11.07.2015 Views

The Identification of MicroRNAs in a Genomically Unstable Region ...

The Identification of MicroRNAs in a Genomically Unstable Region ...

The Identification of MicroRNAs in a Genomically Unstable Region ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Identification</strong> <strong>of</strong> <strong>MicroRNAs</strong> <strong>in</strong> a <strong>Genomically</strong> <strong>Unstable</strong><strong>Region</strong> <strong>of</strong> Human Chromosome 8q24Konrad Huppi, 1 Natalia Volfovsky, 3 Timothy Runfola, 1 Tamara L. Jones, 1 Mark Mackiewicz, 1Scott E. Mart<strong>in</strong>, 1 J. Frederic Mush<strong>in</strong>ski, 2 Robert Stephens, 3 and Natasha J. Caplen 11 Gene Silenc<strong>in</strong>g Section, Genetics Branch and 2 Laboratory <strong>of</strong> Cancer Biology and Genetics, Center for CancerResearch, National Cancer Institute, NIH, Bethesda, Maryland; and 3 Advanced Biomedical Comput<strong>in</strong>g Center,National Cancer Institute-Frederick/Science Applications International Corporation-Frederick, Inc.,NIH, Frederick, MarylandAbstract<strong>The</strong> PVT1 locus is identified as a cluster <strong>of</strong> T(2;8) andT(8;22) ‘‘variant’’ MYC-activat<strong>in</strong>g chromosomaltranslocation breakpo<strong>in</strong>ts extend<strong>in</strong>g 400 kb downstream<strong>of</strong> MYC <strong>in</strong> a subset (20%) <strong>of</strong> Burkitt’s lymphoma (vBL).Recent reports that microRNAs (miRNA) may be associatedwith fragile sites and cancer-associated genomicregions prompted us to <strong>in</strong>vestigate whether the PVT1region on chromosome 8q24may conta<strong>in</strong> miRNAs.Computational analysis <strong>of</strong> the genomic sequencecover<strong>in</strong>g the PVT1 locus and experimental verificationidentified seven miRNAs. One miRNA, hsa-miR-1204,resides with<strong>in</strong> a previously described PVT1 exon (1b)that is <strong>of</strong>ten fused to the immunoglobul<strong>in</strong> light cha<strong>in</strong>constant region <strong>in</strong> vBLs and is present <strong>in</strong> high copynumber <strong>in</strong> MYC/PVT1 –amplified tumors. Like its humancounterpart, mouse mmu-miR-1204 represents theclosest miRNA to Myc (f50 kb) and is found only1 to 2 kb downstream <strong>of</strong> a cluster <strong>of</strong> retroviral <strong>in</strong>tegrationsites. Another miRNA, mmu-miR-1206, is close to acluster <strong>of</strong> variant translocation breakpo<strong>in</strong>ts associatedwith mouse plasmacytoma and exon 1 <strong>of</strong> mouse Pvt1.Virtually all the miRNA precursor transcripts areexpressed at higher levels <strong>in</strong> late-stage B cells (<strong>in</strong>clud<strong>in</strong>gplasmacytoma and vBL cell l<strong>in</strong>es) compared withimmature B cells, suggest<strong>in</strong>g possible roles <strong>in</strong>lymphoid development and/or lymphoma. In addition,lentiviral vector-mediated overexpression <strong>of</strong> the miR-1204 precursor (human and mouse) <strong>in</strong> a mousepre–B-cell l<strong>in</strong>e <strong>in</strong>creased expression <strong>of</strong> Myc. High levels<strong>of</strong> expression <strong>of</strong> the hsa-miR-1204 precursor is alsoReceived 3/1/07; revised 10/4/07; accepted 10/22/07.Grant support: Intramural Research Program [Center for Cancer Research,National Cancer Institute (NCI)] <strong>of</strong> the NIH. Contract N01-CO-012400 supportedwork conducted by N. Volfovsky and R. Stephens, Advanced BiomedicalComput<strong>in</strong>g Center NCI-Frederick/Science Applications International Corporation-Frederick,Inc., NCI, NIH.<strong>The</strong> costs <strong>of</strong> publication <strong>of</strong> this article were defrayed <strong>in</strong> part by the payment <strong>of</strong>page charges. This article must therefore be hereby marked advertisement <strong>in</strong>accordance with 18 U.S.C. Section 1734 solely to <strong>in</strong>dicate this fact.Note: Supplementary data for this article are available at Molecular CancerResearch Onl<strong>in</strong>e (http://mcr.aacrjournals.org/).Requests for repr<strong>in</strong>ts: Konrad Huppi, Gene Silenc<strong>in</strong>g Section, Genetics Branch,Center for Cancer Research, National Cancer Institute, NIH, Build<strong>in</strong>g 37, Room6128, Bethesda, MD 20892. Phone: 301-402-7506; Fax: 301-402-3241. E-mail:huppi@helix.nih.govCopyright D 2008 American Association for Cancer Research.doi:10.1158/1541-7786.MCR-07-0105seen <strong>in</strong> several epithelial cancer cell l<strong>in</strong>es withMYC/PVT1 coamplification, suggest<strong>in</strong>g a potentiallybroad role for these miRNAs <strong>in</strong> tumorigenesis.(Mol Cancer Res 2008;6(2):212–21)IntroductionFor years, noncod<strong>in</strong>g RNAs have represented an exceptionto the ‘‘Central Dogma’’ theory that RNA predom<strong>in</strong>atelyencodes prote<strong>in</strong>. Recently, a new series <strong>of</strong> noncod<strong>in</strong>g RNAshave been discovered <strong>in</strong> a broad range <strong>of</strong> species, termedprimary microRNAs (miRNA) that are processed <strong>in</strong>to maturemiRNAs <strong>of</strong> f21 to 22 nucleotides (nt) via an <strong>in</strong>termediateprecursor miRNA (1). Analysis <strong>of</strong> the distribution <strong>of</strong> miRNAgenes <strong>in</strong> the human genome has suggested that many are foundwith<strong>in</strong> genomically unstable regions. This f<strong>in</strong>d<strong>in</strong>g has strengthenedthe argument that deregulated expression <strong>of</strong> miRNAsand/or their targets could be critical components <strong>in</strong> manydisease processes, <strong>in</strong>clud<strong>in</strong>g cancer (2). For example, a cluster<strong>of</strong> miRNAs resides on human chromosome 13q14, a frequentlydeleted chromosomal region <strong>in</strong> cancer (3). <strong>The</strong> absence <strong>of</strong><strong>in</strong>volvement <strong>of</strong> any prote<strong>in</strong>-encod<strong>in</strong>g gene <strong>in</strong> this regioncoupled with the location <strong>of</strong> hsa-miR-15 and hsa-miR-16with<strong>in</strong> a 30-kb – deleted segment <strong>in</strong> chronic lymphocyticleukemia has suggested that, at least <strong>in</strong> this context, thesemiRNAs can function as tumor suppressors (4). Other miRNAsthat have been implicated <strong>in</strong> cancer <strong>in</strong>clude hsa-let-7, hsamir-155,and a cluster <strong>of</strong> miRNAs found with<strong>in</strong> chromosome13q31 that are frequently amplified <strong>in</strong> tumors from patientswith various forms <strong>of</strong> lymphoma (5-9).An early example <strong>of</strong> a connection between cancer andchromosomal breakpo<strong>in</strong>ts are translocations associated withhuman chromosome 8q24 conta<strong>in</strong><strong>in</strong>g the gene encod<strong>in</strong>g theproto-oncogene transcription factor MYC (SupplementaryFig. S1A; ref. 10). In 80% <strong>of</strong> Burkitt’s lymphoma (BL), aT(8;14) chromosomal translocation juxtaposes MYC to the IGHlocus. Variant translocations [T(2;8) or T(8;22)] are found <strong>in</strong>the rema<strong>in</strong><strong>in</strong>g 20% <strong>of</strong> BLs, with breakpo<strong>in</strong>ts extend<strong>in</strong>g 400 kbdownstream <strong>of</strong> MYC <strong>in</strong> a region referred to as PVT1. Becausesimilar clusters <strong>of</strong> PVT1-associated chromosomal breakpo<strong>in</strong>tsor retroviral <strong>in</strong>tegration sites are found <strong>in</strong> mouse plasmacytomas(PCT) and rat immunocytomas, it has been suggested thataltered expression <strong>of</strong> MYC is the target <strong>of</strong> this genomic<strong>in</strong>stability (11). For example, PVT1-<strong>in</strong>volved translocations are<strong>of</strong>ten accompanied by a change <strong>in</strong> the <strong>in</strong>itiation <strong>of</strong> MYCtranscription from the normal P2 promoter to the stronger P1212Mol Cancer Res 2008;6(2). February 2008


216Huppi et al.However, the seed sequence for hsa-miR-1205 is identicalto the seed sequence for hsa-miR-17-3p, which is expressed<strong>in</strong> HeLa cells (34). A sequence with<strong>in</strong> hsa-miR-2PVT1 is thesame as the seed sequence <strong>of</strong> the miRNA mmu-miR-698,a recently cloned miRNA from mouse embryos (35). <strong>The</strong>hsa-miR-1207-3p sequence is related to a group <strong>of</strong> mammalianmiRNAs with overlapp<strong>in</strong>g seeds [rno-miR-337 (28), mmu-miR-763 (36), and hsa-miR-565 (37)]. <strong>The</strong> lengths <strong>of</strong> the predictedprecursor sequences are between 58 and 72 nt for most <strong>of</strong> themiRNAs. However, two miRNAs hsa-miR-1207-5p and hsamiR-1207-3p,which we orig<strong>in</strong>ally considered to be <strong>in</strong>dependentoverlapp<strong>in</strong>g precursors, may reside on complementarystrands <strong>of</strong> a s<strong>in</strong>gle, longer (87 nt) hairp<strong>in</strong> structure (Table 1).As mentioned above, both these miRNAs are expressedsimilarly across the cell l<strong>in</strong>es when exam<strong>in</strong>ed by Northernblot analysis (Fig. 1A), suggest<strong>in</strong>g a common promoter andtranscriptional regulatory unit. Although such a precursorstructure is relatively rare, previous reports have identifiedother examples <strong>of</strong> complementary overlapp<strong>in</strong>g miRNAs (e.g.,let-7d and let-7d*; ref. 38). How these miRNA species areprocessed and used is probably complex and will require further<strong>in</strong>vestigation.FIGURE 3. Quantitative RT-PCR analysis <strong>of</strong> miR-1204 and miR-1206 precursor expression <strong>in</strong> human and mouse B-cell l<strong>in</strong>es and lymphoid tumors (A).<strong>The</strong> expression <strong>of</strong> mmu-miR-1204, mmu-miR-1206, and MYC <strong>in</strong> mouse B-cell l<strong>in</strong>es; pro-B (HAFTL1), pre-B (ABLS5, ABLS103, ABLS105), small B (SJL4,BAL17), Ly1+ B (NFS3), mature PCTs (M104E M315, T1033), and mature vPCTs (ABPC4, ABPC105; ref. 46). B. <strong>The</strong> expression <strong>of</strong> hsa-miR-1204, hsa-miR-1206, and MYC <strong>in</strong> the human BL l<strong>in</strong>es; Namalwa, CA46, and the vBL l<strong>in</strong>e PA682 compared with normal peripheral blood lymphocytes. Expression levelswere normalized to act<strong>in</strong> and the log 2 expression levels were determ<strong>in</strong>ed from the ratio <strong>of</strong> the sample value to the normal tissue value (cDNA synthesis andPCR amplification were repeated three to four times).Mol Cancer Res 2008;6(2). February 2008


220Huppi et al.mature miRNA sequences derived from this region. With theexception <strong>of</strong> hsa-miR-2PVT1 (which is expressed at muchlower levels than the other miRNAs identified <strong>in</strong> this study), all<strong>of</strong> the miRNAs identified are transcribed <strong>in</strong> the same directionas both MYC and PVT1.A number <strong>of</strong> studies have shown that the normal expression<strong>of</strong> miRNAs can be affected by chromosomal translocation,amplification, or deletion and that this deregulated expressionhas the potential to have a direct consequence on the function <strong>of</strong>these miRNAs (3, 4). Recently, the oncogenic potential <strong>of</strong>deregulated miRNA expression has also been revealed throughthe use <strong>of</strong> a retroviral mutagenesis approach, which shows thatretroviral <strong>in</strong>tegration <strong>of</strong> a mur<strong>in</strong>e leukemia virus <strong>in</strong>to themir-17-92 cluster on mouse chromosome 14 <strong>in</strong>creasedexpression <strong>of</strong> the primary miRNA transcript and <strong>in</strong>duceddevelopment <strong>of</strong> T-cell lymphomas (46). <strong>The</strong> miRNAs identified<strong>in</strong> this study may also be susceptible to some <strong>of</strong> thetranscriptional alterations previously described for MYC andPVT1 as a result <strong>of</strong> the chromosomal translocations, amplifications,or retroviral <strong>in</strong>tegrations commonly associated with thechromosome 8q24 region (and the syntenic region <strong>in</strong> mouse).To address the possible effects <strong>of</strong> previously def<strong>in</strong>ed genomicand transcriptional alterations with<strong>in</strong> this region on the miRNAsidentified <strong>in</strong> this study, we focused <strong>in</strong>itially on the expression <strong>of</strong>miR-1204 as this miRNA maps closest to MYC <strong>in</strong> human andmouse, partially overlaps with a previously def<strong>in</strong>ed exon <strong>of</strong>human PVT1 and resides close to a cluster <strong>of</strong> retroviral<strong>in</strong>tegration site <strong>in</strong> mouse. We observed high levels <strong>of</strong> the mmumiR-1204precursor <strong>in</strong> all vBL and vPCT samples. Interest<strong>in</strong>gly,we have observed that the highest levels <strong>of</strong> miR-1204transcription are found <strong>in</strong> many samples that abundantlyexpress IG E as their light cha<strong>in</strong> (NFS3, M315, M104E, andCA46). If this correlation can be confirmed <strong>in</strong> additionalsamples, this may suggest a role miR-1204 <strong>in</strong> controll<strong>in</strong>gexpression <strong>of</strong> IG E or IG light cha<strong>in</strong> genes <strong>in</strong> general. We alsoasked whether genomic and transcriptional changes associatedwith this region seen <strong>in</strong> solid tumors could be extended to thePVT1-based miRNAs. An <strong>in</strong>crease <strong>in</strong> copy number andexpression for hsa-miR-1204, consistent with that seen forMYC, was also observed <strong>in</strong> several breast and colon cell l<strong>in</strong>es.To further substantiate a connection between the PVT1 basedmiRNAs and MYC, we constitutively overexpressed miR-1204(mouse and human) <strong>in</strong> mouse pro–B-cell or pre–B-cell l<strong>in</strong>es.Increased Myc transcription was observed <strong>in</strong> the pre–B-celll<strong>in</strong>e only, suggest<strong>in</strong>g that a stage-specific down-regulation <strong>of</strong> atarget(s) must have some <strong>in</strong>direct effect on Myc expression.Although further studies will be required to determ<strong>in</strong>e thepossible function <strong>of</strong> the miRNAs identified <strong>in</strong> this study andtheir role <strong>in</strong> tumorigenesis, the current study illustrates thevalue <strong>of</strong> look<strong>in</strong>g for the presence <strong>of</strong> regulatory RNAs <strong>in</strong>chromosomal regions associated with cancer where no prote<strong>in</strong>encod<strong>in</strong>ggene candidate has formally been identified.Materials and MethodsCell L<strong>in</strong>es<strong>The</strong> BL cell l<strong>in</strong>es Raji, Namalwa, PA682, and CA46 werema<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> RPMI 1640 plus 10% fetal bov<strong>in</strong>e serum and arethe generous gifts <strong>of</strong> Drs. G. Tosato, W. Shi, M. Zajac-Kaye,and K. Bhatia [National Cancer Institute (NCI), Bethesda, MD].<strong>The</strong> breast cancer cell l<strong>in</strong>es MDA-MB-231, MCF7, SK-BR3,and the colon cancer cell l<strong>in</strong>e HCT-116, 11 were ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong>DMEM plus 5% fetal bov<strong>in</strong>e serum. Mouse PCTs and cell l<strong>in</strong>esrepresent<strong>in</strong>g various stages <strong>of</strong> B-cell development have beendescribed previously (42). Mouse pro-B (BAF3) and pre-B(v-abl-PreB1) cell l<strong>in</strong>es were ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> RPMI 1640supplemented with <strong>in</strong>terleuk<strong>in</strong>-3 (10%) for the BAF-3 cellsand 2-hME (5mmol/L) for v-abl-PreB1.Molecular Analysis <strong>of</strong> miRNAsNorthern analysis was conducted us<strong>in</strong>g small RNA (lessthan 30 nt) extracted from total RNA accord<strong>in</strong>g to themanufacturer’s recommendation (Ambion, Inc.) and standardgel electrophoresis, Northern blot transfer, and hybridizationto 32 P-labeled riboprobes. For additional details, see SupplementaryMethods. <strong>The</strong> methods used for clon<strong>in</strong>g PVT1 exons,primer extension, and 5 RACE studies <strong>of</strong> precursor miRNAsequences and quantitative PCR analysis <strong>of</strong> miRNA copynumber and expression are detailed <strong>in</strong> SupplementaryMethods. <strong>The</strong> generation <strong>of</strong> lentiviral-based plasmids express<strong>in</strong>ghsa-miR-1204 and mmu-miR-1204, viral production, andthe selection <strong>of</strong> stably transduced cell populations is described<strong>in</strong> Supplementary Methods. <strong>The</strong> sequences <strong>of</strong> the oligonucleotideprimers used <strong>in</strong> this study are shown <strong>in</strong> SupplementaryTable S1.AcknowledgmentsWe thank Dr. Paul Meltzer (Genetics Branch, Center for Cancer Research, NCI,NIH) for shar<strong>in</strong>g unpublished data; Brady Wahlberg for expert assistance <strong>in</strong>clon<strong>in</strong>g the human and mouse miRNA constructs; James Owens and Leigh-AnnCruz <strong>of</strong> the Laboratory <strong>of</strong> Cancer Biology and Genetics, CCR, NCI, NIH; and B.Conde and B. Crise (Advanced Technology Program, NCI-Frederick/ScienceApplications International Corporation-Frederick, Inc.) for expert assistance.Statement <strong>of</strong> authorship: K. Huppi, R. Stephens, N. Volfovsky, and N.J. Caplenconceived and designed research. K. Huppi, N. Volfovsky, T. Runfola, T.L. Jones,M. Mackiewicz, and S.E. Mart<strong>in</strong> acquired data. J.F. Mush<strong>in</strong>ski contributedanalytic tools. K. Huppi, N. Volfovsky, R. Stephens, and N.J. Caplen analyzeddata. K. Huppi, N. Volfovsky, J.F. Mush<strong>in</strong>ski, and N.J. Caplen drafted themanuscript.11 http://dtp.nci.nih.gov/References1. Du T, Zamore PD. microPrimer: the biogenesis and function <strong>of</strong> microRNA.Development 2005;132:4645 – 52.2. Huppi K, Volfovsky N, Mackiewicz M, et al. <strong>MicroRNAs</strong> and genomic<strong>in</strong>stability. Sem<strong>in</strong> Cancer Biol 2007;17:65 – 73.3. Cal<strong>in</strong> GA, Dumitru CD, Shimizu M, et al. Frequent deletions and downregulation<strong>of</strong> micro-RNA genes miR15 and miR16 at 13q14 <strong>in</strong> chroniclymphocytic leukemia. Proc Natl Acad Sci U S A 2002;99:15524 – 9.4. Cimm<strong>in</strong>o A, Cal<strong>in</strong> GA, Fabbri M, et al. miR-15 and miR-16 <strong>in</strong>duce apoptosisby target<strong>in</strong>g BCL2. Proc Natl Acad Sci U S A 2005;102:13944 – 9.5. Johnson SM, Grosshans H, Sh<strong>in</strong>gara J, et al. RAS is regulated by the let-7microRNA family. Cell 2005;120:635 – 47.6. Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression <strong>of</strong> the let-7 microRNAs <strong>in</strong> human lung cancers <strong>in</strong> association with shortened postoperativesurvival. Cancer Res 2004;64:3753 – 6.7. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecularpr<strong>of</strong>iles <strong>in</strong> lung cancer diagnosis and prognosis. Cancer Cell 2006;9:189 – 98.8. Vol<strong>in</strong>ia S, Cal<strong>in</strong> GA, Liu CG, et al A microRNA expression signature <strong>of</strong>Mol Cancer Res 2008;6(2). February 2008


miRNAs <strong>in</strong> a <strong>Genomically</strong> <strong>Unstable</strong> <strong>Region</strong> <strong>of</strong>8q24221human solid tumors def<strong>in</strong>es cancer gene targets. Proc Natl Acad Sci U S A 2006;103:2257 – 61.9. He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as apotential human oncogene. Nature 2005;435:828 – 33.10. Marcu KB, Bossone SA, Patel AJ. myc function and regulation. Annu RevBiochem 1992;61:809 – 60.11. Lazo PA, Lee JS, Tsichlis PN. Long-distance activation <strong>of</strong> the Mycprotooncogene by provirus <strong>in</strong>sertion <strong>in</strong> Mlvi-1 or Mlvi-4 <strong>in</strong> rat T-cell lymphomas.Proc Natl Acad Sci U S A 1990;87:170 – 3.12. Hummel M, Bent<strong>in</strong>k S, Berger H, et al. A biologic def<strong>in</strong>ition <strong>of</strong> Burkitt’slymphoma from transcriptional and genomic pr<strong>of</strong>il<strong>in</strong>g. N Engl J Med 2006;354:2419 – 30.13. Shtivelman E, Hengle<strong>in</strong> B, Groitl P, Lipp M, Bishop JM. <strong>Identification</strong> <strong>of</strong> ahuman transcription unit affected by the variant chromosomal translocations 2;8and 8;22 <strong>of</strong> Burkitt lymphoma. Proc Natl Acad Sci U S A 1989;86:3257 – 60.14. Huppi K, Siwarski D, Skurla R, Kl<strong>in</strong>man D, Mush<strong>in</strong>ski JF. Pvt-1 transcriptsare found <strong>in</strong> normal tissues and are altered by reciprocal(6;15) translocations <strong>in</strong>mouse plasmacytomas. Proc Natl Acad Sci U S A 1990;87:6964 – 8.15. Shtivelman E, Bishop JM. Effects <strong>of</strong> translocations on transcription fromPVT. Mol Cell Biol 1990;10:1835 – 9.16. Huppi K, Siwarski D. Chimeric transcripts with an open read<strong>in</strong>g frame aregenerated as a result <strong>of</strong> translocation to the Pvt-1 region <strong>in</strong> mouse B-cell tumors.Int J Cancer 1994;59:848 – 51.17. Palumbo AP, Boccadoro M, Battaglio S, et al. Human homologue <strong>of</strong>Moloney leukemia virus <strong>in</strong>tegration-4 locus (MLVI-4), located 20 kilobases 3<strong>of</strong> the myc gene, is rearranged <strong>in</strong> multiple myelomas. Cancer Res 1990;50:6478 – 82.18. Borg A, Baldetorp B, Ferno M, Olsson H, Sigurdsson H. c-myc amplificationis an <strong>in</strong>dependent prognostic factor <strong>in</strong> postmenopausal breast cancer. Int J Cancer1992;51:687 – 91.19. Shtivelman E, Bishop JM. <strong>The</strong> PVT gene frequently amplifies with MYC <strong>in</strong>tumor cells. Mol Cell Biol 1989;9:1148 – 54.20. Feo S, Di Liegro C, Jones T, Read M, Fried M. <strong>The</strong> DNA region around thec-myc gene and its amplification <strong>in</strong> human tumour cell l<strong>in</strong>es. Oncogene 1994;9:955 – 61.21. Lancaster JM, Dressman HK, Whitaker RS, et al. Gene expression patternsthat characterize advanced stage serous ovarian cancers. J Soc Gynecol Investig2004;11:51 – 9.22. Bhattacharya N, Sabbir MG, Roy A, Dam A, Roychoudhury S, Panda CK.Approximately 580 Kb surround<strong>in</strong>g the MYC gene is amplified <strong>in</strong> head andneck squamous cell carc<strong>in</strong>oma <strong>of</strong> Indian patients. Pathol Res Pract 2005;201:691 – 7.23. Bakkus MH, Brakel-van Peer KM, Michiels JJ, van ’t Veer MB, Benner R.Amplification <strong>of</strong> the c-myc and the pvt-like region <strong>in</strong> human multiple myeloma.Oncogene 1990;5:1359 – 64.24. Huppi K, Siwarski D, Shaughnessy JD, Jr., Mush<strong>in</strong>ski JF. Co-amplification<strong>of</strong> c-myc/pvt-1 <strong>in</strong> immortalized mouse B-lymphocytic cell l<strong>in</strong>es results <strong>in</strong> a novelpvt-1/AJ-1 transcript. Int J Cancer 1993;53:493 – 8.25. Asker C, Mareni C, Coviello D, et al. Amplification <strong>of</strong> c-myc and pvt-1homologous sequences <strong>in</strong> acute nonlymphatic leukemia. Leuk Res 1988;12:523 – 7.26. Storlazzi CT, Fioretos T, Paulsson K, et al. <strong>Identification</strong> <strong>of</strong> a commonlyamplified 4.3 Mb region with overexpression <strong>of</strong> C8FW, but not MYC <strong>in</strong> MYCconta<strong>in</strong><strong>in</strong>gdouble m<strong>in</strong>utes <strong>in</strong> myeloid malignancies. Hum Mol Genet 2004;13:1479 – 85.27. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control <strong>of</strong> translationand mRNA degradation by miRNAs and siRNAs. Genes Dev 2006;20:515 – 24.28. Cal<strong>in</strong> GA, Sevignani C, Dumitru CD, et al. Human microRNA genes arefrequently located at fragile sites and genomic regions <strong>in</strong>volved <strong>in</strong> cancers.Proc Natl Acad Sci U S A 2004;101:2999 – 3004.29. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP. Vertebrate microRNAgenes. Science 2003;299:1540.30. Lim LP, Lau NC, We<strong>in</strong>ste<strong>in</strong> EG, et al. <strong>The</strong> microRNAs <strong>of</strong> Caenorhabditiselegans. Genes Dev 2003;17:991 – 1008.31. Altuvia Y, Landgraf P, Lithwick G, et al. Cluster<strong>in</strong>g and conservation patterns<strong>of</strong> human microRNAs. Nucleic Acids Res 2005;33:2697 – 706.32. Xie X, Lu J, Kulbokas EJ, et al. Systematic discovery <strong>of</strong> regulatory motifs <strong>in</strong>human promoters and 3 UTRs by comparison <strong>of</strong> several mammals. Nature 2005;434:338 – 45.33. H<strong>of</strong>acker IL. Vienna RNA secondary structure server. Nucleic Acids Res2003;31:3429 – 31.34. Lagos-Qu<strong>in</strong>tana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. NewmicroRNAs from mouse and human. RNA 2003;9:175 – 9.35. M<strong>in</strong>eno J, Okamoto S, Ando T, et al. <strong>The</strong> expression pr<strong>of</strong>ile <strong>of</strong> microRNAs<strong>in</strong> mouse embryos. Nucleic Acids Res 2006;34:1765 – 71.36. Berezikov E, van Teter<strong>in</strong>g G, Verheul M, et al. Many novel mammalianmicroRNA candidates identified by extensive clon<strong>in</strong>g and RAKE analysis.Genome Res 2006;16:1289 – 98.37. Cumm<strong>in</strong>s JM, He Y, Leary RJ, et al. <strong>The</strong> colorectal microRNAome. ProcNatl Acad Sci U S A 2006;103:3687 – 92.38. Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specificmicroRNAs. Dev Cell 2003;5:351 – 8.39. Axelson H, Panda CK, Silva S, et al. A new variant 15;16 translocation <strong>in</strong>mouse plasmacytoma leads to the juxtaposition <strong>of</strong> c-myc and immunoglobul<strong>in</strong> E.Oncogene 1991;6:2263 – 70.40. Smale ST, Baltimore D. <strong>The</strong> ‘‘<strong>in</strong>itiator’’ as a transcription control element.Cell 1989;57:103 – 13.41. Cal<strong>in</strong> GA, Ferrac<strong>in</strong> M, Cimm<strong>in</strong>o A, et al. A MicroRNA signature associatedwith prognosis and progression <strong>in</strong> chronic lymphocytic leukemia. N Engl J Med2005;353:1793 – 801.42. Mush<strong>in</strong>ski JF, Davidson WF, Morse HC III. Activation <strong>of</strong> cellularoncogenes <strong>in</strong> human and mouse leukemia-lymphomas: spontaneous and <strong>in</strong>ducedoncogene expression <strong>in</strong> mur<strong>in</strong>e B lymphocytic neoplasms. Cancer Invest 1987;5:345 – 68.43. Adhikary S, Eilers M. Transcriptional regulation and transformation by Mycprote<strong>in</strong>s. Nat Rev Mol Cell Biol 2005;6:635 – 45.44. Cost<strong>in</strong>ean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation andlymphoblastic leukemia/high-grade lymphoma <strong>in</strong> E(A)-miR155 transgenic mice.Proc Natl Acad Sci U S A 2006;103:7024 – 9.45. Zhelev Z, Bakalova R, Ohba H, et al. Suppression <strong>of</strong> bcr-abl synthesis bysiRNAs or tyros<strong>in</strong>e k<strong>in</strong>ase activity by Glivec alters different oncogenes, apoptotic/antiapoptotic genes and cell proliferation factors (microarray study). FEBS Lett2004;570:195 – 204.46. Wang CL, Wang BB, Bartha G, et al. Activation <strong>of</strong> an oncogenicmicroRNA cistron by provirus <strong>in</strong>tegration. Proc Natl Acad Sci U S A 2006;103:18680 – 4.Mol Cancer Res 2008;6(2). February 2008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!