11.07.2015 Views

Evolutionary origins of novel conchologic growth patterns in tropical ...

Evolutionary origins of novel conchologic growth patterns in tropical ...

Evolutionary origins of novel conchologic growth patterns in tropical ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EVOLUTION & DEVELOPMENT 10:5, 642–656 (2008)<strong>Evolutionary</strong> <strong>orig<strong>in</strong>s</strong> <strong>of</strong> <strong>novel</strong> <strong>conchologic</strong> <strong>growth</strong> <strong>patterns</strong> <strong>in</strong> <strong>tropical</strong>American corbulid bivalvesDavid H. Goodw<strong>in</strong>, a, Laurie C. Anderson, b and Peter D. Roopnar<strong>in</strong>e ca Department <strong>of</strong> Geosciences, Denison University, Granville, OH 43023, USAb Department <strong>of</strong> Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USAc Department <strong>of</strong> Invertebrate Zoology and Geology, California Academy <strong>of</strong> Sciences, Golden Gate Park, San Francisco, CA94118, USA Author for correspondence (email: goodw<strong>in</strong>d@denison.edu)SUMMARY We conducted a comb<strong>in</strong>ed sclerochronologicand phylogenetic analysis to document <strong>patterns</strong> and rates <strong>of</strong>shell accretion <strong>in</strong> several subclades <strong>of</strong> related corbulids, andto explore the evolutionary <strong>orig<strong>in</strong>s</strong> <strong>of</strong> <strong>novel</strong> <strong>conchologic</strong>developmental <strong>patterns</strong>. We found three disparate <strong>patterns</strong><strong>of</strong> valve development <strong>in</strong> Neogene <strong>tropical</strong> American corbulidgenera. These <strong>patterns</strong> <strong>in</strong>clude <strong>growth</strong> through primarily radialaccretion along the sagittal plane, and two derivative <strong>patterns</strong>:one characterized by <strong>in</strong>itial deposition <strong>of</strong> a th<strong>in</strong> shell followedby valve thicken<strong>in</strong>g with little <strong>in</strong>crease <strong>in</strong> valve height, andanother produc<strong>in</strong>g a well-def<strong>in</strong>ed nepioconch through amarked change <strong>in</strong> the primary <strong>growth</strong> direction. Weconducted a species-level phylogenetic analysis <strong>of</strong> the taxasurveyed for <strong>growth</strong> <strong>patterns</strong>, focus<strong>in</strong>g on the([Bothrocorbula1Hexacorbula]1Caryocorbula) clade. Thephylogenetic distribution <strong>of</strong> shell <strong>growth</strong> <strong>patterns</strong> suggeststhat this clade is characterized by derivative <strong>patterns</strong> <strong>of</strong><strong>growth</strong>. Oxygen-isotope calibrated ontogenetic age estimates<strong>of</strong> species <strong>in</strong> the derived Bothrocorbula subclade furthersuggest that transitions from the ancestral radial (sagittal)<strong>growth</strong> pattern to a derived pattern <strong>of</strong> <strong>growth</strong> are a function <strong>of</strong>heterochrony (peramorphosis by acceleration). Thesef<strong>in</strong>d<strong>in</strong>gs are significant because they l<strong>in</strong>k previouslyobserved <strong>patterns</strong> <strong>of</strong> morphological constra<strong>in</strong>t with a specificevolutionary process, demonstrate how morphologicconstra<strong>in</strong>t and <strong>in</strong>novation can be <strong>in</strong>terrelated, and serve as amodel for understand<strong>in</strong>g the evolution <strong>of</strong> morphologic diversity<strong>in</strong> the clade as a whole. Furthermore, this study highlights theutility <strong>of</strong> sclerochronologic records as an important component<strong>of</strong> evolutionary developmental research on organisms withaccretionary skeletal <strong>growth</strong>.INTRODUCTIONThe diversity <strong>of</strong> evolutionary histories with<strong>in</strong> the Bivalvia isevident <strong>in</strong> the clade’s tremendously varied shell morphology,s<strong>of</strong>t-anatomy, larval ecology, trophic strategies, and habitats.Developmental processes are fundamental to that variation.Nevertheless, whereas a great deal is known regard<strong>in</strong>g thedevelopment <strong>of</strong> bivalve larvae and adult s<strong>of</strong>t anatomy (e.g.,Baker and Mann 1997; Le Pennec et al. 2003; Rupert et al.2003), the phylogenetic framework <strong>of</strong> postlarval shell developmentrema<strong>in</strong>s poorly understood.Various approaches have been used to understand the developmentand evolution <strong>of</strong> the bivalve shell. For example,m<strong>in</strong>eralogic and <strong>conchologic</strong> characters have been used aloneor <strong>in</strong> comb<strong>in</strong>ation with other character sets to generatehypotheses <strong>of</strong> general bivalve evolution (e.g., Waller 1998;Carter et al. 2000; Giribet and Wheeler 2002), as wellas phylogenetic hypotheses at lower taxonomic levels(e.g., Roopnar<strong>in</strong>e 2001a; Anderson and Roopnar<strong>in</strong>e 2003;642Anderson et al. 2006; Graf and Cumm<strong>in</strong>gs 2006; Mikkelsenet al. 2006). Morphometric techniques have been used to discrim<strong>in</strong>atespecies on the basis <strong>of</strong> shell variation (Roopnar<strong>in</strong>e1995; Anderson 1996; Roopnar<strong>in</strong>e and Vermeij 2000; Markoand Jackson 2001; Anderson and Roopnar<strong>in</strong>e 2005; Guralnick2005; Kosnik et al. 2006) and to exam<strong>in</strong>e <strong>patterns</strong> <strong>of</strong> shelldevelopment (Roopnar<strong>in</strong>e 2001b; Anderson and Roopnar<strong>in</strong>e2005; Tang and Pantel 2005).In addition to these traditional approaches, sclerochronologic<strong>in</strong>vestigations have been used effectively to determ<strong>in</strong>e<strong>patterns</strong> <strong>of</strong> shell <strong>growth</strong>, as well as other features <strong>of</strong> bivalvelife-histories (Jones and Gould 1999; Goodw<strong>in</strong> et al. 2001;Buick and Ivany 2004; Scho¨ne et al. 2006b). Sclerochronology,the m<strong>in</strong>eralogic equivalent <strong>of</strong> dendrochronology, isthe study <strong>of</strong> physical and chemical variations <strong>in</strong> the skeletons<strong>of</strong> organisms with accretionary <strong>growth</strong> (e.g., Wefer andBerger 1991). Traditionally, sclerochronologic <strong>in</strong>vestigationshave focused on paleoenvironmental and paleoecologicquestions (e.g., Jones and Allmon 1995; Goodw<strong>in</strong> et al.& 2008 The Author(s)Journal compilation & 2008 Wiley Periodicals, Inc.


644 EVOLUTION&DEVELOPMENT Vol. 10, No. 5, September^October 2008Before isotopic sampl<strong>in</strong>g, fossil specimens were subjected torigorous diagenetic screen<strong>in</strong>g to test for secondary m<strong>in</strong>eralogic alteration,which could cause systematic changes <strong>in</strong> the primaryisotopic composition <strong>of</strong> shell carbonate (See Support<strong>in</strong>g Information:Diagenetic Screen<strong>in</strong>g). Unaltered carbonate samples weresubsequently collected from thick-sections us<strong>in</strong>g either po<strong>in</strong>t-sampl<strong>in</strong>gor micromill<strong>in</strong>g techniques. Po<strong>in</strong>t-samples (50–100 mg) weretaken from the outermost shell layer us<strong>in</strong>g a 300-mm diameter drillbit (see Goodw<strong>in</strong> et al. 2001). Micromilled samples (20–100 mg)were collected us<strong>in</strong>g a computer-controlled X–Y–Z motorizedmicrodrill (Dettman and Lohmann 1995). All carbonate isotopicanalyses were performed on a F<strong>in</strong>nigan MAT 252 mass spectrometerequipped with a Kiel III automated sampl<strong>in</strong>g device (Department<strong>of</strong> Geosciences, University <strong>of</strong> Arizona). Samples were reactedwith 100% orthophosphoric acid at 701C. Repeated measurement<strong>of</strong> standard carbonates resulted <strong>in</strong> standard deviations <strong>of</strong> 0.08%.Results are presented <strong>in</strong> permil notation with respect to the VPDBcarbonate standard.Phylogenetic analysisWe conducted a species-level phylogenetic analysis, focus<strong>in</strong>g onrelationships with<strong>in</strong> Bothrocorbula1Hexacorbula (see Andersonand Roopnar<strong>in</strong>e 2003). Also <strong>in</strong>cluded <strong>in</strong> the <strong>in</strong>group were fiverepresentatives <strong>of</strong> <strong>tropical</strong> American Caryocorbula; the westernPacific Caryocorbula zelandica (placed <strong>in</strong> Anisocorbula by a number<strong>of</strong> workers) and Notocorbula vicaria; the eastern Atlantic Corbulasulcata and Bicorbula gallica; the western Atlantic Lenticorbula?idonea (placed <strong>in</strong> Bicorbula by previous workers); and the <strong>tropical</strong>American Corbula gatunensis and C. speciosa (Table S1). In ananalysis comb<strong>in</strong><strong>in</strong>g <strong>conchologic</strong> and anatomic characters, thesegenera form a subclade with Bothrocorbula1Hexacorbula with<strong>in</strong>the Corbulidae (L. C. Anderson, unpublished data). In addition, aMiocene species from Venezuela (Hexacorbula? sp.), with morphologicsimilarities to both Hexacorbula and Caryocorbula, was<strong>in</strong>cluded <strong>in</strong> the <strong>in</strong>group. The 20 <strong>in</strong>group species represent 13–19%<strong>of</strong> estimated total species diversity for the <strong>in</strong>group genera (TableS3), although most <strong>of</strong> this diversity (65–67%) is with<strong>in</strong> Caryocorbula.InCaryocorbula, species are typically dist<strong>in</strong>guished onthe basis <strong>of</strong> subtle differences <strong>in</strong> valve shape and size, provid<strong>in</strong>g fewdiscrete characters for cod<strong>in</strong>g, especially when counfounded by<strong>in</strong>traspecific and ontogenetic variation. Nevertheless, charactersused <strong>in</strong> the phylogenetic analysis are conservative across <strong>in</strong>dividualswith<strong>in</strong> species for the genera exam<strong>in</strong>ed. Two corbulid species thatfall outside the selected <strong>in</strong>group, Juliacorbula scutata and Panamicorbulaventricosa (Anderson and Roopnar<strong>in</strong>e 2003; Andersonet al. 2006), were designated as outgroup taxa.Sixty-n<strong>in</strong>e multi-state <strong>conchologic</strong> characters (<strong>of</strong> which n<strong>in</strong>ewere autapomorphies), describ<strong>in</strong>g aspects <strong>of</strong> external ornament,valve shape, h<strong>in</strong>ge, pallial l<strong>in</strong>e and s<strong>in</strong>us, and adductor musclescars, were used <strong>in</strong> the analysis (Supplementay Material: PhylogeneticAnalysis). Most characters used had discont<strong>in</strong>uous characterstates. For those describ<strong>in</strong>g the degree <strong>of</strong> expression <strong>of</strong> a trait, onlycharacters with states that we could consistently dist<strong>in</strong>guish because<strong>of</strong> morphologic gaps were reta<strong>in</strong>ed. In addition, we coded thelargest <strong>in</strong>dividuals available for species (assum<strong>in</strong>g these correspondto adult ontogenetic stages) to m<strong>in</strong>imize ontogenetic variability <strong>in</strong>character states. Phylogenetic analyses were performed us<strong>in</strong>gPAUP 4.0b10 (Sw<strong>of</strong>ford 2002). Characters were unorderedand given equal weight, and polarized us<strong>in</strong>g the outgroup taxa.Analyses were conducted us<strong>in</strong>g branch and bound searches andmaximum parsimony. Character state transformations were determ<strong>in</strong>edus<strong>in</strong>g both accelerated transformation (ACCTRAN) anddelayed transformation (DELTRAN). Both gave equivalent resultsfor phylogenetic <strong>patterns</strong> <strong>of</strong> <strong>growth</strong> forms, which are summarized<strong>in</strong> the results. We calculated Bremer decay <strong>in</strong>dices (Bremer 1988,1994; Ka¨llersjo¨ et al. 1992) and bootstrap values (1000 replicates)(Felsenste<strong>in</strong> 1988) with the branch and bound algorithm to characterizethe robustness <strong>of</strong> cladogram nodes.RESULTSPatterns <strong>of</strong> corbulid <strong>growth</strong>Three dist<strong>in</strong>ct <strong>patterns</strong> <strong>of</strong> shell development were observed,and the species Lenticorbula? idonea, Caryocorbula amethyst<strong>in</strong>a,andCorbula speciosa are used as exemplars <strong>in</strong> the follow<strong>in</strong>gsection.Lenticorbula? idonea exemplifies a mode <strong>of</strong> developmentcommon <strong>in</strong> heterodont bivalves where valve <strong>growth</strong> isdom<strong>in</strong>ated by commissural accretion <strong>of</strong> new material <strong>in</strong> aprimarily radial (sagittal) direction (here<strong>in</strong> referred to asGrowth Form 1, [GF1]). The result is a valve that does notsubstantially alter its direction <strong>of</strong> <strong>growth</strong>, or overall shape,dur<strong>in</strong>g ontogeny. For example, us<strong>in</strong>g <strong>growth</strong> l<strong>in</strong>es as aguide (Fig. 1A), the <strong>growth</strong> history <strong>of</strong> a L.? idonea valvewas arbitrarily divided <strong>in</strong>to four <strong>in</strong>tervals (Fig. 2A: T 1–4 ).Rotat<strong>in</strong>g and enlarg<strong>in</strong>g the cross-section at T 1 so that itcan be compared with the shapes at T 2–4 <strong>in</strong>dicates that itscross-sectional shape did not change substantially as itssize <strong>in</strong>creased. This developmental pattern likely accommodatesan <strong>in</strong>creas<strong>in</strong>g volume <strong>of</strong> <strong>in</strong>ternal s<strong>of</strong>t-tissues. Isotopicdata for the L.? idonea specimen (Fig. 1, A and B)<strong>in</strong>dicate that the <strong>in</strong>dividual was at least 8 years old at itstime <strong>of</strong> death: seven complete d 18 O cycles are present (Fig.1C: positive peak to positive peak) as is the latter portion<strong>of</strong> a cycle nearest to the umbo (sample nos. 1 and 2) andthe beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> a cycle at the commissure (sample nos.35–37).The second exemplar, Caryocorbula amethyst<strong>in</strong>a, possessesone <strong>of</strong> two types <strong>of</strong> development apparently derived fromGF1. Exam<strong>in</strong>ation <strong>of</strong> <strong>growth</strong> l<strong>in</strong>es (Fig. 3A) suggests that thisspecies <strong>in</strong>itially deposited a th<strong>in</strong>, high shell via radial accretion,followed by an <strong>in</strong>terval <strong>of</strong> valve thicken<strong>in</strong>g. We designatethis pattern as Growth Form 2 (GF2). Sampl<strong>in</strong>g only theouter shell layer <strong>of</strong> C. amethyst<strong>in</strong>a from umbo to commissure(as <strong>in</strong> L.? idonea) would likely fail to capture all annual <strong>in</strong>crements,as well as the complete range <strong>of</strong> d 18 O variability,due to time-averag<strong>in</strong>g <strong>in</strong> the later portions <strong>of</strong> shell <strong>growth</strong>where <strong>growth</strong> l<strong>in</strong>es are very closely spaced (Goodw<strong>in</strong> et al.


Goodw<strong>in</strong> et al.Evolution <strong>of</strong> <strong>novel</strong> <strong>conchologic</strong> <strong>growth</strong> <strong>patterns</strong> 645Fig. 1. Cross-sections and isotopic pr<strong>of</strong>ile fromLenticorbula? idonea. (A) Photograph <strong>of</strong> a po<strong>in</strong>tsampledshell. (B) L<strong>in</strong>e draw<strong>in</strong>g <strong>of</strong> 1A show<strong>in</strong>gthe position <strong>of</strong> 300-mm po<strong>in</strong>t-samples. The letteredarrows above the cross section correspondto the labeled peaks <strong>in</strong> the isotope pr<strong>of</strong>ile. (C)d 18 O pr<strong>of</strong>ile. This specimen was 8 years old atthe time <strong>of</strong> its death.2003). Therefore, we collected eight po<strong>in</strong>t samples from theumbo to the po<strong>in</strong>t where shell accretion changes direction(Fig. 3B: filled circles), and micromilled 43 samples from shellmaterial deposited dur<strong>in</strong>g later ontogenetic stages (Fig. 3B:shaded area). Results from the two sampl<strong>in</strong>g techniques werethen concatenated to construct a composite record <strong>of</strong> isotopicvariability through ontogeny (Fig. 3C). The pattern <strong>of</strong> isotopicvariation <strong>in</strong> the composite d 18 O pr<strong>of</strong>ile suggests this twophasedsampl<strong>in</strong>g strategy is a valid approach. That is, theannual d 18 O amplitude attenuation observed <strong>in</strong> the isotopepr<strong>of</strong>ile is similar to other modeled and observed pr<strong>of</strong>iles <strong>in</strong>which the complete ontogenetic series is obta<strong>in</strong>ed (see Goodw<strong>in</strong>et al. 2003 for a detailed discussion).The developmental pattern <strong>of</strong> C. amethyst<strong>in</strong>a clearlydeviates from GF1. The composite d 18 O pr<strong>of</strong>ile <strong>in</strong>dicatesthat this specimen was 3.5 years old at the time <strong>of</strong> its collection(Fig. 3C). The shell achieved 80% <strong>of</strong> its ultimateheight <strong>in</strong> the first year <strong>of</strong> the clam’s life (Fig. 3C: samples1–8). The subsequent 2.5 years <strong>of</strong> <strong>growth</strong> served to thickenthe valve, via a 901 shift<strong>in</strong>thedirection<strong>of</strong><strong>growth</strong>fromparallel (T 1 ) to perpendicular to the commissural plane(T 2–4 ). As a result, valve thickness at T 4 is proportionally


646 EVOLUTION&DEVELOPMENT Vol. 10, No. 5, September^October 2008greater than after its first year <strong>of</strong> <strong>growth</strong> (T 1 ) (Fig. 2B). Inother words, if the size <strong>of</strong> the shell at T 1 was scaled so that itwas the same thickness as the shell at T 4 ,theheight <strong>of</strong> theresult<strong>in</strong>g cross-section would be five times that <strong>of</strong> T 4 .Thisshift <strong>in</strong> the direction <strong>of</strong> shell accretion differs from thatcommonly seen <strong>in</strong> other bivalves (e.g., venerids), where shellaccretion at the commissure shifts <strong>in</strong>creas<strong>in</strong>gly to a directionperpendicular to the radial late <strong>in</strong> ontogeny (authors’ personalobservations), presumably when <strong>in</strong>ternal s<strong>of</strong>t-tissue<strong>growth</strong> has ceased. Instead, thicken<strong>in</strong>g is not restricted to thecommissural edge <strong>in</strong> C. amethyst<strong>in</strong>a, but occurs over theentire <strong>in</strong>ternal valve surface.Valves <strong>of</strong> the third exemplar, Corbula speciosa, exhibitthesecond type <strong>of</strong> development derived from GF1 (GrowthForm 3, [GF3]). The early portion <strong>of</strong> the postlarval shell isdist<strong>in</strong>ct from the rema<strong>in</strong>der <strong>of</strong> the valve, thus form<strong>in</strong>g a nepioconch(i.e., the earliest part <strong>of</strong> the dissoconch demarcatedfrom the rema<strong>in</strong>der by marked changes <strong>in</strong> <strong>growth</strong> direction,shape, sculpture, and/or color pattern) (Fig. 4, A and B). Thisis the only <strong>growth</strong> form which displays a dist<strong>in</strong>ct nepioconch.Isotope samples were micromilled from the trapezoidalshaded region on the cross section (Fig. 4B). Four completecycles (samples 5–36) as well as two partial cycles (samples 1–5, 36–38) are present on the isotope pr<strong>of</strong>ile (Fig. 4C), <strong>in</strong>dicat<strong>in</strong>ga lifespan <strong>of</strong> 5 years. Because samples 1–10 werecollected from the nepioconch (Fig. 4B), we can <strong>in</strong>fer that itwas accreted dur<strong>in</strong>g the animal’s first year (Fig. 4C). Subsequent<strong>growth</strong> served to thicken the shell. Unlike GF2, however,where thicken<strong>in</strong>g was relatively uniform across the <strong>in</strong>nervalve surface, C. speciosa preferentially added material to theventral marg<strong>in</strong> <strong>of</strong> the valve. Deposition <strong>of</strong> this ‘‘ventral process’’cont<strong>in</strong>ued throughout the rema<strong>in</strong>der <strong>of</strong> the animal’s life,significantly <strong>in</strong>creas<strong>in</strong>g the <strong>in</strong>flation and height <strong>of</strong> the valve.That is, if the cross-section <strong>of</strong> the nepoiconch is enlarged tothe height at T 4 , its maximum thickness would be approximatelyone-half that <strong>of</strong> the valve at T 4 (Fig.2C).Furthermore,the ratio <strong>of</strong> height to <strong>in</strong>flation is 2.6 for the nepioconch,but decreases to 2.1 at T 4 .Fig. 2. Schematic illustrations <strong>of</strong> corbulid <strong>growth</strong> <strong>patterns</strong>. (A)Growth Form 1 (i.e., Lenticorbula? idonea). (B) Growth Form 2(i.e., Caryocorbula amethyst<strong>in</strong>a). (C) Growth Form 3 (i.e., Corbulaspeciosa). In each case, development is divided <strong>in</strong>to four stages. Theontogenetically youngest <strong>growth</strong> material (T 1 )isshown<strong>in</strong>black.Successively older shell material (T 2 -T 4 ) is shown <strong>in</strong> progressivelylighter shades <strong>of</strong> grey.Phylogenetic resultsTwo major clades are identified with<strong>in</strong> the <strong>in</strong>group <strong>in</strong> ourphylogenetic results: one <strong>in</strong>cludes Caryocorbula spp. (CladeA), the other assigns Corbula spp.1Notocorbula vicaria assister to (Bothrocorbula spp.1Hexacorbula? sp.)1Hexacorbulaspp. (Clade B) (Fig. 5). The node def<strong>in</strong><strong>in</strong>g the <strong>in</strong>groupis not robust, although it is supported by characterstates that <strong>in</strong>clude modifications to concentric ribs, the presence<strong>of</strong> a pallial s<strong>in</strong>us (also seen <strong>in</strong> Bicorbula gallica), adductormuscle scars that are oriented at a low oblique angle to thecommissure and are more deeply embedded <strong>in</strong> the valve’s<strong>in</strong>ner surface, and derivations from GF1 (Tables S4 and S5).Lenticorbula? idonia, andB. gallica, which were identified as<strong>in</strong>group taxa <strong>in</strong> the analysis, form a subclade with one <strong>of</strong> thetwo outgroup taxa (P. ventricosa), although the topology <strong>of</strong>this subclade is not robust. The topology <strong>of</strong> Clade A alsois not robust, and only one character state strongly supports(CI 0.5) the Caryocorbula spp. node: ornament on theposterior slope is an extension <strong>of</strong> the ribs, rather than striae,anterior to the keel.Nodes with<strong>in</strong> the Corbula spp.1Notocorbula vicaria subclade<strong>of</strong> Clade B are relatively well supported, particularlythe basal node. A large number <strong>of</strong> character states def<strong>in</strong>e thesubclade, <strong>in</strong>clud<strong>in</strong>g a dist<strong>in</strong>ct chondrophore and card<strong>in</strong>altooth/socket, and a strongly <strong>in</strong>equivalved shell (the latteralso is present <strong>in</strong> L.? idonea and B. gallica). In the othersubclade <strong>of</strong> Clade B, Bothrocorbula spp. form a derived claderelative to Hexacorbula? sp. and Hexacorbula spp. Recallthat our phylogenetic analysis was performed specifically


Goodw<strong>in</strong> et al.Evolution <strong>of</strong> <strong>novel</strong> <strong>conchologic</strong> <strong>growth</strong> <strong>patterns</strong> 647Fig. 3. Cross-sections and isotopic pr<strong>of</strong>ile fromCaryocorbula amethyst<strong>in</strong>a. (A) Photograph <strong>of</strong> asampled shell. (B) L<strong>in</strong>e draw<strong>in</strong>g <strong>of</strong> 3A. Filledcircles mark the position <strong>of</strong> 300-mm d 18 Osamples.The shaded area <strong>in</strong>dicates the micromilledregion. S n and S n11 schematically show the relativeposition <strong>of</strong> two micromilled samples. Eachmicromilled sample was approximately 7 mmlong, 20 mm wide, and 225 mm deep. Becausemicromill<strong>in</strong>g began on the <strong>in</strong>ner surface <strong>of</strong> theshell and progressed toward the outer surface,samples were collected <strong>in</strong> reverse ontogeneticorder. The sequence <strong>of</strong> d 18 O values was, therefore,reversed to reconstruct the pattern <strong>of</strong> isotopicvariability. The lettered arrows above thecross section correspond to the labeled peaks <strong>in</strong>the isotope pr<strong>of</strong>ile. (C) Composite d 18 O pr<strong>of</strong>ile.This specimen was 3.5 years old at the time <strong>of</strong>its death.to exam<strong>in</strong>e evolutionary relationships with<strong>in</strong> Bothrocorbula1Hexacorbula.Our phylogenetic reconstruction<strong>in</strong>dicates, however, that Hexacorbula is paraphyletic withrespect to Bothrocorbula1Hexacorbula? sp. Character statesthat support the Bothrocorbula spp. subclade (CI 0.5)<strong>in</strong>clude modifications to valve shape; the presence <strong>of</strong> sharp,coarsely beaded radial striae on both valves; and a morerobust card<strong>in</strong>al tooth. The presence <strong>of</strong> a lunule, an <strong>in</strong>ferreddiagnostic trait <strong>of</strong> the genus, is <strong>in</strong>stead an apomorphy forBothrocorbula spp.1Hexacorbula? sp. Due to low supportwith<strong>in</strong> basal nodes <strong>of</strong> this subclade, we chose to limit ourcoupled sclerochronologic–phylogenetic exam<strong>in</strong>ation to thewell supported Bothrocorbula derived subclade (see <strong>Evolutionary</strong>Mechanisms with<strong>in</strong> Bothrocorbula).The topology <strong>of</strong> Bothrocorbula agrees well with the stratigraphicoccurrences <strong>of</strong> species with<strong>in</strong> the genus (Fig. S1 andTable S2). The two stratigraphically highest taxa, Pliocene B.vim<strong>in</strong>ea and Plio-Pleistocene B. wilcoxii, form the most derivedpair <strong>of</strong> sister taxa. This pair, <strong>in</strong> turn, forms a polytomywith the Mio-Pliocene B. sp.cf.B. vim<strong>in</strong>ea and middle MioceneB. radiatula. Bothrocorbula synarmostes is the mostbasal and oldest member <strong>of</strong> the clade (early Miocene). Allnodes with<strong>in</strong> this subclade are relatively robust (bootstrap 75 and/or Bremer 2) (Fig. 5), and topology relates t<strong>of</strong>urther modification <strong>of</strong> the h<strong>in</strong>ge <strong>in</strong> response to <strong>in</strong>creaseddevelopment <strong>of</strong> the lunular pit, changes <strong>in</strong> valve shape, and areduced number <strong>of</strong> radial striae toward the anterior <strong>in</strong> bothvalves.


648 EVOLUTION&DEVELOPMENT Vol. 10, No. 5, September^October 2008Fig. 4. Cross-sections and isotopic pr<strong>of</strong>ile fromCorbula speciosa. (A) Photograph <strong>of</strong> the micromilledshell. (B) L<strong>in</strong>e draw<strong>in</strong>g <strong>of</strong> 4A. Micromilledsamples, each approximately 2 mm long,40 mm wide, and 150 mm deep, were collectedfrom the shaded trapezoidal region on the crosssection. S n and S n11 schematically show the relativeposition <strong>of</strong> two samples. The lettered arrowsabove the cross-section mark theapproximate position <strong>of</strong> the positive isotopicpeaks observed <strong>in</strong> the d 18 O pr<strong>of</strong>ile. (C) d 18 Opr<strong>of</strong>ile. This specimen was 5 years old at thetime <strong>of</strong> its death.DISCUSSIONPhylogenetic analysis <strong>of</strong> developmental <strong>patterns</strong>The two outgroup taxa, Juliacorbula scutata and Panamicorbulaventricosa, possess GF1 (Fig. 5), with new shell materialprimarily added radially at the commissure. We <strong>in</strong>fer, therefore,that GF1 is the ancestral character state <strong>of</strong> the Corbulidae,a reasonable assumption given the ubiquity <strong>of</strong> this type<strong>of</strong> accretionary <strong>growth</strong> <strong>in</strong> the Heterodonta (authors’ personalobservations). The <strong>in</strong>group clade is characterized by deviationsfrom GF1 (Fig. 5). For Clade A, the transition is fromGF1 to GF2. Two <strong>of</strong> the taxa <strong>in</strong> this clade, Caryocorbulacaribaea and Caryocorbula barrattiana, were too small(10 mm average shell length) to confidently determ<strong>in</strong>e their


Goodw<strong>in</strong> et al.Evolution <strong>of</strong> <strong>novel</strong> <strong>conchologic</strong> <strong>growth</strong> <strong>patterns</strong> 649Fig. 5. Strict consensus <strong>of</strong> six most parsimonioustrees, us<strong>in</strong>g Juliacorbula scutata and Panamicorbulaventricosa as outgroup taxa.Bootstrap values and Bremmer Decay Indicesare shown above and below <strong>in</strong>dividual nodes,respectively. Growth form character state transitionsare shown <strong>in</strong> brackets on nodes, and<strong>growth</strong> form for each species is <strong>in</strong>dicated <strong>in</strong> parenthesesafter each taxon name. See text fordiscussion.<strong>growth</strong> form. Their cross-sectional shape, however, is similarto other Caryocorbula, suggest<strong>in</strong>g GF2 characterizes the entiresubclade.The distribution <strong>of</strong> <strong>growth</strong> forms <strong>in</strong> Clade B is more complex(Fig. 5). The basal node <strong>of</strong> the clade is characterized by atransition from GF1 to GF3. All the taxa <strong>in</strong> the Corbulaspp.1Notocorbula subclade are characterized by GF3. Thetwo basal-most taxa <strong>in</strong> the (Bothrocorbula spp.1Hexacorbula?1Hexacorbulaspp.) subclade, H. quirosana andH. hexachyma, also are characterized by GF3. The next mostderivedtaxon, Hexacorbula? sp. is characterized by GF2. Thischaracter state transition is somewhat surpris<strong>in</strong>g given that itis the only <strong>in</strong>stance where a transition between GF2 and GF3occurs. Nevertheless, it may reflect an evolutionary propensity<strong>of</strong> this sublcade to modify <strong>patterns</strong> <strong>of</strong> <strong>growth</strong>. For example,the node at the base <strong>of</strong> the Bothrocorbula spp. clade reversesfrom GF3 back to the ancestral GF1. Four <strong>of</strong> the five species<strong>in</strong> this genus possess GF1. B. sp.cf.B. vim<strong>in</strong>ea, <strong>in</strong>contrast,possesses a well-def<strong>in</strong>ed nepioconch, and is best characterizedby GF3. This character state transition therefore representsanother reversal, from GF1 to GF3.<strong>Evolutionary</strong> mechanisms with<strong>in</strong> BothrocorbulaIn document<strong>in</strong>g the phylogenetic distribution <strong>of</strong> <strong>growth</strong>forms, we focused on Bothrocorbula for several reasons. First,the genus is monophyletic and all known Bothrocorbula speciesare <strong>in</strong>cluded <strong>in</strong> our phylogenetic analysis (Fig. 5). Second,we have robust support for the phylogenetic topology <strong>of</strong> thissubclade. These phylogenetic criteria are critical to identify<strong>in</strong>gthe process(es) responsible for observed evolutionary <strong>patterns</strong>(F<strong>in</strong>k 1982). Third, the character reversal at the base <strong>of</strong> theclade suggests that deviation from GF1 is a synapomorphiccharacter state with<strong>in</strong> the Bothrocorbula, whereasGF3isanapomorphic character state <strong>in</strong> B. sp.cf.B. vim<strong>in</strong>ea. Thispatternis similar to that observed <strong>in</strong> <strong>tropical</strong> American corbulidsas a whole, where GF1 is symplesiomorphic and deviationsare synapomorphic. Thus, evaluation <strong>of</strong> evolutionary processes<strong>in</strong> Bothrocorbula serves as a model system <strong>in</strong> which to<strong>in</strong>vestigate evolutionary processes that may be operat<strong>in</strong>g <strong>in</strong>the larger clade. Fourth, species <strong>of</strong> Bothrocorbula tend to berelatively large, allow<strong>in</strong>g <strong>growth</strong> l<strong>in</strong>es to be easily identifiedunder low magnification, and micromilled at high resolution(Goodw<strong>in</strong> et al. 2003). F<strong>in</strong>ally, geographic and stratigraphicdistributions <strong>of</strong> Bothrocorbula span an <strong>in</strong>terval <strong>of</strong> environmentalchange <strong>in</strong> the <strong>tropical</strong> western Atlantic associated withthe emergence <strong>of</strong> the Isthmus <strong>of</strong> Panama and the closure <strong>of</strong>the Panama Seaway (Jackson et al. 1996; Coates et al. 2004).Thus, the potential exists to l<strong>in</strong>k evolutionary <strong>patterns</strong>observed <strong>in</strong> the fossil record with specific paleoenvironmentalchanges (e.g., Anderson 2001; O’Dea et al. 2007).To better understand the evolution <strong>of</strong> shell development <strong>in</strong>Bothrocorbula, we exam<strong>in</strong>ed the hypothesis that heterochronywas responsible for generat<strong>in</strong>g the distribution <strong>of</strong> <strong>growth</strong>forms with<strong>in</strong> the genus. Heterochrony, changes <strong>in</strong> tim<strong>in</strong>g orrate <strong>of</strong> development through ontogeny from an ancestor to adescendant (de Beer 1958), seems a likely controll<strong>in</strong>g mechanismbecause the <strong>in</strong>itial phases <strong>of</strong> both derivative <strong>growth</strong><strong>patterns</strong> resemble that <strong>of</strong> GF1 (i.e., primary radial accretion)(see Alberch et al. 1979). Failure to support the null hypothesisFi.e.,heterochrony did not occurFpermitsustosuggestthat heterochronic processes were responsible for morphologicevolution us<strong>in</strong>g the time, size, and shape frameworkdeveloped by Alberch et al. (1979). Failure to reject the nullhypothesis suggests that a mode <strong>of</strong> ontogenetic modificationother than heterochrony (e.g., heterotopy) may have been responsiblefor the distribution <strong>of</strong> <strong>growth</strong> forms <strong>in</strong> this clade(Webster and Zelditch 2005).Two criteria must be met to evaluate the role heterochronyplays <strong>in</strong> the morphologic evolution <strong>of</strong> a clade


650 EVOLUTION&DEVELOPMENT Vol. 10, No. 5, September^October 2008Fig. 6. Cross-sections <strong>of</strong> two species <strong>of</strong> Bothrocorbula.(A)B. sp. cf.B. vim<strong>in</strong>ea. The shaded area is the nepioconch and the stippled areamarks shell material deposited after the nepioconch. (B) Crosssection<strong>of</strong> the nepioconch from B. sp.cf.B. vim<strong>in</strong>ea. (C)Crosssection<strong>of</strong> an adult B. synarmostes. Note the similar shape <strong>of</strong> thenepioconch <strong>of</strong> the B. sp. cf. B. vim<strong>in</strong>ea cross-section (nepoiconch)to that <strong>of</strong> the adult B. synarmostes.(i.e., heterochronic <strong>patterns</strong> <strong>of</strong> paedomorphosis vs. peramorphosis),whereas a third, if met, will identify thespecific heterochronic process responsible for that pattern(see Roopnar<strong>in</strong>e 2001b for discussion). The first criterionrequires that a clear hypothesis <strong>of</strong> phylogenetic relationshipswith<strong>in</strong> a clade be available so that putative ancestor anddescendent taxa can be identified (F<strong>in</strong>k 1982). For Bothrocorbulawe have a hypothesis <strong>of</strong> evolutionary relationshipthat is robust and with low stratigraphic debt (Fig. 5; Fig.S1). In this hypothesis, B. synarmostes, with GF1, is thebasal-most and stratigraphically lowest taxon <strong>in</strong> Bothrocorbula,serv<strong>in</strong>g as a putative ancestor for other species<strong>in</strong> the genus.The second criterion, that ancestors and descendants haveco<strong>in</strong>cident morphologic (shape) histories through their respectivedevelopment (Roopnar<strong>in</strong>e 2001b), also can be demonstratedfor Bothrocorbula through three l<strong>in</strong>es <strong>of</strong> evidence.First, <strong>conchologic</strong> features, with characters describ<strong>in</strong>g traitsthat range from valve ornament to dentition, strongly supportthe monophyly <strong>of</strong> Bothrocorbula (see also Support<strong>in</strong>gInformation: Bothrocorbula species descriptions). Second,comb<strong>in</strong>ed <strong>in</strong>ternal and external landmarks from geometricmorphometric analysis <strong>in</strong>dicate that Bothrocorbula is dist<strong>in</strong>ctmorphologically <strong>in</strong> both shape and size from closely relatedtaxa, <strong>in</strong>clud<strong>in</strong>g Hexacorbula, Hexacorbula?, and Caryocorbula(Anderson and Roopnar<strong>in</strong>e 2005). Third, and most critical forour data on valve accretion <strong>patterns</strong>, the <strong>growth</strong> form present<strong>in</strong> B. sp.cf.B. vim<strong>in</strong>ea (GF3) recapitulates <strong>growth</strong> <strong>of</strong> theancestral B. synarmostes (GF1), as illustrated <strong>in</strong> Fig. 6. Specifically,the cross-section <strong>of</strong> a B.sp.cf.B. vim<strong>in</strong>ea nepioconch(Fig. 6A: shaded area; 6B) is remarkably similar to the crosssection<strong>of</strong> a putative adult B. synarmostes (Fig.6C),withvalve heights, thicknesses and <strong>in</strong>flation virtually identical.Furthermore, both are characterized by strong commarg<strong>in</strong>alridges on the valve exterior and weak reflection <strong>of</strong> these ridgeson the valve <strong>in</strong>terior. This similarity suggests a peramorphicheterochronic pattern underly<strong>in</strong>g the transition from GF1 toGF3 <strong>in</strong> Bothrocorbula (Alberch et al. 1979).The third criterion, which permits identification <strong>of</strong> heterochronicprocess, requires reliable estimates <strong>of</strong> ontogenetic age<strong>in</strong> order to identify changes <strong>in</strong> tim<strong>in</strong>g or rate <strong>of</strong> developmentbetween ancestor and descendent (Alberch et al. 1979; Jonesand Gould 1999; Roopnar<strong>in</strong>e 2001b). We established age estimatesthrough sclerochronologic analysis. Representatives<strong>of</strong> each <strong>of</strong> four Bothrocorbula species exam<strong>in</strong>ed were sampledto determ<strong>in</strong>e their ontogenetic age (Table S1). (For the fifthBothrocorbula species, B. vim<strong>in</strong>ea, we determ<strong>in</strong>ed its <strong>growth</strong>form but did not section valves due to a paucity <strong>of</strong> availablematerial.) To establish maximum ontogenetic ages, specimensselected for isotopic analysis were drawn from the largest sizeclass <strong>of</strong> each species. Micromilled pr<strong>of</strong>iles were chosen becausethey provide more complete records <strong>of</strong> d 18 O variability,and accord<strong>in</strong>gly more accurate age estimates, than po<strong>in</strong>tsampl<strong>in</strong>gapproaches (Goodw<strong>in</strong> et al. 2003). Nevertheless, thepo<strong>in</strong>t-sampled d 18 O pr<strong>of</strong>iles show similar <strong>patterns</strong> <strong>of</strong> variation(Fig. S2).Isotopic variation <strong>in</strong> B. synarmostes <strong>in</strong>dicates that the lifespan<strong>of</strong> this <strong>in</strong>dividual was approximately one year, likelyrepresent<strong>in</strong>g shell deposition from late w<strong>in</strong>ter/early spr<strong>in</strong>gthrough late fall/early w<strong>in</strong>ter (Fig. 7A). The s<strong>in</strong>usoidal pr<strong>of</strong>ile<strong>of</strong> B. radiatula d 18 O samples <strong>in</strong>dicates that this <strong>in</strong>dividual alsolived for approximately 1 year (Fig. 7B). Shell accretionprobably began <strong>in</strong> the late summer and cont<strong>in</strong>ued through thenext year, with death occurr<strong>in</strong>g late <strong>in</strong> the second summer.Similarly, analysis <strong>of</strong> B. wilcoxii suggests these animals livedfor approximately 1 year. Shell accretion likely began <strong>in</strong> themid- to late summer, cont<strong>in</strong>ued through the fall, w<strong>in</strong>ter and


Goodw<strong>in</strong> et al.Evolution <strong>of</strong> <strong>novel</strong> <strong>conchologic</strong> <strong>growth</strong> <strong>patterns</strong> 6511–16), followed by a rapid decl<strong>in</strong>e to approximately 2%(samples 17–22). This suggests rapid <strong>growth</strong> dur<strong>in</strong>g the w<strong>in</strong>termonths, followed by slower <strong>growth</strong> <strong>in</strong> the spr<strong>in</strong>g and earlysummer. Accord<strong>in</strong>gly, this <strong>in</strong>dividual lived for slightly lessthan one year. For this species, the first half <strong>of</strong> the d 18 Opr<strong>of</strong>ilerepresents material sampled from the nepioconch, <strong>in</strong>dicat<strong>in</strong>gthat the nepioconch is deposited over several months (i.e., lessthan a year).In summary, with<strong>in</strong> the Borthocorbula, GF1 is a synapomorphiccharacter state, while GF3 is an autapomorphiccharacter state <strong>in</strong> B. sp.cf.B. vim<strong>in</strong>ea (Fig. 5). The nepioconch<strong>of</strong> B. sp.cf.B. vim<strong>in</strong>ea isthesamesizeandshapeasadult shells <strong>of</strong> other Bothrocorbula species (i.e., peramorphic)(Fig. 6). F<strong>in</strong>ally, B. synarmostes, B. radiatula, andB. wilcoxiideposit their shell <strong>in</strong> approximately 1 year. In contrast, B. sp.cf. B. vim<strong>in</strong>ea, deposits its nepioconch <strong>in</strong> approximately halfthat time (Fig. 7; Fig. S2). These observations <strong>in</strong>dicate thatthe peramorphic pattern observed is a function <strong>of</strong> <strong>in</strong>creased<strong>growth</strong> rates <strong>in</strong> B. sp. cf. B. vim<strong>in</strong>ea. In other words, themorphological pattern is accomplished by acceleration (seeAlberch et al. 1979).The evolutionary orig<strong>in</strong> <strong>of</strong> shell material deposited afterthe nepioconch <strong>in</strong> B. sp.cf.B. vim<strong>in</strong>ea, however,rema<strong>in</strong>suncerta<strong>in</strong>. If the GF3 developmental mode evolved <strong>in</strong>dependentlywith<strong>in</strong> the Bothrocorbula clade, then this material (Fig.6A: stippled area) represents a <strong>novel</strong> morphology. As such,this expansion <strong>in</strong>to new morphospace would be best characterizedas a type <strong>of</strong> heterotopy (see Roopnar<strong>in</strong>e 2001b). If, onthe other hand, GF3 is plesiomorphic with<strong>in</strong> the greatercorbulid clade, then its expression would be peramorphic byhypermorphosis (Alberch et al. 1979). The latter explanationmay be more plausible because transitions between <strong>growth</strong>types are numerous with<strong>in</strong> the clade, <strong>in</strong>clud<strong>in</strong>g an identicalGF1 to GF3 transition at the node def<strong>in</strong><strong>in</strong>g Clade B.Fig. 7. Micromilled oxygen isotope pr<strong>of</strong>iles from specimens represent<strong>in</strong>gfour species <strong>of</strong> Bothrocorbula. The parenthetic numbers oneach graph refer to specimen number. See text for discussion.spr<strong>in</strong>g, and ceased the follow<strong>in</strong>g summer (Fig. 7C). Oxygenisotope analysis <strong>of</strong> B. spcf.B. vim<strong>in</strong>ea, unlike those from theother Bothrocorbula species, does not show well-developedenriched peaks (Fig. 7D). Rather, the pr<strong>of</strong>ile is characterizedby relatively constant values at approximately 0% (samples<strong>Evolutionary</strong> implicationsOntogenetic evolution with<strong>in</strong> the Corbulidae is a nexus <strong>of</strong>contra<strong>in</strong>ts and <strong>in</strong>novations. Whereas a previous study (Andersonand Roopnar<strong>in</strong>e 2005) documented constra<strong>in</strong>ed <strong>patterns</strong><strong>of</strong> morphometric allometry throughout the generaCaryocorbula, Bothrocorbula, and Hexacorbula, this studysuggests that modes <strong>of</strong> shell accretion are quite labile. Thesetwo phenomena, however, may be related. Specifically, theubiquity <strong>of</strong> GF2 with<strong>in</strong> Caryocorbula expla<strong>in</strong>s the constra<strong>in</strong>edpattern <strong>of</strong> <strong>in</strong>terspecific allometry present <strong>in</strong> Neogene Caribbeanmembers <strong>of</strong> the genus. If valves grow quickly to nearmaximumheight before <strong>in</strong>ternal thicken<strong>in</strong>g, the shape <strong>of</strong> thevalve outl<strong>in</strong>e parallel to the commissure will vary m<strong>in</strong>imallywith age and valve size, especially <strong>in</strong> fossil assemblages wherethicker-shelled specimens could be preferentially preserved.The result is that both the adult valve outl<strong>in</strong>e and the positions<strong>of</strong> <strong>in</strong>ternal features are fixed early <strong>in</strong> postlarval ontog-


652 EVOLUTION & DEVELOPMENT Vol. 10, No. 5, September^October 2008eny, and rema<strong>in</strong> fixed even as the direction <strong>of</strong> valve accretionchanges. This f<strong>in</strong>d<strong>in</strong>g is particularly significant because it l<strong>in</strong>ks<strong>patterns</strong> <strong>of</strong> morphological constra<strong>in</strong>t with a specific evolutionaryprocess (heterochrony), and serves as a model forunderstand<strong>in</strong>g the evolution <strong>of</strong> morphologic diversity <strong>in</strong> theclade a whole. More fundamentally, it suggests that <strong>patterns</strong><strong>of</strong> developmental and morphological constra<strong>in</strong>t are not necessarilyexclusive or <strong>in</strong>dependent <strong>of</strong> processes which permit orpromote evolutionary change.CONCLUSIONSThe comb<strong>in</strong>ed sclerochronologic/phylogenetic approach used<strong>in</strong> this study reveals a wealth <strong>of</strong> developmental and evolutionary<strong>in</strong>formation retrievable from the bivalve shell. Corbulidsdemonstrate <strong>patterns</strong> <strong>of</strong> bivalve shell accretion that aremore diverse than generally considered to occur. These <strong>patterns</strong><strong>in</strong>clude development by primarily radial accretion alongthe sagittal plane (GF1), and two derivative <strong>patterns</strong>: onecharacterized by <strong>in</strong>itial deposition <strong>of</strong> a th<strong>in</strong> shell followed byvalve thicken<strong>in</strong>g with little <strong>in</strong>crease <strong>in</strong> valve size (GF2), andthe other produc<strong>in</strong>g a well-def<strong>in</strong>ed nepioconch through amarked change <strong>in</strong> the primary <strong>growth</strong> direction (GF3). Ourphylogenetic results identified two major clades with<strong>in</strong> the <strong>in</strong>group:one <strong>in</strong>cludes Caryocorbula spp., the other assigns Corbulaspp.1Notocorbula vicaria as sister to (Bothrocorbulaspp.1Hexacorbula? sp.)1Hexacorbula spp. The phylogeneticdistribution <strong>of</strong> <strong>growth</strong> forms suggests that GF1 is the ancestralcharacter state, while the two <strong>in</strong>group clades are characterizedby deviations from the ancestral state. The results <strong>of</strong>our <strong>in</strong>vestigation <strong>of</strong> Bothrocorbula <strong>in</strong>dicate that this diversityis, <strong>in</strong> part, produced by heterochronic modifications <strong>of</strong> developmentvia peramorphosis. Specifically, the nepiochonch <strong>of</strong>B. sp.cf.B. vim<strong>in</strong>ea is a product <strong>of</strong> acceleration, and its postnepionicdevelopment is a product <strong>of</strong> hypermorphosis. Documentation<strong>of</strong> various <strong>growth</strong> forms may also help expla<strong>in</strong>previously recognized <strong>patterns</strong> <strong>of</strong> morphological constra<strong>in</strong>t <strong>in</strong><strong>tropical</strong> American corbulids. F<strong>in</strong>ally, these <strong>growth</strong> forms apparentlyare widespread throughout the clade, and are present<strong>in</strong> both fossil (e.g., Caestocorbula costata; Wrigley 1946) andmodern (e.g., Solidicorbula) taxa. Furthermore, multiphased<strong>patterns</strong> <strong>of</strong> shell accretion have also been observed <strong>in</strong> theVeneridae (e.g., Callocardia nitidula; Wrigley 1946). Together,these observations suggest that complex <strong>patterns</strong> <strong>of</strong> valve accretionare relatively common <strong>in</strong> heterodont bivalves. Thisstudy, therefore, serves as a model for understand<strong>in</strong>g the evolution<strong>of</strong> disparity <strong>in</strong> this diverse and long-lived taxon.AcknowledgmentsWe are <strong>in</strong>debted to Debby Andreadis, Bill Ausich, Ken Bixler, DavidDettman, Steve Faurie, Ray Ferrel, Karl Flessa, Matt Kretchmar,Lisa Park and Wanda LeBlanc for assistance at various stages <strong>of</strong> thisproject. Thanks also to two anonymous reviewers whose commentsand constructive criticisms improved an earlier version <strong>of</strong> the manuscript.ESEM analysis was conducted at the The University <strong>of</strong> AkronEnvironmental Scann<strong>in</strong>g Electron Microscopy Laboratory (NSFEAR#0320898). A number <strong>of</strong> <strong>in</strong>dividuals and <strong>in</strong>stitutions generouslylent samples and specimens, and we thank P. Jung, R. Pachaud, andA. He<strong>in</strong>z, Naturhistorisches Museum Basel; W.D. Allmon, PaleontologicalResearch Institution; A.J. Bald<strong>in</strong>ger, Museum <strong>of</strong> ComparativeZoology, Harvard University; R. Portell, Florida Museum <strong>of</strong>Natural History; B. Hussa<strong>in</strong>i, American Museum <strong>of</strong> Natural History;P. Valentich Scott, Santa Barbara Museum <strong>of</strong> Natural History;I.Loch,AustralianMuseum;andE.Vokes.WededicatethispapertothelateStephenJayGould.REFERENCESAdamkewicz, S. L., Harasewych, M. G., Blake, J., Saudek, D., and Bult,C. J. 1997. A molecular phylogeny <strong>of</strong> the bivalve mollusks. Mol. Biol.Evol. 14: 619–629.Alberch,P.,Gould,S.J.,Oster,G.F.,andWake,D.B.1979.Sizeandshape <strong>in</strong> ontogeny and phylogeny. Paleobiology 5: 296–317.Anderson, L. C. 1996. Neogene paleontology <strong>in</strong> the northern Dom<strong>in</strong>icanRepublic 16. The family Corbulidae (Mollusca: Bivalvia). Bull. Am.Paleontol. 110: 5–34.Anderson, L. C. 2001. Temporal and geographic size trends <strong>in</strong> NeogeneCorbulidae (Bivalvia) <strong>of</strong> <strong>tropical</strong> America: us<strong>in</strong>g environmental sensitivityto decipher causes <strong>of</strong> morphologic trends. Palaeogeogr., Palaeoclimatol.,Palaeoecol. 166: 101–120.Anderson, L. C., Hartmen, J. H., and Wessel<strong>in</strong>gh, F. 2006. Close evolutionaryaff<strong>in</strong>ities between freshwater corbulid bivalves from the Neogene<strong>of</strong> Western Amazonia and Paleogene <strong>of</strong> the Northern Great Pla<strong>in</strong>s,USA. J. South Am. Earth Sci. 21: 28–48.Anderson, L. C., and Roopnar<strong>in</strong>e, P. D. 2003. Evolution and phylogeneticrelationships <strong>of</strong> Neogene Corbulidae (Bivalvia; Myoidea) <strong>of</strong> <strong>tropical</strong>America. J. Paleontol. 77: 1086–1102.Anderson, L. C., and Roopnar<strong>in</strong>e, P. D. 2005. Role <strong>of</strong> constra<strong>in</strong>t andselection <strong>in</strong> the morphologic evolution <strong>of</strong> Caryocorbula (Mollusca: Corbulidae)from the Caribbean Neogene. Paleontol. Electron. 8: 18 pp.Aubry, M. P. 1993. Calcareous nann<strong>of</strong>ossil stratigraphy <strong>of</strong> the Neogeneformations <strong>of</strong> eastern Jamaica. In R. M. Wright and E. R. Rob<strong>in</strong>son(eds.). Biostratigraphy <strong>of</strong> Jamaica, vol. 182. Geological Society <strong>of</strong>America, Memoir, pp. 131–178.Baker, P., and Mann, R. 1997. The postlarval phase <strong>of</strong> bivalve mollusks: areview <strong>of</strong> functional ecology and new records <strong>of</strong> postlarval drift<strong>in</strong>g <strong>of</strong>Chesapeake Bay bivalves. Bull.Mar.Sci.61: 409–430.Bathurst,R.G.C.1975.Carbonate Sediments and their Diagenesis. 2nd Ed.Elsevier, New York.Bemis, B. E., and Geary, D. H. 1996. The usefulness <strong>of</strong> bivalve stableisotope pr<strong>of</strong>iles as environmental <strong>in</strong>dicators: data from the eastern PacificOcean and the southern Caribbean Sea. Palaios 11: 328–339.Bernard, F. 1895. Premie` re note sur le de` veloppement et la morphologie dela coquille chez les lamellibranches. Bull. Soc. Ge´ol. France, 3rd ser. 23:104–154.Bernard, F. 1897. Quatrie` me et dernie´re note sur le de´veloppement et lamorphologie de la coquille chez les lamellibranches. Bull. Soc. Ge´ol.France, 3rd ser. 25: 559–566.Bremer, K. 1988. The limits <strong>of</strong> am<strong>in</strong>o acid sequence data <strong>in</strong> angiospermphylogenetic reconstruction. Evolution 42: 795–803.Bremer, K. 1994. Branch support and tree stability. Cladistics 10: 295–304.Buick, D. P., and Ivany, L. C. 2004. 100 years <strong>in</strong> the dark: extreme longevity<strong>of</strong> Eocene bivalves from Antarctica. Geology 32: 921–924.Campbell, D. C. 2000. Molecular evidence on the evolution <strong>of</strong> the Bivalvia.InE.M.Harper,J.D.Taylor,andJ.A.Crame(eds.).The <strong>Evolutionary</strong>Biology <strong>of</strong> the Bivalvia. volume 177. Geological Society <strong>of</strong> London SpecialPublications, London, pp. 31–46.


Goodw<strong>in</strong> et al.Canapa, A., Barucca, M., Mar<strong>in</strong>elli, A., and Olmo, E. 2001. A molecularphylogeny <strong>of</strong> Heterodonta (Bivalvia) based on small ribosomal subunitRNA sequences. Mol. Phylogenet. Evol. 21: 156–161.Carter,J.G.,Campbell,D.C.,andCampbell,M.R.2000.Cladisticperspectiveson early bivalve evolution.InE.M.Harper,J.D.Taylor,andJ. A. Crame (eds.). The <strong>Evolutionary</strong> Biology <strong>of</strong> the Bivalvia. volume 177.Geological Society Special Publications, London, pp. 47–79.Coan,E.V.2002.TheEasternpacificrecentspecies<strong>of</strong>theCorbulidae(Bivalvia). Malacologia 44: 17–105.Coates,A.G.,Coll<strong>in</strong>s,L.S.,Aubry,M.-P.,andBerggren,W.A.2004.Thegeology <strong>of</strong> the Darien, Panama, and the late Miocene-Pliocene collision<strong>of</strong> the Panama arc with northwestern South America. Geol. Soc. Am.Bull. 116: 1327–1344.Dall, W. 1898. Contributions to the Tertiary fauna <strong>of</strong> Florida with especialreference to the Silex beds <strong>of</strong> Tampa and the Pliocene beds <strong>of</strong> theCaloosahatchie River, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong> many cases a complete revision <strong>of</strong> thegeneric groups treated <strong>of</strong> and their American Tertiary species.Transactions <strong>of</strong> the Wagner Free Institute <strong>of</strong> Science <strong>of</strong> Philadelphia 3:571–947, 23–35 pl.de Beer, G. 1958. Embryos and Ancestors. Oxford University Press, Oxford.Dettman, D. L., and Lohmann, K. C. 1995. Microsampl<strong>in</strong>g carbonatesfrom stable isotope and m<strong>in</strong>or element analysis; physical separation <strong>of</strong>samples on a 20 micrometer scale. J. Sedimentary Res. 65: 566–569.Felsenste<strong>in</strong>, J. 1988. Phylogenies and quantitative methods. Ann. Rev. Ecol.Syst. 19: 445–471.F<strong>in</strong>k, W. L. 1982. The conceptual relationship between ontogeny and phylogeny.Paleobiology 8: 254–264.Flu¨gel, E. 2004. Micr<strong>of</strong>acies <strong>of</strong> Carbonate Rocks: Analysis, Interpretationand Application. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, p. 976.Giribet,G.,andWheeler,W.2002.Onbivalve phylogeny: a high-levelanalysis <strong>of</strong> the Bivalvia (Mollusca) based on comb<strong>in</strong>ed morphology andDNA sequence data. Invertebr. Biol. 121: 271–324.Goodw<strong>in</strong>,D.H.,Flessa,K.W.,Scho¨ne, B. R., and Dettman, D. L. 2001.Cross-calibration <strong>of</strong> daily <strong>growth</strong> <strong>in</strong>crements, stable isotope variation,and temperature <strong>in</strong> the Gulf <strong>of</strong> California bivalve mollusk Chionecortezi: implications for paleoenvironmental analysis. Palaios 16: 387–397.Goodw<strong>in</strong>, D. H., Scho¨ne, B. R., and Dettman, D. L. 2003. Resolution andfidelity <strong>of</strong> oxygen isotopes as paleotemperature proxies <strong>in</strong> bivalve molluskshells: models and observations. Palaios 18: 110–125.Graf, D. L., and Cumm<strong>in</strong>gs, K. S. 2006. Palaeoheterodont diversity(Mollusca: Trigonioida1Unionoida): what we know and what we wishwe knew about freshwater mussel evolution. Zool.J.L<strong>in</strong>n.Soc.148: 343–394.Guppy, R. 1866. On the relations <strong>of</strong> the Tertiary formations <strong>of</strong> the WestIndies. Quarterly Journal <strong>of</strong> Geological Society <strong>of</strong> London 22: 570–590.Guralnick, R. 2005. Comb<strong>in</strong>ed molecular and morphological approaches todocument<strong>in</strong>g regional biodiversity and ecological <strong>patterns</strong> <strong>in</strong> problematictaxa: a case study <strong>in</strong> the bivalve group Cyclocalyx (Sphaeriidae, Bivalvia)from western North America. Zool. Scripta 34: 469–482.Jackson, J. B. C., Jung, P., and Fortunato, H. 1996. Paciphilia revisited:transisthmian evolution <strong>of</strong> the Stromb<strong>in</strong>a group (Gastropoda: Columbellidae).In J. B. C. Jackson, A. F. Budd, and A. G. Coates (eds.).Evolution and Environment <strong>in</strong> Tropical America. The University <strong>of</strong> ChicagoPress, Chicago, pp. 234–270.Jones, D. S., and Allmon, W. D. 1995. Records <strong>of</strong> upwell<strong>in</strong>g, seasonality,and <strong>growth</strong> <strong>in</strong> stable isotope pr<strong>of</strong>iles <strong>of</strong> Pliocene mollusk shells fromFlorida. Lethaia 28: 61–74.Jones, D. S., and Gould, S. J. 1999. Direct measurement <strong>of</strong> age <strong>in</strong> fossilGryphaea: the solution to a classic problem <strong>in</strong> heterochrony. Paleobiology25: 158–187.Jones, D. S., Williams, D. F., and Arthur, M. A. 1983. Growth history andecology<strong>of</strong>theAtlanticsurfclam,Spisula solidissima (Dillwyn), as revealedby stable isotopes and annual shell <strong>in</strong>crements. J. Exp. Mar. Biol.Ecol. 73: 225–242.Källersjö, M., Farris, J., Kluge, A., and Bult, C. 1992. Skewness and permutation.Cladistics 8: 275–287.Kosnik, M., Jablonski, D., Lockwood, R., and Novack-Gottshall, P. 2006.Quantify<strong>in</strong>g molluscan body size <strong>in</strong> evolutionary and ecological analyses:maximiz<strong>in</strong>g the return on data-collection efforts. Palaios 21: 588–597.Evolution <strong>of</strong> <strong>novel</strong> <strong>conchologic</strong> <strong>growth</strong> <strong>patterns</strong> 653Le Pennec, M., Paugam, A., and Pennec, G. 2003. The pelagic life <strong>of</strong> thepectenid Pecten maximus–a review. J. Mar. Sci. 60: 211–223.Lewy, Z., and Samtleben, C. 1979. Functional morphology and palaentologicalsignificance <strong>of</strong> the conchiol<strong>in</strong> layers <strong>in</strong> corbulid pelecypods.Lethaia 12: 341–351.Marko, P., and Jackson, J. B. C. 2001. Patterns <strong>of</strong> morphological diversityamong and with<strong>in</strong> arcid bivalve species pairs separated by the Isthmus <strong>of</strong>Panama. J. Paleontol. 75: 590–606.Mikkelsen, P. 1998. Review <strong>of</strong> shell reduction and loss <strong>in</strong> traditional andphylogenetic molluscan systematics, with experimental manipulation <strong>of</strong> anegative ga<strong>in</strong> character. American Malacological Bullet<strong>in</strong> 14: 201–218.Mikkelsen, P. M., Bieler, R., Kappner, I., and Rawl<strong>in</strong>gs, T. A. 2006. Phylogeny<strong>of</strong> Veneroidea (Mollusca: Bivalvia) based on morphology andmolecules. Zool.J.L<strong>in</strong>n.Soc.148: 439–521.O’Dea, A., et al. 2007. Environmental change preceded Caribbean ext<strong>in</strong>ctionby 2 million years. Proc.Natl.Acad.Sci.USA104: 5501–5506.Purchon, R. D. 1990. Stomach structure, classification and evolution <strong>of</strong> theBivalvia.InB.Morton(ed.).The Bivalvia–Proceed<strong>in</strong>gs <strong>of</strong> a MemorialSymposium <strong>in</strong> Honour <strong>of</strong> Sir Charles Maurice Yonge. HongKongUniversityPress, Hong Kong, pp. 73–82.Randazzo,A.F.,andJones,D.S.1997.The Geology <strong>of</strong> Florida. UniversityPress <strong>of</strong> Florida, Ga<strong>in</strong>esville.Roopnar<strong>in</strong>e, P. D. 1995. A re-evaluation <strong>of</strong> evolutionary stasis between thebivalve species Chione erosa and Chione cancellata (Bivalvia: Veneridae).J. Paleontol. 69: 280–287.Roopnar<strong>in</strong>e, P. D. 2001a. A history <strong>of</strong> diversification, ext<strong>in</strong>ction, and <strong>in</strong>vasion<strong>in</strong> <strong>tropical</strong> America as derived from species-level phylogenies <strong>of</strong>chion<strong>in</strong>e genera (Family Veneridae). J. Paleontol. 75: 644–658.Roopnar<strong>in</strong>e, P. D. 2001b. Test<strong>in</strong>g the hypothesis <strong>of</strong> heterochrony <strong>in</strong> morphometricdata:lessonsfromabivalvedmollusk.InM.L.Zelditch(ed.). Beyond Heterochrony: The Evolution <strong>of</strong> Development. JohnWileyand Sons, pp. 271–303.Roopnar<strong>in</strong>e,P.D.,andVermeij,G.J.2000.Onespeciesbecomestwo:thecase <strong>of</strong> Chione cancellata, the resurrected C. elevata, and a phylogeneticanalysis <strong>of</strong> Chione. J. Mollus. Stud. 66: 517–534.Rupert,E.E.,Fox,R.S.,andBarnes,R.D.2003.Invertebrate Zoology:A Functional <strong>Evolutionary</strong> Approach.7thEd.BrooksCole,Belmont,CA.Saunders, J. B., Jung, P., and Biju-Duval, B. 1986. Neogene paleontology <strong>in</strong>the Northern Dom<strong>in</strong>ican Republic 1. Field surveys, lithology, environment,and age. Bullet<strong>in</strong>s <strong>of</strong> American Paleontology 89: 1–79.Scho¨ne,B.R.,Dunca,E.,Fiebig,J.,andPfeeiffer,M.2006a.Mutveissolution: an ideal agent for resolv<strong>in</strong>g micro<strong>growth</strong> structures <strong>of</strong> biogeniccarbonates. Palaeogeogr., Palaeoclimatol., Palaeoecol. 228: 149–166.Scho¨ne, B. R., et al. 2006b. Reliability <strong>of</strong> multitaxon, multiproxy reconstructions<strong>of</strong> environmental conditions from accretionary biogenic skeletons.J. Geol. 114: 267–285.Starobogatov, Y. I. 1992. Morphological basis for phylogeny and classification<strong>of</strong> Bivalvia. Ruthenica 2: 1–25.Ste<strong>in</strong>er, G., and Hammer, S. 2000. Molecular phylogeny <strong>of</strong> the Bivalvia<strong>in</strong>ferred from 18S rDNA sequences with particular reference to the Pteriomorphia.In E. M. Harper, J. D. Taylor, and J. A. Crame (eds.). The<strong>Evolutionary</strong> Biology <strong>of</strong> the Bivalvia. volume177.GeologicalSociety<strong>of</strong>London Special Publications, London, pp. 11–29.Strong, E., and Lipscomb, D. 1999. Character cod<strong>in</strong>g and <strong>in</strong>applicabledata. Cadistics 15: 363–371.Sw<strong>of</strong>ford, D. L. 2002. Paup . Phylogenetic Analysis Us<strong>in</strong>g Parsimony ( andOther Methods). Version 4.b10. S<strong>in</strong>auer Associates, Sunderland, Massachusetts.Tang, C., and Pantel, J. 2005. Comb<strong>in</strong><strong>in</strong>g morphometrics and paleoecologicalanalyses: exam<strong>in</strong><strong>in</strong>g relationships between species-level and community-levelchanges. Paleontol. Electron. 8: 10 pp.Taylor, J., Kennedy, W., and Hall, A. 1973. The shell structure andm<strong>in</strong>eralogy <strong>of</strong> the Bivalvia II. Luc<strong>in</strong>acea-Clavagellacea. Conclusions.Bullet<strong>in</strong> <strong>of</strong> the British Museum <strong>of</strong> Natural History, Zoology Supplement22: 253–284.Teranes,J.L.,Geary,D.H.,andBemis,B.E.1996.Theoxygenisotopicrecord <strong>of</strong> seasonality <strong>in</strong> Neogene bivalves from the Central AmericanIsthmus. In J. B. C. Jackson, A. F. Budd, and A. G. Coates (eds.).Evolution and Environment <strong>in</strong> Tropical America. The University <strong>of</strong> ChicagoPress, Chicago, pp. 105–129.


654 EVOLUTION&DEVELOPMENT Vol. 10, No. 5, September^October 2008Waller, T. R. 1998. Orig<strong>in</strong> <strong>of</strong> the molluscan class Bivalvia and a phylogeny<strong>of</strong> major groups. In P. A. Johnston and J. W. Haggart (eds.). Bivalves:An Eon <strong>of</strong> Evolution. University <strong>of</strong> Calgary Press, Calgary, pp. 1–45.Ward, L. W. 1998. Mollusks from the lower Miocene Pollack Farm Site,Kent County, Delaware: a prelim<strong>in</strong>ary analysis. In R. N. Benson (ed.).Geology and Paleontology <strong>of</strong> the Lower Miocene Pollack Farm Fossil SiteDelaware, vol. 21. Delaware Geological Survey, Special Publication,Delaware, pp. 59–131.Webster, M., and Zelditch, M. L. 2005. <strong>Evolutionary</strong> modifications <strong>of</strong> ontogeny:heterochrony and beyond. Paleobiology 31: 354–372.Wefer,G.,andBerger,W.H.1991.Isotopepaleontology:<strong>growth</strong>andcomposition <strong>of</strong> extant calcareous species. Mar. Geol. 100: 207–248.Wrigley, A. 1946. Observations on the structure <strong>of</strong> lamellibranch shells.Proc. Malacol. Soc. Lond. 27: 7–19.SUPPORTING INFORMATIONAdditional support<strong>in</strong>g <strong>in</strong>formation may be found <strong>in</strong> theonl<strong>in</strong>e version <strong>of</strong> this article:Bothrocorbula species descriptionsAll Bothrocorbula are roughly ovate with a po<strong>in</strong>ted posteriorand strong, rounded commarg<strong>in</strong>al ribs. Species are primarilydist<strong>in</strong>guishable based on size, expression <strong>of</strong> the lunular pit,subtle differences <strong>in</strong> valve shape, shape <strong>of</strong> the commissuralmarg<strong>in</strong>, and distribution <strong>of</strong> radial ribs.Bothrocorbula synarmostes (Supplemental Fig. S3) (Dall1898) was collected from the Lower Miocene (Burdigalian)Chiploa Formation, the only known stratigraphic occurrence<strong>of</strong> this species. Bothrocorbula synarmostes valves have adiamond-shaped outl<strong>in</strong>e, with the deepest part <strong>of</strong> the ventralmarg<strong>in</strong> at the same po<strong>in</strong>t along the antero-posterior axis asthe umbo. This species also possesses a dist<strong>in</strong>ct lunular areawith only a slight depression open<strong>in</strong>g toward the anterior;radial ribs that decrease <strong>in</strong> expression toward the anteroventralmarg<strong>in</strong>; a concave left-valve commissure; and anundulat<strong>in</strong>g right-valve commissure. Mature shells are relativelysmall (shell height approximately 10 mm).Bothrocorbula radiatula (Supplemental Fig. S4) (Dall1898) is know only from the Oak Grove Sand <strong>of</strong> theAlum Bluff Group, which is stratigraphically above theChipola Formation. Randazzo and Jones (1997) date OakGrove Sand deposition from the Burdigalian to Langhian,whereas Ward (1998) restricts it to the lower middle Miocene(Langhian). Bothrocorbula radiatula is the smallest <strong>of</strong> theBothrocorbula species, typically with a maximum heighto10 mm. Valves <strong>of</strong> B. radiatula are diamond-shaped; radialribs are evenly spaced across valve surfaces; the lunulardepression is an anteriorly open, moderately deep pit; the leftvalvecommissure is planar; and the right-valve commissure isundulat<strong>in</strong>g.Bothrocorbula sp. cf. B. vim<strong>in</strong>ea (Supplemental Fig. S5)(Guppy, 1866) first appears <strong>in</strong> the Baitoa Formation <strong>of</strong> theDom<strong>in</strong>ican Republic, which was dated as later early or earlymiddle Miocene (Budigalian or Langhian) us<strong>in</strong>g molluscanassemblages (Saunders et al. 1986). This species rangesthrough the Miocene to the Lower Pliocene (Zanchlean) <strong>in</strong>the Dom<strong>in</strong>ican Republic, and the shells used <strong>in</strong> this studywere collected from the Upper Miocene Cercado Formation(Saunders et al. 1986). As <strong>in</strong> B. synarmostes and B. radiatula,B. sp.cf.B. vim<strong>in</strong>ea has a diamond-shaped valve outl<strong>in</strong>e.Bothrocorbula sp. cf. B. vim<strong>in</strong>ea is characterized by a welldeveloped nepioconch; a deep U-shaped lunular pit; strong,beaded radial ribs that are evenly spaced across the surface <strong>of</strong>both valves; a left-valve commissure that has a dist<strong>in</strong>ctstepped transition between a deeper posterior than anterior;and a planar right-valve commissure.Bothrocorbula willcoxii (Supplemental Fig. S6) (Dall 1898),which first appeared <strong>in</strong> the <strong>in</strong> the middle Pliocene (Piacenzian)and ranges through the middle Pleistocene, is known from theP<strong>in</strong>ecrest sand (Tamiami Formation), the CaloosahatcheeFormation, and the ‘‘Bermont Formation’’ <strong>of</strong> Florida. Thematerial exam<strong>in</strong>ed here was collected from the middlePliocene P<strong>in</strong>ecrest sand. Bothrocorbula wilcoxii valves areovate with a deep antero-ventral marg<strong>in</strong>; and posses a deepU-shaped pit <strong>in</strong> the lunular area, radial ribs that decrease <strong>in</strong>number and expression toward the anterior <strong>of</strong> both valves, aconcave left valve commissure, and a planar right-valvecommissural marg<strong>in</strong>. Bothrocorbula vim<strong>in</strong>ea (SupplementalFig. S7) from the middle Pliocene (Piacenzian) BowdenFormation <strong>of</strong> Jamaica (Aubry 1993), is very similarmorphologically to B. wilcoxii, differ<strong>in</strong>g <strong>in</strong> hav<strong>in</strong>g a lessproduced anterior marg<strong>in</strong> and a gently undulat<strong>in</strong>g right-valvecommissure.Diagenetic Screen<strong>in</strong>gThe presence/absence <strong>of</strong> diagenetic alteration was thoroughlytested us<strong>in</strong>g a comb<strong>in</strong>ation <strong>of</strong> cathodolum<strong>in</strong>escence (CL)microscopy, x-ray diffraction (XRD) analysis, and scann<strong>in</strong>gelectron microscopy (SEM). These techniques are applied <strong>in</strong>concert because (1) CL identifies the presence <strong>of</strong> diagenetically<strong>in</strong>troduced elements such as Mn 21 ,Pb 21 ,andFe 21 ,whichcause lum<strong>in</strong>escence (see Bathurst 1975; Flu¨gel 2004; andreferences there<strong>in</strong>); (2) XRD analysis detects recrystallization<strong>of</strong> skeletal carbonate from aragonite to calcite; and (3) SEMmakes evident any neomorphism <strong>of</strong> skeletal aragonite tosparry aragonite through distortion or destruction <strong>of</strong> orig<strong>in</strong>almicrostructures (Bathurst 1975).For CL, we exam<strong>in</strong>ed polished thick-sections us<strong>in</strong>g aTechnosyn Cold Cathode Lum<strong>in</strong>escence Model 8200 Mk IImicroscope (School <strong>of</strong> Earth Sciences, The Ohio StateUniversity). For XRD analyses, powdered samples were x-rayed us<strong>in</strong>g a Siemens (Bruker) D5000 theta/two thetadiffractometer with solid state Si(Li) detector (Department<strong>of</strong> Geology and Geophysics, Louisiana State University).Sample sp<strong>in</strong>n<strong>in</strong>g was used to perform the analyses. TheCu-target tube was operated at 40 KV and 30 ma. Samples


Goodw<strong>in</strong> et al.were step-scanned with 0.02 degrees two theta <strong>in</strong>crements andcount<strong>in</strong>g times <strong>of</strong> 5.0 seconds over the <strong>in</strong>terval from 24–36degrees two theta. For SEM, specimens were broken andfresh, fractured surfaces were exam<strong>in</strong>ed us<strong>in</strong>g a FEI (formerlyPhilips) Quanta 200 Environmental SEM (Department <strong>of</strong>Geology & Environmental Science, University <strong>of</strong> Akron).Diagenetic screen<strong>in</strong>g <strong>of</strong> fossil specimens confirmed a lack<strong>of</strong> secondary alteration and we can <strong>in</strong>fer that all geochemicalpr<strong>of</strong>iles represent orig<strong>in</strong>al isotopic (environmental) variation.In all cases, the CL failed to produce lum<strong>in</strong>escence, suggest<strong>in</strong>gthat diagenetically <strong>in</strong>troduced activator elements are notpresent <strong>in</strong> our specimens. In addition, XRD analysis <strong>in</strong>dicatesthat fossil shells are composed <strong>of</strong> 100% aragonite. F<strong>in</strong>ally,SEM images reveal exquisitely preserved skeletal microstructure(Supplemental Fig. S8). Supplemental Fig. S8A showsvalve <strong>in</strong>terior and fractured surfaces <strong>of</strong> the dorso-anteriorquadrant <strong>of</strong> a specimen <strong>of</strong> B. radiatula. Two shell layers areseparated by the trace <strong>of</strong> ma<strong>in</strong> conchiol<strong>in</strong> layer. Lewy andSamtleben (1979) note that decomposition <strong>of</strong> the ma<strong>in</strong>conchiol<strong>in</strong> layer causes the shell to weaken and separatealong its trace. Supplemental Fig. S8B is a close up <strong>of</strong> theboxed region <strong>in</strong> Supplemental Fig. S8A. The surface mark<strong>in</strong>gthe position <strong>of</strong> the ma<strong>in</strong> conchiol<strong>in</strong> layer is visible as a stepperpendicular to the fractured surfaces. Complex(?) crossedlamellarmicrostructure, characteristic <strong>of</strong> the Corbulidae(Taylor et al. 1973), is clearly visible on the fresh, fracturedsurfaces. Supplemental Fig. S8C shows the <strong>in</strong>ner and outershell layers <strong>of</strong> a fractured specimen <strong>of</strong> B. sp.cf.B. vim<strong>in</strong>ea.The <strong>in</strong>ner shell layer (foreground) is separated from the outershell layer by the trace <strong>of</strong> the ma<strong>in</strong> conchiol<strong>in</strong> sheet. The<strong>in</strong>ternal surface <strong>of</strong> the valve is also visible on <strong>in</strong>ner shell layer.Supplemental Fig. S8D shows complex(?) crossed-lamellarmicrostructure preserved <strong>in</strong> the outer shell layer from thesame specimen. Supplemental Figs S8E and S8F showcomplex(?) crossed-lamellar microstructure preserved <strong>in</strong> B.synarmostes and B. wilcoxii, respectively.Phylogenetic AnalysisCharacter state descriptions and the character state matrix areprovided <strong>in</strong> Supplementary Tables S4 and S5, respectively.Because corbulids are <strong>in</strong>equivalved, any trait that differedbetween valves <strong>in</strong> at least one taxon was coded as twocharacters, one for left and a second for right valves. If thattrait was constant <strong>in</strong> one valve and varied <strong>in</strong> the other, onlythe character with variable states was <strong>in</strong>cluded. When we usedmore than one character to describe a trait, we paid particularattention to cod<strong>in</strong>g taxa that lacked that trait <strong>in</strong> one or bothvalves. For example, a few taxa lack commarg<strong>in</strong>al ribs on oneor both valves (e.g. Panamicorbula). For these taxa we codedtheir character state as ‘‘ribs absent’’ for the left and/or rightvalve (Characters 2 and 3, which describe the shape anddistribution <strong>of</strong> ribs on the left and right valves), respectively.Evolution <strong>of</strong> <strong>novel</strong> <strong>conchologic</strong> <strong>growth</strong> <strong>patterns</strong> 655For other characters related to commarg<strong>in</strong>al ribs (Characters1, 4, and 5), we coded the absence <strong>of</strong> ribs as miss<strong>in</strong>g (that is, as‘?’) to avoid build<strong>in</strong>g redundancy <strong>in</strong>to the matrix throughcod<strong>in</strong>g the same character multiple times (see also Mikkelsen1998; Strong and Lipscomb 1999). Nonetheless, o1% <strong>of</strong>character states were coded as miss<strong>in</strong>g <strong>in</strong> the matrix (15 <strong>of</strong>1518). Of these miss<strong>in</strong>g states, 8 were coded to counteractredundancy (all miss<strong>in</strong>g states <strong>in</strong> Panamicorbula ventricosaand Bicorbula gallica, and 2 or 3 states <strong>in</strong> Caryocorbulaamethyst<strong>in</strong>a). The rema<strong>in</strong><strong>in</strong>g seven characters were coded asmiss<strong>in</strong>g because available material was either <strong>in</strong>sufficient, toopoorly preserved, or <strong>in</strong>dividuals were too small (i.e., it was notpossible to observe <strong>growth</strong> l<strong>in</strong>es <strong>in</strong> the two smallestCaryocorbula species) to allow character states to be codedwith confidence.Table S1. Species <strong>of</strong> Corbulidae exam<strong>in</strong>ed for <strong>patterns</strong> <strong>of</strong>shell accretion (Growth Form), with the numbers <strong>of</strong> specimensthat were exam<strong>in</strong>ed externally (External), cut and thicksectioned (Sectioned), and/or sampled for isotopic analysis(Isotope) also <strong>in</strong>dicated. For Caryocorbula barrattiana andC. caribaea, specimens were too small to identify <strong>growth</strong> formwill full confidence.Table S2. Species for which schlerochronologic data werecalibrated to ontogenetic ages us<strong>in</strong>g d 18 O pr<strong>of</strong>iles. The firstthree taxa serve as exemplars <strong>of</strong> the <strong>growth</strong> forms observed <strong>in</strong>the Corbulidae surveyed. The rema<strong>in</strong><strong>in</strong>g taxa are known species<strong>of</strong> Bothrocorbula for which we had sufficient material tosample destructively. Total age range for each taxon is provided(Age Range), as is locality (Locality) and stratigraphicunit (Unit; fossil material only) from which the specimenswere collected.Table S3. Estimated species diversity <strong>of</strong> <strong>in</strong>group taxa.Diversity estimates for genera based on taxonomic evaluations<strong>of</strong> validly described species. Estimated diversity m<strong>in</strong>imarepresent counts <strong>of</strong> species confidently placed by the secondauthor <strong>in</strong> each respective genus. Estimated diversity maximaalso <strong>in</strong>corporate species that are placed <strong>in</strong> each genus, howeverthe validity <strong>of</strong> these assignments is less certa<strong>in</strong> becausetype material has not been exam<strong>in</strong>ed by the second author.Table S4. Character state descriptions for characters used<strong>in</strong> the phylogenetic analysis.Table S5. Character matrix for phylogenetic analysis <strong>of</strong>Bothrocorbula clade.Fig. S1. Phylogenetic relationships and stratigraphic ranges<strong>of</strong> Bothrocorbula. Note that the topology <strong>of</strong> the Bothrocorbulaclade is identical to that on Fig. 5. An <strong>in</strong>ferred range extensionfor B. radiatula is <strong>in</strong>dicated <strong>in</strong> lighter grey with a ‘‘?’’.Fig. S2. Po<strong>in</strong>t-sampled d 18 O pr<strong>of</strong>iles from specimens represent<strong>in</strong>gfour species <strong>of</strong> Bothrocorbula. The parenthetic numberson each graph refer to specimen number. Note that these<strong>patterns</strong> <strong>of</strong> isotopic variation are similar to the micromilledpr<strong>of</strong>iles. See text for further discussion.


656 EVOLUTION&DEVELOPMENT Vol. 10, No. 5, September^October 2008Fig. S3. External and <strong>in</strong>ternal views <strong>of</strong> Bothrocorbulasynarmostes. Theleftvalveisshownontheleftside<strong>of</strong>thefigure, and the right valve is to the right. Scale bars <strong>in</strong> centimeters.Fig. S4. External and <strong>in</strong>ternal views <strong>of</strong> Bothrocorbula radiatula.The left valve is shown on the left side <strong>of</strong> the figure, andthe right valve is to the right. Scale bars <strong>in</strong> centimeters.Fig. S5. External and <strong>in</strong>ternal views <strong>of</strong> Bothrocorbula sp. cf.B. vim<strong>in</strong>ea. The left valve is shown on the left side <strong>of</strong> the figure,and the right valve is to the right. Scale bars <strong>in</strong> centimeters.Fig. S6. External and <strong>in</strong>ternal views <strong>of</strong> Bothrocorbulawilcoxii. The left valve is shown on the left side <strong>of</strong> the figure,and the right valve is to the right. Scale bars <strong>in</strong> centimeters.Fig. S7. External and <strong>in</strong>ternal views <strong>of</strong> Bothrocorbulavim<strong>in</strong>ea. The left valve is shown on the left side <strong>of</strong> the figure,and the right valve is to the right. Scale bars <strong>in</strong> centimeters.Fig. S8. Environmental scann<strong>in</strong>g electron micrographs <strong>of</strong>fresh fractured, cross sectional surfaces from representatives<strong>of</strong> Bothrocorbula. A) Dorso-anterior quadrant <strong>of</strong> Bothrocorbularadiatula. B) Close up <strong>of</strong> highlighted region <strong>in</strong>A. Note the presence <strong>of</strong> well-preserved complex(?) crossedlamellarmicrostructure characteristic <strong>of</strong> the Corbilidae. Thetrace <strong>of</strong> a conchiol<strong>in</strong> sheet (not preserved) is visible as a step(down to the left) perpendicular to the fractured surfaces. C)Bothrocorbula sp. cf. B. vim<strong>in</strong>ea. Inner (foreground) and outer(background) shell layers separated by the trace <strong>of</strong> a conchiol<strong>in</strong>sheet (not preserved). The <strong>in</strong>terior surface <strong>of</strong> the valve isvisible on the <strong>in</strong>ner shell layer. D) Close up <strong>of</strong> the highlightedregion <strong>in</strong> C. As <strong>in</strong> B, note the well-preserved complex(?)crossed-lamellar microstructure. E) and F) Complex(?)crossed-lamellar microstructure form Bothrocorbula synarmostesand Bothrocorbula wilcoxii, respectively.Please note: Wiley Periodicals, Inc. are not responsible forthe content or functionality <strong>of</strong> any support<strong>in</strong>g materials suppliedby the authors. Any queries (other than miss<strong>in</strong>g material)should be directed to the correspond<strong>in</strong>g author for the article.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!