>in</strong> lithium niobate crystals by hydrogen load<strong>in</strong>g", <strong>in</strong> preparationAttended lectures, conference visits, research staysConferences:1. 10 th European Conference on Integrated <strong>Optics</strong> (ECIO), Paderborn04.-06.04.20012. 4 th Annual Meet<strong>in</strong>g of the COST Action P2, Budapest, 16.-19.05.20013. Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Osnabrück,04.-08.03.20024. Conference on Lasers and Electro-<strong>Optics</strong> '03, Baltimore, 01.-06.06.20035. 9 th International Conference on Photorefractive Effects, Materials, and Devices,Nice, 17.-21.06.2003Lectures:• Atomphysikalisches Kolloquium (4 courses)• Physikalisches Kolloquium (4 courses)• Sem<strong>in</strong>ar über angewandte Optik (4 courses)Research stay (scheduled):• Stay <strong>in</strong> the group of Prof. Dr. R. W. Eason, University of Southampton, Optoelectronicsresearch laboratory, Light-<strong>in</strong>duced pattern<strong>in</strong>g of ferroelectric doma<strong>in</strong>s, fall2003 for 4 weeks.Duration of the dissertation: Start 01.10.2000, term<strong>in</strong>ation expected 31.03.2004Period of support <strong>in</strong> the College: 01.01.2001-31.12.2003Supervisor: Prof. Dr. Karsten Buse68


Dr. Axel Pramann<strong>Topic</strong>: Frequency conversion,ResultsNonl<strong>in</strong>ear optical processes <strong>in</strong> atomic and molecular clustersThe generation of l<strong>in</strong>e-tunable, coherent light of high resolution <strong>in</strong> the vacuum ultraviolet(VUV) and extreme ultraviolet (XUV) spectral range (>> 10 eV) <strong>in</strong> the laboratoryis an experimental task of high importance with respect to both applications such ashigh resolution spectroscopy <strong>in</strong> the vacuum ultraviolet and related subjects. Theavailability of a compact light source with such properties is of <strong>in</strong>terest to fields suchas molecular spectroscopy, photochemistry, photoionization, and state selectivereaction dynamics. The lowest electronically excited states of small molecules (e. g.N 2 , H 2 O …) are found below 185 nm (7 – 10 eV). Therefore, it is important to haveaccess to these states by one photon excitations, which are <strong>in</strong>duced by VUVradiation. The current project - and its results - are divided <strong>in</strong>to several parts:A set up for the generation of high energetic VUV- and XUV-light was developed.The general experimental procedure makes use of nonl<strong>in</strong>ear effects of frequency tripl<strong>in</strong>gof tunable laser radiation <strong>in</strong> the ultraviolet regime, <strong>in</strong>cident on the gaseous tripl<strong>in</strong>gmedium. In the follow<strong>in</strong>g step, the operation conditions and parameters of thefrequency tripl<strong>in</strong>g were tested and characterized us<strong>in</strong>g well-known systems such asN 2 and Kr.Moreover, these gases were also used to <strong>in</strong>vestigate so far unknown regions of frequencytripled radiation <strong>in</strong> the VUV regime.The experiment consists of at least three ma<strong>in</strong> components (Fig. 1). A pulsed dyelaser system (operated at 10 Hz repetition rate) is used for the generation of a fundamentalfrequency, which is tripled <strong>in</strong> a jet. The dye laser is pumped by an excimerlaser (308 nm, 300 mJ/pulse). The fundamental of the laser radiation was typically520-560 nm (20 – 25 mJ/pulse), which is subsequently frequency doubled by a BBO-1 crystal. With this standard method, laser light <strong>in</strong> the wavelength range of 260 – 280nm (3 – 5 mJ/pulse) is produced, which is used for the generation of the third harmoniclight <strong>in</strong> the VUV. The resolution of this fundamental light is better than 0.09cm -1 . The frequency doubled light is crossed by a pulsed molecular beam of the tripl<strong>in</strong>ggas <strong>in</strong> the center of a vacuum chamber.It is important to focus the laser light as near as possible to the orifice of a pulsedvalve (General Valve). Frequency tripl<strong>in</strong>g can only be achieved when the phasematch<strong>in</strong>g condition is fulfilled. The frequency tripled light is propagat<strong>in</strong>g coll<strong>in</strong>ear tothe <strong>in</strong>itial direction of the ultraviolet laser light. Formation of a supersonic jet is accomplishedby expand<strong>in</strong>g the gas at a high stagnation pressure p 0 (10 bar) through apulsed nozzle with a small orifice <strong>in</strong>to a vacuum chamber. In the case of moleculargases, strong cool<strong>in</strong>g of the <strong>in</strong>ternal degrees of freedom occurs, which leads to clusterformation. Subsequently, the frequency-tripled light (λ < 100 nm) enters a secondvacuum chamber, which is filled with a gas with high ionization potential (e. g. acetone:IP = 9.7 eV). It is important to note that the detection gas exhibits no multiplephoton processes, so that exclusively one photon processes lead to cation formation.74


Fig. 1. Experimental setupAs a result, one can easily dist<strong>in</strong>guish between the fundamental and THG light. Theionized molecules are detected with an ion detector located <strong>in</strong> a third vacuum chamber.With this set up, time-of-flight (ToF) spectra of the ion bunches are measured.The <strong>in</strong>tegral of the respective ion signal is proportional to the <strong>in</strong>tensity of the generatedfrequency tripled light. The power L 3 of the frequency tripled light is given by23π22 3 2L3 = N [ χ2 2 4 3(λ3)]L1Φ(1)ε 0cλ1Because of the quadratic relation between L 3 and the particle density N and the cubicrelation between L 3 and the power of the <strong>in</strong>cident light L 1 , it is evident that for THGthe key parameters are both a high laser power of the frequency doubled light and ahigh density of the tripl<strong>in</strong>g medium.The experimental setup is tested and characterized us<strong>in</strong>g molecular nitrogen (N 2 ) asthe tripl<strong>in</strong>g medium, because it is known that N 2 has a high tripl<strong>in</strong>g conversion efficiency<strong>in</strong> the energy range > 10 eV. 1 With this reference gas, the wavelength dependenceof THG is monitored <strong>in</strong> the range λ < 93 nm. In general, with the new setup75


the same two- and three-photon resonance-enhanced l<strong>in</strong>es (highly populated rotationall<strong>in</strong>es) similar to previous work of Lee and co-workers 1 are observed. For thecharacterization of the new mach<strong>in</strong>e it is useful to select an <strong>in</strong>tense rotational l<strong>in</strong>e ofhigh <strong>in</strong>tensity (Fig. 2).Fig. 2. Time-of-flight spectrum of C 3 H 6 O + generated at λ THG = 90.26 nm us<strong>in</strong>g N 2 asthe tripl<strong>in</strong>g medium (p 0 = 9.5 bar; P laser = 2.6 mJ/pulse).Here, the l<strong>in</strong>e at λ = 90.26 nm is used for characterization and optimization, becausethis l<strong>in</strong>e has been identified with a similar setup us<strong>in</strong>g a VUV-monochromator forwavelength detection <strong>in</strong> a previous work. 2 After the generation of THG light at thiswavelength, the operat<strong>in</strong>g conditions of the mach<strong>in</strong>e are optimized. First of all, thelaser power dependence of the <strong>in</strong>tensity of the frequency tripled light is measured.Usually, an optimum conversion efficiency of 10 -6 between the UV-laser light and thefrequency tripled light is achieved. For N 2 , THG light is generated with laser powersbetween 2.4 and 3.5 mJ/pulse. As stated above (eq. 1), the THG <strong>in</strong>tensity is proportionalto the cube of the UV- laser pulse. Another important parameter is the stagnationpressure dependence of the THG light <strong>in</strong>tensity. The phase match<strong>in</strong>g conditionfor THG is strongly dependent on the stagnation pressure p 0 of the gas prior to expansion.The stagnation pressure of N 2 is varied between 0 and 10 bar. THG signalsare detected <strong>in</strong> the range between p 0 = 4 and 10 bar. Maxima <strong>in</strong> THG are observedat p 0 = 7 – 8 and 9 – 10 bar correspond<strong>in</strong>g to a high particle density at the po<strong>in</strong>t offrequency tripl<strong>in</strong>g. Because of the pulsed character of the experiment extensive caremust be taken not only for the geometrical adjustment of the laser and the molecularbeam. Additionally, a proper tim<strong>in</strong>g between the open<strong>in</strong>g of a pulsed valve and thelaser pulse is of importance to fulfill the phase match<strong>in</strong>g condition (Fig. 3).The highest signal <strong>in</strong>tensity is found for a delay time of 500 – 600 µs between thenozzle open<strong>in</strong>g and the laser shot.76


Fig. 3. THG signal <strong>in</strong>tensity as a function of the time delay between the open<strong>in</strong>g ofthe valve and the fir<strong>in</strong>g of the UV-laser (tripl<strong>in</strong>g gas: N 2 (p 0 = 9.5 bar, λ THG = 90.26nm).Fig. 4. ToF spectrum of C 3 H 6 O + measured at the Kr resonance l<strong>in</strong>e at 92.30 nm(P laser = 3.5 mJ/pulse).After the characterization of the experimental setup frequency tripl<strong>in</strong>g of gases at unknownwavelength ranges was <strong>in</strong>vestigated. For this purpose, a jet of krypton is77


used. In the work of Lee and co-workers 1 l<strong>in</strong>e tunable THG of Kr has been measuredfor the first time down to 90.4 nm. Some 4p – ns and 4p – nd Rydberg series <strong>in</strong> thatstudy are reproduced with our setup. As an example, we optimized the operat<strong>in</strong>gconditions for Kr jets (as described for N 2 ) at the prom<strong>in</strong>ent l<strong>in</strong>e at 92.3 nm (Fig. 4).However, compared to the THG signals of N 2, the <strong>in</strong>tensities of the Kr signals areabout one order of magnitude weaker. For beams of Kr, tunable THG is observed forthe first time <strong>in</strong> the VUV wavelength range down to 86 nm (14.4 eV). As an example,Fig. 5 shows a time-of-flight spectrum of C 3 H 6 O + molecules obta<strong>in</strong>ed at a tripl<strong>in</strong>gwavelength of 90.3 nm us<strong>in</strong>g a Kr beam.Kr90.3 nmFig. 5. ToF spectrum of C 3 H 6 O + obta<strong>in</strong>ed at a tripl<strong>in</strong>g wavelength of 90.3 nm us<strong>in</strong>g akrypton beam.The <strong>in</strong>tensities and structures of the TOF signals <strong>in</strong> the wavelength range between90.3 and 89.1 nm exhibit all very similar structures and almost the same <strong>in</strong>tensitieswith<strong>in</strong> the experimental error. Thus, a cont<strong>in</strong>uum of the THG signals <strong>in</strong> this spectralregion without prom<strong>in</strong>ent l<strong>in</strong>es is observed. This behavior is <strong>in</strong> contrast to the sharpRydberg states <strong>in</strong> the wavelength range above 90.4 eV.This spectral pattern without detectable resonance structures is similar to that of xenon<strong>in</strong> the wavelength range between 90 and 92 nm.The second reason for us<strong>in</strong>g beams of Kr is the known ability of Kr to form clustersafter a supersonic expansion apply<strong>in</strong>g proper expansion parameters. This representsanother area of <strong>in</strong>terest <strong>in</strong> the project, where size-dependent third-harmonic generation<strong>in</strong> clusters will be <strong>in</strong>vestigated. Currently, experiments on cluster production canbe performed with the new setup, so that new regions of frequency tripl<strong>in</strong>g are expectedto occur.78


References:1 R. H. Page, R. L. Lark<strong>in</strong>, A. H. Kung, Y. R. Shen, and Y. T. Lee, Rev. Sci. Instrum.58 (1987) 1616.2 J. Plenge, diploma thesis, University of Osnabrück, 1999.Attended lectures, conference visits, research stays- Sem<strong>in</strong>ars of the graduate college <strong>695</strong>- Workshops of the graduate college <strong>695</strong> dur<strong>in</strong>g 2002Duration of the dissertation: PostdocPeriod of support <strong>in</strong> the college: 15.11.2001 - 31.01.2003Supervisors: Prof. Dr. E. Rühl, Dr. R. FleschDr. Pramann left the Graduate College 31.01.03 to start an activity at the Physikalisch-TechnischeBundesanstalt (PTB), Braunschweig.79


Dipl.-Math. Dipl.-Phys. Florian Rahe<strong>Topic</strong>: Space-charge waves <strong>in</strong> photorefractive crystalsResultsSpace-charge waves (SCW) are the eigenmodes of charge oscillation <strong>in</strong> a system oftraps and free carriers <strong>in</strong> semi-<strong>in</strong>sulat<strong>in</strong>g solids, when carriers move <strong>in</strong> an electricfield. They were <strong>in</strong>itially named trap recharg<strong>in</strong>g waves, because their nature is associatedwith trap charg<strong>in</strong>g and discharg<strong>in</strong>g by free carriers which are excited thermallyor by illum<strong>in</strong>ation. Their propagation is due to the <strong>in</strong>fluence of an applied electric field.These waves have very specific properties. For <strong>in</strong>stance they are strongly attenuated,because their free path length is typically limited by the carrier drift length.Moreover, the propagation direction of the SCW is determ<strong>in</strong>ed by the direction of theapplied field. Due to the fact that their wave vector is <strong>in</strong>versely proportional to theirfrequency, phase and group velocities are oppositely directed.Space-charge waves are of great <strong>in</strong>terest <strong>in</strong> photorefractive crystals, especially forthe sillenite family Bi 12 MO 20 (where M = Ge, Ti or Si), because the dynamic propertiesof these crystals <strong>in</strong> the presence of an external electric field are very often determ<strong>in</strong>edby these waves. This especially applies for the process of holographic record<strong>in</strong>g,hologram relaxation and oscillations of holographic grat<strong>in</strong>gs. For example,the SCW excitation can provide an <strong>in</strong>crease of the sensitivity of devices, which arebased on the pr<strong>in</strong>ciples of dynamic holography. SCW can also play an important role<strong>in</strong> further semi-<strong>in</strong>sulat<strong>in</strong>g semiconductors, i.e., GaAs, InP:Fe, CdTe:V and other materials.It can be supposed that some transient <strong>phenomena</strong> <strong>in</strong> photoreceivers are associatedwith SCW as well.There are several methods of SCW excitation, electrical or optical. The electricalmethods encounter serious experimental difficulties <strong>in</strong> the selective excitation ofSCW with a desired set of parameters. Much more flexible is the optical excitation ofSCW by illum<strong>in</strong>at<strong>in</strong>g the crystal with a periodic <strong>in</strong>terference pattern. Optical methodsare pulse detection, a mov<strong>in</strong>g <strong>in</strong>terference pattern or an oscillat<strong>in</strong>g <strong>in</strong>terference pattern.A careful selection of the experimental method for the <strong>in</strong>vestigation of SCW isimportant, because the obta<strong>in</strong>ed <strong>in</strong>formation depends critically on the technique usedfor SCW excitation and detection.I <strong>in</strong>vestigated SCW <strong>in</strong> photorefractive crystals of the sillenite family (namelyB 12 GeO 20 , B 12 TiO 20 and B 12 SiO 20 ). An optical method for SCW excitation was used.The crystals were illum<strong>in</strong>ated with an <strong>in</strong>terference pattern, oscillat<strong>in</strong>g near a mid position.If the grat<strong>in</strong>g spac<strong>in</strong>g and the oscillation frequency of the <strong>in</strong>terference patternco<strong>in</strong>cide with the spatial period and temporal eigenfrequency of a space chargewave, resonance excitation occurs. The use of electro-optic crystals makes it easy todetect the SCW, because their space charge field can be detected via diffraction of atest laser.In the case of optical excitation, two ma<strong>in</strong> regimes can be considered. The first one isthe l<strong>in</strong>ear regime, when only effects proportional to the first power of the contrast ratiom of the <strong>in</strong>terference pattern are taken <strong>in</strong>to account. The second is the nonl<strong>in</strong>ear regime,<strong>in</strong> which effects proportional to m 2 (or a higher power of m) become important.This situation can be compared with effects <strong>in</strong> nonl<strong>in</strong>ear optics. In the case of effects80


proportional to m 2 , one can expect to observe <strong>phenomena</strong> similar to those knownfrom nonl<strong>in</strong>ear optics, like second-harmonic generation and rectification.The ma<strong>in</strong> subject of my <strong>in</strong>vestigations is the nonl<strong>in</strong>ear regime. The illum<strong>in</strong>ation of thesample with an oscillat<strong>in</strong>g <strong>in</strong>terference pattern results <strong>in</strong> a simultaneous excitation ofSCW and the formation of a static space-charge grat<strong>in</strong>g, whose spac<strong>in</strong>g is equal tothe spatial period of SCW. The <strong>in</strong>teraction of the static space-charge grat<strong>in</strong>g and theSCW lead to new nonl<strong>in</strong>ear effects, which don’t exist <strong>in</strong> nonl<strong>in</strong>ear optics. They arespatial doubl<strong>in</strong>g, where doubl<strong>in</strong>g of the SCW wave vector occurs without frequencydoubl<strong>in</strong>g, and spatial rectification, where a spatially homogeneous electric field oscillat<strong>in</strong>gwith frequency of the SCW arises. Dur<strong>in</strong>g my <strong>in</strong>vestigations I detected the effectsof second harmonic generation, where doubl<strong>in</strong>g of the SCW wave vector anddoubl<strong>in</strong>g of the SCW frequency occur, and rectification.Second harmonic generation was observed with the help of a test laser. The laserwas adjusted to read out the space charge grat<strong>in</strong>g with the doubled wave vector viathe electro optic effect. The diffracted beam was detected by a photodiode connectedto a lock <strong>in</strong> amplifier. The signal P 2f was detected at the second temporal harmonic toobserve second harmonic generation. In this case theory predicts three resonancepeaks, which arise due to different forced excitations of SCW. All three peaks weredetected (see figure 1) and their relative positions fit well to the theory. They also fulfilthe dispersion relation of SCW.P 2f [arb. units]3.53.02.52.01.51.00.50.010 1 10 2 10 3f [Hz]Figure 1. Frequency dependenceof the output signal P 2fat 2f for different appliedfields E 0 . For Bi 12 GeO 20 , m =0.43, W 0 = 130 mW/cm 2 , Θ =1 rad, Λ = 13 µm: ■: E 0 = 10kV/cm, ●: E 0 = 8 kV/cm, ▲: E 0= 6kV/cm. The l<strong>in</strong>es areguides to the eye. Thechange of the resonance frequenciesfollows the dispersionrelation for SCW.For overall rectification the theory predicts a change <strong>in</strong> the current <strong>in</strong> the external circuit.This also implies a change of the static homogeneous field <strong>in</strong>side the crystal.Consequently, there are two possibilities to measure the rectification effect. First bymeasur<strong>in</strong>g the DC current <strong>in</strong> the external circuit. This was realized by measur<strong>in</strong>g theDC voltage over a load<strong>in</strong>g resistance. A strong effect could be observed. A decreaseof the current up to 25% was observed. In figure 2 one can see the effect for differentoscillation amplitudes Θ of the <strong>in</strong>terference pattern. The resonance frequencies fulfilthe dispersion relation of SCW. Aga<strong>in</strong> theory fits well with the measured data (figure3). To detect the change of the <strong>in</strong>ternal field of the crystal I used the electro-optic effect.The change of the <strong>in</strong>ternal field results <strong>in</strong> a change of one of the refractive <strong>in</strong>dices.It results <strong>in</strong> a change of the polarisation of a test beam propagat<strong>in</strong>g through thecrystal. This can easily be detected with the help of a polarizer. The change of the81


<strong>in</strong>ternal field can be detected and the resonance frequencies co<strong>in</strong>cide with the resonancefrequencies of the current measurements.I 0[arb. units]5.85.65.45.25.04.84.610 1 10 2 10 3f [Hz]Figure 2: DC current I 0 as afunction of the phasemodulation frequency f fordifferent oscillation amplitudesΘ: For Bi 12 GeO 20 , E 0= 8 kV/cm, Λ = 13.1 µm, m= 0.43 and W 0 = 130mW/cm 2 ; -■-: Θ = 0.2 π, -●-: Θ = 0.2 π, -▼-: Θ = 0.6 π,-♦-: Θ = 0.8 π, -○-: Θ = 1.0π . The l<strong>in</strong>es are guides tothe eyes.5.85.6I0[arb. units]5.45.25.04.84.610 1 10 2 10 3f [Hz]Figure 3: Comparison betweentheory (l<strong>in</strong>es) andexperiment (symbols) foroverall rectification <strong>in</strong>Bi 12 GeO 20 . I 0 is the dc current,f is the phase modulationfrequency: Θ = 0.2 π(solid l<strong>in</strong>e, ●) Θ = 0.9 π(dashed l<strong>in</strong>e, ◄).In further experiments all nonl<strong>in</strong>ear <strong>in</strong>teractions have been <strong>in</strong>vestigated simultaneously.It turned out that not all resonance frequencies co<strong>in</strong>cide, especially for highoscillation amplitudes Θ. The resonance frequencies for the nonl<strong>in</strong>ear effects areshifted to lower frequencies. This seems to be <strong>in</strong> contradiction to the theory, howeverthe theory is only valid for small Θ. For high amplitudes terms of higher orders of Θhave to be taken <strong>in</strong>to account, which results <strong>in</strong> a shift of the resonances to lower frequencies,especially <strong>in</strong> the case of nonl<strong>in</strong>ear effects.With these measurements, especially by measur<strong>in</strong>g the rectification effect, one candeterm<strong>in</strong>e crystal parameters like the product µτ of the charge carrier mobility andthe charge carrier lifetime or the “real” <strong>in</strong>ternal field, tak<strong>in</strong>g losses at the electrodes<strong>in</strong>to account.The experiments are not conf<strong>in</strong>ed to photorefractive crystals. For measur<strong>in</strong>g the rectificationeffect one doesn’t need the electro-optic effect. Therefore, this is a simple82


method for the characterisation of semi-<strong>in</strong>sulat<strong>in</strong>g semiconductors. It is planned to<strong>in</strong>vestigate further semiconductors. Promis<strong>in</strong>g are also semi-<strong>in</strong>sulat<strong>in</strong>g quantum-dotsemiconductors, because some <strong>in</strong>terest<strong>in</strong>g results can be expected.Publications• M. P. Petrov, V. V. Bryks<strong>in</strong>, H. Vogt, F. Rahe, E. Krätzig, Optically InducedNonl<strong>in</strong>ear Wave Processes <strong>in</strong> Photorefractive Crystals, Technical Digest IQEC2002, 375 (2002)• S. Schwalenberg, F. Rahe, E. Krätzig, Record<strong>in</strong>g Mechanisms of AnisotropicHolographic Scatter<strong>in</strong>g Cones <strong>in</strong> Photorefractive Crystals, <strong>Optics</strong> Commun. 209,467 (2002)• M. P. Petrov, V. V. Bryks<strong>in</strong>, H. Vogt, F. Rahe, E. Krätzig, Overall Rectification andSecond Harmonic Generation of Space Charge Waves, Phys. Rev. B 66, 085107(2002)• M. P. Petrov, V. V. Bryks<strong>in</strong>, F. Rahe, C. E. Rüter, E. Krätzig, Space Charge RectificationEffects <strong>in</strong> Photorefractive Bi 12 TiO 20 Crystals, <strong>Optics</strong> Commun., submittedAttended lecturesL<strong>in</strong>ear response theory (P. Hertel)The photorefractive nonl<strong>in</strong>earity (E. Krätzig and K. H. R<strong>in</strong>ghofer)Nonl<strong>in</strong>ear wave equations (H.-J. Schmidt)Sem<strong>in</strong>ars and workshops of the Graduate CollegeConference visitsJune 22–27, 2002 IQEC/LAT 2002 <strong>in</strong> Moscow; contribution: Optically InducedNonl<strong>in</strong>ear Wave Processes <strong>in</strong> Photorefractive CrystalsResearch stays• September 17 – December 02, 2001 National Academy of Sciences, Institute ofPhysics, Kiev, Ukra<strong>in</strong>e (Prof. Dr. Serguey Odoulov).• June 14 – 21, 2002 IOFFE Physico-Technical Institute Russian Academy of Sciences,St. Petersburg, Russia (Prof. Dr. Mikhail P. Petrov).Duration of the dissertation: Start 01.01.01, term<strong>in</strong>ation expected end 2003Period of support <strong>in</strong> the college: 01.01.01 to 31.12.03Supervisor: Prof. Dr. E. Krätzig; <strong>in</strong> cooperation with Prof. Dr. M. P. Petrov, A. F. IoffePhysico-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia.83


Prof. Dr. Marika Schleberger<strong>Topic</strong>: Scann<strong>in</strong>g force microscopy to image ferroelectric doma<strong>in</strong>sResultsThe ma<strong>in</strong> goal of our project was to image ferroelectric doma<strong>in</strong>s <strong>in</strong> doped and undopedSBN s<strong>in</strong>gle crystals by means of scann<strong>in</strong>g force microscopy [1]. We wanted tof<strong>in</strong>d out what the topography of the doma<strong>in</strong>s looks like and whether the size of thedoma<strong>in</strong>s depends significantly on the concentration of the dopant or not. The atomicforce microscope (AFM) is ideally suited for such <strong>in</strong>vestigations s<strong>in</strong>ce the <strong>in</strong>strumentis capable of measur<strong>in</strong>g the topography as well as electrostatic <strong>in</strong>teractions with aspatial resolution of a few nanometers.Our first experiments with the AFM showed images which we <strong>in</strong>terpreted as ferroelectricdoma<strong>in</strong>s. The measurements were done <strong>in</strong> the contact-mode with a Si 3 N 4 tip<strong>in</strong> air. The doma<strong>in</strong> structure of the planes normal to the c-axis typically show a corallikepattern of troughs which are about 1.5 nm deep and roughly 100 x 100 nm 2 <strong>in</strong>size. The typical doma<strong>in</strong>s on the planes that are parallel to the c-axis are muchsmaller. They are elongated and exhibit the same depth of 1.5 nm.We had problems with a few of the crystals we looked at s<strong>in</strong>ce we could not get thetip <strong>in</strong>to contact with the surface. An effect that is most likely due to strong electrostatic<strong>in</strong>teractions. These crystals could only be measured <strong>in</strong> the non-contact modewhere the tip is oscillat<strong>in</strong>g at its resonance frequency some distance away from thesample. In this mode of measurement we make use of the frequency shift as thefeedback signal. The frequency shift is due to the charges present on the surface.We found basically the same doma<strong>in</strong> pattern, however, the images appeared somewhatblurry.A clear improvement of the images could be achieved by us<strong>in</strong>g the damp<strong>in</strong>g of thecantilever <strong>in</strong>stead. S<strong>in</strong>ce the damp<strong>in</strong>g - unlike the frequency shift - varies exponentiallywith the tip-sample distance heights can be measured even more exactly thenwith conventional AFM. However, this method was used for the first time, and therefore,we know little about the orig<strong>in</strong> of the contrast <strong>in</strong> those images. The images mustthus be <strong>in</strong>terpreted with some care and cannot be simply regarded as pure topographydata.We could not <strong>in</strong>fluence the doma<strong>in</strong> structure by neither pol<strong>in</strong>g nor depol<strong>in</strong>g the crystals.This can be easily expla<strong>in</strong>ed if we assume the follow<strong>in</strong>g: The doma<strong>in</strong> structure isalready present after the growth of the crystals. The basic etch that is subsequentlyused for polish<strong>in</strong>g is more aggressive <strong>in</strong> the doma<strong>in</strong>s with a correspond<strong>in</strong>g polarization,i.e., there will be more material removed <strong>in</strong> these areas. The ferroelectric doma<strong>in</strong>sare thus “written” <strong>in</strong>to the crystal surface. This process is of course limited tothe immediate surface and has no <strong>in</strong>fluence on the ferrolectric properties of the bulk.With the AFM we see only the topography of the orig<strong>in</strong>al ferroelectric doma<strong>in</strong>s. Newdoma<strong>in</strong>s or doma<strong>in</strong> structures that are <strong>in</strong>fluenced by electric fields are obviously notformed on the surface or are to weak to be detected by the AFM. In order to test thistheory the crystals should be depoled before the polish<strong>in</strong>g process. Unfortunately,these experiments could not be performed anymore <strong>in</strong> the frame of this short project.84


All experiments were done <strong>in</strong> close collaboration with Mart<strong>in</strong> Görlich and MonikaWesner.References[1] P. Lehnen, W. Kleemann, T. Woike, R. Pankrath: Ferroelectric nanodoma<strong>in</strong>s <strong>in</strong>the uniaxial relaxor system Sr 0.61-x Ba 0.39 Nb 2 O 6 :Ce -x (3+) . Phys. Rev. B 6422, art. no.224109 (2001).Period of support <strong>in</strong> the college (postdoc): 01.01.01 to 30.04.01Supervisor: Prof. Dr. E. KrätzigDr. Schleberger left the graduate College 30.04.2001 to cont<strong>in</strong>ue research with<strong>in</strong> thescope of the Heisenberg-Programm of the DFG. Now she is work<strong>in</strong>g as a professorat the University of Essen.85


Attended lecturesThe photorefractive nonl<strong>in</strong>earity (E. Krätzig and K. H. R<strong>in</strong>ghofer)Nonl<strong>in</strong>ear wave equations (H.-J. Schmidt)Sem<strong>in</strong>ars and workshops of the Graduate CollegeDuration of the dissertation: Start 01.12.01, term<strong>in</strong>ation expected end 2004Period of support <strong>in</strong> the college: 01.12.01 - 31.12.03Supervisor: PD Dr. J. Schnack, Prof. Dr. K. Bärw<strong>in</strong>kel, apl. Prof. Dr. H.-J. Schmidt89


Dipl.-Math. Elena D. Svetogorova<strong>Topic</strong>: Reflection and transmission of a plane TE-wave at a lossless nonl<strong>in</strong>eardielectric film with a permittivity depend<strong>in</strong>g on the transverse coord<strong>in</strong>ate90


Attended lectures, conference visits, research staysWS 01/02: P. Hertel, L<strong>in</strong>ear response theorySS 02: E. Krätzig/K. R<strong>in</strong>ghofer, The photorefractive nonl<strong>in</strong>earityWS 02/03: H.-J- Schmidt, Nonl<strong>in</strong>ear wave equationsWorkshop "Photorefractive Nonl<strong>in</strong>earities" (October 2001, Osnabrück)Sem<strong>in</strong>ars of the Graduate College <strong>695</strong> (WS 01/02, SS 02, WS 02/03)Duration of the dissertation: Start 01.09.2001, term<strong>in</strong>ation expected 01.09.2004Period of support <strong>in</strong> the college: 01.09.2001 - 31.12.2003SupervisorsProf. Dr. H. W. Schürmann, Department of Physics, University of Osnabrück,Prof. Dr. V. S. Serov, Department of Mathematical Sciences, University of Oulu,F<strong>in</strong>land94


Dipl.-Phys. Arthur Tunyagi<strong>Topic</strong>: Nonl<strong>in</strong>ear optical and dielectric properties of undoped Strontium-Barium-Niobate near the phase transition.ResultsStrontium-Barium-Niobate (SBN), Sr x Ba 1-x Nb 2 O 6 , can be grown <strong>in</strong> a wide compositionrange of x=0.25…0.8 (for details of the crystal growth process see report of M. Ulex).The crystals undergo a structural phase transition from a ferroelectric lowtemperatureto a paraelectric high-temperature phase at temperatures above roomtemperature. The phase transition is of relaxor type – more or less broadened <strong>in</strong>temperature. Broaden<strong>in</strong>g and transition temperature depend on composition,dopants, and <strong>in</strong>homogeneities. The aim of our project is the measurement of l<strong>in</strong>earand nonl<strong>in</strong>ear optical and of dielectric properties around the phase transition temperatureof SBN. For undoped crystals <strong>in</strong> the whole composition range, the <strong>in</strong>fluenceof the phase transition on these properties is studied . On the other hand, theseproperties – especially those which are very sensitive for the structural change at thephase transition – are used to <strong>in</strong>vestigate the phase transition itself.Construction and rebuild<strong>in</strong>g of set-upsDur<strong>in</strong>g the first period of the project it was necessary to design and build-up severalnew experimental set-ups. Furthermore, exist<strong>in</strong>g arrangements had to be updated orpartially renewed, redesigned computer control us<strong>in</strong>g C++ or Matlab had to beadded.Due to the ma<strong>in</strong> topic of the project – the temperature dependent study of nonl<strong>in</strong>earoptical properties – a set-up for the <strong>in</strong>vestigation of the second harmonic generation(SHG) of light was constructed. It offers now the possibility to measure the secondharmonic generated from a Nd:YAG laser (1064 nm) as a function of the temperatureof the sample. The control program consists of several C++ rout<strong>in</strong>es for heater control,temperature measurement, data acquisition us<strong>in</strong>g either s<strong>in</strong>gle pulse detectionup to several kHz repetition rate or averag<strong>in</strong>g, plott<strong>in</strong>g, and more. The SHG measurementsdescribed were performed us<strong>in</strong>g this set-up.For measur<strong>in</strong>g the permittivity a set-up us<strong>in</strong>g an LRC bridge (Hewlett-Packard4284A) and a commercial temperature controller (Profile PRO 800) has been built. Acontrol program <strong>in</strong> C++ was developed which allows to measure the permittivity as afunction of temperature and frequency. With this set-up the dielectric measurementson the crystals were performed.Furthermore, a data acquisition <strong>in</strong>terface for a Fabry-Perot spectrometer has beenrenewed, which now consists of a photon count<strong>in</strong>g card controlled by a C++ program.95


Refractive <strong>in</strong>dex measurements on Sr x Ba 1-x Nb 2 O 6The ord<strong>in</strong>ary and the extraord<strong>in</strong>ary refractive <strong>in</strong>dex for available compositions havebeen measured us<strong>in</strong>g a goniometer and the prism method. For the visible region amercury lamp was used, for the <strong>in</strong>frared region two laser-diodes of 790 nm and1550 nm. The <strong>in</strong>frared light was detected us<strong>in</strong>g an IR-sensitive video camera. Theexperimental po<strong>in</strong>ts could be consistently described by Sellmeier relations. While theord<strong>in</strong>ary refractive <strong>in</strong>dex is practically <strong>in</strong>dependent of the Sr/Ba ratio, the extraord<strong>in</strong>ary<strong>in</strong>dex decreases with decreas<strong>in</strong>g Sr content thus <strong>in</strong>creas<strong>in</strong>g the birefr<strong>in</strong>gence.The results are shown <strong>in</strong> Figure 1.Figure 1: Refractive <strong>in</strong>dex as a function of the wavelength for Sr x Ba 1-x Nb 2 O 6 with x =0.52 . . . 0.8.Second Harmonic Generation on Sr x Ba 1-x Nb 2 O 6The results of the refractive <strong>in</strong>dex measurements (Fig. 1) show that <strong>in</strong> SBN phasematchedsecond harmonic generation is not possible us<strong>in</strong>g a Nd:YAG laser as thefundamental light source. Yet, non-phase-matched SHG can be efficiently used tostudy the structural phase transition of SBN: From the crystal structure of SBN [1,2]with po<strong>in</strong>t symmetry 4 mm for the ferroelectric and 4 / mmm for the paraelectricphase one can derive that second harmonic light can be generated only <strong>in</strong> the ferroelectricphase. When the temperature is <strong>in</strong>creased, the decay <strong>in</strong> the second harmonic<strong>in</strong>tensity around the phase transition temperature reflects the transition from the noncentrosymmetriclow-temperature to the centrosymmetric high-temperature phase.96


A typical measurement of the second harmonic <strong>in</strong>tensity as a function of temperatureis shown <strong>in</strong> Figure 2.Figure 2: The result of the SHG measurement for Sr x Ba 1-x Nb 2 O 6 with x=0.52 (uppercurve: SHG due to the tensor element d 33 , lower: tensor element d 31 ).Two different polarization geometries are chosen, polarization of the fundamentalbeam parallel or perpendicular to the polar axis of SBN (c-axis), respectively. In bothcases the second harmonic polarization was parallel to the c-axis. Thus, the tensorelements d 33 and d 31 can be derived from the measurements. As general trends for allcompositions <strong>in</strong>vestigated up to now we can derive:– d 33 generally is larger than d 31 throughout the whole composition range,– both d 33 and d 31 <strong>in</strong>crease with <strong>in</strong>creas<strong>in</strong>g Ba content,– the difference between d 33 and d 31 <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g Ba content.In the future we <strong>in</strong>tend to make various measurements clarify<strong>in</strong>g the correlation betweenpol<strong>in</strong>g state and second harmonic <strong>in</strong>tensity. The second harmonic <strong>in</strong>tensitythen could be used as a sensitive measure for study<strong>in</strong>g the pol<strong>in</strong>g dynamics.Very sensitive SHG measurements revealed a new, to date unknown, noncol<strong>in</strong>earSHG process which becomes visible when the laser beam is directed parallel to thec-axis of the crystal. The effect is closely connected to the doma<strong>in</strong> geometry of thecrystals for which a needle-like structure had been postulated [3] and seems to bepresent <strong>in</strong> crystals of all compositions <strong>in</strong>vestigated up to now. Further, thoroughmeasurements are necessary to assure the features of this new effect and to deriveat least a simple physical model for it. Explanations developed for noncol<strong>in</strong>ear SHGfound e. g. <strong>in</strong> lithium niobate [4,5] can not be adopted for SBN.Permittivity Measurements on Sr x Ba 1-x Nb 2 O 6More <strong>in</strong>formation about the phase transition characteristics can be derived from theelectric permittivity. At different frequencies, the capacitance of the sample wasmeasured as a function of temperature. From these measurements we were able to97


determ<strong>in</strong>e the relaxor-typical broaden<strong>in</strong>g of the phase transition <strong>in</strong> SBN [6,7] as afunction of the composition. A typical result is presented <strong>in</strong> Figure 3.Figure 3: A typical result for an electric permittivity measurement as a function oftemperature and frequency (Sr x Ba 1-x Nb 2 O 6 with x = 0.52 ).Analys<strong>in</strong>g all results we can conclude that samples with higher strontium contentshow more expressed relaxor properties, whereas <strong>in</strong> the Ba-rich samples this featureis only weakly expressed. Because the relaxor features are more pronounced at lowfrequencies we <strong>in</strong>tend to extend our measurements to that region <strong>in</strong> future.OH-stretch<strong>in</strong>g modes <strong>in</strong> Sr x Ba 1-x Nb 2 O 6In cooperation with C. David the behaviour of the OH-stretch<strong>in</strong>g modes <strong>in</strong> SBN wasmeasured. We observed a significant <strong>in</strong>fluence of the composition on the OHstretch<strong>in</strong>gmode absorption spectra. With ris<strong>in</strong>g x, the absorption of the ma<strong>in</strong> band atabout 3495 cm -1 <strong>in</strong>creases, the low energy shoulder decreases and an additionalbroad absorption is built up. This shows that hydrogen ions can occupy several differentpositions <strong>in</strong> the unfilled tungsten bronze structure of SBN which are energeticallynon-equivalent. A thorough evaluation is presently be<strong>in</strong>g developed. More detailsabout the sample treatment and the measurements are given <strong>in</strong> the report of C.David.References:[1] T.S. Chernya, B.A. Maksimov, I.V. Ver<strong>in</strong>, L.I. Ivleva, V.I. Simonov ; Cryst. Reports,42, 375-380 (1997)[2] T.S. Chernya, B.A. Maksimov, I.V. Ver<strong>in</strong>, L.I. Ivleva, V.I. Simonov ; Physics of theSolid State 42, 1716-1721 (2000)[3] S. Kawai, T. Ogawa, H. S. Lee, R. C. DeMattei, R. S. Feigelson : Appl. Phys. Lett.73, 6 (1998)[4] A. Reichert, K. Betzler : J. Appl. Phys. 79, 2209 (1996).[5] K.-U. Kasemir, K. Betzler: Appl. Phys. B 68, 763 (1999).[6] L.E. Cross Ferroelectrics 76, 241-267 (1987)[7] I.A. Santos, J.A. Eiras : J.Phys, Cond. Matter 13, 11733-11740 (2001)98


PublicationsCh. Bäumer, C. David, A. Tunyagi, K. Betzler, H. Hesse, E. Krätzig, M. Wöhlecke:Composition dependence of the ultraviolet absorption edge <strong>in</strong> lithium tantalate.J. Appl. Physics, <strong>in</strong> pr<strong>in</strong>t (2003)C. David, A. Tunyagi et al.: OH stretch<strong>in</strong>g modes <strong>in</strong> Sr x Ba 1-x Nb 2 O 6 (<strong>in</strong> preparation)Attended lecturesWS 01/02 : P. Hertel: L<strong>in</strong>ear response theorySS 02: E. Krätzig, K. R<strong>in</strong>ghofer: The photorefractive nonl<strong>in</strong>earityWS 02/03: H.-J. Schmidt: Nonl<strong>in</strong>ear wave equationsWS 01/02: V. Trepakov: <strong>Optics</strong> and Spectroscopy of semiconductors and <strong>in</strong>sulatorsWorkshop “Photorefractive Nonl<strong>in</strong>earities” (October 2001, Osnabrueck)Workshop “SBN - a typical relaxor?” (May 2002, University of Osnabrueck)Workshop “SBN: Crystal Growth and Details of the Structure” (July 2002, Universityof Osnabrueck)Sem<strong>in</strong>ars of the Graduate College <strong>695</strong> (WS 01/02 SS 02 WS 02/03)Sem<strong>in</strong>ars of the Research Group “Optical Materials” (WS 01/02, SS 02, WS 02/03 )Contribution to the Sem<strong>in</strong>arsSem<strong>in</strong>ary Talk on 21.10.2002 “Second Harmonic Generation on SBN Crystals”Various short talks <strong>in</strong> the Research Group sem<strong>in</strong>arExternal research stayIR-absorption Measurements performed on SZFKI <strong>in</strong>stitute <strong>in</strong> Budapest (08.07.2002– 19.07.2002)Duration of the dissertation: Start 01.09.2001, term<strong>in</strong>ation expected 31.08.2004Period of support <strong>in</strong> the College: 01.09.2001 – 31.12.2003Supervisor: Apl. Prof. Dr. Klaus Betzler99


Dipl.-Phys. Michael Ulex<strong>Topic</strong> : Growth and characterization of Sr x Ba 1-x Nb 2 O 6 crystals with x rang<strong>in</strong>gfrom 0.2 to 0.8ResultsAbstractFifteen different compositions of Sr x Ba 1-x Nb 2 O 6 with crystal compositions from x =0.32 to 0.79 were grown and <strong>in</strong>vestigated. Their quality allows <strong>in</strong>vestigations of opticalproperties. A prelim<strong>in</strong>ary phase diagram has been determ<strong>in</strong>ed. The lattice constantsand the densities were measured. In addition, us<strong>in</strong>g the lattice constants, thedensities were calculated; good agreement with the measured ones was found. Furtherproperties have been reported by C. David and A. Tunyagi.IntroductionSr x Ba 1-x Nb 2 O 6 solid solutions (SBN) with compositions rang<strong>in</strong>g from x = 0.25 to 0.75are known s<strong>in</strong>ce 1960 and studied by many groups.For the b<strong>in</strong>ary system SrNb 2 O 6 -BaNb 2 O 6 the phase diagram was determ<strong>in</strong>ed by Carrutherset al. [1] <strong>in</strong> 1970, <strong>in</strong>dicat<strong>in</strong>g a wide range of solid solution and a congruentlymelt<strong>in</strong>g composition at x = 0.5. Later Megumi et al. [2] found a value of the congruentlymelt<strong>in</strong>g composition of x = 0.61 (1977). However, Carruthers et al. did only determ<strong>in</strong>ethe liquidus curve, but not the solidus one. Therefore the exact compositionrange of the solid solution is unknown. Additionally, prelim<strong>in</strong>ary results of our crystalgrowth experiments showed, that the variation of the liquidus temperature with compositionis much smaller than determ<strong>in</strong>ed by Carruthers et al.Studies of almost all important properties of SBN have been reported, but a systematicstudy of selected properties as a function of the composition is still miss<strong>in</strong>g and isbesides the crystal growth the subject of this project. These <strong>in</strong>vestigations will bedone <strong>in</strong> co-operation with the Ph.D.-students C. David und A. Tunyagi (see their reports).Crystal growth and first optical assessmentThe crystals are grown <strong>in</strong> a resistance-heated furnace with the Czochralskitechnique.Because of resistance-heat<strong>in</strong>g the temperature gradient ∆T with<strong>in</strong> themelt is about 1 °C/cm while the temperature stability is better than 0.1 °C. The crystalsare grown <strong>in</strong> [001]-direction with a pull<strong>in</strong>g-rate of 0.8 mm/h for compositions x cr ≥0.5 and with 0.4 mm/h for compositions x cr < 0.5. Dur<strong>in</strong>g the growth process the crystalrotates with 38 cycles per m<strong>in</strong>ute. The experiments are performed <strong>in</strong> the temperaturerange 1484 °C ... 1496 °C.Crystals with a composition x cr rang<strong>in</strong>g from 0.32 to 0.79 have been grown. The crystalsof good optical quality are transparent and colourless and have a length up to 80mm and a diameter of about 5 mm.For the <strong>in</strong>vestigations of the physical properties the crystals were cut <strong>in</strong>to eight differentobjects with shapes like plates, cubes and prisms and f<strong>in</strong>ally gr<strong>in</strong>ded and polished.100


Figure 1: SBN crystals grown with<strong>in</strong> this study (x cr = 0,34: below, x cr = 0,61: above)The crystals have good quality suitable for optical measurements. However, testswith crossed polarizers have shown <strong>in</strong>homogeneities for x cr ≠ 0.61, which <strong>in</strong>creasewith compositions more off the congruently melt<strong>in</strong>g one.It is assumed, that these <strong>in</strong>homogeneities arise from an accumulation or reduction ofSr or Ba at the phase boundary. Experiments to reduce this k<strong>in</strong>d of <strong>in</strong>homogeneitiesby variations of the rotation rate and the vertical temperature gradient <strong>in</strong> the crystalgrowth apparatus are <strong>in</strong> progress.Figure 2: Photo of an SBN-crystal (x cr = 0.79, c-cut) taken with crossed polarizers101


Determ<strong>in</strong>ation of the phase diagramTo improve the phase diagram, the compositions of the crystals were determ<strong>in</strong>ed byX-ray fluorescence analyses. For this purpose 500 mg of the crystal to be analyzedor of a standard with a well-known composition are solved <strong>in</strong> 5 g of Spectromelt A12(Merck) at 950 °C <strong>in</strong> a Pt/Au-crucible. The X-ray fluorescence analysis was poweredby a copper-source and analyzed by a LiF grat<strong>in</strong>g. The l<strong>in</strong>es Lα1 (Ba) and Kα (Sr andNb) were measured with a statistical uncerta<strong>in</strong>ty of less then 0.13 %.With the help of the standard the composition of the crystal x cr can be determ<strong>in</strong>edwith a reproducibility of ∆x = ± 0.005.Table 1: Composition of the melt (x m ) and of the crystals grown from this melt (x cr ):x cr 0.788 0.787 0.779 0.736 0.688 0.644 0.613 0.563x m 0.805 0.812 0.787 0.753 0.700 0.650 0.610 0.550x cr 0.511 0.477 0.446 0.404 0.382 0.341 0.322x m 0.492 0.431 0.373 0.319 0.300 0.243 0.194Figure 3 shows the measured compositions of the crystals and of the melt. The y-axisshows the growth-temperature at a crystal length of about 60 mm. The l<strong>in</strong>es representa prelim<strong>in</strong>ary phase diagram. This phase diagram shows a small difference betweenthe solidus curve (solid l<strong>in</strong>e) and the liquidus curve (dotted l<strong>in</strong>e) at the Sr-richrange (∆x = 0.02 for x cr = 0.79) and a large difference at the Ba-rich range (∆x = 0.13for x cr = 0.32). The data <strong>in</strong>clude an error of about ± 3 °C relative to each other andhave an absolute uncerta<strong>in</strong>ty of ± 20 °C.15051500Temperature (°C)14951490148514801475x meltx crystal14700,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9Figure 3: Prelim<strong>in</strong>ary phase diagramCompositionDensity and lattice constantsThe lattice constants were measured <strong>in</strong> co-operation with Prof. Dr. Schmahl at theUniversity of Bochum. The measurements of the density were performed <strong>in</strong> cooperationwith Prof. Dr. Bohatý at the University of Cologne. The results of thesemeasurements are shown <strong>in</strong> figure 4 and 5.102


Lattice constants a (Å) .12,473,96a12,463,9512,453,9412,443,9312,433,9212,42c3,9112,413,900,50 0,55 0,60 0,65 0,70 0,75 0,80x crFigure 4: Lattice constants a (•) and c (■) as a function of composition x cr5,40Density (mg/mm 3 )5,355,305,255,200,35 0,45 0,55x cr0,65 0,75Figure 5: Density of SBN-crystals as a function of composition x crThe density was also calculated by us<strong>in</strong>g lattice constants. The result of the calculationagrees quite well, a constant difference of ∆ ρ = 0.039 mg/mm 3 ± 0.006 mg/mm 3or ∆ ρ/ρ = 0.8 % was found. The orig<strong>in</strong> of this difference is still unclear and will besubject of further <strong>in</strong>vestigations.The follow<strong>in</strong>g properties have been measured by my colleagues C. David and A.Tunyagi, who are members of the graduate school, too. They are concerned with:103


- Absorption measurements of the band edge and of the OH-stretch<strong>in</strong>g vibration (C.David)- Refractive <strong>in</strong>dices (A. Tunyagi)- Second harmonic generation (A. Tunyagi)- Dielectric constants (C. David, A. Tunyagi).Future plansFor the construction of the phase diagram liquidus temperatures still have to bemeasured. For this purpose an exist<strong>in</strong>g furnace was modified [3].Further properties like thermal expansion of the crystals or the determ<strong>in</strong>ation of thedistribution of Ba and Sr on the different lattice sites along the a- and b-direction willbe done <strong>in</strong> co-operation with other groups (Prof. Schmahl, University of Bochum,Prof. Bohatý, University of Cologne).References[1] J. R. Carruthers, M. Grasso: “Phase Equilibria Relations <strong>in</strong> the Ternary SystemBaO-SrO-Nb 2 O 5 “. Journal Electrochemical Society 117, 1426 (1970).[2] K. Megumi, N. Nagatsuma, Y. Kashiwada, Y. Furuhata: “The congruent melt<strong>in</strong>gcomposition of SBN”. Journal of Materials Science 11, 1583 (1977).[3] Ch. Kuper, R. Pankrath, H. Hesse: “Growth and dielectric properties of congruentlymelt<strong>in</strong>g Ba 1-x Ca x TiO 3 crystals”. Applied Physics A, 65, 301 (1997).PublicationsC. David, A. Tunyagi, M. Ulex et al.: “OH stretch<strong>in</strong>g modes <strong>in</strong> Sr x Ba 1-x Nb 2 O 6 ” (<strong>in</strong>preparation)Attended lectures, conference visits, research staysAttended lecturesWS 01/02: P. Hertel: L<strong>in</strong>ear response theorySS 02: E. Krätzig, K. R<strong>in</strong>ghofer: The photorefractive nonl<strong>in</strong>earityWS 02/03: H.-J. Schmidt: Nonl<strong>in</strong>ear wave equationsSem<strong>in</strong>arsSem<strong>in</strong>ars of the Graduate College <strong>695</strong> (WS 01/02, SS 02, WS 02/03)Conference visitsWork<strong>in</strong>g group „Kristalle für Laser und nichtl<strong>in</strong>eare Optik“ of DGKK:- 27.-28.9.2001 <strong>in</strong> Köln- 26.-27.9.2002 <strong>in</strong> BonnAnnual conference of the DGKK:- 20.-21.3.2002 <strong>in</strong> Idar-Oberste<strong>in</strong>Contribution to the sem<strong>in</strong>arsSem<strong>in</strong>ary talks on 11.11.2001 and 2.12.2002Various short talks <strong>in</strong> the sem<strong>in</strong>ar of the research groupExternal research stays30.11.2001 Institute of Crystal Growth Berl<strong>in</strong>-Adlershof, Dr. Reiche104


22.-26.4.2002 Institute of Physics of the Russian Academy of Science, Laboratoryfor Crystal growth, Dr. IvlevaInstitute of Crystallography of the Russian Academy of Science,Prof. Dr. Volk13.9.2002 University of Cologne, Institute of Crystallography, Prof. Dr. Bohatý5.11.2002 University of Bochum, Institute of Crystallography, Prof. Dr. Schmahl19.-20.12.2002 University of Cologne, Institute of Crystallography, Prof. Dr. BohatýDuration of the dissertationStart: 1.5.2001, determ<strong>in</strong>ation expected 30.4.2004Period of support <strong>in</strong> the College1.5.2001 to 31.12.2003SupervisorsDr. Ra<strong>in</strong>er Pankrath, apl. Prof. Dr. Klaus Betzler105


Dr. Monika Wesner<strong>Topic</strong>: Nonl<strong>in</strong>ear optical properties of photorefractive strontium-barium niobatecrystalsResultsDur<strong>in</strong>g the period of support <strong>in</strong> the graduate college I was able to f<strong>in</strong>ish the researchon nonl<strong>in</strong>ear optical properties of photorefractive strontium-barium niobate crystals(SBN), and to write the dissertation “Nichtl<strong>in</strong>eare optische Effekte im FerroelektrikumStrontiumbariumniobat”. Oxide ferroelectric strontium-barium niobate crystals are thebasis of my <strong>in</strong>vestigations. They are favorably suited for experiments <strong>in</strong> nonl<strong>in</strong>earoptics. Their special features are large nonl<strong>in</strong>ear, for example pyro- and piezoelectric,electro- and thermooptic coefficients, robustness and a high optical quality. Moreover,excellent barrier-waveguides can be produced by ion-implantation. The ionimplantationis performed <strong>in</strong> collaboration with Dr. P. Moretti from the University ofLyon, France. Dur<strong>in</strong>g my dissertation, several other oxide crystals have beenchecked as an alternative for SBN, too [D, I ]. However, for the performed nonl<strong>in</strong>earopticalexperiments <strong>in</strong> the field of thermooptic beam self-focus<strong>in</strong>g, photorefractivemodulational <strong>in</strong>stability, pattern and soliton formation, other crystals rarely prove tobe a comparable alternative to SBN volume crystals or SBN waveguides.SBN crystals of the congruently melt<strong>in</strong>g composition, grown by Dr. R. Pankrath atthe University of Osnabrück, possess an <strong>in</strong>ternationally acknowledged quality. Thedom<strong>in</strong>at<strong>in</strong>g electrooptic coefficient r 33 could be shown to be larger than 200 pm/Veven for near <strong>in</strong>frared wavelengths up to λ = 1.5 µm [E]. Due to the large electroopticcoefficients, photorefractive effects are possible even <strong>in</strong> the <strong>in</strong>frared, though ferroelectric<strong>in</strong>sulator crystals are seldom <strong>in</strong>vestigated <strong>in</strong> this <strong>in</strong>terest<strong>in</strong>g (telecommunication)wavelengths range. After the polish<strong>in</strong>g of the crystals, the surfaces are opticallyflat. Checks of the surface quality were performed with an atomic force microscope(AFM) <strong>in</strong> collaboration with Prof. Dr. M. Schleberger, now University of Essen. Shecould prove the existence of worm- or leavelike structures on the (001)-surfaces ofthe SBN-crystals. The depth of these structures does not exceed 2 nm. We haveclear h<strong>in</strong>ts, that the structures are <strong>in</strong>deed ferroelectric doma<strong>in</strong> patterns, which areconserved dur<strong>in</strong>g the polish<strong>in</strong>g process. Up to now, there exist only few figures of thedoma<strong>in</strong> structure of SBN throughout the literature [1].By thermooptic self-focus<strong>in</strong>g effects, so-called thermal lenses could be <strong>in</strong>duced <strong>in</strong>SBN-waveguides for the first time. In contrast to usual observations <strong>in</strong> volume oxidecrystals, the <strong>in</strong>duced thermal lenses ma<strong>in</strong>ta<strong>in</strong> their spherical properties over a largerange of laser powers. For thermooptic effects, the laser power determ<strong>in</strong>es the magnitudeof the nonl<strong>in</strong>earity. An example is demonstrated <strong>in</strong> Fig. 1. Here, a focusedbeam of an Ar + -laser is coupled <strong>in</strong>to the SBN-waveguide. Shown is the laser beamprofile at the crystal’s endface. In the figure, the changes of the beam profile with<strong>in</strong>creas<strong>in</strong>g <strong>in</strong>put laser power P <strong>in</strong> , i. e., with <strong>in</strong>creas<strong>in</strong>g nonl<strong>in</strong>earity, are shown <strong>in</strong> acontour plot. Due to thermooptic refractive <strong>in</strong>dex changes, the beam self-focuses upto laser powers of about 50 mW. By this way, spherical lenses with focal lengthsaround 1 mm can be <strong>in</strong>duced. Thermooptic beam filamentation occurs, if the focalpo<strong>in</strong>t of the lens reaches the <strong>in</strong>ner part of the waveguide. This can also be seen <strong>in</strong>Fig. 1 for laser powers larger than P <strong>in</strong> = 50 mW. The filamentation can be shown tobe as well expla<strong>in</strong>able with the model of spherical aberration of the thermal lens [2] orwith modulational <strong>in</strong>stabilities [3]. Thermooptic refractive <strong>in</strong>dex changes build up106


comparatively fast (100 µs-magnitude) [A] and are shown to be useful to switch andfocus light beams and divide them <strong>in</strong>to different channels.Fig. 1: Example of thermoopticnonl<strong>in</strong>ear effects <strong>in</strong>SBN-waveguides. Shown isa contour plot of the beamprofile of an <strong>in</strong>coupled Ar + -laser beam at the crystal’sendface for <strong>in</strong>creas<strong>in</strong>g laserpower P <strong>in</strong> .A further part of my doctoral thesis is devoted to modulational <strong>in</strong>stabilities, whichmanifest <strong>in</strong> the filamentation of an <strong>in</strong>itially homogeneous beam profile. Modulational<strong>in</strong>stabilities are <strong>in</strong>duced by perturbations of the beam profile which grow exponentially.The <strong>in</strong>stabilities occur, sometimes <strong>in</strong>evitable, as side effect dur<strong>in</strong>g experimentsof other nonl<strong>in</strong>ear <strong>phenomena</strong>, especially at the photorefractive soliton formation. Adetailed knowledge of them is therefore of importance. However, this subject is seldomtreated experimentally for the photorefractive nonl<strong>in</strong>earity. Just as rare are theoreticalconsiderations concern<strong>in</strong>g this nonl<strong>in</strong>earity which can be approximated as anonl<strong>in</strong>ear Schöd<strong>in</strong>ger equation with saturable nonl<strong>in</strong>earity (see report F. Homann).Experimentally, <strong>in</strong>put beam configurations are found, which have a high resistanceaga<strong>in</strong>st modulational <strong>in</strong>stabilities. Follow<strong>in</strong>g, this f<strong>in</strong>d<strong>in</strong>g proves helpful <strong>in</strong> experimentswith photorefractive solitons. If, <strong>in</strong>stead of a s<strong>in</strong>gle laser beam, two counterpropagat<strong>in</strong>gbeams are used, the irregular filaments of the modulational <strong>in</strong>stability order, for<strong>in</strong>stance to hexagonal patterns. The additionally observed more complicated structurespo<strong>in</strong>t to the fact that <strong>in</strong> photorefractive crystals even patterns with higher thanhexagonal symmetry can be <strong>in</strong>duced, provided that the saturation grade of thenonl<strong>in</strong>earity is large enough.An important part of my dissertation is devoted to photorefractive spatial solitons.Spatial solitons are stable light beams propagat<strong>in</strong>g with a constant beam shape. Dueto their energy-conserv<strong>in</strong>g properties they are promis<strong>in</strong>g for applications, for example<strong>in</strong> telecommunications. Besides the usefulness for applications, the special solitons’features make them <strong>in</strong>terest<strong>in</strong>g for theoretical physicists and mathematicians s<strong>in</strong>cethe first <strong>in</strong>vestigations <strong>in</strong> the 1870 th . S<strong>in</strong>ce 1993 it is known that solitons can be <strong>in</strong>duced<strong>in</strong> photorefractive crystals [4]. Follow<strong>in</strong>g, a research boom set <strong>in</strong>, because nowphysicists had found an easily accessibly optical system, where diverse aspects ofsoliton formation could be studied experimentally. The experiments done <strong>in</strong> Osnabrückwere the first measurements <strong>in</strong> SBN-waveguides [ B, C, E, G - I]. Part of thework has been done <strong>in</strong> collaboration with Prof. Dr. V. Shandarov from the Universityof Tomsk, Russia, and Prof. Dr. J. Xu, Nankai University, Ch<strong>in</strong>a. The experimentalproof of the existence of a soliton is difficult as a matter of pr<strong>in</strong>ciple. We could verify107


for the first time that photorefractive solitons exist <strong>in</strong> SBN-waveguides up to wavelengthsof 1.5 µm, i. e., up to the telecommunication wavelengths region. One of themost conv<strong>in</strong>c<strong>in</strong>g experiments is demonstrated <strong>in</strong> Fig. 2. Shown are the <strong>in</strong>tensity profilesat the endfaces of samples of the same SBN-crystal, but with different propagationlengths. The <strong>in</strong>put conditions, especially the <strong>in</strong>put beam width of 44 µm, are keptconstant. In Fig. 2 obviously the output beam profiles are almost equal despite thedifferent propagation lengths – which only can be expla<strong>in</strong>ed by soliton formation. Thesoliton-like behavior is <strong>in</strong> strik<strong>in</strong>g contrast to the usual one, which is a “normal”nonl<strong>in</strong>ear lens as demonstrated <strong>in</strong> Fig. 1.Fig. 2 Experiment to verifythe existence of photorefractivesolitons <strong>in</strong> SBNwaveguidesat a wavelengthλ = 1310 nm. Shownare beam profiles at theendfaces of three samplesof the same SBN-crystalwith different propagationlengths z = 1.7, 5.2, and7.8 mm. The <strong>in</strong>put beamwidth is kept constant at 44µm.We further found that the <strong>in</strong>put beam configuration mostly used <strong>in</strong> experiments withphotorefractive solitons is not ideal. With a changed beam geometry we were able to<strong>in</strong>duce photorefractive solitons over an <strong>in</strong>tensity range of five orders of magnitude,which has to be compared with two orders of magnitude demonstrated <strong>in</strong> the literatureso far. Moreover, the easily <strong>in</strong>ducible solitons also prove to be well suited as ameasurement method, for <strong>in</strong>stance to determ<strong>in</strong>e the so-called dark <strong>in</strong>tensity (a ratioof photo- and dark conductivity) or to <strong>in</strong>vestigate the pol<strong>in</strong>g state of a ferroelectriccrystal spatially-resolved.In <strong>in</strong>vestigations of the temporal development of the solitons we were able to provethe experimental value of a theoretical model of Fressengeas et al. [5]. This modelallows far reach<strong>in</strong>g predictions, however, at the expense of rough approximations.Because of that, at the beg<strong>in</strong>n<strong>in</strong>g, the experimental applicability of the model wasdoubtful. This work is, to our knowledge, the only one where the complicated temporaldevelopment of solitons is extensively classified. One of the most remarkable resultsof the theoretical and experimental <strong>in</strong>vestigations is that the build-up of photorefractivesolitons is not markedly <strong>in</strong>fluenced by the wavelength. This is <strong>in</strong> strik<strong>in</strong>g contrastto other photorefractive <strong>phenomena</strong>, e. g., the common photorefractive twobeamcoupl<strong>in</strong>g [6], which has a dist<strong>in</strong>ctly slower development time <strong>in</strong> the <strong>in</strong>frared thanat visible wavelengths.A large section of my thesis covers problems of the switch<strong>in</strong>g of the polarization <strong>in</strong>SBN. Despite the long time of research <strong>in</strong> ferroelectrics (s<strong>in</strong>ce the 1940 th ), theswitch<strong>in</strong>g behavior of ferroelectrics still pose questions. This applies the more for relaxor-ferroelectricslike SBN, which are characterized by a broadened phase transi-108


tion. Important <strong>in</strong>formation about the pol<strong>in</strong>g state of the crystal can be ga<strong>in</strong>ed withself-focus<strong>in</strong>g methods developed dur<strong>in</strong>g the dissertation (see above), as well as byfrequency-doubl<strong>in</strong>g microscopy. The frequency-doubl<strong>in</strong>g measurements have beenperformed <strong>in</strong> collaboration with A. Rosenfeldt, University of Münster, and PD Dr. M.Flörsheimer, INE Forschungszentrum Karlsruhe GmbH. In frequency-doubl<strong>in</strong>g microscopy,ferroelectric doma<strong>in</strong> walls are made visible. In our <strong>in</strong>vestigations we foundthat if a SBN-crystal is poled <strong>in</strong> opposite directions by application of external electricfields at room temperature, the switchable polarization decreases (“ages”) from thepositive towards the negative electrode. In the literature, “ag<strong>in</strong>g” is mostly measured<strong>in</strong> the volume of the crystal. For this reason there are only few h<strong>in</strong>ts, that “ag<strong>in</strong>g” can<strong>in</strong>deed be a spatially <strong>in</strong>homogeneous effect.Moreover, for the first time systematically depolarized stripes with widths <strong>in</strong> the micronrange have been produced by <strong>in</strong>tense illum<strong>in</strong>ation and application of electricfields [F]. The depolarized stripes could be shown to possess an enlarged refractive<strong>in</strong>dex compared to the poled material [7]. Because of that the depolarized stripesserve as waveguides for light. This can be seen <strong>in</strong> Fig. 3. Here, each image showsan about 80 x 80 µm² wide area of the crystal’s endface. The lateral position of thecrystal is changed relatively to the illum<strong>in</strong>at<strong>in</strong>g stripe laser beam. The relative positionis mentioned below each picture. Row a) shows the <strong>in</strong>itial <strong>in</strong>tensity distribution, whichis the same for all positions. After the production of the stripes, <strong>in</strong> row b), obviouslytwo waveguid<strong>in</strong>g channels appear at the positions +/-0.03 mm. The channels arestable for at least a month if the crystal is kept <strong>in</strong> the dark, and for at least a week ifthe crystal is illum<strong>in</strong>ated with <strong>in</strong>tense read-out light.Fig. 3: Each picture shows an about 80 x 80 mm² wide area of the crystals endface.The crystal position is changed relative to an illum<strong>in</strong>at<strong>in</strong>g stripe laser beam. The positionis mentioned below each picture. (a) <strong>in</strong>ititial <strong>in</strong>tensity distribution (b) after fabricationof two waveguides at x = +/- 0.03 mm.More complicated structures can be formed with this new method of electrical fix<strong>in</strong>g,too. Promise have produced patterns of poled and unpoled stripes, with stripe widthsbelow 1 micron, which can be used for quasi-phase-matched frequency doubl<strong>in</strong>g.References:[1] P. Lehnen, W. Kleemann, T. Woike, R. Pankrath: Ferroelectric nanodoma<strong>in</strong>s <strong>in</strong>the uniaxial relaxor system Sr 0.61-x Ba 0.39 Nb 2 O 6 :Ce -x (3+) . Phys. Rev. B 6422, art. no.224109 (2001).[2] S. A. Akhmanov, D. P. Kr<strong>in</strong>dach, A. V. Migul<strong>in</strong>, A. P. Sukhorukov, R. V. Khokhlov.IEEE J. Quantum Electron. QE-4, 568 (1968).109


[3] V. I. Bespalov and V. I. Talanov. JETP Lett. 3, 307 (1966).[4] G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev , A. Yariv, B. Crosignani, P.DiPorto, E. J. Sharp, R. R. Neurgaonkar. Phys. Rev. Lett. 71, 533 (1993).[5] N. Fressengeas, J. Maufoy, G. Kugel. Phys. Rev. E 54, 6866 (1996).[6] D. L. Staebler, J. J. Amodei. J. Appl. Phys. 43, 1042 (1972).[7] Th. Woike, T. Granzow, U. Dörfler, C. Poetsch, M. Wöhlecke, R. Pankrath.phys. stat. sol. (a) 186, R13 (2001).Publications[A] D. Kip, M. Wesner, E. Krätzig, V. Shandarov, P. Moretti, "All-optical beamdeflectionand switch<strong>in</strong>g <strong>in</strong> planar strontium-barium niobate waveguides“. Appl. Phys.Lett. 72, 1960 (1998).[B] D. Kip, M. Wesner, V. Shandarov, P. Moretti, “Observation of bright spatialphotorefractive solitons <strong>in</strong> a planar strontium-barium niobate waveguide”. Opt. Lett.23, 821 (1998).[C] D. Kip, M. Wesner, C. Herden, V. Shandarov, "Interaction of spatial photorefractivesolitons <strong>in</strong> a planar waveguide”. Appl. Phys. B 68, 971 (1999).[D] V. Shandarov, M. Wesner, J. Hukriede, D. Kip, "Observation of dark spatialphotovoltaic solitons <strong>in</strong> planar waveguides <strong>in</strong> lithium niobate”. J. Opt. A: Pure Appl.Opt. 2, 500 (2000).[E] M. Wesner, C. Herden, D. Kip, E. Krätzig, P. Moretti, "Photorefractive steadystatesolitons up to telecommunication wavelengths <strong>in</strong> planar SBN waveguides”. Opt.Commun. 188, 69 (2001).[F] M. Wesner, C. Herden, D. Kip, "Electrical fix<strong>in</strong>g of waveguide channels <strong>in</strong> strontium-bariumniobate crystals”. Appl. Phys. B 72, 733 (2001).[G] M. Wesner, C. Herden, R. Pankrath, D. Kip, P. Moretti, "Temporal developmentof photorefractive solitons up to telecommunication wavelengths <strong>in</strong> SBN”. Phys. Rev.E 64, 36613 (2001).[H] D. Kip, C. Herden, M. Wesner, "All-optical signal rout<strong>in</strong>g us<strong>in</strong>g <strong>in</strong>teraction of mutually<strong>in</strong>coherent spatial solitons”. Ferroelectrics 274, 135 (2002).[I] J. Xu, V. Shandarov, M. Wesner, D. Kip, "Observation of two-dimensional spatialsolitons <strong>in</strong> iron-doped barium-calcium titanate crystals”. phys. stat. sol. (a)189, R4 (2002).[J] D. Kip, M. Wesner, E. Krätzig, V. Shandarov, P. Moretti, "Bright photorefractivespatial solitons <strong>in</strong> optical waveguides on SBN“. Proc. SPIE 3733, 155 – 162 (1998).[K] D. Kip, M. Wesner, C. Herden, V. Shandarov, P. Moretti, “Spatial photorefractivesolitons <strong>in</strong> planar strontium-barium niobate waveguides”. OSA TOPS 27, 479 – 482(1999).[L] M. Wesner, D. Kip, V. Shandarov, P. Moretti, “Thermally-<strong>in</strong>duced all-optical beamsteer<strong>in</strong>g and switch<strong>in</strong>g properties of SBN waveguides”. OSA TOPS 27, 441 – 446(1999).[M] D. Kip, J. Hukriede, M. Wesner, E. Krätzig. "Photorefractive waveguides“. Proc.SPIE 3801, 9 – 23 (1999).[N] V. Shandarov, D. Kip, M. Wesner, J. Hukriede, "Development and collapse ofdark spatial optical solitons <strong>in</strong> planar waveguides <strong>in</strong> lithium niobate”. Technical DigestCLEO Europe, CMG5 (2000).110


[O] D. Kip, C. Herden, M. Wesner, "Electrical fix<strong>in</strong>g of waveguide channels us<strong>in</strong>gdynamic self-focus<strong>in</strong>g <strong>in</strong> strontium-barium niobate crystals”. Technical Digest CLEOEurope, CFF1 (2000).[P] M. Wesner, D. Kip, P. Moretti, "Infrared photorefractive effects <strong>in</strong> ion-implantedSBN waveguides”. Technical Digest CLEO Europe, CFF6 (2000).[Q] M. Wesner, C. Herden, D. Kip, "A new method of electrical fix<strong>in</strong>g <strong>in</strong> strontiumbariumniobate crystals”. OSA TOPS 62, 152 - 157 (2001).[R] D. Kip, C. Herden, M. Wesner, "All-optical signal router based on the <strong>in</strong>teractionof mutually <strong>in</strong>coherent solitons”. OSA TOPS 62, 685 - 689 (2001).[S] V. Shandarov, D. Kip, M. Wesner, “Dist<strong>in</strong>ctions of the characteristics of brightspatial solitons <strong>in</strong> SBN crystals form existence curve predictions”. OSA TOPS 62,690 - <strong>695</strong> (2001).Attended lectures• P. Hertel, L<strong>in</strong>ear response theory, WS 01/02• E. Krätzig, K. R<strong>in</strong>ghofer, The photorefractive nonl<strong>in</strong>earity, SS02• Sem<strong>in</strong>ars of the Graduate College SS 01, WS 01/02, SS 02, and WS 02/03• Workshop on Photorefractive Nonl<strong>in</strong>earities, Oct. 4 – 5, 2001, Contribution: talk “IRphotorefractive solitons <strong>in</strong> SBN”.• Workshop “SBN: Crystal Growth and Details of the Structure” July 1, 2002• Workshop “Strontium-Barium-Niobate (SBN) – a typical relaxor?” May 6, 2002.Conference visits• <strong>Topic</strong>al Meet<strong>in</strong>g on Photorefractive Materials, Effects, and Devices, Els<strong>in</strong>ore,Denmark, June 25 – 27, 1999; contribution: poster “Thermally-<strong>in</strong>duced all-opticalbeam steer<strong>in</strong>g and switch<strong>in</strong>g properties of SBN waveguides”.• Spr<strong>in</strong>g Conference of the German Physical Society, Bonn, Germany, April 3 – 7,2000; contribution: talk "Infrarote photorefraktive Solitonen <strong>in</strong> SBN”.• CLEO Europe 2000, Nice, France, Sept. 10 – 15, 2000; contributions: talk “Electricalfix<strong>in</strong>g of waveguide channels us<strong>in</strong>g dynamic self-focus<strong>in</strong>g <strong>in</strong> strontium-bariumniobate crystals” and talk “Infrared photorefractive effects <strong>in</strong> ion-implanted SBNWaveguides”.• Spr<strong>in</strong>g Conference of the German Physical Society, Hamburg, Germany, March26 – 30, 2001; contribution: talk “Zeitliche Entwicklung photorefraktiver Solitonen<strong>in</strong> planaren SBN-Wellenleitern”.• <strong>Topic</strong>al Meet<strong>in</strong>g on Photorefractive Materials, Effects, and Devices, Delavan,USA, July 8 - 12, 2001; contribution: talk “A new method of electrical fix<strong>in</strong>g <strong>in</strong>strontium-barium niobate crystals”.Duration of the dissertation: 01.12.1998 – 07.03.2003Period of support <strong>in</strong> the College: --Supervisors: Prof. Dr. E. Krätzig, Prof. Dr. D. Kip111


Dipl.-Phys. Albert Wirp<strong>Topic</strong>: Optical Frequency Conversion <strong>in</strong> Oxide WaveguidesResults1. IntroductionGreen and blue laser sources are very <strong>in</strong>terest<strong>in</strong>g for many applications like datastorage, medical applications, pr<strong>in</strong>t<strong>in</strong>g, laser TV and material treatment.Semiconductor lasers of these wavelengths are rarely available. One solution isfrequency conversion, especially Second Harmonic Generation (SHG). Near <strong>in</strong>fraredlaser light is frequency doubled to blue and green light, respectively.Lithium niobate (LiNbO 3 ) and lithium tantalate (LiTaO 3 ) crystals are promis<strong>in</strong>gcandidates, because these materials are commercially available and they possesslarge nonl<strong>in</strong>ear coefficients. The transmission ranges are up to 320 nm for LiNbO 3and up to 270 nm for LiTaO 3 . To achieve SHG the phase match<strong>in</strong>g condition for thefundamental and the frequency doubled waves must be fulfilled. Due to the smallbirefr<strong>in</strong>gence, conventional phase match<strong>in</strong>g is not possible. Thus, a Quasi PhaseMatch<strong>in</strong>g (QPM) condition is needed. This is realised by periodic <strong>in</strong>version of theferroeletric doma<strong>in</strong>s. The period length of the doma<strong>in</strong> <strong>in</strong>version depends on thewavelength of the fundamental light. This means all wavelengths the crystal istransparent for are useable. Here, LiTaO 3 is favourably suited due to its broadtransparency range.The efficiency of the SHG depends on the square of the <strong>in</strong>tensity of the fundamentallight. In channel waveguides light is guided <strong>in</strong> a small area, which implies a high light<strong>in</strong>tensity over the whole conversion or waveguide length.Under illum<strong>in</strong>ation LiNbO 3 and LiTaO 3 show photorefractive <strong>in</strong>dex changes, whichhave to be m<strong>in</strong>imized for efficient SHG. This effect can be reduced by dop<strong>in</strong>g thecrystal with, e.g. Mg, Zn or by us<strong>in</strong>g stoichiometric crystals fabricated for example bya vapour transport equilibration technique.2. Simulations2.1 The WaveguidesThe number of modes guided <strong>in</strong> a waveguide fabricated by diffusion of metal ionsdepends on the refractive <strong>in</strong>dex profile and the wavelength. Important parameters arediffusion temperature and the time of <strong>in</strong>diffusion. Furthermore, the effective refractive<strong>in</strong>dex depends on temperature. To optimize these values the profiles of thewaveguides are simulated for several sets of parameters. Useful parameters are a50 nm-thick titanium layer <strong>in</strong> a 4 µm-wide stripe diffused <strong>in</strong>to LiNbO 3 for 20 hours at1000 °C. This results <strong>in</strong> an <strong>in</strong>dex profile shown <strong>in</strong> Fig. 1. The waveguide iss<strong>in</strong>lgemode for <strong>in</strong>frared light, but multimode for visible light. This is the best set ofparameters found so far.112


Fig 1:The <strong>in</strong>dex profile of a typicalwaveguide: a 4 µm-wide and 50 nmthicklayer of titanium is diffused <strong>in</strong>toLiNbO 3 for 20 hours at 1000 ° C.2.2 Temperature Dependence of the Refractive IndexThe refractive <strong>in</strong>dex varies with temperature due to the thermooptic effect. Thetemperature dependence can be described by a Sellmeier equation. Furthermore, an<strong>in</strong>crease of the crystal length due to an <strong>in</strong>creased temperature has to be taken <strong>in</strong>toaccount. The thermooptic effect proves to be the major effect, but the thermalexpansion is also measured.3. Experimental Methods3.1 Preparation of the WaveguidesThe crystals are cut from a 0.5 mm-thick wafer (z-cut orientation) to pieces ofapproximately 8 x 10 mm 2 . The crystals are carefully cleaned and evapored withlayers of 50 nm titanium. The whole samples are covered with photoresist and stripesare formed us<strong>in</strong>g lithographic techniques. The uncovered titanium is etched with anappropriate acid and the photoresist is removed afterwords, too. Then the titanium isdiffused <strong>in</strong>to the crystal for 20 hours at 1000 °C and 1250 °C for LiNbO 3 and LiTaO 3 ,respectively. F<strong>in</strong>ally, the front and rear faces of the waveguides are polished tooptical quality. For this step a glass plate is clambed onto the crystal to get a sharpand rectangular edge, to allow endface-coupl<strong>in</strong>g <strong>in</strong>to the 10 µm-thick waveguides.3.2 Fabry-Perot InterferometerThe temperature dependence of the refractive <strong>in</strong>dex of our waveguide samples ismeasured with a fabry-perot <strong>in</strong>terferometer and the results are compared with theory.This is necessary to dist<strong>in</strong>guish between thermal refractive-<strong>in</strong>dex changes and light<strong>in</strong>ducedrefractive <strong>in</strong>dex changes due to the photorefractive effect. The experimentalsetup is shown <strong>in</strong> Fig. 2. Different wavelengths are used: 1064 nm of a Nd:YAGlaser,633 nm of a He-Ne laser and several l<strong>in</strong>es of an argon ion laser (different l<strong>in</strong>esfrom 514 nm to 456 nm). The light is coupled <strong>in</strong>to the waveguide by a microscopeobjective. The endface of the waveguide is imaged onto a photodetector. The crystalis mounted on a peltier element, which allows to vary the temperature between roomtemperature and 50 °C. Lower temperatures are not possible because of watercondensation on the crystal surface. An <strong>in</strong>terference pattern is formed by the113


transmitted beam and the beam which is reflected at the rear and at the front face ofthe waveguide. On both sides only a few percent of the <strong>in</strong>cident light is reflected, and<strong>in</strong>clud<strong>in</strong>g the effect of light damp<strong>in</strong>g <strong>in</strong> the waveguide only small modulation on alarge background <strong>in</strong>tensity is detected.Fig 2: Experimental setup. Thedetection of fabry perot <strong>in</strong>terferencesallows to determ<strong>in</strong>e thethermal expansion and thermaland light <strong>in</strong>duced refractive <strong>in</strong>dexchanges at different wavelength.4. Results and OutlookFigure 3 shows the fabry-perot <strong>in</strong>terferences at 1064 nm. The thermal expansion <strong>in</strong>this measurement is calculated to α = (1.1 ± 0.4) x 10 -5 K -1 . This is <strong>in</strong> good agreementwith the published value of α = 1.5 x 10 -5 K -1 [1]. The grow<strong>in</strong>g period length with<strong>in</strong>creas<strong>in</strong>g temperature is caused by an <strong>in</strong>creas<strong>in</strong>g temperature gradient <strong>in</strong>side thecrystal, because the temperature is measured directly at the peltier element.If the temperature is kept constant, one period of the oscillation corresponds to arefractive-<strong>in</strong>dex change of 4 x 10 -5 . This means that light-<strong>in</strong>duced refractive-<strong>in</strong>dexchanges as small as 2 x 10 -6 should be detectable with this fabry-perot<strong>in</strong>terferometer.In the future, light-<strong>in</strong>duced refractive-<strong>in</strong>dex changes will be <strong>in</strong>vestigated <strong>in</strong>waveguides with different lithium concentrations and dop<strong>in</strong>gs. Furthermore, thepol<strong>in</strong>g behaviour of these waveguides will be exam<strong>in</strong>ed.Fig 3: Transmitted <strong>in</strong>tensity vs. temperaturefor a wavelength of 1064nm. The fabry perot <strong>in</strong>terferencesare modulations on an offset.114


Literature:[1] Y. S. Kim and R. T. Smith, “Thermal expansion of lithium niobate s<strong>in</strong>gle crystals,”J. Appl. Phys. 40, 4637-4641 (1969).PublicationsJ. Imbrock, A. Wirp, D. Kip, E. Krätzig, and D. Berben, “Photorefractive properties oflithium and copper <strong>in</strong>-diffused lithium niobate crystals,” J. Opt. Soc. Am. B 19, 1822-1829 (2002)Attended lectures, conference visitsL<strong>in</strong>ear response theory (P. Hertel)The photorefractive nonl<strong>in</strong>earity (E. Krätzig and K. H. R<strong>in</strong>ghofer)Nonl<strong>in</strong>ear wave equations (H.-J. Schmidt)Sem<strong>in</strong>ar of the Graduate CollegeQuantum Optic School, Universities of Bonn and Potsdam, 02.04.- 12.04.2002Research staysUniversity of Bonn, Group of Prof. Buse, 03.08.2001University of Colone, “Institut für M<strong>in</strong>eralogie und Geochemie”, Group of PD Dr.Woike, 27.11.2001Duration of the dissertation: Start August 2001, term<strong>in</strong>ation expected July 2004Period of support <strong>in</strong> the College: 01.08.2001 – 31.12.2003Supervisors: Prof. Dr. D. Kip, Prof. Dr. E. Krätzig115


2. Auflistung aller Kollegiat(<strong>in</strong>n)enDoktorand(<strong>in</strong>n)enNameZeitpunkt bzw.voraussichtlicherZeitpunktder PromotionAlterbeiE<strong>in</strong>tritt<strong>in</strong> dasKollegZeitpunkt und Ortdes ersten berufsqualifizierendenAbschlussesDavid, Cal<strong>in</strong> September 04 25 Juni 99 <strong>in</strong> Klausenburg(Rumänien)Filippov, Oleg Oktober 04 23 Januar 99 <strong>in</strong> Moskau(Russland)Förderzeitraumim<strong>Graduiertenkolleg</strong>01.10.01 -31.12.0315.11.01 -31.12.03BetreuerWöhleckeR<strong>in</strong>ghofer,Gorkounov,KrätzigKapphanGoubaev, Airat Dezember 05 23 Juni 02 <strong>in</strong> Kazan 01.12.02 -31.12.03Geisler, Oktober 03 32 Juli 94 <strong>in</strong> Hannover -- SchürmannAndreasHomann, Felix März 04 29 August 94 <strong>in</strong> OsnabrückKislova, InnaRückkehr nachTwer (Krankheitdes Vaters)25 August 99 <strong>in</strong> Twer(Russland)Lap<strong>in</strong>e, Mikhail Oktober 04 25 Juni 97 <strong>in</strong> Moskau(Russland)Müller, Manfred Dezember 03 25 März 00 <strong>in</strong> OsnabrückPlenge, Jürgen Dezember 02 28 Juli 99 <strong>in</strong> OsnabrückRahe, Florian Dezember 03 25 Oktober 98 <strong>in</strong> OsnabrückShelokovskyy,PavloSvetogorova,ElenaNovember 04 24 Dezember 00 <strong>in</strong>Kharkiv (Ukra<strong>in</strong>e)August 04 21 Juni 01 <strong>in</strong> Moskau(Russland)Tunyagi, Arthur August 04 24 Juni 00 <strong>in</strong> Klausenburg(Rumänien)02.04.01 -31.12.0301.08.01 -31.10.0201.11.01 -31.12.0301.01.01 -31.12.0301.01.01 -31.12.0301.12.01 -31.12.0311.09.01 -31.12.0301.09.01 -31.12.03Ulex, Michael April 04 36 April 99 <strong>in</strong> Berl<strong>in</strong> 02.05.01 -31.12.03Wesner, Monika März 03 32 November 98 <strong>in</strong>OsnabrückWirp, Albert Juli 04 26 Juli 01 <strong>in</strong> Osnabrück01.08.01 -31.12.03Schmidt,Bärw<strong>in</strong>kel,SchnackKapphanR<strong>in</strong>ghofer,Gorkounov,BetzlerBuse-- Rühl, FleschKrätzigSchnack,Bärw<strong>in</strong>kel,SchmidtSchürmannBetzlerBetzler,Pankrath-- Krätzig,KipKip,Krätzig116


Postdoktorand(<strong>in</strong>n)enNameDr. Kamenov,VladimirProf. Dr. Schleberger,MarikaDr. Pramann,AxelZeitpunkt derPromotionAlter beiE<strong>in</strong>tritt<strong>in</strong> dasKollegZeitpunkt und Ortdes ersten berufsqualifizierendenAbschlussesOktober 00 28 Juli 95 <strong>in</strong> Rousse(Bulgarien)Förderzeitraumim<strong>Graduiertenkolleg</strong>01.01.01 -31.08.01Juni 93 35 Oktober 90 <strong>in</strong> Osnabrück01.01.01 -30.04.01Juli 00 34 Oktober 94 <strong>in</strong>Braunschweig15.11.01 -14.11.03BetreuerR<strong>in</strong>ghofer,KrätzigKrätzigRühl,Flesch3. Auswahl der Kollegiat(<strong>in</strong>n)enAlle 13 Stipendien wurden national und <strong>in</strong>ternational ausgeschrieben. Es g<strong>in</strong>gen <strong>in</strong>sgesamt82 Bewerbungen e<strong>in</strong>, darunter waren 8 <strong>in</strong>terne Bewerbungen und 15 Bewerbungenvon Frauen. Die Auswahl der Stipendiat(<strong>in</strong>n)en wurden von den e<strong>in</strong>zelnenProjektleitern unter Beachtung der Regeln der DFG vorgenommen, wobei häufig Kollegenzu Rate gezogen wurden. Zusätzlich wurden von der Mitgliederversammlung 3weitere Kollegiat(<strong>in</strong>n)en aufgenommen.Die <strong>in</strong>sgesamt 19 Kollegiat(<strong>in</strong>n)en (das Postdoktorandenstipendium wurde nache<strong>in</strong>ander3-mal vergeben, e<strong>in</strong> Doktorandenstipendium 2-mal) teilen sich wie folgt auf: 8<strong>in</strong>tern, 11 von außerhalb; 4 Frauen, 15 Männer; 10 Deutsche, 9 Ausländer.Weiter ist noch anzumerken, dass sich unter den <strong>in</strong>ternen Kollegiaten die beidenKandidaten (Plenge, Müller) bef<strong>in</strong>den, die <strong>in</strong> den Jahren 1999 und 2000 für die bestenStudienleistungen im Fachbereich Physik der Universität Osnabrück ausgezeichnetwurden.4. Durchführung des StudienprogrammsIm Antrag waren als Studienprogramm (zusätzlich zu den üblichen Veranstaltungendes Fachbereichs) e<strong>in</strong>e <strong>in</strong>tegrierte R<strong>in</strong>gvorlesung 'Nichtl<strong>in</strong>earitäten optischer Materialien',e<strong>in</strong> regelmäßig stattf<strong>in</strong>dendes Sem<strong>in</strong>ar und m<strong>in</strong>destens e<strong>in</strong>mal im Jahr e<strong>in</strong>Workshop vorgesehen. Diese Veranstaltungen s<strong>in</strong>d alle <strong>in</strong> der vorgesehenen Weise<strong>in</strong> englischer Sprache durchgeführt worden.Die R<strong>in</strong>gvorlesung erstreckt sich über 4 Semester und begann im WS 01/02, alsnahezu alle Stipendien vergeben waren. P. Hertel begann mit der E<strong>in</strong>führung 'L<strong>in</strong>earresponse theory'. Hier wurden zunächst die Grundlagen l<strong>in</strong>earer Theorien besprochen,e<strong>in</strong> Schwerpunkt lag jedoch auch auf der Erweiterung <strong>in</strong> Bezug auf nichtl<strong>in</strong>eareEffekte. Das Vorlesungsskriptum liegt als Anhang 1 im Teil 2 dieses Arbeits- undErgebnisberichtes bei. Im SS 02 folgte die Vorlesung 'The photorefractive nonl<strong>in</strong>earity'von E. Krätzig und K. R<strong>in</strong>ghofer. Die Grundlagen der Photorefraktion wurden vone<strong>in</strong>em experimentell und e<strong>in</strong>em theoretisch arbeitendem Physiker beleuchtet. Wichti-117


ge Experimente wurden von Hilfskräften vorbereitet und <strong>in</strong> den Forschungslaborsden Kollegiat(<strong>in</strong>n)en vorgeführt. Das Skriptum ist <strong>in</strong> Anlage 2 im Teil 2 dieses Berichtszu f<strong>in</strong>den. Im WS 02/03 behandelte H.-J. Schmidt 'Nonl<strong>in</strong>ear wave equations'.Nach e<strong>in</strong>em Überblick standen solitäre Lösungen <strong>in</strong> verschiedenen Bereichen im Mittelpunkt,z. B. <strong>in</strong> der Hydrodynamik, der nichtl<strong>in</strong>earen Optik oder der Plasmaphysik.In Anlage 3 ist das Skriptum aufgeführt. Im SS 03 werden K. Betzler, M. Imlau undM. Wöhlecke über ’Frequency conversion and wave mix<strong>in</strong>g’ vortragen.Weiter haben wir den Kollegiat(<strong>in</strong>n)en noch folgende spezielle Veranstaltungen angeboten:Writer's Workshop (P. Hertel) und Graphic Workshop (K. Betzler).Das Sem<strong>in</strong>ar des <strong>Graduiertenkolleg</strong>s startete im SS 01 und wurde regelmäßig weitergeführt.Kollegiat(<strong>in</strong>n)en, Gäste und Betreuer stellten ihre Ergebnisse vor. Die Sem<strong>in</strong>arprogrammeliegen als Anhang 4 bei. Neben diesem Hauptsem<strong>in</strong>ar gab es nochzahlreiche Sem<strong>in</strong>are kle<strong>in</strong>erer Gruppen und Arbeitsbesprechungen.Bisher wurden 3 Workshops zu Kernfragen des <strong>Graduiertenkolleg</strong>s durchgeführt.Zahlreiche auswärtige Gäste nahmen teil. Die Themen der Workshops lauteten:'Photorefractive Nonl<strong>in</strong>earities' (04. – 05.10.01), 'Strontium-Barium-Niobate (SBN) – atypical relaxor?' (06.05.02) und 'SBN: Crystal Growth and Details of the Structure'(01.07.02). E<strong>in</strong>zelheiten s<strong>in</strong>d aus Anhang 5 zu ersehen. – Im SS 03 ist e<strong>in</strong> Sonderkolloquium<strong>in</strong> Memoriam Klaus R<strong>in</strong>ghofer geplant.5. Angaben zur Vergabe der Koord<strong>in</strong>ationsmittelDie Koord<strong>in</strong>ationsmittel wurden e<strong>in</strong>mal für Hilfskräfte e<strong>in</strong>gesetzt, die folgende Aufgabenfür das Kolleg durchführten: Hilfe beim Schreiben der Skripten, vor allem bei derErstellung der Bilder; E<strong>in</strong>richtung der Rechner; Vorbereitung von Laborexperimentenfür die Vorlesung; Durchführung numerischer Rechnungen. Dann wurde die halbeStelle der Sekretär<strong>in</strong> auf e<strong>in</strong>e dreiviertel Stelle aufgestockt. Kopierkosten des Kollegswurden bezahlt und Programme von allgeme<strong>in</strong>em Interesse beschafft.6. Interne Erfolgskontrolle des KollegsZunächst übernahm jeder Betreuer die Aufgabe, den Stand der Arbeiten se<strong>in</strong>er Kollegiat(<strong>in</strong>n)enständig zu verfolgen und gegebenenfalls steuernd e<strong>in</strong>zugreifen. Dazudienten auch regelmäßige Arbeitsbesprechungen. Weiter haben alle Kollegiat(<strong>in</strong>n)enm<strong>in</strong>destens e<strong>in</strong>mal im Jahr im Sem<strong>in</strong>ar des Kollegs über die Fortschritte vorgetragen.Diesen Vorträgen folgte stets e<strong>in</strong>e Diskussion, die weitere Schlüsse auf den Erfolgder Arbeiten zuließ. Der Gesamtstand des Kollegs wurde auch bei 8 Mitgliederversammlungenerörtert und überprüft.118


7. Gastwissenschaftlerprogramm7.1 GastvorträgeProf. Dr. V. Serov, Moskau State Univ., Russland“Some mathematical aspects of soliton stability” 23.07.01Prof. Dr. V. Vikhn<strong>in</strong>, Ioffe Inst. St. Petersburg, Russland“Report about IMF-10 Meet<strong>in</strong>g results and recent theoreticaldevelopments <strong>in</strong> the field of defects <strong>in</strong> oxidic crystals” 10.09.01Dr. V. Matusevich, Univ. Jena“Application of wave mix<strong>in</strong>g processes <strong>in</strong> BCT” 04.10.01Prof. Dr. C. Denz, TU Darmstadt“Storage of volume holograms <strong>in</strong> photorefractive materials” 04.10.01Prof. Dr. W. Lange, Univ. Münster“What can we learn from spontaneous opticalpatterns and from localized <strong>in</strong> atomic vapors?” 04.10.01Dr. A. Kießl<strong>in</strong>g, Univ. Jena“Soliton-like structures <strong>in</strong> BTO” 04.10.01Prof. Dr. R. Kowarschik, Univ. Jena“Application of wave mix<strong>in</strong>g processes <strong>in</strong> BCT” 04.10.01Dr. M. Goulkov, Academy of Sciences, Kiev, Ukra<strong>in</strong>e“Nature and applications of light scatter<strong>in</strong>g <strong>in</strong>photorefractive crystals” 04.10.01Prof. Dr. R. Rupp, Univ. Wien“Holographic scatter<strong>in</strong>g: angular and spectral properties” 04.10.01Prof. Dr. M. P. Petrov, Ioffe Institute, St. Petersburg, RussiaNonl<strong>in</strong>ear <strong>in</strong>teractions and scatter<strong>in</strong>g of space charge waves 05.10.01Prof. Dr. T.Tschudi, Univ. Darmstadt“Novelty filters <strong>in</strong> photorefractive crystals” 05.10.01Prof. Dr. T. Volk, Institute of Crystallography, Moscow, RussiaFerroelectricity-driven holographic properties of RE-doped SBN 05.10.01Dr. U. Dörfler, Univ. Köln“Holographic studies of SBN doped with Ce and Cr” 19.10.01Dr. T. Granzow, Univ. Köln“Relaxor ferroelectrics: Ce-doped SBN as an example” 19.10.01PD Dr. T. Woike, Univ. Köln“Holographic scatter<strong>in</strong>g <strong>in</strong> SBN, LiNbO3:Fe and LiTaO3:Fe” 26.10.01Dr. A. Pramann, FU Berl<strong>in</strong>“Anion photoelectron spectroscopy of size-selectedbimetallic clusters <strong>in</strong> molecular beams” 29.10.01Prof. Dr. V. Serov, Moskau State Univ., Russland119


“Particular solutions of nonl<strong>in</strong>ear wave equations”and “Lie groups and the s<strong>in</strong>e-Gordon equation” 06.11.01Prof. Dr. J<strong>in</strong>gjun Xu, Nankai University Tianj<strong>in</strong>, P. R. Ch<strong>in</strong>a“Research at the Photonics Research Center at theNankai University Tianj<strong>in</strong>” 09.11.01Prof. Dr. B. Wellegehausen, Univ. Hannover“Generation of coherent VUV- and XUV-radiationby high <strong>in</strong>tensity laser-matter <strong>in</strong>teraction” 19.11.01Dr. M. Fally, Universität Wien“10 years neutron diffraction from light-<strong>in</strong>duced grat<strong>in</strong>gs“ 23.11.01Dr. E. Chamon<strong>in</strong>a, Oxford University, UK“Photorefractive scatter<strong>in</strong>g” 03.12.01Dr. M. Ellaban, Universität Wien„Holographic scatter<strong>in</strong>g <strong>in</strong> LiNbO 3 “ 14.12.01Prof. Dr. L. Wöste, Freie Universität Berl<strong>in</strong>“Perspectives of femtosecond spectroscopy:from clusters to clouds” 28.01.02Prof. Dr. V. Serov, Moskau, Russland“Some mathematical results of nonl<strong>in</strong>ear wave guid<strong>in</strong>g structures”and ”Nonl<strong>in</strong>ear evolution equations: elliptic solutions” 28./29.1.02Prof. Dr. M. P. Petrov, Ioffe Institute St. Petersburg, Russland“Overall rectification and second harmonic generationof space charge waves” 08.04.02Prof. Dr. W. Schmahl, Univ. Bochum“Elements of the Landau theory of phase transitions” 06.05.02Dr. T. Granzow, Univ. Köln“Experimental overview of relaxor-type properties of SBN” 06.05.02Prof. Dr. W. Kleemann, Univ. Duisburg“Disordered polar systems-an overview of concepts” 06.05.02PD Dr. M. Flörsheimer, Univ. Karlsruhe“Second-harmonic and sum frequency imag<strong>in</strong>g of<strong>in</strong>terfaces <strong>in</strong> materials science, biophysics andenvironmental geochemistry” 13.05.02Prof. Dr. N. Hansen, Univ. Henri Poivcare, Nancy, Frankreich“Crystal structure and electron density distributionfrom Bragg scatter<strong>in</strong>g-What can be learned <strong>in</strong>general and what about SBN” 01.07.02Dr. V. Petricek, Academy of Sciences, Prag, Tschechien“Determ<strong>in</strong>ation of the Modulated Structure of SBN” 01.07.02Dr. J. Schefer, Lab. for Neutron Scatter<strong>in</strong>g, ETHZ & PSI, Vill<strong>in</strong>gen“Structure measurements of SBN by neutrons” 01.07.02120


Prof. Dr. V. Serov, Moskau State Univ., Russland„Appoximative solutions of nonl<strong>in</strong>ear <strong>in</strong>tegral equationsvia iteration procedure" 22.07.02Prof. Dr. Smirnov Moskau State Univ., Russland"Propagation of Electromagnetic Waves <strong>in</strong> OpenCyl<strong>in</strong>drical Waveguides with Nonl<strong>in</strong>ear Media" 22.07.02Dr. M. Goulkov, Academy of Sciences, Kiev, Ukra<strong>in</strong>e“Insight <strong>in</strong>to the nature of light-<strong>in</strong>duced scatter<strong>in</strong>g <strong>in</strong>photorefractive crystals with dom<strong>in</strong>at<strong>in</strong>g local response” 26.07.02Prof. Dr. S. Odoulov, Academy of Sciences, Kiev, Ukra<strong>in</strong>e“Photorefraction <strong>in</strong> periodically poled lithium niobate” 02.08.02Dr. Boris Sturmann, Academy of Sciences, Novosibirsk, Russland"S<strong>in</strong>gular nonl<strong>in</strong>ear response and soliton-like beam propagation <strong>in</strong>fast photorefractive crystals" 25.10.02PD Dr. T. Woike und Dipl.-Phys. P. Herth, Univ. Köln,“Holographische Streuung und Polaronen“ 13.11.02Prof. Dr. T. Volk, Academy of Sciences, Moskau, Russland“Polarization k<strong>in</strong>etics and the doma<strong>in</strong> structure of SBN crystals” 26.11.02PD Dr. M. Flörsheimer, Univ. Karlsruhe„Beobachtung der Domänenstruktur ferroelektrischer Kristalledurch nichtl<strong>in</strong>eare Mikroskopie“ 29.11.02Prof. Dr. V. Vikhn<strong>in</strong>, Ioffe Inst. St. Petersburg, Russland“Two types of CTVEs and two types of recomb<strong>in</strong>ationlum<strong>in</strong>escence <strong>in</strong> ferroelectric oxides” 17.12.02Prof. Dr. M. P. Petrov, Ioffe Institute, St. PetersburgNonl<strong>in</strong>ear Interactions of Space Charge Waves 17.01.03Dr. B. Briat, Laboratoire d’Optique Physique, ESPCI, ParisA comb<strong>in</strong>ed Optical/ Magneto-Optical / ODMR approach tothe identification of defects and charge transfer processes 24.01.03Dipl.-Phys. F. Meier, Universität Basel“Magnetische Moleküle und MQC“ 04.02.03121


7.2 GastaufenthalteDr. Alexey Kutsenko St. Petersburg, Russland 01.04.01 – 30.04.01Dr. Vladimir Shandarov Tomsk, Russland 07.04.01 – 27.05.01Prof. Dr. Michael Petrov St. Petersburg, Russland 23.09.01 – 15.12.01Prof. Dr. Michael Petrov St. Petersburg, Russland 01.04.02 – 14.05.02Dr. Boris Sturmann Novosibirsk, Russland 27.04.02 – 14.07.02Prof. Dr. Tatjana Volk Moskau, Russland 07.11.02 – 15.12.02Prof. Dr. Valeri S. Serov Moskau, Russland 04.12.02 – 11.12.02Prof. Dr. Vladimir Trepakov St. Petersburg, Russland 27.11.02 – 05.12.028. Zwischenbilanz des KollegsAus unserer Sicht s<strong>in</strong>d die im Antrag formulierten Ziele bisher voll erreicht worden. Inder Forschung haben wir bisher drei Themenkreise behandelt: Photorefraktive Nichtl<strong>in</strong>earitäten,Frequenzkonversion und Wellenmischen sowie Nichtl<strong>in</strong>earitäten bei derWellenleitung. Auf diesen Gebieten s<strong>in</strong>d <strong>in</strong> Osnabrück bereits umfangreiche Vorarbeitengeleistet worden. Die Grundausstattung, die vor allem im Rahmen der Programmedes Sonderforschungsbereichs 225 'Oxidische Kristalle für elektro- undmagnetooptische Anwendungen' beschafft wurde, konnten wir effizient nutzen.E<strong>in</strong> kohärentes, auf Integration ausgerichtetes Studienprogramm wird durchgeführt,um e<strong>in</strong>erseits e<strong>in</strong>er allzu e<strong>in</strong>seitigen Spezialisierung vorbeugen und den Blick für umfassendeZusammenhänge zu schärfen und um andererseits zu helfen, unnötig langePromotionszeiten zu verr<strong>in</strong>gern. Durch Zusammenarbeit mit Gastwissenschaftlern,durch Forschungsaufenthalte an anderen wissenschaftlichen E<strong>in</strong>richtungen unddurch die Teilnahme an Fachtagungen ist die Ausbildung der Kollegiat(<strong>in</strong>n)en vertieftsowie die Mobilität, die Diskussions- und die Präsentationsfähigkeit gefördert worden.Wir gehen davon aus, dass der überwiegende Teil der Kollegiat(<strong>in</strong>n)en die Promotion<strong>in</strong> drei Jahren abschließen wird.Der Fachbereich Physik hat e<strong>in</strong>e Graduiertenschule e<strong>in</strong>gerichtet. Dabei fällt dem<strong>Graduiertenkolleg</strong> 'Nichtl<strong>in</strong>earitäten optischer Materialien' e<strong>in</strong>e wesentliche Rolle zu.Die gewonnenen Erfahrungen sollen auch auf andere Bereiche übertragen werden.Die neue Promotionsordnung (gültig seit dem 26.11.2002) ist bereits stark von den<strong>Graduiertenkolleg</strong>s bee<strong>in</strong>flusst worden.122

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!