11.07.2015 Views

Numerical investigation of aeroacoustic interaction in the turbulents ...

Numerical investigation of aeroacoustic interaction in the turbulents ...

Numerical investigation of aeroacoustic interaction in the turbulents ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

THÈSEEn vue de l’obtention duDOCTORAT DE L’UNIVERSITÉ DE TOULOUSEDélivré par L’INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSEDiscipl<strong>in</strong>e ou spécialité : Dynamique des FluidesPrésentée et soutenue par Thangasivam GANDHILe 10 Novembre 2009<strong>Numerical</strong> <strong><strong>in</strong>vestigation</strong> <strong>of</strong> <strong>aeroacoustic</strong> <strong><strong>in</strong>teraction</strong> <strong>in</strong> <strong>the</strong> <strong>turbulents</strong>ubsonic flow past an open cavityCalcul et analyse de l’<strong><strong>in</strong>teraction</strong> aéroacoustique dans unécoulement turbulent subsonique affleurant une cavitéJURYChristophe AIRIAU Pr<strong>of</strong>. à l’Université de Toulouse III, UPS Co-directeur de thèseAzedd<strong>in</strong>e KOURTA Pr<strong>of</strong>. à Polytech’Orléans, PRISME Directeur de thèseThierry POINSOT Directeur de recherche à l’IMFT, Toulouse Exam<strong>in</strong>ateurJean-Christophe ROBINET Maître de conférence Habilité, ENSAM Paris RapporteurAloïs SENGISSEN Docteur–<strong>in</strong>génieur, AIRBUS, Toulouse Membre <strong>in</strong>vitéChristian TENAUD Chargé de recherche Habilité CR1, LIMSI, Orsay RapporteurEcole doctorale : Mécanique Energétique, Géne civil et Procédés (MEGeP)Unité de recherche : Institut de Mécanique des Fluides de Toulouse (IMFT)Directeur(s) de Thèse : Pr. Azedd<strong>in</strong>e KOURTA, Pr. Christophe AIRIAU


2.9 Computational Aeroacoustics . . . . . . . . . . . . . . . . . . . . . . . . . 322.9.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322.9.2 Acoustic analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 Inflow conditions and asymptotic modell<strong>in</strong>g 373.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.2 Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.2.1 Lam<strong>in</strong>ar boundary layer . . . . . . . . . . . . . . . . . . . . . . . . 403.2.2 Turbulent boundary layer . . . . . . . . . . . . . . . . . . . . . . . 433.2.3 Power law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.3 Analytical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443.4 Successive Complementary Expansion Method . . . . . . . . . . . . . . . 463.4.1 Mix<strong>in</strong>g length model . . . . . . . . . . . . . . . . . . . . . . . . . . 473.4.2 Inner region velocity pr<strong>of</strong>ile . . . . . . . . . . . . . . . . . . . . . . 493.4.3 Outer region velocity pr<strong>of</strong>ile . . . . . . . . . . . . . . . . . . . . . . 493.4.4 Asymptotic match<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>in</strong>ner and outer pr<strong>of</strong>iles . . . . . . . . 513.4.5 Boundary layer quantities . . . . . . . . . . . . . . . . . . . . . . . 513.4.6 Turbulent shear stress and turbulent viscosity . . . . . . . . . . . . 523.4.7 <strong>Numerical</strong> implementation . . . . . . . . . . . . . . . . . . . . . . . 533.5 Zero pressure gradient boundary layer . . . . . . . . . . . . . . . . . . . . 553.5.1 Comparison <strong>of</strong> velocity pr<strong>of</strong>iles . . . . . . . . . . . . . . . . . . . . 553.5.2 Validation <strong>of</strong> <strong>the</strong> new mix<strong>in</strong>g length model with experiments . . . 583.5.3 Comparison with Direct <strong>Numerical</strong> Simulation . . . . . . . . . . . 623.6 Adverse pressure gradient boundary layer . . . . . . . . . . . . . . . . . . 653.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653.6.2 Comparison with DNS . . . . . . . . . . . . . . . . . . . . . . . . . 673.6.3 Eddy viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693.6.4 Re τ sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734 <strong>Numerical</strong> simulation and LES models 754.1 The AVBP solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904.2 <strong>Numerical</strong> method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914.2.1 The cell-vertex discretisation . . . . . . . . . . . . . . . . . . . . . 914.2.2 Weighted Cell Residual Approach . . . . . . . . . . . . . . . . . . . 934.2.3 Computation <strong>of</strong> gradients . . . . . . . . . . . . . . . . . . . . . . . 944.2.4 Computation <strong>of</strong> time step . . . . . . . . . . . . . . . . . . . . . . . 954.2.5 The Lax–Wendr<strong>of</strong>f scheme . . . . . . . . . . . . . . . . . . . . . . . 954.2.6 The TTGC numerical scheme . . . . . . . . . . . . . . . . . . . . . 97ii


4.2.7 Artificial Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004.3 Large Eddy Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044.4 Govern<strong>in</strong>g equations for LES . . . . . . . . . . . . . . . . . . . . . . . . . 1054.4.1 Filter<strong>in</strong>g procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064.4.2 Filter<strong>in</strong>g Navier–Stokes equations for non–react<strong>in</strong>g flows . . . . . . 1064.4.3 Inviscid terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074.4.4 Filtered viscous terms . . . . . . . . . . . . . . . . . . . . . . . . . 1084.4.5 Subgrid scale model . . . . . . . . . . . . . . . . . . . . . . . . . . 1104.4.6 Smagor<strong>in</strong>sky’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . 1114.4.7 Dynamic Smagor<strong>in</strong>sky’s Model . . . . . . . . . . . . . . . . . . . . 1124.4.8 WALE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134.5.1 Build<strong>in</strong>g <strong>the</strong> characteristic boundary condition . . . . . . . . . . . 1144.5.2 Spatial formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1194.5.3 Temporal formulation . . . . . . . . . . . . . . . . . . . . . . . . . 1214.5.4 No–Slip Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224.5.5 Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1234.5.6 Outlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285 Analysis <strong>of</strong> <strong>the</strong> cavity flows 1295.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365.2 Two–dimensional cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365.2.1 Geometry and mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 1365.2.2 <strong>Numerical</strong> schemes and LES Model . . . . . . . . . . . . . . . . . . 1385.2.3 Inlet condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1385.2.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 1405.2.5 Boundary layer flow part . . . . . . . . . . . . . . . . . . . . . . . 1415.2.6 Cavity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1445.2.7 Turbulent fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . 1525.2.8 Aeroacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1585.3 Three–dimensional rectangular cavity . . . . . . . . . . . . . . . . . . . . 1615.3.1 Geometry and mesh . . . . . . . . . . . . . . . . . . . . . . . . . . 1615.3.2 <strong>Numerical</strong> schemes and LES Model . . . . . . . . . . . . . . . . . . 1625.3.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 1625.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1625.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164Conclusions 165iii


Bibliography 184Abstract 185iv


whiteRemerciements/Acknowledgementswhite Cette thèse a été réalisée grâce à l’aide, au soutien et la présence de nombreusespersonnes.Je remercie les pr<strong>of</strong>esseurs Azedd<strong>in</strong>e Kourta et Christophe Airiau, mes directeurs dethèse, pour m’avoir accueilli au se<strong>in</strong> du groupe EMT2, à l’IMFT et pour m’avoir donnél’opportunité de participer à cette expérience <strong>in</strong>ternationale.Je leur suis reconnaissant pour avoir assuré la direction de mes travaux et pourm’avoir fait partager leur expérience dans la recherche avec enthousiasme, patience etmotivation, a<strong>in</strong>si que pour l’aide à la rédaction de la thèse, et des résumés en françaisen particulier.Je remercie à nouveau Christophe Airiau pour son encadrement pendant ces annéesa<strong>in</strong>si que pour sa confiance et sa bonne humeur. Il a pris le temps de relire et corrigerce manuscrit.Je remercie Thierry Po<strong>in</strong>sot pour avoir accepté de présider mon jury de thèse. Jeremercie Jean-Christophe Rob<strong>in</strong>et et Christian Tenaud pour avoir évalué mes travauxde thèse en tant que rapporteurs, et Aloïs Seng<strong>in</strong>ssen pour avoir accepté de prendre partà mon jury. Merci à tous pour vos observations pendant la soutenance.Je remercie Thierry Po<strong>in</strong>sot et le CERFACS pour m’avoir autorisé à utiliser le codede simulation numérique AVBP, a<strong>in</strong>si que pour le support et les conseils fournis, parlui-même et les thésards travaillant avec AVBP.This research project AeroTraNet has been supported by a Marie Curie Early StageTra<strong>in</strong><strong>in</strong>g Fellowship <strong>of</strong> <strong>the</strong> European Community’s Sixth Framework Programme undercontract number MEST CT 2005020301. Thanks to European Commission. Thanks toIDRIS, Paris and CALMIP, Toulouse for <strong>the</strong> comput<strong>in</strong>g facilities.Thanks to Laia and Kaushik, my colleagues from AeroTraNet project at IMFT for<strong>the</strong> discussion, friendship, support, encouragement, motivation and help throughout mystay <strong>in</strong> Toulouse.Thanks to all <strong>the</strong> members from AeroTraNet project at Politecnico di Tor<strong>in</strong>o, Universitàdi Roma Tre and University <strong>of</strong> Leicester dur<strong>in</strong>g <strong>the</strong> project meet<strong>in</strong>gs. Thanks toAldo Rona and Manuele Monti for <strong>the</strong> <strong>in</strong>terest<strong>in</strong>g discussions about turbulent boundaryv


layer dur<strong>in</strong>g <strong>the</strong> collaboration at Toulouse. Thanks to Michele Onorato and ChristianHaigermoser for <strong>the</strong> acoustic code and for <strong>the</strong> two week stay at Politecnico di Tor<strong>in</strong>o.Thanks Lukas, Mariano and Ana Maria.Merci à mes amis et collègues de l’EMT2 pour son aide et temps: Houssam, Anaïs,Karim, Xavier, Tim, Roma<strong>in</strong>, Wafa, Marie, Fernando, Matteo, Thibaud, Benjam<strong>in</strong> ,Rudy.Merci Nicolas du groupe EEC. Merci à Simon et Gabriel au CERFACS.Je remercie le personnel adm<strong>in</strong>istratif et technique de l’IMFT, et spécialement MarieChrist<strong>in</strong>e Tristani, secrétaire du groupe EMT2, pour avoir assuré toutes les démarchesadm<strong>in</strong>istratives. Merci également au personnel du Service Informatique et COSINUS.Merci à mes amis qui ont fait mon séjour à Toulouse très agréable: Yogesh, Sheetalet petit Alaap; Bernhard, Mariyana, Dirk, Jeanne, Yannick, Sarah, Ion, et les membresdu groupe “Indians <strong>in</strong> Toulouse”......Thanks to my friends (<strong>in</strong>side and outside <strong>of</strong> India) who were show<strong>in</strong>g <strong>the</strong>ir concerndur<strong>in</strong>g my PhD.Thanks Appa, Amma for everyth<strong>in</strong>g. Thanks a lot Anna, Anni for your motivation.Thanks to my relatives back <strong>in</strong> India.Thanks to Jayanthi.vi


whiteNomenclatureRomanBD˜FHLMPReStTT ∗T ija ∞p ′tuu τu ′u + eu +u ∞vv ′wy +logarithmic law constantDepth <strong>of</strong> <strong>the</strong> cavityVan Driest near–wall damp<strong>in</strong>g correctionshape factorLength <strong>of</strong> <strong>the</strong> cavityMach NumberPressureReynolds numberStrouhal numberTemperaturenon–dimensional timeLighthill stress tensorvelocity <strong>of</strong> sound <strong>in</strong> <strong>the</strong> mediumpressure fluctuationtime<strong>in</strong>stantaneous velocity <strong>in</strong> x-directionfriction velocityfluctuat<strong>in</strong>g velocity <strong>in</strong> x-directionnormalised external velocitynormalised stream wise velocitystream wise velocity<strong>in</strong>stantaneous velocity <strong>in</strong> y-directionfluctuat<strong>in</strong>g velocity <strong>in</strong> y-directionhalf width <strong>of</strong> <strong>the</strong> cavity <strong>in</strong> span wise directionnon–dimensional wall–normal distance (<strong>in</strong>ner region)vii


Greek< • > time averagedβ pressure gradient parameterδ boundary layer thicknessδ ∗δ ijηκDisplacement thicknessKronecker deltaNon–dimensional wall–normal distance (<strong>in</strong> outer region)von kármán constantµ Dynamic viscosityν K<strong>in</strong>ematic viscosityν tρττ wτ +τ tΘΠTurbulent k<strong>in</strong>ematic viscosityDensityShear stressShear stress at wallNormalised shear stressTurbulent stressMomentum thickness <strong>of</strong> <strong>the</strong> boundary layerWake parameterAbbreviationAVBPBCCALMIPCFDDNSIDRISLESNSCBCRANSSGSSPLTTGCWALELES simulation code from CERFACSBoundary ConditionsCalcul en Midi-PyrénéesComputational Fluid DynamicsDirect <strong>Numerical</strong> SimulationInstitut du Développement et des Ressources en Informatique ScientifiqueLarge Eddy SimulationNavier-Stokes Characteristic BoundaryReynolds Averaged Navier–StokesSub Grid ScaleSound Pressure LevelTwo-steps Taylor Galerk<strong>in</strong> Col<strong>in</strong>Wall Adapt<strong>in</strong>g L<strong>in</strong>ear Eddyviii


Chapter 1IntroductionRésumé étendu en françaisDepuis son existence sur Terre l’homme n’a cessé d’améliorer son niveau de vie aussibien du po<strong>in</strong>t de vue substantiel que matériel. A<strong>in</strong>si les moyens de transport ont progressélui facilitant ses déplacements. Mais ce développement génère des exigences en terme desécurité, de confort et de nuisance. A<strong>in</strong>si, les moyens de transport terrestres et aériensreprésentent une source importante des nuisances environnementales et sonores. De nosjours, il s’agit donc de dim<strong>in</strong>uer les émissions des gaz à effet de serre et de réduire lebruit au vois<strong>in</strong>age des zones habitées. Ce travail de thèse fait partie d’un projet européenrelatif à la réduction des nuisances liées à la pollution et au bruit.Les nuisances sonores des véhicules terrestres ou aériens sont devenues de plus enplus une préoccupation importante de part l’accroisement de la population exposée aubruit. Des normes de réduction de bruit ont été imposées par l’union Européenne surles avions civils. Les sources de bruit pour un véhicule aérien peuvent être soit d’orig<strong>in</strong>eaérodynamique soit d’orig<strong>in</strong>e purement mécanique. Les sources sont diverses, notonsévidemment le bruit <strong>in</strong>duit par la motorisation, mais également celui présent lors desphases de décollage et d’atterrissage, provenant de la sortie du tra<strong>in</strong>, des éléments hypersustentateursou du sifflement de petites cavités présentes sur la cellule ou l’aile.Des dispositifs de contrôle passif ou actif sont alors envisagés pour réduire le bruit á lasource.Le projet AeroTranet dans lequel est impliqué ce travail, est un projet de formationpar la recherche (Early stage research Tra<strong>in</strong><strong>in</strong>g) Marie-Curie EST. Il consisteen particulier à <strong>of</strong>frir une structure scientifique et technologique de formation a<strong>in</strong>siqu’à apporter un complément de connaissances sur un problème donné. Il permet dedévelopper des collaborations entre universités européennes. Pour ce projet, sont impliquéesl’université de Leicester, l’Université de Rome, l’école polytechnique de Tur<strong>in</strong>et l’Institut National Polytechnique de Toulouse à travers l’IMFT. Le projet est focalisésur le cas d’un écoulement de cavité dont on étudie l’aérodynamique et l’aéroacoustique1


1. Introductionpar différents moyens d’<strong><strong>in</strong>vestigation</strong> expérimentale ou numérique, et dans le but decontrôler le bruit émis.A l’IMFT, l’outil utilisé est la simulation numérique pour analyser l’écoulement etidentifier les événements liés à la dynamique des structures cohérentes et aux pr<strong>in</strong>cipalessources de bruit acoustique.Ajoutons que les motivations de l’étude sont liées au fait que la cavié est à la foisprésente dans les véhicules tant terrestres qu’ aériens, et que ces études, en plus de proposerune éventuelle réduction de bruit, peuvent donner lieu à une réduction de traînéeet donc de la consommation en carburant, via le contrôle des décollements. On espèreau f<strong>in</strong>al dim<strong>in</strong>uer l’impact écologique de l’homme.Du po<strong>in</strong>t de vue scientifique, l’écoulement de cavité comporte plusieurs phénomènesphysiques comme la couche cisaillée <strong>in</strong>stationniaire, le détachement tourbillonnaire, lesdécollements, les <strong>in</strong>stabilités et les effets tridimensionnels.L’objectif scientifique de ce travail est de déterm<strong>in</strong>er les sources acoustiques dansl’écoulement proche et lo<strong>in</strong>ta<strong>in</strong> d’une cavité avec une couche limite amont turbulente, etde caractériser cet écoulement turbulent. Pour cela une analogie acoustique est coupléeà une simulation de grandes échelles via un calcul de la pression perturbée qui permetde déf<strong>in</strong>ir les niveaux sonores en SPL.L’organisation de ce mémoire est comme suit: le chapitre 2 est relatif à l’étude bibliographique,le chapitre 3 s’<strong>in</strong>téresse aux conditions d’entrée et le calcul de la couche limiteturbulente amont. Le chapitre 4 présente le code de calcul, les paramètres numériqueset physiques, et les cas tests calculés. Dans le chapitre 5, les résultats de l’écoulement decavité sont analysés a<strong>in</strong>si que ceux de l’analogie acoustique . Le dernier chapitre dresseles conclusions et les perspectives.2


1.1. IntroductionM. K. Gandhi said:“Materialism and morality have an <strong>in</strong>verse relationship. When one <strong>in</strong>creases, <strong>the</strong>o<strong>the</strong>r decreases”.1.1 IntroductionFrom <strong>the</strong> day one <strong>of</strong> <strong>the</strong> human life on earth, man started explor<strong>in</strong>g surround<strong>in</strong>gs tounderstand its activities to adapt his way <strong>of</strong> life just to live. With <strong>the</strong> time, his th<strong>in</strong>k<strong>in</strong>ghas evolved to develop and modify th<strong>in</strong>gs to handle <strong>the</strong> difficulties around him. Hestarted to develop his abilities to protect himself from o<strong>the</strong>r humans, ra<strong>in</strong>, snow, sun orfire. With <strong>the</strong> <strong>in</strong>crease <strong>of</strong> population, he found ways to share water, food and shelterwith his community. With <strong>the</strong> discovery <strong>of</strong> wheel and his skill <strong>of</strong> tam<strong>in</strong>g animals aroundhim, he started explor<strong>in</strong>g <strong>the</strong> land which was spread before him . His ability improvedwith time and led him to cross water bodies with wooden logs, <strong>the</strong>n with boats andships. He discovered fossil fuels and <strong>in</strong>vented ways to use <strong>the</strong>m to burn, to produceenergy and to cater his needs from cook<strong>in</strong>g fast <strong>in</strong> homes to move fast on vehicles onrails or on roads. After mak<strong>in</strong>g a lot <strong>of</strong> trials (sometimes fatal) while explor<strong>in</strong>g <strong>the</strong>space above him, he found a way to fly heavier body faster than birds. Now, <strong>the</strong>man with his fast paced community concentrates on safety and comfortable journey onroad, rail, on or under water, <strong>in</strong> <strong>the</strong> space above him or <strong>the</strong> space outside his planet.Now he realises that he has more responsibilities on surround<strong>in</strong>gs while mak<strong>in</strong>g his life,journey safe and comfortable. He creates lots <strong>of</strong> <strong>in</strong>stitutions on various discipl<strong>in</strong>es toobserve, study and analyse <strong>the</strong> eco–cycle and to recommend <strong>the</strong> community about <strong>the</strong>perturbations <strong>in</strong> <strong>the</strong> ecosystem. He recently found that his unoptimised or careless usage<strong>of</strong> natural resources led to huge concern on <strong>the</strong> perturbations on <strong>the</strong> environment. Nowhe communicates with o<strong>the</strong>r communities to decrease <strong>the</strong> exploitation <strong>of</strong> <strong>the</strong> naturalsources without compromis<strong>in</strong>g <strong>the</strong> quality <strong>of</strong> life. Governments on <strong>the</strong> world started<strong>in</strong>itiat<strong>in</strong>g lots <strong>of</strong> projects for reduc<strong>in</strong>g <strong>the</strong> pollution <strong>in</strong> any form. Every project got acollection <strong>of</strong> experts from science, eng<strong>in</strong>eer<strong>in</strong>g and technology to perform research t<strong>of</strong><strong>in</strong>d every possible solution to reduce <strong>the</strong> pollution. More concern and restrictions arelaid before <strong>the</strong> (terrestrial, airborne and nautical) vehicle <strong>in</strong>dustry to reduce <strong>the</strong> carbonemission.Members <strong>of</strong> <strong>the</strong> European Commission <strong>in</strong>itiated numerous projects with environmentalconcern <strong>in</strong> <strong>the</strong>ir m<strong>in</strong>d for <strong>the</strong> betterment <strong>of</strong> climate and <strong>the</strong> quality <strong>of</strong> life for <strong>the</strong>present and future generations to follow. The PhD work presented here is a part <strong>of</strong> aproject whose aim is to reduce air and noise pollution which are generated from civilianaircrafts, vehicles on rails and roads.3


1. IntroductionFigure 1.1: An aircraft with land<strong>in</strong>g wells dur<strong>in</strong>g take <strong>of</strong>f. 11.2 NoiseThe noise, def<strong>in</strong>ed as unwanted, excessive, uncomfortable sound, is a major problem <strong>in</strong>day to day life. Researchers have known for years that exposure to excessively–loud noisecan cause changes <strong>in</strong> blood pressure as well as changes <strong>in</strong> sleep and digestive patterns– all signs <strong>of</strong> stress on <strong>the</strong> human body. The very word “noise”itself derives from <strong>the</strong>Lat<strong>in</strong> word noxia, which means <strong>in</strong>jury or hurt.In 1996, <strong>the</strong> European Commission published <strong>the</strong> Green paper [1] which showed thatabout 20% <strong>of</strong> <strong>the</strong> population <strong>in</strong> <strong>the</strong> European Union live <strong>in</strong> <strong>the</strong> so called ’grey areas’where <strong>the</strong> noise exposure exceeds an equivalent noise level <strong>of</strong> 65dB at daytime. Thesame document discuss about variety <strong>of</strong> topics related to noise pollution such as exposure<strong>of</strong> population to <strong>the</strong> noise level <strong>in</strong> <strong>the</strong>ir surround<strong>in</strong>gs. European Union estimates <strong>the</strong>external cost <strong>of</strong> noise pollution vary between 0.2% and 20% <strong>of</strong> Gross Domestic Product.It mentions about <strong>the</strong> noise pollution from <strong>the</strong> vehicular transport apart from <strong>in</strong>dustrialnoise pollution. The European Commission considers liv<strong>in</strong>g close to an airport to be apossible risk factor for coronary heart disease and stroke, as <strong>in</strong>creased blood pressurefrom noise pollution can trigger more serious maladies and European Union terms <strong>the</strong>neighbourhood as unhealthy and unacceptable place to live.The most common noise sources can be divided <strong>in</strong>to aerodynamic and mechanical.There are various noise –generat<strong>in</strong>g elements on aircrafts which <strong>in</strong>cludes <strong>the</strong> eng<strong>in</strong>es,<strong>the</strong> eng<strong>in</strong>e hous<strong>in</strong>g and airframe. Though sound produced by <strong>the</strong> eng<strong>in</strong>e is high. Butdur<strong>in</strong>g take <strong>of</strong>f and land<strong>in</strong>g, <strong>the</strong> sound generated by <strong>the</strong> airframe components: land<strong>in</strong>ggears, high–lift devices, fuel vents are dom<strong>in</strong>ant. In general, noise control is an activeor passive means <strong>of</strong> reduc<strong>in</strong>g sound emissions, <strong>of</strong>ten <strong>in</strong>centivized by personal comfort,environmental considerations or legal compliance. Effective noise control focuses onreduc<strong>in</strong>g <strong>the</strong> noise from <strong>the</strong>se sources as near <strong>of</strong> <strong>the</strong> source as possible. Locat<strong>in</strong>g <strong>the</strong>source <strong>of</strong> sound and reduc<strong>in</strong>g <strong>the</strong> <strong>in</strong>tensity or loudness <strong>of</strong> <strong>the</strong> sound can be done onlyafter a series <strong>of</strong> research by mov<strong>in</strong>g <strong>the</strong> eng<strong>in</strong>eers from <strong>in</strong>dustries and research scholarsfrom universities to work toge<strong>the</strong>r.1 Courtesy:Paul Dopson, APG Photography.4


1.3. AeroTraNet Project1.3 AeroTraNet ProjectAeroTraNet is “Unsteady AEROdynamics TRA<strong>in</strong><strong>in</strong>g NETwork <strong>in</strong> airframe components forcompetitive and environmentally friendly civil transport aircraft”. This AeroTraNet is anEarly Stage research Tra<strong>in</strong><strong>in</strong>g (EST) <strong>in</strong> <strong>the</strong> European Research Area (ERA). More detailsabout this project could be obta<strong>in</strong>ed from this l<strong>in</strong>k http://www.imft.fr/aerotranetMarie Curie EST actions are aimed at <strong>of</strong>fer<strong>in</strong>g structured scientific and/or technologicaltra<strong>in</strong><strong>in</strong>g as well as provid<strong>in</strong>g complementary skills. The tra<strong>in</strong><strong>in</strong>g focuses ondevelop<strong>in</strong>g Science & Technological techniques, but it can also <strong>in</strong>clude more practicalskills such as research management and languages. The idea is to encourage participantsto take up long–term research careers by help<strong>in</strong>g <strong>the</strong>m to enhance <strong>the</strong>ir job prospects.This is a multi–host <strong>in</strong>itiative that br<strong>in</strong>gs toge<strong>the</strong>r <strong>the</strong> excellent doctoral tra<strong>in</strong><strong>in</strong>gschools <strong>of</strong> four ERA research <strong>in</strong>stitutes <strong>of</strong> established <strong>in</strong>ternational stand<strong>in</strong>g. The University<strong>of</strong> Leicester, United K<strong>in</strong>gdom, <strong>the</strong> Università degli Studi Roma Tre, Italy, <strong>the</strong>Politecnico di Tor<strong>in</strong>o, Italy and <strong>the</strong> Institut de Mécanique des Fluides de Toulouse,France are comb<strong>in</strong><strong>in</strong>g <strong>the</strong>ir doctoral tra<strong>in</strong><strong>in</strong>g expertise and excellent research facilitiesto deliver a flexible, well–<strong>in</strong>tegrated, student–focused EST programme with a novel Europeandimension. This project focuses on aircraft aerodynamics, go<strong>in</strong>g beyond traditionaltime–averaged or statistical approaches and <strong>in</strong>troduc<strong>in</strong>g time–dependent methodsfor aeronautical research at an early stage <strong>of</strong> career development. One common researchtopic was chosen by <strong>the</strong>se four <strong>in</strong>stitutes to solve <strong>the</strong> unsteady flow over airflow fuelvents (i.e cavities <strong>of</strong> rectangular and cyl<strong>in</strong>drical shapes) by different <strong>in</strong>vestigat<strong>in</strong>g methodssuch as experiments and/or numerical simulation.In Institut de Mécanique des Fluides de Toulouse, usage <strong>of</strong> numerical simulation isproposed as <strong>the</strong> method <strong>of</strong> choice to identify <strong>the</strong> flow events that are related to <strong>the</strong>dynamics <strong>of</strong> coherent structures and are <strong>the</strong> ma<strong>in</strong> acoustic noise sources <strong>in</strong> <strong>the</strong> cavityflow.1.4 Motivation and ObjectivesCavity flows are studied for practical purposes such as reduction <strong>of</strong> drag, energy consumptionand unnecessary noise. Cavities represents <strong>the</strong> land<strong>in</strong>g gears, fuel vents <strong>of</strong> airborne vehicles and <strong>in</strong> <strong>the</strong> terrestial vehicles <strong>the</strong>y are found as w<strong>in</strong>dows <strong>of</strong> tra<strong>in</strong> coaches,space between wagons <strong>of</strong> tra<strong>in</strong>s, sun ro<strong>of</strong> and w<strong>in</strong>dows <strong>of</strong> cars. These unavoidablecavities generates noise <strong>in</strong>side <strong>the</strong> cab<strong>in</strong> space giv<strong>in</strong>g high human discomfort and alsodisturbs <strong>the</strong> ecological system which <strong>in</strong>volves humans, birds and animals who live near<strong>the</strong> roadways, railways and runways. Figure 1.2 shows a civilian aircraft with land<strong>in</strong>ggears engaged.Not only by <strong>the</strong> noise pollution, <strong>the</strong> ecological system is also affected by <strong>the</strong> airpollution. Carbon emission from <strong>the</strong> eng<strong>in</strong>e <strong>of</strong> <strong>the</strong> vehicles is <strong>in</strong>creased due to more5


1. Introductionconsumption <strong>of</strong> fossil fuel with <strong>in</strong>crease <strong>of</strong> drag on <strong>the</strong> vehicle with cavities.Apart from noise and air pollution, <strong>the</strong> structure and components <strong>of</strong> <strong>the</strong> vehicles failwithout warn<strong>in</strong>g due to <strong>the</strong> fatigue. The load or drag weakens <strong>the</strong> mechanical properties<strong>of</strong> <strong>the</strong> material. This <strong>in</strong>creases <strong>the</strong> weight and volume <strong>of</strong> <strong>the</strong> vehicle <strong>in</strong> whole.Cavity flows conta<strong>in</strong>s a wide range <strong>of</strong> physical phenomenon like unsteady shear layer,vortex shedd<strong>in</strong>g, recirculation eddies, <strong>in</strong>stabilities and three dimensional effects. Thema<strong>in</strong> objective <strong>of</strong> this PhD work is to determ<strong>in</strong>e <strong>the</strong> sound sources at near and far field<strong>of</strong> <strong>the</strong> cavity with an <strong>in</strong>com<strong>in</strong>g thick turbulent boundary layer and to <strong>in</strong>vestigate <strong>the</strong>turbulence <strong>of</strong> <strong>the</strong> cavity flow us<strong>in</strong>g numerical methods. An acoustic analogy is coupledwith Large Eddy Simulation. Large Eddy Simulation is performed on a significantnumber <strong>of</strong> test cases to obta<strong>in</strong> hydrodynamic pressure values <strong>in</strong> <strong>the</strong> doma<strong>in</strong>. SoundPressure Level is obta<strong>in</strong>ed us<strong>in</strong>g acoustic analogy from <strong>the</strong> hydrodynamic pressure valuesdeterm<strong>in</strong>ed by Large Eddy Simulation method.1.5 Plan <strong>of</strong> <strong>the</strong> <strong>the</strong>sisThe contents <strong>of</strong> this <strong>the</strong>sis are organised as follows:• Chapter 2 : This chapter is devoted to discuss about <strong>the</strong> literature related tocavity flows, turbulence, Direct <strong>Numerical</strong> Simulation and Large Eddy Simulationand about Aeroacoustics which <strong>in</strong>cludes acoustic analogy and <strong>the</strong> procedures thatare followed to determ<strong>in</strong>e <strong>the</strong> sound pressure level <strong>of</strong> <strong>the</strong> noise generated by <strong>the</strong>cavity flow.• Chapter 3 : This chapter starts with <strong>the</strong> description about <strong>the</strong> <strong>in</strong>flow condition,asymptotic model<strong>in</strong>g and conta<strong>in</strong>s sections to expla<strong>in</strong> <strong>the</strong> model<strong>in</strong>g <strong>of</strong> turbulentboundary layer, mix<strong>in</strong>g length model, zero pressure gradient boundary layer andadverse pressure gradient boundary layer.• Chapter 4 : provides a general overview <strong>of</strong> ma<strong>in</strong> features <strong>of</strong> <strong>the</strong> AVBP solver.The chapter beg<strong>in</strong>s with <strong>the</strong> description <strong>of</strong> <strong>the</strong> govern<strong>in</strong>g equations <strong>of</strong> Large EddySimulation and <strong>the</strong> method used to discretisation <strong>of</strong> <strong>the</strong> govern<strong>in</strong>g equations. Description<strong>of</strong> boundary conditions is also <strong>in</strong>cluded. The test cases, geometries,mesh<strong>in</strong>g, challenges while perform<strong>in</strong>g simulations are also discussed <strong>in</strong> this chapter.Results are summarised and analysis on boundary layer turbulence <strong>in</strong> anddownstream <strong>of</strong> <strong>the</strong> cavity are <strong>in</strong>cluded here. At <strong>the</strong> end <strong>of</strong> this chapter resultsobta<strong>in</strong>ed from acoustic analogy are presented and analysed.• Chapter 5 : In this f<strong>in</strong>al chapter <strong>of</strong> <strong>the</strong> <strong>the</strong>sis, observations and conclusions arelaid. Future extension <strong>of</strong> this PhD work and perspectives are listed at <strong>the</strong> end.6


Chapter 2Cavity flow, turbulence and<strong>aeroacoustic</strong>sContents2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.2 Cavity flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.3 Classification and ma<strong>in</strong> results . . . . . . . . . . . . . . . . . 142.4 Direct <strong>Numerical</strong> Simulation . . . . . . . . . . . . . . . . . . 192.5 Navier Stokes Equations . . . . . . . . . . . . . . . . . . . . . 202.6 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.7 RANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.8 Aeroacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.9 Computational Aeroacoustics . . . . . . . . . . . . . . . . . . 322.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Résumé étendu en françaisEcoulements de cavité, turbulence et aéroacoustiquePour une voiture avec toit ouvrant ouvert et se déplaçant à une vitesse de 50 km/h, lebruit dans l’habitacle peut atte<strong>in</strong>dre des niveaux de l’ordre de 98 dB, entraînant pourles voyageurs fatigue et stress. Une longueur m<strong>in</strong>imale de la cavité est nécessaire pourgénérer le bruit, elle est fonction du nombre de Mach de l’écoulement amont et de lanature de la couche limite (turbulente) amont. Si cette longueur est en dessous de cettelimite, il n’y a pas oscillations de pression et le bruit émis est faible. La pr<strong>of</strong>ondeur de lacavité et l’épaisseur de quantité de mouvement <strong>in</strong>itiale au co<strong>in</strong> amont sont importantescomme décrit par la figure 2.1.7


2. Cavity flow, turbulence and <strong>aeroacoustic</strong>sPlusieurs études numériques se sont <strong>in</strong>téressées à l’aéroacoustique de la cavité 2D ou3D: simulation numérique directe (Gloerfelt et al[55]), modèles de Boltzmann sur réseau(Ricot et al[122]), simulations LES (Larchevêque et al[78]).... A<strong>in</strong>si on a pu constaterque la largeur de la cavité (dans la direction de l’envergure) modifie les oscillations depression (effet 3D), que les niveaux sonores les plus importants sont obtenus pour lescavités les plus larges et que l’épaissseur de la couche limite amont pilote la croissancedes oscillations.Cavité- Oscillations de l’écoulement associéesLes oscillations <strong>in</strong>duites par une cavité peuvent être classées en trois catégories (figure2.2):1. Fluide-élastique: elles apparaissent quand les modes propres de la surface de lacavité sont forcés (élasticité de la paroi)2. Fluide-résonant: il existe une oscillation auto-entretenue a une longueur d’ondeéquivalente aux dimensions de la cavité. Il y a couplage entre les modes acoustiquesde la cavité et la couche cisaillée au-dessus de la cavité.3. Fluide-dynamique: elles sont liées à un mécanisme de feedback. Ce régime impliquel’ amplification des <strong>in</strong>stabilités de la couche cisaillée provoquées par le retourde l’<strong><strong>in</strong>teraction</strong> de la couche cisaillée avec le co<strong>in</strong> ou la paroi aval.En raison de la nature auto-entretenue du mécanisme du feedback, les pulsations acoustiquessont générées périodiquement. La formule empirique pour déterm<strong>in</strong>er sa fréquenceest celle de Rossiter (équation 2.1). Rossiter n’essaie pas de décrire le processus générateurde l’onde de pression, mais seulement d’évaluer la fréquence fondamentale de l’écoulementau-dessus d’une cavité à partir d’une description globale de l’<strong><strong>in</strong>teraction</strong> entre la couchede mélange et les ondes de pression générées par l’angle aval. C’est un modèle prédictifvalable sous la condition que la fréquence de création des tourbillons soit égale à lafréquence caractéristique du phénomène acoustique et que le décalage de phase du tourbillonconvecté du co<strong>in</strong> supérieur amont vers le co<strong>in</strong> supérieur aval de la cavité et ledécalage de phase de l’onde acoustique remontant l’écoulement soient proportionnels, àun facteur de correction près, dû aux effets de l’angle.Classification et résultats importantsOn considère la cavité comme ouverte quand le rapport d’aspect est <strong>in</strong>ferieur à 9( LD < 9 ).Quand L D > 13, elle est considérée comme fermée. Pour 9 < L < 14 le régime estDtransitionnel. Le cas cavité ouverte est celui pour lequel la couche limite se sépare duco<strong>in</strong> amont et impacte la région du co<strong>in</strong> aval. La cavité opère en mode couche cisaillée.La cavité est dite fermée quand la couche décollée recolle au fond de la cavité8


et décolle ( ensuite avant ) le mur aval. ( Pour les ) cavités ouvertes on dist<strong>in</strong>gue les cavitésL Lpr<strong>of</strong>ondesD < 1 et peu pr<strong>of</strong>ondesD > 1 . Les cavités pr<strong>of</strong>ondes se comportent enrésonateurs et la couche cisaillée au-dessus de la cavité fournit le forçage. Les oscillationsrésonantes sont établies sous certa<strong>in</strong>es conditions qui sont celles des modes acoustiquesdes cavités. Ces caractéristiques ont été établies aussi bien expérimentalementque numériquement. Il a été également établi que l’épaisseur de la couche limite justeavant la cavité est aussi un paramètre important. La limite <strong>in</strong>férieure pour la résonancede la cavité est L θ ≈ 80. Pour 80 < L θ< 120, les oscillations auto-entretenues existent.Pour L > 120 la traînée croit rapidement à cause du mode sillage qui a pris place.θPour les écoulements à bas nombres de Mach, l’écoulement de cavité a été classé enmode de cisaillement ou de sillage suivant la nature de la zone cisaillée au-dessus dela cavité. Suivant Rossiter les oscillations générées sont pilotées par les tourbillons dela zone cisaillée. La longueur d’onde des oscillations périodiques est de l’ordre de lalongueur de la cavité. La zone de mélange suit une ligne rectiligne du co<strong>in</strong> amont auco<strong>in</strong> aval de la cavité. La recirculation dans la cavité est presque au repos et l’<strong><strong>in</strong>teraction</strong>entre la zone cisaillée et l’écoulement dans la cavité est très faible. C’est le modede cisaillement. Avec ce mode à la fois les fluide-résonant et fluide-dynamique peuventexister. Quand la zone cisaillée oscille, le spectre de pression présente plusieurspics avec un pic dom<strong>in</strong>ant à la fréquence fondamentale dont la valeur est proportionnelleà l’<strong>in</strong>verse de la longueur de la cavité. Lorsque la longueur de la cavité augmenteet/ou le nombre de Reynolds, les oscillations auto-entretenues de la couche decisaillement deviennent asymétriques, et l’écoulement ne recolle plus sur l’angle avalde la cavité. L’écoulement fluctue violemment, recolle en dessous de l’angle aval de lacavité et possède des caractéristiques semblables à l’écoulement de sillage tridimensionnelderrière un corps pr<strong>of</strong>ilé. De plus, la traînée de la cavité augmente considérablement.C’est le mode sillage. Le cas d’écoulement <strong>in</strong>compressible a été étudié par simulation degrandes ( échelle couplée à l’analogie acoustique de Lighthill-Curle. Dans la cas bidimensionnelLD = 4, Re D = 5000), des simulations avec et sans perturbations amont ontété réalisées.Ecoulement de cavité bidimensionnel et tridimensionnelIl est généralement convenu de considérer l’écoulement de cavité comme essentiellementbidimensionnel. Cependant, on sait que les tourbillons longitud<strong>in</strong>aux au se<strong>in</strong> de la couchelimite, des effets de bord sur la couche de cisaillement et dans la cavité, a<strong>in</strong>si que des<strong>in</strong>stabilités de type Taylor–Görtler dues à la forte courbure de la recirculation peuvent<strong>in</strong>duire une tridimensionnalisation de l’écoulement. Des études expérimentales (Rockwellet Knisley[125]) et numériques (Rizzetta and Visball[123], Larchevêque et al[77],Chang et al[11]) ont analysé l’aspect tridimensionnel à l’<strong>in</strong>térieur de la cavité.9


2. Cavity flow, turbulence and <strong>aeroacoustic</strong>sEcoulement de cavité cyl<strong>in</strong>driqueLa cavité cyl<strong>in</strong>drique a également été étudiée. L’expérience de Hiwada et al[68] montrel’évolution de l’écoulement en faisant varier le rapport d’aspect de 0,1–1 (voir tableau2.1). Rona[127] a développé un modèle analytique pour caractériser les oscillations dansune cavité cyl<strong>in</strong>drique. Des expériences récentes sur la cavité cyl<strong>in</strong>drique sont donnéessur le tableau 2.2. Ces cavités peuvent se comporter comme des cavités fermées à certa<strong>in</strong>srégimes et pour certa<strong>in</strong>es géométries.Simulation Numérique Directe, RANSLa Simulation Numérique Directe devient de plus en plus possible avec l’essor des moyensde calcul. Elle reste la méthode la plus exacte pour prédire les écoulements <strong>turbulents</strong>et l’aéroacoustique de ces écoulements. Elle se limite encore à des nombres de Reynoldsmodérés. En effet, la simulation numérique directe résout toutes les échelles englobantles structures dissipatives et les propagations acoustiques. Elle nécessite un maillagef<strong>in</strong> et un doma<strong>in</strong>e suffisamment large pour calculer les petites structures et éviter lesphénomènes de réflexion d’onde sur les frontières ouvertes du doma<strong>in</strong>e de calcul. Dansce cas de simulation, on résout les équations de Navier–Stokes sans aucun modèle de turbulence.On doit s’assurer qu’on a une résolution spatiale (en terme de longueur d’onde)et temporelle (en terme de fréquence) suffisante. Ceci peut conduire à des maillages detrès très grande dimension et des temps de calcul très importants (des millions de pasde temps). C’est pour cette raison que la simulation numérique directe est souvent jugéetrop coûteuse.Les équations de Navier–Stokes pour un écoulement compressible sont présentées(équations 2.4 à 2.4). Il s’agit des équations de cont<strong>in</strong>uité, de la conservation de laquantité de mouvement et celle de la conservation de l’énergie. On met en évidence,pour le traitement numérique futur, les flux visqueux et non-visqueux représentés parune formulation vectorielle. L’aspect <strong>the</strong>rmodynamique est ensuite abordé en spécifiantles variables <strong>the</strong>rmodynamiques (enthalpie et entropie (équations 2.8 à 2.12) et l’équationd’état (équation 2.13). Les lois de comportement dynamique (équation2.26) et <strong>the</strong>rmique(2.28) sont aussi fournies.Les équations de Navier–Stoke moyennées avec modèles de turbulence représententun autre moyen de calculer un écoulement turbulent. dans ce cas les équations de Navier–Stokes subissent un traitement statistique avant résolution. On utilise la moyenne statistiquepour résoudre uniquement l’écoulement moyen et on modélise tout le spectre del’agitation turbulente. En raison des hypothèses requises pour les établir, ces modèlessont souvent limités à des cas plus ou mo<strong>in</strong>s académiques. Cependant, ces modèles ontété étendus à des cas <strong>in</strong>stationnaires en adoptant ou non certa<strong>in</strong>es améliorations. Onparle de moyennes <strong>in</strong>stationnaires (URANS). Ces modèles ont été couplés à la simulationde grandes échelles (modèles hybrides) pour améliorer la prédiction des <strong>in</strong>stationarités.10


Acoustique et AéroacoustiqueL’acoustique est la science relative au son <strong>in</strong>cluant sa production, sa propagation etses effets. Le son généré par les écoulements fluides est un doma<strong>in</strong>e de recherche enple<strong>in</strong> essor. Le bruit peut être regardé comme une onde (perturbation) de pression sepropageant dans un fluide à une vitesse de phase qu’on appelle vitesse du son. Lessources de bruit peuvent provenir du mouvement propre du fluide ou par l’<strong><strong>in</strong>teraction</strong>de l’écoulement avec les parois. Il est possible de séparer le problème lié au bruit enun problème de mécanique des fluides et en un problème acoustique. Pour quantifier leniveau de bruit on utilise le niveau de pression sonore (SPL) qui est mesuré en décibel(dB) (équations 2.41 à 2.44).Le calcul de l’aéroacoustique consiste à prédire le son rayonné par les écoulements<strong>turbulents</strong>, d’identifier les sources de bruit et d’établir une stratégie pour le réduire. Lasimulation de ces écoulement peut être directe ou <strong>in</strong>directe voir hybride. La simulationdirecte calcule le bruit en même temps que l’écoulement qui en est l’orig<strong>in</strong>e. On faitdans ce cas une simulation numérique directe par résolution des équations de Navier–Stokes complètes. Dans l’approche hybride, le calcul de l’écoulement est découplé del’acoustique. Le son rayonné dans le champ lo<strong>in</strong>ta<strong>in</strong> est obtenu par l’analogie acoustique.La figure 2.7 donne les pr<strong>in</strong>cipales approches pour calculer l’aéroacoustique. La figure2.8 schématise les sources et les échelles sonores.On présente ensuite la théorie de Lighthill. En partant des équations de mouvement(cont<strong>in</strong>uité et dynamique) on établit l’équation de Lighthill (équation2.47). Lasolution de cette équation est établie par Curle (équation2.48). Après manipulation decette équation (équations 2.49 à 2.53) on obtient l’expression de la pression en fonctiondu tenseur de Lighthill (équation 2.54). Elle comporte une contribution volumique etsurfacique. Larsson démontre que dans le cas d’une cavité ouverte le dipôle de pressionsurfacique dom<strong>in</strong>e.Une revue détaillée des calculs aéroacoustiques peut être trouvée dans Larsson [79]et Tam [158].11


2. Cavity flow, turbulence and <strong>aeroacoustic</strong>s2.1 IntroductionThis chapter is devoted to discuss <strong>the</strong> follow<strong>in</strong>g topics elaborately: Cavity flows, directnumerical simulation, Navier-Stokes equations, Turbulence, RANS and Aeroacoustics.Earlier and recent studies on two–dimensional and three–dimensional cavities related toaspect ratio, Mach number and o<strong>the</strong>r parameters are reviewed along with <strong>the</strong> physicalphenomenon occur<strong>in</strong>g <strong>in</strong> <strong>the</strong> cavity flows under different conditions. Navier–Stokes equationfor direct numerical simulation are given elaborately. Turbulence and its quantitiesare presented. F<strong>in</strong>ally under computational <strong>aeroacoustic</strong>s, Lighthill-Curle’s analogy isdiscussed and <strong>the</strong> equation required to determ<strong>in</strong>e sound pressure level is also derived.2.2 Cavity flows2.2.1 Physical phenomenon, ResonanceKarbon [72] observes that when a vehicle mov<strong>in</strong>g at 50km/h, with <strong>the</strong> sunro<strong>of</strong> open, <strong>the</strong>noise <strong>in</strong> <strong>the</strong> cab<strong>in</strong> space can reach more than sound pressure level <strong>of</strong> 98dB which willbr<strong>in</strong>g stress and fatigue to <strong>the</strong> travellers. Lid–driven cavity flow does not considers <strong>the</strong><strong><strong>in</strong>teraction</strong> between <strong>the</strong> shear layer and <strong>the</strong> recirculat<strong>in</strong>g flow but just models <strong>the</strong> flowfield <strong>in</strong>side <strong>the</strong> cavity[146].Figure 2.1(a) illustrates <strong>the</strong> length L, depth D and width W <strong>in</strong> an experimentalsetup with respect to <strong>the</strong> stream wise flow direction and <strong>the</strong> figure 2.1(b) carries detailsshow<strong>in</strong>g <strong>the</strong> <strong>in</strong>com<strong>in</strong>g boundary layer at <strong>the</strong> lead<strong>in</strong>g edge <strong>of</strong> <strong>the</strong> cavity, shear layer over<strong>the</strong> cavity and <strong>the</strong> pressure perturbation from <strong>the</strong> trail<strong>in</strong>g edge <strong>of</strong> <strong>the</strong> cavity due to <strong>the</strong>imp<strong>in</strong>gement <strong>of</strong> <strong>the</strong> shear layer on <strong>the</strong> corner <strong>of</strong> <strong>the</strong> downstream <strong>of</strong> <strong>the</strong> cavity. Eddyor eddies are created <strong>in</strong>side <strong>the</strong> cavity depend<strong>in</strong>g on various parameters which will bedicussed <strong>in</strong>side <strong>the</strong> chapter.Karamcheti [71] reported that <strong>the</strong>re is a m<strong>in</strong>imum cavity length needed for generation<strong>of</strong> cavity noise, depend<strong>in</strong>g on <strong>the</strong> Mach number <strong>of</strong> <strong>the</strong> flow and whe<strong>the</strong>r <strong>the</strong> approach<strong>in</strong>gboundary layer is turbulent. If <strong>the</strong> cavity length is less than <strong>the</strong> m<strong>in</strong>imum length, <strong>the</strong>flows will not oscillate. Sarohia [138] stated that <strong>the</strong> parameters cavity depth D and<strong>in</strong>itial momentum thickness θ 0 at <strong>the</strong> lead<strong>in</strong>g edge also are as important as <strong>the</strong> m<strong>in</strong>imalcavity length L. Gloerfelt et al [55] performed Direct <strong>Numerical</strong> Simulation (DNS)on two–dimensional cavity <strong>of</strong> L = 2 with thick lam<strong>in</strong>ar upstream boundary layer andDthree–dimensional Large Eddy Simulation (LES) for higher Reynolds number on cavities<strong>of</strong> L D = 12 and L = 3 <strong>in</strong> lam<strong>in</strong>ar and turbulent regime. On a cavity <strong>of</strong> aspect ratioDL= 1, Ricot et al [122] used Lattice Boltzmann method for <strong>aeroacoustic</strong> computationsD<strong>of</strong> low subsonic M = 0.044 flows. Gloerfelt et al [52] performed two dimensional Direct<strong>Numerical</strong> Simulation and hybrid methods to evaluate <strong>the</strong> far–field noise with a relativethick lam<strong>in</strong>ar <strong>in</strong>com<strong>in</strong>g boundary layer on a cavity <strong>of</strong> aspect ratio L = 2. Gloerfelt etD12


2.2. Cavity flowspressure perturbationsboundary layershear layerWLDLU ∞(a) Cavity geometry and parametersD(b) Schematic diagram <strong>of</strong> cavity flowFigure 2.1: Cavity flow.al [53] <strong>in</strong>vestigated <strong>the</strong> <strong><strong>in</strong>teraction</strong> <strong>of</strong> a turbulent boundary layer, its radiated field and<strong>the</strong> switch<strong>in</strong>g between two cavity modes while perform<strong>in</strong>g Direct Noise Computation(DNC) for a turbulent boundary layer past a rectangular cavity <strong>of</strong> L D= 3, M = 0.8.Larchevêque et al [78] performed LES <strong>of</strong> <strong>the</strong> three–dimensional flow over a L D = 0.42cavity at a Mach number <strong>of</strong> M = 0.8, and a Reynolds number Re L = 8.6 × 10 5 . Theycompared <strong>the</strong>ir results with <strong>the</strong> experimental results <strong>of</strong> Forestier et al [43]. Gloerfeltet al [54] conducted Direct Noise Computations for Mach 0.6 flows over cavities withan aspect ratio <strong>of</strong> L = 1. The width <strong>of</strong> <strong>the</strong> cavity <strong>in</strong> <strong>the</strong> spanwise direction, and <strong>the</strong>Dthickness <strong>of</strong> <strong>the</strong> <strong>in</strong>com<strong>in</strong>g boundary layer were studied. They found that change <strong>in</strong><strong>the</strong> width W <strong>of</strong> <strong>the</strong> cavity modifies <strong>the</strong> cavity oscillations and observed higher soundlevels observed <strong>in</strong> wider cavities. The thickness <strong>of</strong> <strong>the</strong> <strong>in</strong>com<strong>in</strong>g boundary layer <strong>in</strong><strong>the</strong>ir computations drove <strong>the</strong> growth <strong>of</strong> <strong>in</strong>stabilities <strong>in</strong> <strong>the</strong> separat<strong>in</strong>g shear layer. TheyLpo<strong>in</strong>t about <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> on <strong>the</strong> modes and mode–switch<strong>in</strong>g. Chang et al [11]δ θperformed a three–dimensional <strong>in</strong>compressible flow past a rectangular two-dimensionalshallow cavity <strong>in</strong> a channel is <strong>in</strong>vestigated us<strong>in</strong>g Large Eddy Simulation. The aspectratio <strong>of</strong> <strong>the</strong> cavity is L D = 2 at Re D = 3360 with a develop<strong>in</strong>g lam<strong>in</strong>ar boundary layerand when <strong>the</strong> upstream flow is fully turbulent.2.2.2 Cavity-related flow oscillationsThe understand<strong>in</strong>g <strong>of</strong> cavity-related flow oscillations was simplified by Rossiter andNaudascher. They divides <strong>the</strong>m <strong>in</strong>to three categories1. Fluid-elastic oscillations: They occur when a cavity surface itself is forced <strong>in</strong>tooscillation. In o<strong>the</strong>r words, this regime encompasses flows that are affected by <strong>the</strong>elastic boundaries <strong>of</strong> <strong>the</strong> cavity.2. Fluid–resonant oscillations: These are caused when a self susta<strong>in</strong><strong>in</strong>g oscillation <strong>in</strong><strong>the</strong> flow has a wavelength <strong>of</strong> <strong>the</strong> same order as one <strong>of</strong> <strong>the</strong> cavity dimensions. This13


2. Cavity flow, turbulence and <strong>aeroacoustic</strong>sSeparationpo<strong>in</strong>tDivid<strong>in</strong>gstreaml<strong>in</strong>eStagnationpo<strong>in</strong>tSeparationpo<strong>in</strong>tDivid<strong>in</strong>gstreaml<strong>in</strong>eStagnationpo<strong>in</strong>t(a) Sketch <strong>of</strong> open cavity flow at subsonic speedImp<strong>in</strong>gementSeparationpo<strong>in</strong>tpo<strong>in</strong>t(b) Sketch <strong>of</strong> closed cavity flow at subsonic speedFigure 2.2: Sketch <strong>of</strong> open and closed cavity flow at subsonic speed. [38]regime couples <strong>the</strong> acoustic modes <strong>of</strong> <strong>the</strong> cavity and shear layer over <strong>the</strong> deepercavities and for <strong>the</strong> cavities subject to high Mach number flow.3. Fluid–dynamic oscillations: These are related to <strong>the</strong> cavity feedback resonancemechanism. This regime <strong>in</strong>volves shear–layer <strong>in</strong>stability amplification due to feedbackfrom <strong><strong>in</strong>teraction</strong> <strong>of</strong> <strong>the</strong> shear layer. These <strong><strong>in</strong>teraction</strong>s occurs for low–speedflow past shallow cavities.Due to <strong>the</strong> self-susta<strong>in</strong><strong>in</strong>g nature <strong>of</strong> <strong>the</strong> feedback mechanism, acoustic pulses are generatedperiodically and a narrow band acoustic tone results. A semi-empirical formula topredict <strong>the</strong> frequency <strong>of</strong> this tone was predicted by Rossiter:St n = f nLU = n − γM + 1 κn = 1,2,..., (2.1)where St n is <strong>the</strong> Strouhal number correspond<strong>in</strong>g to <strong>the</strong> n th mode frequency f n , andκ = 1 and γ = 0.25 are empirical constants correspond<strong>in</strong>g to <strong>the</strong> average convection1.75speed <strong>of</strong> disturbances <strong>in</strong> <strong>the</strong> shear layer, and a phase delay.2.3 Classification and ma<strong>in</strong> results2.3.1 Open and closed cavitiesEarlier, accord<strong>in</strong>g to Sarohia [138] shallow cavities have aspect ratios( LD)less thanunity whereas deep cavities have L ratios greater than unity. Rossiter [130] def<strong>in</strong>es <strong>the</strong>Dcut<strong>of</strong>f to be a ratio <strong>of</strong> 4.0. Figure 2.2(a) shows separation po<strong>in</strong>t at <strong>the</strong> upstream <strong>of</strong> <strong>the</strong>cavity and stagnation po<strong>in</strong>t at <strong>the</strong> downstream <strong>of</strong> <strong>the</strong> cavity with divid<strong>in</strong>g streaml<strong>in</strong>efor <strong>the</strong> open cavity at subsonic velocity. For <strong>the</strong> closed cavity at <strong>the</strong> subsonic speed,a separation po<strong>in</strong>t occurs at <strong>the</strong> lead<strong>in</strong>g edge <strong>of</strong> <strong>the</strong> cavity, imp<strong>in</strong>gement po<strong>in</strong>t andsecond seperation po<strong>in</strong>t are at <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> cavity with a stagnation po<strong>in</strong>t at <strong>the</strong>trail<strong>in</strong>g edge <strong>of</strong> <strong>the</strong> cavity. In <strong>the</strong> this closed cavity configuration, <strong>the</strong> pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong>14


2.3. Classification and ma<strong>in</strong> resultsImp<strong>in</strong>gement shockExit shockC p+0−Open cavity flowL/D < 10C p+0−Closed cavity flowL/D > 13(a) Sketch <strong>of</strong> open cavity flow at super sonic speed (b) Sketch <strong>of</strong> closed cavity flow at super sonic speedFigure 2.3: Sketch <strong>of</strong> open and closed cavity flow at super sonic speed. [109]divid<strong>in</strong>g stream l<strong>in</strong>e starts from <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> cavity. In general, a cavity withaspect ratio L D< 9 is considered open (see figure 2.3(a) for supersonic case). A cavitywith ratio larger than 13 or L D> 13 is closed (see figure 2.3 for supersonic case). Acavity with ratio 9 ≤ L ≥ 13 is considered transitional. Open cavities refer to flowDover cavities where <strong>the</strong> boundary layer separates at <strong>the</strong> upstream corner and reattachesnear <strong>the</strong> downstream corner. In o<strong>the</strong>r words, cavities operat<strong>in</strong>g <strong>in</strong> shear–layer mode,are characterised by shear–layer reattachment at <strong>the</strong> downstream wall [109]. Cavitiesare closed when <strong>the</strong> separated layer reattaches at <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> cavity and aga<strong>in</strong>separates ahead <strong>of</strong> <strong>the</strong> downstream wall <strong>of</strong> <strong>the</strong> cavity. Open cavities may fur<strong>the</strong>r bedivided <strong>in</strong>to shallow and deep cavities. The cavities with aspect ratio L D > 1 mayconsidered as shallow and for L < 1 <strong>the</strong> cavities may be considered deep, where L isD<strong>the</strong> length <strong>of</strong> <strong>the</strong> cavity and D is <strong>the</strong> depth <strong>of</strong> <strong>the</strong> cavity. Deep cavities act as resonatorsand <strong>the</strong> shear layer above <strong>the</strong> cavity provides a forc<strong>in</strong>g mechanism. Resonant oscillationsare established under certa<strong>in</strong> flow conditions, correspond<strong>in</strong>g to natural acoustic depthmodes <strong>of</strong> <strong>the</strong> cavities. Karamcheti studied <strong>the</strong> acoustic field <strong>of</strong> two-dimensional shallowcavities <strong>in</strong> <strong>the</strong> range <strong>of</strong> Mach numbers from 0.25 to 1.5 by schlieren and <strong>in</strong>terferometricobservations. Karamcheti noticed that, for a fixed freestream Mach number M ∞ anddepth D, <strong>the</strong>re exists a m<strong>in</strong>imum cavity length L m<strong>in</strong> below which no sound emissionis noticed. For a fixed cavity, experimental results fur<strong>the</strong>r showed a m<strong>in</strong>imum Machnumber below which no sound emission was noticed. For a given flow, <strong>the</strong> prerequisite<strong>of</strong> a m<strong>in</strong>imum length L m<strong>in</strong> for <strong>the</strong> onset <strong>of</strong> cavity oscillations strongly suggests that<strong>the</strong> mechanism <strong>of</strong> cavity oscillations depends upon <strong>the</strong> stability characteristics <strong>of</strong> <strong>the</strong>shear layer. Rockwell [124] and Rockwell and Naudascher [126] clarified <strong>the</strong> significantparameters for this oscillation type as Re, δ 2 , θ 0 /L, L/W. Rockwell and Naudasher [126]predicted <strong>the</strong> ma<strong>in</strong> oscillatory frequency for <strong>in</strong>compressible flow over two–dimensionalcavities based on l<strong>in</strong>ear <strong>in</strong>viscid stability <strong>the</strong>ory. The predictions agreed well with <strong>the</strong>15


2. Cavity flow, turbulence and <strong>aeroacoustic</strong>sLexperimental results <strong>of</strong> <strong>of</strong> E<strong>the</strong>mbabaoglu [39]. For example: < 10 for open andDLD > 13 for closed [109]. LD < 9 for open and L D > 13 for closed [32]. LD < 3 foropen and L > 10 for closed [154]. Recently, Tracy and Plentovich [164] and RamanDet al [119] have concluded that <strong>the</strong> disagreement found <strong>in</strong> <strong>the</strong> literature stems from<strong>the</strong> dependence <strong>of</strong> <strong>the</strong> cavity flow type on Mach number as well as L . It was shownDthat <strong>the</strong> boundary layer thickness at <strong>the</strong> cavity lip is also an important parameter [2],[164]. Colonius [22] states that <strong>the</strong> momentum thickness θ 0 at <strong>the</strong> lead<strong>in</strong>g edge <strong>of</strong> <strong>the</strong>cavity plays a vital role <strong>in</strong> <strong>the</strong> selection <strong>of</strong> <strong>the</strong> modes and <strong>in</strong> govern<strong>in</strong>g <strong>the</strong> growth <strong>of</strong> <strong>the</strong>shear layer [132], [158] that spans an open cavity [13]. Gharib and Roskho [50] specified<strong>the</strong> threshold for self susta<strong>in</strong>ed oscillation and <strong>the</strong> wake mode. They also found L θfor lower limit for <strong>the</strong> cavity resonance to be approximately L θ≈ 80. When <strong>the</strong> ratio<strong>of</strong> <strong>the</strong> cavity length to <strong>the</strong> momentum thickness <strong>of</strong> <strong>the</strong> <strong>in</strong>com<strong>in</strong>g boundary layer ( L θ )is <strong>in</strong> <strong>the</strong> range 80 < L θ< 120, <strong>the</strong> self-susta<strong>in</strong>ed oscillations take place <strong>in</strong> <strong>the</strong> shearlayer mode. When L exceeds 120, <strong>the</strong> drag abruptly <strong>in</strong>creases due to <strong>the</strong> onset <strong>of</strong> <strong>the</strong>θwake mode. Grace et al [56] performed measurements <strong>of</strong> both lam<strong>in</strong>ar and turbulentupstream boundary layers cases with low Mach number. They found no evidence <strong>of</strong>self–susta<strong>in</strong>ed oscillations <strong>in</strong> streamwise velocity data obta<strong>in</strong>ed us<strong>in</strong>g a hotwire or <strong>in</strong>wall pressure fluctuation data obta<strong>in</strong>ed us<strong>in</strong>g a microphone when an <strong>in</strong>com<strong>in</strong>g boundarylayer is turbulent. They exam<strong>in</strong>ed mean and turbulent flow fields <strong>in</strong> a shallow cavitywith aspect ratio L D = 4. The lam<strong>in</strong>ar cases with L = 130 and 190 and <strong>the</strong> turbulentθcases with L θ = 78 and 86 were performed with correspond<strong>in</strong>g Re θ were 2892, 3949 forlam<strong>in</strong>ar cases and 6318, 12627 for turbulent cases respectively. A cavity with a lam<strong>in</strong>ar<strong>in</strong>com<strong>in</strong>g boundary layer <strong>of</strong> ratio L = 4 at very low Mach number was studied byDOzsoy et al [107]. The results brought observation <strong>of</strong> Reynolds number sensitivity on<strong>the</strong> mean and turbulent flow velocities and on <strong>the</strong> vortex characteristics. In spite <strong>of</strong> <strong>the</strong>large values <strong>of</strong> L rang<strong>in</strong>g from 114 to 160 no feedback mechanism <strong>in</strong>volv<strong>in</strong>g regular flowθself–susta<strong>in</strong>ed oscillations were observed.2.3.2 Shear and wake modeFor <strong>the</strong> low Mach number flows, <strong>the</strong> cavity has been classified as shear mode or wakemode accord<strong>in</strong>g to <strong>the</strong> shear–layer on <strong>the</strong> cavity. In a shear layer mode, <strong>the</strong> length<strong>of</strong> <strong>the</strong> cavity plays an important role. Accord<strong>in</strong>g to Rossiter [130], <strong>the</strong> oscillationsgenerated are driven by <strong>the</strong> vortices from <strong>the</strong> shear layer. The wave length <strong>of</strong> thisperiodic oscillation is usually close to <strong>the</strong> cavity length or 1 <strong>of</strong> <strong>the</strong> cavity length. TheNoscillation <strong>of</strong> <strong>the</strong> shear layer is conf<strong>in</strong>ed with<strong>in</strong> a narrow region near <strong>the</strong> straight l<strong>in</strong>ebetween <strong>the</strong> lead<strong>in</strong>g and trail<strong>in</strong>g edge <strong>of</strong> <strong>the</strong> cavity. The recirculation flow <strong>in</strong>side <strong>the</strong>16


2.3. Classification and ma<strong>in</strong> resultscavity is usually relatively quiescent and <strong>the</strong> <strong><strong>in</strong>teraction</strong> between <strong>the</strong> shear layer andflow <strong>in</strong>side <strong>the</strong> cavity is weak. In a cavity with shear–layer mode, <strong>the</strong> shear layer spans<strong>the</strong> mouth <strong>of</strong> <strong>the</strong> cavity and stagnates at <strong>the</strong> downstream wall. Both fluid–resonantand fluid–dynamic regimes can be found <strong>in</strong> <strong>the</strong> cavity with shear–layer mode. When<strong>the</strong> shear layer oscillates <strong>in</strong> <strong>the</strong> shear layer mode, multiple discrete and high magnitudepeaks will be present <strong>in</strong> <strong>the</strong> pressure spectra. These peaks are <strong>the</strong> cavity tones. Thereis usually one tone with higher magnitude than <strong>the</strong> rest <strong>of</strong> <strong>the</strong> spectrum as it so thatit possesses most <strong>of</strong> <strong>the</strong> energy. This tone is referred to as <strong>the</strong> dom<strong>in</strong>ant tone or <strong>the</strong>fundamental frequency. Karamcheti [71] discovered that <strong>the</strong> frequency <strong>of</strong> <strong>the</strong> dom<strong>in</strong>anttone is <strong>in</strong>versely proportional to <strong>the</strong> cavity length. As <strong>the</strong> length <strong>of</strong> cavity becomes evenlonger, <strong>the</strong> fundamental frequency disappears and strong <strong>in</strong>termittencies will overcome<strong>the</strong> coherent oscillation. The feedback mechanism becomes <strong>in</strong>effective at this po<strong>in</strong>t. Thismode <strong>of</strong> oscillation is called a wake mode. This mode is identified by <strong>the</strong> stagnation <strong>of</strong><strong>the</strong> flow prior to <strong>the</strong> downstream wall. Gharib and Roshko [50] noted <strong>the</strong> flow lookedsimilar to a bluff–body wake and named <strong>the</strong> mode as wake mode. In <strong>the</strong> wake mode, selfoscillations cease, <strong>the</strong> cavity flow becomes unstable on a large scale, and <strong>the</strong> drag <strong>in</strong>creasewith <strong>the</strong> presence <strong>of</strong> <strong>the</strong> cavity. The depth <strong>of</strong> <strong>the</strong> cavity becomes more important <strong>in</strong>this type <strong>of</strong> mode. Direct numerical simulations by Rowley et al [132] showed similarresults for a two–dimensional rectangular cavity. In this mode, <strong>the</strong> vortex grows near<strong>the</strong> lead<strong>in</strong>g edge <strong>of</strong> <strong>the</strong> cavity until it fills <strong>the</strong> cavity, <strong>the</strong>n it sheds downstream, collidesonto <strong>the</strong> rear wall, and ejects out <strong>of</strong> <strong>the</strong> cavity. The region <strong>of</strong> <strong>the</strong> shear layer oscillationis much larger, up to <strong>the</strong> depth <strong>of</strong> <strong>the</strong> cavity. Three–dimensionality has been shown toplay a role <strong>in</strong> suppress<strong>in</strong>g <strong>the</strong> wake mode. Wake mode is less likely to appear <strong>in</strong> three–dimensional flows and at higher Reynolds numbers, for example Rowley et al [132]. Largeeddy simulations by Shieh and Morris [144] showed that two–dimensional cavities <strong>in</strong> wakemode return to shear–layer mode when three-dimensional disturbances are present <strong>in</strong> <strong>the</strong><strong>in</strong>com<strong>in</strong>g boundary layer. Suponitsky et al [156] showed that <strong>the</strong> development <strong>of</strong> a three–dimensional flow field, generated by <strong>the</strong> <strong>in</strong>troduction <strong>of</strong> <strong>the</strong> random <strong>in</strong> flow disturbance<strong>in</strong>to a two–dimensional cavity oscillat<strong>in</strong>g <strong>in</strong> wake mode, yielded <strong>the</strong> transition to <strong>the</strong>shear–layer mode, regardless <strong>of</strong> <strong>the</strong> amplitude and shape <strong>of</strong> <strong>the</strong> <strong>in</strong>flow disturbance.2.3.3 Two dimensional and three dimensional cavity flowRockwell and Knisely [125] observed three–dimensional pattern <strong>in</strong> a water channel experimentfor a wide rectangular cavity L D = 1.08 and W = 3.76 with lam<strong>in</strong>ar boundaryDlayer upstream. A hydrogen bubble technique was used to visualise <strong>the</strong> spanwise wavystructure emerg<strong>in</strong>g <strong>in</strong> <strong>the</strong> shear layer near <strong>the</strong> cavity trail<strong>in</strong>g edge. Ahuja and Mendoza[2] conducted experiments on <strong>the</strong> effect <strong>of</strong> cavity dimensions, boundary layer, andtemperature on cavity noise for subsonic flows with turbulent boundary layer upstream<strong>of</strong> <strong>the</strong> cavity. They determ<strong>in</strong>ed that <strong>the</strong> ratio L <strong>the</strong> cavity length to width ratio, pro-W17


2. Cavity flow, turbulence and <strong>aeroacoustic</strong>sDepth/Diameterfeatures≤ 0.2 stable & symmetric0.2 − 0.4 unstable with flapp<strong>in</strong>g0.5 pressure distribution asymmetrical & stable0.4 − 0.7 switch flow & asymmetric0.8 − 1.0 stable & symmetricTable 2.1: Observations <strong>of</strong> Hiwada et al [68]vided a transition between two–dimensional and three–dimensional flow. They reportedthree–dimensionality <strong>in</strong> <strong>the</strong> mean flow, and much lower (about 15dB) acoustic loadsthan <strong>the</strong> two–dimensional flow. The three–dimensional cavity flow have been studiedus<strong>in</strong>g Large Eddy Simulation approach by Rizzetta and Visbal [123], Larchevêque etal [77] and Chang et al [11]. These studies have been ma<strong>in</strong>ly focused on <strong>the</strong> frequencies<strong>of</strong> oscillation and coherence <strong>of</strong> <strong>the</strong> Rossiter modes. The three-dimensional <strong>in</strong>compressibleLES, coupled with <strong>the</strong> Lighthill–Curle acoustic analogy is used by Suponitsky etal [156], to <strong>in</strong>vestigate <strong>the</strong> oscillation mechanism and sound source <strong>of</strong> a two-dimensionalcavity with a length–to–depth ratio <strong>of</strong> L D = 4 and Reynolds number <strong>of</strong> Re D = 5000. At<strong>the</strong> <strong>in</strong>flow boundary a streamwise velocity pr<strong>of</strong>ile is specified as a power law <strong>of</strong>u( y)17=u ∞ δSimulations without and with <strong>in</strong>flow disturbance are carried out. More evidence <strong>of</strong>three–dimensional structures <strong>in</strong> cavity flows have been presented <strong>in</strong> <strong>the</strong> work <strong>of</strong> Faure etal [40]. They <strong>in</strong>vestigated( experimentally ) <strong>the</strong> <strong><strong>in</strong>teraction</strong> between a lam<strong>in</strong>ar boundaryLlayer and an open cavityD = 0.5 − 2 for medium range Reynolds numbers. In <strong>the</strong>irwork, <strong>the</strong>y relate <strong>the</strong> three–dimensional structures to <strong>the</strong> primary vortex <strong>in</strong>side <strong>the</strong>cavity.2.3.4 High Mach number cyl<strong>in</strong>drical cavity flowCyl<strong>in</strong>drial cavity flows are more complex than <strong>the</strong> rectangular cavities. Hiwada et al [68]performed experiments on cyl<strong>in</strong>drical cavities with ratio cavity depth / cavity diameter0.1 to 1.0 and <strong>the</strong> observations can be found <strong>in</strong> <strong>the</strong> table 2.1. Dybenko et al [36]observedthat <strong>the</strong> symmetric flow is related to <strong>the</strong> occurence <strong>of</strong> an acoustic feedback mechanism.Rona [127] developed an analytical model to <strong>in</strong>vestigate oscillations <strong>in</strong> circular cavitiesand he predicts <strong>the</strong> asymmetric modes be<strong>in</strong>g oriented <strong>in</strong> one or <strong>the</strong> o<strong>the</strong>r direction. Recentexperiments on cyl<strong>in</strong>drical cavities are done by Marsden et al [93] and details aregiven <strong>in</strong> <strong>the</strong> table 2.2. The tubulent boundary layer thickness at <strong>the</strong> <strong>in</strong>com<strong>in</strong>g boundarycondition was chosen smaller than that observed experimentally, and adjusted empir-18


2.4. Direct <strong>Numerical</strong> SimulationDiameter LDepth <strong>of</strong> <strong>the</strong> cavity DFlow velocities U ∞Boundary layer thickness δ 99100 mm50,100,150 mm50,70,90 m/s17 mmTable 2.2: Details <strong>of</strong> experiments on cyl<strong>in</strong>drical cavity by Marsden et al [93].ically to approach experimental results. Prelim<strong>in</strong>ary numerical results are presented<strong>in</strong> [93] for <strong>the</strong> flow configuration <strong>of</strong> 90 m/s. An Euler numerical method was used byGrottadaurea and Rona [57] to study shallow L D = 0.25 and deep L = 0.71 cavitiesDat Mach numbers 0.235 and 0.3. Flow <strong>in</strong>stabilites <strong>in</strong> <strong>the</strong>se configurations were studiedand <strong>the</strong>y observed that cavities are behav<strong>in</strong>g like a closed cavity at selected flow regimesand geometries. They determ<strong>in</strong>e <strong>the</strong> sound pressure levels <strong>in</strong> <strong>the</strong> computational doma<strong>in</strong>and at near–field <strong>of</strong> <strong>the</strong> cavity us<strong>in</strong>g formulation <strong>of</strong> Ffowcs Williams and Hawk<strong>in</strong>gs. DetachedEddy Simulations are carried out by Grottadaurea and Rona[58] to determ<strong>in</strong>e<strong>the</strong> radiat<strong>in</strong>g pressure that is developed <strong>in</strong> a cyl<strong>in</strong>drical cavity flow with aspect ratioL= 2.5 and 0.713 with turbulent boundary layer. They observed <strong>the</strong> acoustic near–Dfield is not symmetric and determ<strong>in</strong>ed sound pressure levels and angle <strong>of</strong> directivity <strong>of</strong>propagations from <strong>the</strong> shallow and deep cavities.2.4 Direct <strong>Numerical</strong> SimulationIt becomes important to discuss about Direct <strong>Numerical</strong> Simulation (DNS) as few testcases were perfomed with this numerical approach. Comput<strong>in</strong>g power <strong>in</strong> <strong>the</strong> recenttimes have become powerful to perform Direct <strong>Numerical</strong> Simulation <strong>of</strong> <strong>the</strong> Navier-Stokes equations for turbulent flows. They are restricted to low Reynolds number andon simple geometries, The three dimensional unsteady Navier–Stokes equations alsoapply to turbulent flow when <strong>the</strong> values <strong>of</strong> <strong>the</strong> dependent variables are understood as<strong>in</strong>stantaneous values. Direct numerical simulation (DNS) resolves all flow scales <strong>in</strong>clud<strong>in</strong>g<strong>the</strong> small dissipative scales (see figure 2.6 and acoustic propagation. The simulationdoma<strong>in</strong> must be sufficiently large to <strong>in</strong>clude all <strong>the</strong> sound sources <strong>of</strong> <strong>in</strong>terest and at leastpart <strong>of</strong> <strong>the</strong> acoustic near field. However, <strong>the</strong> important computational cost related to<strong>the</strong> strong requirements <strong>in</strong> terms <strong>of</strong> mesh resolution and temporal discretisation, prevents<strong>the</strong> DNS approach from be<strong>in</strong>g used for <strong>in</strong>dustrial applications. The Navier-Stokesequations completely describe turbulent flows. Therefore a DNS <strong>of</strong> turbulence does notneed any modell<strong>in</strong>g <strong>of</strong> turbulence. Turbulent flows are <strong>in</strong>tr<strong>in</strong>sically unsteady and <strong>in</strong>volvevarious length scales. Therefore an accurate simulation must provide sufficient spatialand temporal resolution. An estimate <strong>of</strong> <strong>the</strong> necessary spatial resolution is possible whenassum<strong>in</strong>g that <strong>the</strong> total number <strong>of</strong> necessary grid po<strong>in</strong>ts N must at least be equal to19


2. Cavity flow, turbulence and <strong>aeroacoustic</strong>s<strong>the</strong> ratio <strong>of</strong> <strong>the</strong> <strong>in</strong>tegral turbulent length scale to <strong>the</strong> Kolmogorov length scale: Even for<strong>the</strong> restricted cases, DNS becomes difficult and extremely expensive comput<strong>in</strong>g problembecause <strong>the</strong> unsteady eddy motions <strong>of</strong> turbulence appear over a wide range.2.5 Navier Stokes Equations2.5.1 Conservative formThe Navier stokes equations for <strong>the</strong> direct numerical simulation which are presented<strong>in</strong> this section are followed <strong>in</strong> <strong>the</strong> solver AVBP. More details about AVBP is given <strong>in</strong>chapter 4. Conservation equations describ<strong>in</strong>g <strong>the</strong> evolution <strong>of</strong> a compressible flow withchemical reactions <strong>of</strong> <strong>the</strong>rmodynamically active scalars reads,∂ρu i∂t∂ρE∂t+ ∂∂x j(ρu i u j ) = − ∂∂x j[Pδ ij − τ ij ] (2.2)+ ∂ (ρEu j ) = − ∂ [u i (Pδ ij − τ ij ) + q j ] + ˙ω T + Q r∂x j ∂x j(2.3)∂ρ k∂t + ∂ (ρ k u j ) = − ∂ [J j,k ] + ˙ω k∂x j ∂x j(2.4)It should be noted that <strong>in</strong>dex k is reserved to refer to <strong>the</strong> k th species and will notfollow <strong>the</strong> summation rule unless o<strong>the</strong>r specified or implied by <strong>the</strong> ∑ sign.In Eqs 2.4– 2.4 respectively correspond<strong>in</strong>g to <strong>the</strong> conservation laws for momentum,total energy and species Y , <strong>the</strong> follow<strong>in</strong>g symbols denote respecticely ρ, u i , E, ρ k ,density, <strong>the</strong> velocity vector, <strong>the</strong> total energy per unit mass and ρ k = ρY k for k = 1 to N(N is <strong>the</strong> total number <strong>of</strong> species Y ). The source term <strong>in</strong> <strong>the</strong> total energy equation 2.4, isdecomposed for convenience <strong>in</strong>to a chemical source term and a radiative source term suchthat: S = ˙ω T + Q r . Correspond<strong>in</strong>g source terms <strong>in</strong> <strong>the</strong> species transport equations 2.4are ˙ω k . It is usual to decompose <strong>the</strong> flux tensor <strong>in</strong>to an <strong>in</strong>viscid and a viscous component.They are respectively noted for <strong>the</strong> three conservation equations:Inviscid termsThe <strong>in</strong>viscid terms from above equations are grouped <strong>in</strong> matrix form as⎛ ⎞ρu i u j + Pδ ij⎜⎝(ρE + Pδ ij )u j⎟⎠ (2.5)ρ k u jwhere <strong>the</strong> hydrostatic pressure P is given by <strong>the</strong> equation <strong>of</strong> state for a perfect gas(Eq. 2.13).20


2.5. Navier Stokes EquationsViscous termsSimilarly, <strong>the</strong> components <strong>of</strong> <strong>the</strong> viscous flux tensor take <strong>the</strong> form:⎛−τ ij⎜⎝− (u i τ ij ) + q j⎟⎠ (2.6)J j,kwhere J k is <strong>the</strong> diffusive flux <strong>of</strong> species k and is presented <strong>in</strong> section 2.5.4 (equation 2.24).The stress tensor τ ij is expla<strong>in</strong>ed <strong>in</strong> section 2.5.5 (equation 2.26). The section 2.5.6 isdevoted to <strong>the</strong> heat flux vector q j (equation 2.28).⎞2.5.2 Thermodynamical variablesThe standard reference state used is P 0 = 1 bar and T 0 = 0K. In AVBP solver (fordetails see chapter 4), <strong>the</strong> sensible mass enthalpies (h s,k ) and entropies (s k ) for eachspecies are tabulated for 51 values <strong>of</strong> <strong>the</strong> temperature (T i with i = 1...51) rang<strong>in</strong>g from0K to 5000K with a step <strong>of</strong> 100K. Therefore <strong>the</strong>se variables can be evaluated by:h s,k (T i ) =∫ TiT 0 =0KC p,k dT = hm s,k (T i) − h m s,k (T 0)W k, and (2.7)s k (T i ) = sm k (T i) − s m k (T 0)W k, with i = 1...51 (2.8)The superscript m corresponds to molar values. The tabulated values for h s,k , (T i ) ands k (T i ) can be found <strong>in</strong> <strong>the</strong> JANAF tables [27]. W k is molecular weight <strong>of</strong> <strong>the</strong> species Y kWith this assumption, <strong>the</strong> sensible energy for each species can be reconstructed us<strong>in</strong>g<strong>the</strong> follow<strong>in</strong>g expression :e s,k (T i ) =∫ TiT 0 =0KC v,k dT = h s,k (T i ) − r k T i i = 1...51 (2.9)Note that <strong>the</strong> mass heat capacities at constant pressure c p,k and volume c v,k are supposedconstant between ( T i and T i+1 = T i + 100. They are def<strong>in</strong>ed as <strong>the</strong> slope <strong>of</strong> <strong>the</strong> sensibleenthalpy C p,k = ∂h )(s,kand sensible energy C v,k = ∂e )s,k. The sensible energy∂T∂Thenceforth varies cont<strong>in</strong>uously with <strong>the</strong> temperature and is obta<strong>in</strong>ed by us<strong>in</strong>g a l<strong>in</strong>ear<strong>in</strong>terpolation:e s,k (T) = e s,k (T i ) + (T − T i ) e s,k(T i+1 ) − e s,k (T i )T i+1 − T i(2.10)21


2. Cavity flow, turbulence and <strong>aeroacoustic</strong>sThe sensible energy and enthalpy <strong>of</strong> <strong>the</strong> mixture may <strong>the</strong>n be expressed as:N∑N∑ρe s = ρ k e s,k = ρ Y k e s,k (2.11)k=1 k=1N∑N∑ρh s = ρ k h s,k = ρ Y k h s,k (2.12)k=1 k=12.5.3 The equation <strong>of</strong> stateThe equation <strong>of</strong> state for an ideal gas mixture is given as:P = ρ r T (2.13)where r is <strong>the</strong> gas constant <strong>of</strong> <strong>the</strong> mixture dependant on time and space: r = R W whereW is <strong>the</strong> mean molecular weight <strong>of</strong> <strong>the</strong> mixture:1NW = ∑ Y k(2.14)W kk=1The gas constant r and <strong>the</strong> heat capacities <strong>of</strong> <strong>the</strong> gas mixture depend on <strong>the</strong> local gascomposition as:r = R W = N ∑k=1Y kW kR =C p =C v =N∑Y k r k (2.15)k=1N∑Y k C p,k (2.16)k=1N∑Y k C v,k (2.17)where R = 8.3143 J/mol.K is <strong>the</strong> universal gas constant. The adiabatic exponent for<strong>the</strong> mixture is given by γ = C pC v. Thus, <strong>the</strong> gas constant, <strong>the</strong> heat capacities and<strong>the</strong> adiabatic exponent are no longer constant. Indeed, <strong>the</strong>y depend on <strong>the</strong> local gask=1composition as expressed by <strong>the</strong> local mass fractions Y k (x,t):r = r(x,t),C p = C p (x,t),C v = C v (x,t), and γ = γ(x,t) (2.18)The temperature is deduced from <strong>the</strong> <strong>the</strong> sensible energy, us<strong>in</strong>g equations 2.10 and 2.11.f<strong>in</strong>ally boundary conditions make use <strong>of</strong> <strong>the</strong> speed <strong>of</strong> sound <strong>of</strong> <strong>the</strong> mixture a ∞ which isgiven by:a 2 ∞= γrT (2.19)22


2.5. Navier Stokes Equations2.5.4 Conversation <strong>of</strong> Mass: Species diffusion fluxIn multi–species flows <strong>the</strong> total mass conservation implies that:N∑k=1Y k V ki = 0 (2.20)where V ki are <strong>the</strong> components <strong>in</strong> directions (i = 1,2,3) <strong>of</strong> <strong>the</strong> diffusion velocity <strong>of</strong> speciesk. They are <strong>of</strong>ten expressed as a function <strong>of</strong> <strong>the</strong> species gradients us<strong>in</strong>g <strong>the</strong> HirschfelderCurtis approximation:X k V Kiwhere X k is <strong>the</strong> molar fraction <strong>of</strong> species k : X k = Y kW<strong>the</strong> approximation 2.21 may be expressed as:= −D k∂X k∂x i, (2.21)W k. In terms <strong>of</strong> mass fraction,Y k Vi k W k ∂X k= −D k , (2.22)W ∂x iSumm<strong>in</strong>g equation 2.22 over all k’s shows that <strong>the</strong> approximation 2.22 does not necessarilycomply with equation 2.20 that expresses mass conservation. In order to achievethis, a correction diffusion velocity ⃗ V c is added to <strong>the</strong> convection velocity to ensureglobal mass conservation (see [112]) as:V ci =N∑k=1D kW kW∂X k∂x i(2.23)and comput<strong>in</strong>g <strong>the</strong> diffusive species flux for each species k as:()W k ∂X kJ i,k = −ρ D k − Y k VicW ∂x i(2.24)Here, D k are <strong>the</strong> diffusion coefficients for each species k <strong>in</strong> <strong>the</strong> mixture (see 2.5.7); J i,k iscomputed. Us<strong>in</strong>g equation 2.24 to determ<strong>in</strong>e <strong>the</strong> diffusive species flux implicitly verifiesequation 2.20.2.5.5 Viscous stress tensorThe stress tensor τ ij is computed and is given by <strong>the</strong> follow<strong>in</strong>g relations:τ ij = 2µ(S ij − 1 )3 δ ijS llS ij = 1 ( ∂uj+ ∂u )i2 ∂x i ∂x jand (2.25)(2.26)23


2. Cavity flow, turbulence and <strong>aeroacoustic</strong>sequation 2.26 may also be written:τ xx = 2µ (2 ∂u3 ∂x − ∂v∂y − ∂w ) ( ∂u, τ xy = µ∂z∂y + ∂v )∂xτ yy = 2µ (2 ∂v3 ∂y − ∂u∂x − ∂w ) ( ∂u, τ xy = µ∂z∂z + ∂w )∂xτ zz = 2µ (2 ∂w3 ∂z − ∂u∂x − ∂v ) ( ∂v, τ xy = µ∂y∂z + ∂w )∂y(2.27)where µ is <strong>the</strong> shear viscosity (see 2.5.7).2.5.6 Heat flux vectorFor multi–species flows, an additional heat flux term appears <strong>in</strong> <strong>the</strong> diffusive heat flux.This term is due to heat transport by species diffusion. The total heat flux vector <strong>the</strong>nwrites:q i = −λ ∂T∂x i} {{ }Heat conduction= −λ ∂T∂x i+N∑()W k ∂X k−ρ D k − Y k Vic h s,kW ∂x ik=1} {{ }Heat flux through species diffusionN∑J i,k h s,k (2.28)k=1where λ is <strong>the</strong> heat conduction coefficient <strong>of</strong> <strong>the</strong> mixture (see 2.5.7). The second termis added to <strong>the</strong> classical heat flux vector.2.5.7 Transport coefficientsIn CFD codes for multi–species flows <strong>the</strong> molecular viscosity µ is <strong>of</strong>ten assumed tobe <strong>in</strong>dependent <strong>of</strong> <strong>the</strong> gas composition and close to that <strong>of</strong> air so that <strong>the</strong> classicalSu<strong>the</strong>rland law can be used. Same assumption is proposed for <strong>the</strong> multi–gas AVBP(seechapter 4), yield<strong>in</strong>g:µ = c 1T 3/2T + c 2T ref + c 2T 3/2ref(2.29)where c 1 and c 2 must be determ<strong>in</strong>ed so as to fit <strong>the</strong> real viscosity <strong>of</strong> <strong>the</strong> mixture. Forair at T ref = 273K, c 1 = 1.71 × 10 −5 kg/m.s and c 2 = 110.4K (see [27]). A second lawis available, called Power law:µ = c 1( TT ref) b(2.30)with b typically rang<strong>in</strong>g between 0.5 and 1.0. For example b = 0.76 for air.24The heat conduction coefficient <strong>of</strong> <strong>the</strong> gas mixture can <strong>the</strong>n be computed by <strong>in</strong>tro-


2.6. Turbulenceduc<strong>in</strong>g <strong>the</strong> molecular Prandtl number <strong>of</strong> <strong>the</strong> mixture as:λ = µC pPr(2.31)with Pr supposed as constant <strong>in</strong> time and space.The computation <strong>of</strong> <strong>the</strong> species diffusion coefficients D k is a specific issue. Thesecoefficients should be expressed as a function <strong>of</strong> <strong>the</strong> b<strong>in</strong>ary coefficients D ij obta<strong>in</strong>ed fromk<strong>in</strong>etic <strong>the</strong>ory (Hirschfelder et al. [67]). The mixture diffusion coefficient for species k,D k , is computed as (Bird et al. [6]):D k =1 − Y k(2.32)X jD jk∑ Nj≠kThe D ij are complex functions <strong>of</strong> collision <strong>in</strong>tegrals and <strong>the</strong>rmodynamic variables. Fora DNS code us<strong>in</strong>g complex chemistry, us<strong>in</strong>g Eq 2.32 makes sense. However <strong>in</strong> mostcases, DNS uses a simplified chemical scheme and model<strong>in</strong>g diffusivity <strong>in</strong> a precise wayis not needed so that this approach is much less attractive. Therefore a simplifiedapproximation is used <strong>in</strong> AVBP for D k . The Schmidt numbers S c,k <strong>of</strong> <strong>the</strong> speciesare supposed to be constant so that <strong>the</strong> b<strong>in</strong>ary diffusion coefficient for each species iscomputed as:D k = µρS c,k(2.33)Note that <strong>the</strong> Schmidt number for each species k is assumed to be constant <strong>in</strong> time andspace and is given as <strong>in</strong>put parameter. Pr and S c,k model <strong>the</strong> lam<strong>in</strong>ar (<strong>the</strong>rmal andmolecular) diffusion. Usual values <strong>of</strong> Schmidt and Prandtl numbers for premixed flamesare those given by PREMIX <strong>in</strong> <strong>the</strong> burnt gas. The k<strong>in</strong>etics, radiation are not discussedhere <strong>in</strong> <strong>the</strong> work.2.6 TurbulenceHorace Lamb said:“I am an old man now, and when I die and go to heaven <strong>the</strong>re are two matterson which I hope for enlightenment. One is quantum electrodynamics, and<strong>the</strong> o<strong>the</strong>r is <strong>the</strong> turbulent motion <strong>of</strong> fluids. And about <strong>the</strong> former I am ra<strong>the</strong>roptimistic”.The earliest identification <strong>of</strong> turbulence as a prom<strong>in</strong>ent physical phenomenon hadalready taken place dur<strong>in</strong>g <strong>the</strong> time <strong>of</strong> Leonardo da V<strong>in</strong>ci (circa 1500). But <strong>the</strong>re seemsto have been no significant progress <strong>in</strong> understand<strong>in</strong>g until last part <strong>of</strong> 19 th century. Thefigure 2.4 is a rendition <strong>of</strong> one found <strong>in</strong> a sketch book <strong>of</strong> Leonardo da V<strong>in</strong>ci.25


2. Cavity flow, turbulence and <strong>aeroacoustic</strong>sFigure 2.4: Leonardo da V<strong>in</strong>ci sketch <strong>of</strong> turbulent flow.Turbulence has been described as a random/irregular motion, both <strong>in</strong> time and space.In 1877, Bouss<strong>in</strong>esq [7] hypo<strong>the</strong>sis that turbulent stresses are l<strong>in</strong>early proportional tomean stra<strong>in</strong> rates is still <strong>the</strong> base <strong>of</strong> most turbulence models. Lam<strong>in</strong>ar, transitional andturbulent are <strong>the</strong> three regimes which can generally be observed <strong>in</strong> a flow field. Theflows <strong>in</strong> <strong>the</strong> lam<strong>in</strong>ar regime are smooth, streaml<strong>in</strong>ed and <strong>the</strong> adjacent layers <strong>of</strong> fluidslide past each o<strong>the</strong>r <strong>in</strong> an orderly manner. The transition is due to <strong>the</strong> <strong>in</strong>stability <strong>of</strong><strong>the</strong> lam<strong>in</strong>ar state which makes <strong>the</strong> change from a lam<strong>in</strong>ar flow to a turbulent one. Mostflows encountered <strong>in</strong> nature and <strong>in</strong> <strong>in</strong>dustrial applications are turbulent. Turbulence ischaracterised by disorganised motion over a range <strong>of</strong> length and time scales. The concept<strong>of</strong> an energy cascade where<strong>in</strong> an equilibrium exists between draw<strong>in</strong>g energy from meanflow gradients and dissipat<strong>in</strong>g that energy at <strong>the</strong> smallest scales allows one to estimate<strong>the</strong> range <strong>of</strong> scales for a given flow. However, due to its complexity, understand<strong>in</strong>g<strong>of</strong> turbulent flows or turbulence is still <strong>in</strong>complete. The understand<strong>in</strong>g <strong>of</strong> turbulentbehaviour <strong>in</strong> flow<strong>in</strong>g fluids is one <strong>of</strong> <strong>the</strong> most <strong>in</strong>trigu<strong>in</strong>g, frustrat<strong>in</strong>g and importantproblems <strong>in</strong> all <strong>of</strong> classical physics.Osborne Reynolds [120] observed <strong>the</strong> <strong>in</strong>stability <strong>of</strong> transition and turbulence <strong>in</strong> apipe flow <strong>in</strong> 1883. He noticed <strong>in</strong> his experiments that <strong>the</strong> flow behaviour is dependentupon a non-dimensional parameter.Re = ULν(2.34)where U and L are characteristic velocity and length scales <strong>of</strong> <strong>the</strong> mean flow and ν is<strong>the</strong> k<strong>in</strong>ematic viscosity <strong>of</strong> <strong>the</strong> fluid. The dynamics <strong>of</strong> turbulence <strong>in</strong>volve a wide range <strong>of</strong>scales. While <strong>the</strong> size <strong>of</strong> <strong>the</strong> large scales is typically determ<strong>in</strong>ed by <strong>the</strong> geometry <strong>of</strong> <strong>the</strong>flow, <strong>the</strong> size <strong>of</strong> <strong>the</strong> smallest scale decreases with <strong>in</strong>creas<strong>in</strong>g Reynolds number. Reynoldsconcluded that turbulence was too complicated to understand and <strong>in</strong> response he <strong>in</strong>troduced<strong>the</strong> decomposition <strong>of</strong> flow variables <strong>in</strong>to mean and fluctuat<strong>in</strong>g parts (that bears hisname). Turbulence occurs at high Reynolds number when <strong>the</strong> convective forces domi-26


2.6. TurbulenceStatistical MovementBouss<strong>in</strong>esqReynoldsPrandtlTaylorKolmogorovBatchelorKraichnanLaunderSpezialeWilcoxSpalartStructural MovementTollmienSchubauer &SkramstadTownsendCorrs<strong>in</strong>LumleyAdrianLumleyDeterm<strong>in</strong>istic MovementPo<strong>in</strong>caréLerayLorenzLadyzhenskayaSmaleRuelle and TakensDeardorffOrszagSw<strong>in</strong>neyKim and Mo<strong>in</strong>Sreenivasan1880 1900 1920 1940 1960 1980 2000Figure 2.5: Movements <strong>in</strong> <strong>the</strong> study <strong>of</strong> turbulence, as described by Chapman and Tobak[12], [95].nate over <strong>the</strong> diffusion forces. Turbulent flows dissipate energy. The k<strong>in</strong>etic energy <strong>of</strong> <strong>the</strong>fluid is converted <strong>in</strong>to heat, at <strong>the</strong> smallest scales, due to viscous effects. Po<strong>in</strong>caré [110]found that relatively simple nonl<strong>in</strong>ear dynamical systems were capabale <strong>of</strong> exhibit<strong>in</strong>gchaotic random–<strong>in</strong>–appearance behaviour that was <strong>in</strong> fact, completely determ<strong>in</strong>istic.Lorenz [91] <strong>in</strong> 1963 was first to propose <strong>the</strong> connection between determ<strong>in</strong>istic chaos andturbulence. Chapman and Tobak [12] divide <strong>the</strong> century between Reynolds experiments<strong>in</strong> 1883 to <strong>the</strong> <strong>the</strong>n present time 1984 <strong>in</strong>to three overlapp<strong>in</strong>g “movements”that <strong>the</strong>y termstatistical, structural and determ<strong>in</strong>istic. Figure 2.5 provides a sketch similar to <strong>the</strong> onepresented <strong>in</strong> [12]. McDonough [95] has discussed more about statistical, structural anddeterm<strong>in</strong>istic movement and <strong>in</strong>cluded additional entries to <strong>the</strong> figure 2.5.The first major result was obta<strong>in</strong>ed by Prandtl [115] <strong>in</strong> 1925 <strong>in</strong> <strong>the</strong> form <strong>of</strong> a prediction<strong>of</strong> <strong>the</strong> eddy viscosity (<strong>in</strong>troduced by Bouss<strong>in</strong>esq) that took <strong>the</strong> character <strong>of</strong> a“first-pr<strong>in</strong>ciples ”physical result, and as such no doubt added significantly to <strong>the</strong> credence<strong>of</strong> <strong>the</strong> statistical approach. Prandtl’s “mix<strong>in</strong>g-length <strong>the</strong>ory”was based on an analogybetween turbulent eddies and molecules or atoms <strong>of</strong> a gas and purportedly utilized k<strong>in</strong>etic<strong>the</strong>ory to determ<strong>in</strong>e <strong>the</strong> length and velocity (or time) scales needed to construct aneddy viscosity (analogous to <strong>the</strong> first-pr<strong>in</strong>ciples derivation <strong>of</strong> an analytical description27


2. Cavity flow, turbulence and <strong>aeroacoustic</strong>sln E(κ)modeledscalesmodeledscalesRANS(virtually) no scalesresolvedLESnot all scalesresolvedDNS(virtually) all scalesresolvedE(κ) ∼ κ −5/3ln κ LESln κ DNSln κenergyconta<strong>in</strong><strong>in</strong>grange<strong>in</strong>ertialsubrangedissipationrangeFigure 2.6: DNS, RANS and LES on Energy spectrum<strong>of</strong> molecular viscosity obta<strong>in</strong>ed from <strong>the</strong> k<strong>in</strong>etic <strong>the</strong>ory <strong>of</strong> gases). The smallest scalesassociated with turbulence are much larger than <strong>the</strong> molecular mean free path. Thus,turbulence is a cont<strong>in</strong>uum process. O<strong>the</strong>r significant characteristic is that turbulence isthree dimensional, an important role <strong>in</strong> sett<strong>in</strong>g up and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> cont<strong>in</strong>uum <strong>of</strong>scales characteristic <strong>of</strong> a high Reynolds number turbulence be<strong>in</strong>g <strong>the</strong> vortex stretch<strong>in</strong>g.In two space dimensions vortex stretch<strong>in</strong>g cannot occur. Turbulence is a diffusive processs<strong>in</strong>ce it causes rapid mix<strong>in</strong>g and <strong>in</strong>creases <strong>the</strong> rates <strong>of</strong> mass, momentum, and heattransfer. It should be noted that it is not a property <strong>of</strong> <strong>the</strong> fluid, but it is a property<strong>of</strong> <strong>the</strong> flow. A turbulent flow field at high Reynolds number consists <strong>of</strong> vortices (eddies)<strong>of</strong> various sizes, from <strong>the</strong> largest to <strong>the</strong> smallest ones. Each eddy can be related to ascale <strong>of</strong> velocity, time and length. These <strong>in</strong>itial large vortical scales will break up dueto vortex stretch<strong>in</strong>g to develop smaller and smaller scale structures. Four ma<strong>in</strong> sets <strong>of</strong>scales <strong>in</strong> a turbulent flow (<strong>the</strong>re may be more if o<strong>the</strong>r physical phenomena, e.g., heattransfer and/or combustion are important); <strong>the</strong>se are:1. <strong>the</strong> large scale, based on <strong>the</strong> problem doma<strong>in</strong> geometry,2. <strong>the</strong> <strong>in</strong>tegral scale, which is an O(1) fraction (<strong>of</strong>ten taken to be ∼ 0.2) <strong>of</strong> <strong>the</strong> largescale,3. <strong>the</strong> Taylor microscale which is an <strong>in</strong>termediate scale, basically correspond<strong>in</strong>g toKolmogorov’s <strong>in</strong>ertial subrange, and4. <strong>the</strong> Kolmogorov (or “dissipation”) scale which is <strong>the</strong> smallest <strong>of</strong> turbulence scales.28


2.6. TurbulenceTurbulence energy dissipation rate ǫ is given asǫ = 2ν ‖ S ‖ 2 (2.35)where S is <strong>the</strong> stra<strong>in</strong> rate tensor. The length and time scales are derived which areassociated with <strong>the</strong> Taylor microscale. The def<strong>in</strong>ition for <strong>the</strong> Taylor microscale lengthprovided <strong>in</strong> [84]:λ 2 = 〈| u′ |〉〈‖ S ‖〉(2.36)| u ′ | is <strong>the</strong> square root <strong>of</strong> <strong>the</strong> turbulence k<strong>in</strong>etic energy k. The Taylor microscale leng<strong>the</strong>xpressed asλ =√ν〈| u ′ |〉ǫ(2.37)The Taylor microscale length is roughly consistent with <strong>the</strong> Kolmogorov <strong>in</strong>ertial subrangescales. The smallest scales <strong>of</strong> turbulence were derived by Kolmogorov under <strong>the</strong>assumption that dissipation wouls be important at <strong>the</strong>se scales. The two physical parametersneeded to describe behavior are viscosity ν and dissipation rate ǫ <strong>of</strong> turbulencek<strong>in</strong>etic energy. The length scale given by Kolmogorov is( ) ν3 1/4η k =(2.38)ǫand Kolmogorov time scale is( ν) 1/2τ k =(2.39)ǫIt is <strong>of</strong> <strong>in</strong>terest to compare some <strong>of</strong> <strong>the</strong>se various scales. We observe <strong>the</strong> length scalesand Reynolds numbers can be related as follows. First, we can compare <strong>the</strong> Kolmogorovlength scale η k with <strong>the</strong> <strong>in</strong>tegral scale length l us<strong>in</strong>g equation 2.38 with length scalel = | u ′ | 3 /ǫ solved for ǫ to write( ν3)η k ∼| u ′ | 3 ;/lη kl ∼ ( ν3| u ′ | 3 l 3 )∼ Re −3/4l,lη k∼ Re 3/4l(2.40)Equation 2.40 has very important consequences for computation because it implies that<strong>the</strong> dissipation scales, which must be resolved <strong>in</strong> a DNS <strong>of</strong> <strong>the</strong> Navier–Stokes equations,scale like <strong>the</strong> <strong>in</strong>tegral scale Re to <strong>the</strong> 3/4 power. For a 3 − D problem <strong>the</strong> gridd<strong>in</strong>grequirements, and hence <strong>the</strong> computational work, must scale like Re 9/4lfor a s<strong>in</strong>gle timestep. This is still a very huge computation on modern parallel supercomputers.Theturbulent stresses T ij = − < u ′ u ′ > appear when Navier–Stokes equations are averagedand <strong>the</strong>y are a consequence <strong>of</strong> <strong>the</strong> non–l<strong>in</strong>earity <strong>of</strong> <strong>the</strong> convection terms.29


2. Cavity flow, turbulence and <strong>aeroacoustic</strong>s2.7 RANSReynolds Averaged Navier Stokes (RANS) simulation is discussed <strong>in</strong> brief as it is not notfollowed this work. It becomes important <strong>the</strong>se days as unsteady RANS methods are alsoused to determ<strong>in</strong>e <strong>the</strong> noise <strong>of</strong> <strong>the</strong> largest flow features. RANS simulations are based ona statistical averag<strong>in</strong>g to solve only <strong>the</strong> mean flow. This implies that modell<strong>in</strong>g concerns<strong>the</strong> whole spectrum <strong>of</strong> scales(see 2.6), which <strong>in</strong> turn makes <strong>the</strong> predictivity <strong>of</strong> RANSsimulations dependant on <strong>the</strong> quality <strong>of</strong> <strong>the</strong> models used. The statistical averag<strong>in</strong>g alsoextremely complicates address<strong>in</strong>g unsteady phenomena. The limitations <strong>of</strong> RANS approachesresult from <strong>the</strong> requirements <strong>of</strong> “stead<strong>in</strong>ess”<strong>of</strong> <strong>the</strong> solution and from <strong>the</strong> need<strong>of</strong> turbulence models, numerical models and boundary conditions. In th<strong>in</strong> boundarylayer flows, it is not even feasible for Large eddy simulation to resolve <strong>the</strong> turbulenteddies based on <strong>the</strong> outer scales [153]. To overcome <strong>the</strong>se difficulties, RANS modell<strong>in</strong>gelements were <strong>in</strong>corporated <strong>in</strong>to LES at different levels. Hybrid RANS/LES [4],Unsteady–RANS [145] and Detached Eddy Simulation [63] are o<strong>the</strong>r time–dependentnumerical predictions used <strong>in</strong> complex geometries from <strong>in</strong>dustries. Unclosed terms arisewhen <strong>in</strong>troduc<strong>in</strong>g operators on <strong>the</strong> set <strong>of</strong> compressible Navier–Stokes equations and<strong>the</strong>se terms from <strong>the</strong>se manipulations and models need to be supplied for <strong>the</strong> problemto be solved. In RANS <strong>the</strong> operation consists <strong>of</strong> a temporal or ensemble average overa set <strong>of</strong> realisations <strong>of</strong> <strong>the</strong> studied flow (Pope [114] and Chass<strong>in</strong>g [15]). The unclosedterms represents <strong>the</strong> physics tak<strong>in</strong>g place over <strong>the</strong> entire range <strong>of</strong> frequencies present<strong>in</strong> <strong>the</strong> ensemble <strong>of</strong> realisations under consideration. Figure 2.6 illustrates <strong>the</strong> range <strong>of</strong>wavenumber modeled or/and resolved by DNS, RNS and LES. Large eddy simulation(LES) is dicussed more <strong>in</strong> detail <strong>in</strong> <strong>the</strong> chapter 4.2.8 AeroacousticsAcoustics is <strong>the</strong> science <strong>of</strong> sound that <strong>in</strong>cludes its production, propagation, and its effects.Sound generated by fluid flows is an area <strong>of</strong> research which has received an <strong>in</strong>creas<strong>in</strong>gamount <strong>of</strong> attention dur<strong>in</strong>g <strong>the</strong> last 15 years. At this po<strong>in</strong>t clear def<strong>in</strong>itions <strong>of</strong> sound,sound wave and pressure fluctuation should be made. Sound is def<strong>in</strong>ed to be <strong>the</strong> pressurefluctuation. Sound wave is def<strong>in</strong>es to be <strong>the</strong> part propagat<strong>in</strong>g as waves at <strong>the</strong> velocity<strong>of</strong> sound <strong>in</strong> a medium where as hydrodynamic pressure fluctuation is def<strong>in</strong>ed to be <strong>the</strong>pressure fluctuations associated with turbulence . The sound sources are generated bymotion, ei<strong>the</strong>r by <strong>the</strong> free fluid motion, ei<strong>the</strong>r by a solid body–fluid <strong><strong>in</strong>teraction</strong>. It ispossible to split <strong>the</strong> acoustic problem <strong>in</strong>to two parts: fluid flow and acoustic problem.The acoustic <strong>the</strong>ory from fluid mechanics focuses on <strong>the</strong> ma<strong>the</strong>matical description <strong>of</strong>sound waves. The flows are governed by a nonl<strong>in</strong>ear system <strong>of</strong> equations. This is<strong>the</strong> fact responsible for <strong>the</strong> complexity <strong>of</strong> fluid dynamics research and consequently forflow acoustics. Flow–generated sound is a one <strong>of</strong> <strong>the</strong> problems <strong>in</strong> many eng<strong>in</strong>eer<strong>in</strong>g30


2.8. Aeroacousticsapplications. It causes human discomfort. The most notorious flow noise is that fromaircraft jet eng<strong>in</strong>es, which cont<strong>in</strong>ues to be an area <strong>of</strong> <strong>in</strong>tense <strong><strong>in</strong>vestigation</strong>s <strong>in</strong> responseto tighten<strong>in</strong>g regulation <strong>of</strong> airport noise. The flow <strong>in</strong> <strong>the</strong> cavities is unsteady and, attypical land<strong>in</strong>g speeds, may features large–scale <strong>in</strong>stabilities. In a civil aircraft, <strong>the</strong> highlift systems and <strong>the</strong> land<strong>in</strong>g gear are <strong>the</strong> most acoustically active airframe components.The study <strong>of</strong> fluid flow over cavities is also relevant for a wide range <strong>of</strong> applicationscar sunro<strong>of</strong>, turbomach<strong>in</strong>ery etc. Aeroacoustics, <strong>the</strong> study <strong>of</strong> air flow–<strong>in</strong>duced noiseis concerned with <strong>the</strong> sound generated by turbulent and/or unsteady vortical flows<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> effects <strong>of</strong> any solid boundaries <strong>in</strong> <strong>the</strong> flow. The importance <strong>of</strong> <strong>aeroacoustic</strong>s<strong>in</strong> vehicle and aerospace <strong>in</strong>dustry has <strong>in</strong>creased dur<strong>in</strong>g this decade. In <strong>the</strong>se vehiculeapplications, <strong>the</strong> Mach number flows are typically small and <strong>the</strong> flows are <strong>of</strong>ten heavilyseparated due to <strong>the</strong> complex geometries present. The pressure perturbations p ′ ( p ′ =p − p 0 ) which propagate as waves and which can be detected by <strong>the</strong> human ear. Forharmonic pressure fluctuations <strong>the</strong> audio range is:20 Hz ≤ f ≤ 20 kHz (2.41)The Sound Pressure Level(SPL) measured <strong>in</strong> decibel (dB) is def<strong>in</strong>ed by:( p′)SPL = 20 log rms 10p ref(2.42)where p ref = 2×10 −5 Pa for sound propagat<strong>in</strong>g <strong>in</strong> gases The sound <strong>in</strong>tensity 〈I〉 = 〈I · n〉is def<strong>in</strong>ed as <strong>the</strong> time averaged energy flux associated to <strong>the</strong> acoustic wave, propagat<strong>in</strong>g<strong>in</strong> direction n. The <strong>in</strong>tensity level(IL) measured <strong>in</strong> dB is given by:IL = 10 log 10( 〈I〉I ref)(2.43)where <strong>in</strong> air I ref = 10 −12 Wm −2 . The reference <strong>in</strong>tensity level I ref is related to <strong>the</strong>reference pressure p ref by <strong>the</strong> relationship valid for propagat<strong>in</strong>g plane waves:〈I〉 = p′ 2ρ ∞ a ∞(2.44)The presence <strong>of</strong> cavities <strong>in</strong> vehicles changes <strong>the</strong> drag and heat transfer and may cause<strong>in</strong>tense periodic oscillations, which <strong>in</strong> turn may lead to severe buffet<strong>in</strong>g <strong>of</strong> aerodynamicstructure and generation <strong>of</strong> sound[138]. In <strong>aeroacoustic</strong>s, turbulence is <strong>the</strong> pr<strong>in</strong>cipalsource <strong>of</strong> broadband noise. With <strong>the</strong> recent <strong>in</strong>crease <strong>in</strong> <strong>the</strong> performance <strong>of</strong> computers toperform numerical simulation <strong>of</strong> sound, Computational aero acoustics has become verypopular.31


2. Cavity flow, turbulence and <strong>aeroacoustic</strong>sFlowcomputationRANS / URANStime averag<strong>in</strong>g <strong>of</strong> <strong>the</strong> flow fieldLESlarge scales are resolvedsmall scales are modelledDNSall scales are resolvedAcoustic sourcesAcousticcomputationLighthill’sAcousticAnalogyFfowcs WilliamsHawk<strong>in</strong>gs (FW-H)EquationL<strong>in</strong>earised EulerEquations(LEE)Direct SimulationNoise PredictionFigure 2.7: Different noise prediction approaches [100]2.9 Computational Aeroacoustics2.9.1 GeneralitiesComputational Aeroacoustics comb<strong>in</strong>es <strong>the</strong> classical approaches <strong>of</strong> flow field computationwith acoustics. Computational methods for flow–generated sound can be divided<strong>in</strong>to two k<strong>in</strong>ds: direct computation and <strong>in</strong>direct, or hybrid computation. The directapproach computes <strong>the</strong> sound toge<strong>the</strong>r with its fluid dynamic source field by solv<strong>in</strong>g<strong>the</strong> govern<strong>in</strong>g equations without modell<strong>in</strong>g. The direct approach is very expensive thanDNS. Because it solves all <strong>the</strong> scales from Kolmogorov microscale to distance coveredby <strong>the</strong> sound waves <strong>in</strong> <strong>the</strong> computational doma<strong>in</strong>. O<strong>the</strong>r than very accurate numericalschemes, this approach needs high quality grids with less than 1% stretch<strong>in</strong>g. In <strong>the</strong>hybrid approach, <strong>the</strong> computation <strong>of</strong> flow is decoupled from <strong>the</strong> computation <strong>of</strong> sound,which can be performed dur<strong>in</strong>g a post–process<strong>in</strong>g stage based on <strong>aeroacoustic</strong> analogy.The far–field sound is obta<strong>in</strong>ed by <strong>in</strong>tegral or numerical solutions <strong>of</strong> acoustic analogyequations us<strong>in</strong>g computed source field data. Figure 2.7 shows <strong>the</strong> ma<strong>in</strong> computationalapproaches which may be used when evaluat<strong>in</strong>g <strong>the</strong> sound field generated by turbulentflows. From <strong>the</strong> figure 2.8, <strong>the</strong> flow region is dom<strong>in</strong>ated by hydrodynamic phenomena.The pressure fluctuations which are present <strong>in</strong> this region is due to turbulence or largestructures. Consider a source region <strong>of</strong> characteristic length scale L source conta<strong>in</strong><strong>in</strong>g <strong>in</strong>dividualsources (eddies) <strong>of</strong> size l ed . The hydrodynamic pressure fluctuations dom<strong>in</strong>ate,s<strong>in</strong>ce <strong>the</strong> energy <strong>of</strong> <strong>the</strong> acoustic field is 1% <strong>of</strong> <strong>the</strong> total energy [121]. The far field is aregion where <strong>the</strong> turbulence is less and <strong>the</strong> mean flow field is typically homogeneous.The far field and <strong>the</strong> source region is separated by a distance d. The only phenomena<strong>in</strong> this region is acoustic wave propagation. In <strong>the</strong> <strong>in</strong>tegral forms <strong>of</strong> acoustic analogies,<strong>the</strong> use <strong>of</strong> lead<strong>in</strong>g–order terms <strong>in</strong> an acoustic far–field expansion (with respect to λ acd ,where λ ac is <strong>the</strong> acoustic wavelength) leads to much simpler evaluations <strong>of</strong> sound. Forsmall amplitudes and low Mach numbers M, far field can be described by a l<strong>in</strong>ear ho-32


2.9. Computational Aeroacoustics× × ×near field+ + + +× × ×Acoustic far field:Far field <strong>of</strong> source region:Compact source:d ≫ λ acd ≫ L sourcel ed ≪ λ acfar fieldCompact source region: L source ≪ λ acdsource regionflow regionλ ∼ l edMusually M ≪ 1l edL sourceFigure 2.8: Schematic <strong>of</strong> sources and sound scales [168]mogeneous wave equation. The near field which is overlapped by <strong>the</strong> o<strong>the</strong>r two regions.This region becomes important as both hydrodynamics and acoustics are present. Asource region is said to be acoustically compact if its extent is much smaller than <strong>the</strong>acoustic wavelength, or l ed≪ 1 or L source≪ 1. Given that λ ac = l ed, it is apparentλ ac λ acMthat low Mach number flows are more likely to be acoustically compact. [168]2.9.2 Acoustic analogyThe notion <strong>of</strong> “analogy”refers to <strong>the</strong> idea <strong>of</strong> represent<strong>in</strong>g a complex fluid mechanicalprocess that acts as an acoustic source by an acoustically equivalent source term. Thefirst major step <strong>in</strong> <strong>the</strong> development <strong>of</strong> acoustics was done by Sir James Lighthill [87], [88]who published <strong>in</strong> 1952 his “acoustic analogy”. This represents one <strong>of</strong> <strong>the</strong> first <strong>the</strong>ories onaerodynamic noise generation for describ<strong>in</strong>g <strong>the</strong> radiation <strong>of</strong> <strong>the</strong> sound field generated bya turbulent flow. Hybrid method is where flow field is resolved us<strong>in</strong>g CFD solver and <strong>the</strong>flow field is employed as found <strong>in</strong> Lighthill [87] where an analogy between <strong>the</strong> propagation<strong>of</strong> sound <strong>in</strong> an unsteady unbounded flow to that <strong>in</strong> an uniform medium at rest, generatedby a distribution <strong>of</strong> quadrapole acoustic sources. Navier–Stokes equations are replacedby an <strong>in</strong>homogeneous wave equation namely <strong>the</strong> Lighthill equation( 2.47). The idea <strong>of</strong>Lighthill is to derive from cont<strong>in</strong>uity equation 2.2 and momentum conservation 2.2 anon homogeneous wave equation that reduces to <strong>the</strong> homogeneous wave equation∂ 2 p ′∂t 2 − a2 ∞ ∇2 p ′ = 0 (2.45)33


2. Cavity flow, turbulence and <strong>aeroacoustic</strong>sIt can be obta<strong>in</strong>ed by tak<strong>in</strong>g <strong>the</strong> time derivative <strong>of</strong> cont<strong>in</strong>uity equation 2.2 and subtract<strong>in</strong>g<strong>the</strong> divergence <strong>of</strong> momentum equations 2.2 without consider<strong>in</strong>g external forces, weobta<strong>in</strong>By add<strong>in</strong>g <strong>the</strong> term −a 2 ∂ 2 ρ∞∂x 2 i∂ 2 ρ∂t 2 − ∂2 ρu i u j= ∂2 p∂x i ∂x j ∂x 2 −∂2 τ ij(2.46)i∂x i ∂x jto both sides, <strong>the</strong> equation 2.46 is written as∂ 2 ρ∂t 2 − ∂ 2 ρa2 ∞∂x 2 i= ∂2 T ij∂x i ∂x j(2.47)is non homogeneous wave equation and called as Lighthill equation. where T ij =ρu i u j −τ ij +(p−a 2 ∞ρ)δ ij is <strong>the</strong> Lighthill stress tensor and a ∞ is <strong>the</strong> speed <strong>of</strong> sound. Theequation (2.47) is exact and <strong>in</strong>cludes all physics as no assumption is made <strong>in</strong> deriv<strong>in</strong>g itfrom <strong>the</strong> govern<strong>in</strong>g equations. By assum<strong>in</strong>g ρ ∼ ρ ∞ <strong>in</strong> term T ij , equation 2.47 becomesexplicit. With this assumption, <strong>in</strong>fluence <strong>of</strong> acoustics on <strong>the</strong> fluid dynamics is not found<strong>in</strong> <strong>the</strong> Lighthill’s equation. The Lighthill equation 2.47 is <strong>the</strong> most widely used acousticanalogy. Its use is justified at low Mach number flow where source–propagation ambiguitiesdim<strong>in</strong>ish and additional approximations can make it analytically more tractable.The Lighthill’s analogy does not <strong>in</strong>clude <strong>the</strong> effect <strong>of</strong> solid boundaries <strong>in</strong> <strong>the</strong> flow, thusit considers only aerodynamically generated sound without solid body <strong><strong>in</strong>teraction</strong>. Theformulation was extended by Curle [26] and Ffows Williams and Hawk<strong>in</strong>s [42] to take<strong>in</strong>to account <strong>the</strong> generation and <strong>the</strong> scatter<strong>in</strong>g mechanisms when solid bodies are present.The solution to Lighthill’s equation was given by Curle which is∂ 2T ijρ(x,t) − ρ 0 = 14πa 2 dV (y) −∞ ∂x i ∂x j∫V1r 4πa} {{ }2 ∞Volume contribution∂∂x i∫Sn jr (pδ ij − τ ij )dS(y)} {{ }Surface contribution(2.48)x is <strong>the</strong> observer position, y is <strong>the</strong> source position and r =| x−y | is <strong>the</strong> distance between<strong>the</strong>m. τ = t −r is <strong>the</strong> retarded time, which is <strong>the</strong> time <strong>of</strong> <strong>the</strong> emission <strong>of</strong> a signala ∞that reaches <strong>the</strong> observer location at time t. The displacement between <strong>the</strong> observerand <strong>the</strong> source can be expressed as r = (t − τ)a ∞ . If <strong>the</strong> observer <strong>in</strong> equation 2.48 islocated <strong>in</strong> region where <strong>the</strong> flow is isentropic, <strong>the</strong> density fluctuation at this location canbe written asUs<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g derivativesρ(x,t) − ρ 0 = p(x,t) − pa 2 ∞(2.49)∂f(τ)∂x i= ∂f ∂τ= − 1 ∂r ∂f∂τ ∂x i a ∞ ∂x i ∂τ(2.50)34


2.9. Computational Aeroacousticsand∂r= ∂√ (x j − y j ) 2= (x i − y i )√∂x i ∂x i (xj − y j ) = x i − y i2 r= l i (2.51)equation 2.48 can be written as[ ]p(x,t) − p 0 = 1 ∂ T ˙ ij−l i4π ∂x i∫V a ∞ r + T ijr 2 dV (y)− 1 ∫ [ṗδij− ˙τ ij−l i n j + pδ ]ij − τ ij4π S a ∞ r r 2 dS(y)= 1 ∫ ( [¨Tijl i l j4π V a 2 ∞ r + 2 T ˙ ] [ ])ija ∞ r 2 + 2T ijr 3 − ∂l i T ˙ ij∂x i a ∞ r + T ijr 2 dV (y)+ 1 ∫ [ṗδij− ˙τ ijl i n j + pδ ]ij − τ ij4π a ∞ r r 2 dS(y) (2.52)SThe derivative ∂l j∂x iis expanded as∂l j= ∂ [ ]xj − y j= δ ij − l i l j∂x i ∂x i r r(2.53)Insert<strong>in</strong>g this expansion <strong>in</strong>to equation 2.52p(x,t) − p 0 = 1 ∫4π+ 14π[li l jV a 2 ∞ r ¨T ij + 3l il j − δ ij ˙a ∞ r 2 T ij + 3l ]il j − δ ijr 3 T ij dV (y)∫ [ṗδij− ˙τ ijl i n ja ∞ rS+ pδ ]ij − τ ijr 2 dS(y) (2.54)The above derivation is followed from <strong>the</strong> work <strong>of</strong> Larsson et al [80] and <strong>the</strong>y identified<strong>the</strong> surface pressure dipole as <strong>the</strong> dom<strong>in</strong>at<strong>in</strong>g terms for an open cavity. In <strong>the</strong> presence<strong>of</strong> walls, <strong>the</strong> sound radiation by turbulence is enhanced. The compact bodies radiate adipole sound field associated with <strong>the</strong> force <strong>the</strong>ory exert on <strong>the</strong> flow as a reaction to <strong>the</strong>hydrodynamic force <strong>of</strong> <strong>the</strong> flow applied on <strong>the</strong>m. Sharp edges are particularly efficientradiators. In low Mach number flows, <strong>the</strong> ma<strong>in</strong> source <strong>of</strong> sound generation is due to <strong>the</strong><strong><strong>in</strong>teraction</strong> <strong>of</strong> <strong>the</strong> flow with <strong>the</strong> cavity walls. The vortices shed from <strong>the</strong> cavity lead<strong>in</strong>gedge create pressure fluctuation when <strong>the</strong>y imp<strong>in</strong>ge onto <strong>the</strong> cavity vertical wall. Thesesurface pressure fluctuations make <strong>the</strong>se surface <strong>in</strong>tegral contribution to far field noisedom<strong>in</strong>ant with respect to that <strong>of</strong> <strong>the</strong> volume <strong>in</strong>tegral. Larsson et al [80] <strong>in</strong>vestigated<strong>in</strong> <strong>the</strong>ir numerical study this assertion by evaluat<strong>in</strong>g all <strong>the</strong> terms <strong>in</strong> Curle’s acousticanalogy applied to a cavity flow and concluded that <strong>the</strong> volume <strong>in</strong>tegral contribution is<strong>in</strong>deed negligible. Curle’s dimensional analysis [26] also reports that <strong>the</strong> dipole sourcesalong <strong>the</strong> wall becomes <strong>in</strong>creas<strong>in</strong>gly important at low Mach number over quadrupolesources. For perform<strong>in</strong>g numerical simulation, it is better to reta<strong>in</strong> <strong>the</strong> spatial derivatives<strong>in</strong>side <strong>the</strong> <strong>in</strong>tegral. If <strong>the</strong> dipole terms are <strong>the</strong> ma<strong>in</strong> contributors to <strong>the</strong> radiated noise35


2. Cavity flow, turbulence and <strong>aeroacoustic</strong>sand neglect<strong>in</strong>g <strong>the</strong> viscous term <strong>in</strong> <strong>the</strong> equation 2.54ρ(x,t) − ρ ∞ = 1 ∫ [ṗδij4πa 2 l i n j∞ S a ∞ r + pδ ]ijr 2 dS(y) (2.55)The pressure fields obta<strong>in</strong>ed from <strong>the</strong> simulation are only available <strong>in</strong> a two dimensionalplane. Therefore <strong>the</strong> equation 2.55 is <strong>in</strong>tegrated <strong>in</strong> <strong>the</strong> out–<strong>of</strong>–plane direction from −∞to +∞ yield<strong>in</strong>gp(x,t) − p 0 = 1 ∫ [l i n j4ππṗδ ij+ 2 pδ ]ijL a ∞ r 2 dL(y) (2.56)The flow is two–dimensional and uniform <strong>in</strong> <strong>the</strong> spanwise direction. The surface <strong>in</strong>tegralbecomes a l<strong>in</strong>e <strong>in</strong>tegral along <strong>the</strong> cavity walls. Ano<strong>the</strong>r two–dimensional form <strong>of</strong> <strong>the</strong>Curle’s equation will be used, where equation 2.55 is <strong>in</strong>tegrated <strong>in</strong> <strong>the</strong> z–direction from−w to +w, where w is half <strong>the</strong> cavity spanwise extension, yield<strong>in</strong>gp(x,t) − p 0 = 1 ∫( w) ṗδijl i n j[2 arctan + 2w pδ ]ij4π Lr a ∞ r 2 dL(y) (2.57)A general overview and details about o<strong>the</strong>r computational techniques used <strong>in</strong> CAAcan be found <strong>in</strong> works <strong>of</strong> Larsson [79], Tam [158] and Large–Eddy simulation for acoustics[167].2.10 ConclusionLiterature related to cavity flows is huge. Topics concerned to <strong>the</strong> present work isreviewed. Govern<strong>in</strong>g equations for <strong>the</strong> Direct numerical equations are given. Turbulenceand RANS are also discussed. Lighthill–Curle’s equation <strong>in</strong> two–dimensional form isderived to compute <strong>the</strong> sound pressure levels. The pressure field has to be determ<strong>in</strong>ed by<strong>the</strong> numerical simulation. The pressure fields are fed as <strong>in</strong>put to <strong>the</strong> equation (derivedfrom <strong>the</strong> acoustic analogy) to measure <strong>the</strong> sound generated <strong>in</strong> <strong>the</strong> cavities. The lastmentioned part will be dealt <strong>in</strong> <strong>the</strong> f<strong>in</strong>al Chapter 5.36


Chapter 3Inflow conditions and asymptoticmodell<strong>in</strong>gContents3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.2 Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 403.3 Analytical method . . . . . . . . . . . . . . . . . . . . . . . . . 443.4 Successive Complementary Expansion Method . . . . . . . . 463.5 Zero pressure gradient boundary layer . . . . . . . . . . . . . 553.6 Adverse pressure gradient boundary layer . . . . . . . . . . 653.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Résumé étendu en françaisConditions d’entrée et approche asymptotiqueCe chapitre a pour objet de déf<strong>in</strong>ir des pr<strong>of</strong>ils de couches limites turbulentes pouvantservir de conditions d’entrée dans les simulations numériques, en s’appuyant sur uneapproche asymptotique de résolution de la couche limite turbulente déficitaire en conditiond’équilibre (l’épaississement est supposé nul lorsque le gradient longitud<strong>in</strong>al depression est nul).Après quelques brefs rappels sur la couche limite turbulente, est décrite dans la section3.3, l’approche analytique avec un pr<strong>of</strong>il de vitesse moyenne longitud<strong>in</strong>ale déficitaireauto-similaire (eq. 3.11) dans la couche externe contenant une loi de sillage de typeColes ( eq. 3.12 ). Cette dernière corrige la loi logarithmique u + = 1 κ ln y+ + B dela zone <strong>in</strong>termédiare dite logarithmique. Une loi de sillage cubique a été implémentéepar Rona et al [128] et validée pour une couche limite sans gradient de pression parrapport à des expériences ou des simulations numériques directes. Cette approche peut37


3. Inflow conditions and asymptotic modell<strong>in</strong>gdonc permettre de proposer des pr<strong>of</strong>ils de vitesse u + pour une large gamme de nombrede Reynolds Re τ ou Re θ basés sur la vitesse de frottement ou bien sur l’épaisseur dequantité de mouvement.L’approche asymptotique ( section 3.4 ) suit les premiers travaux de Mellor & Gibson[97] et a été reprise et améliorée par de nombreux auteurs, dont Cousteix &Mauss [25]. Le calcul de la contra<strong>in</strong>te turbulente est basée sur une viscosité turbulentedéf<strong>in</strong>ie par une longeur de mélange et une fonction d’amortissement au vois<strong>in</strong>age de laparoi, dans la sous-couche visqueuse. Dans l’approche, on calcule le pr<strong>of</strong>il déficitaireauto-similaire en résolvant une équation de similitude non l<strong>in</strong>éaire. Au vois<strong>in</strong>age dela paroi où la contra<strong>in</strong>te visqueuse dom<strong>in</strong>e, le pr<strong>of</strong>il des vitesses u + est <strong>in</strong>tégré simplementet numériquement (eq.3.24) pour converger vers la loi logarithmique, dès lors qu’ondépasse la sous-couche visqueuse. En superposant les pr<strong>of</strong>ils des vitesses <strong>in</strong>ternes et externesdans la zone logarithmique, on calcule le coefficient de frottement pariétal et onen déduit toutes les grandeurs classiques d’une couche limite. Habituellement le modèlede longueur de mélange employé dans cette approche est celui de Michel et al. [99]. Iciest proposé un nouveau modèle (eq. 3.21) fonction d’une paramètre n qui a pour butd’améliorer les comparaisons dans le cas de couche limites avec gradient de pression.L’<strong>in</strong>tégration de l’équation de similitude, non l<strong>in</strong>éaire, du pr<strong>of</strong>il de vitesse déficitairen’est pas évidente car cette é equation dégenère au vois<strong>in</strong>age de la paroi et de la limitehaute de la couche limite. Tous les détails numériques, avec approximation analytiqueau vois<strong>in</strong>age des dégénérescences sont donnés dans la section 3.4.7. Sont données aussiles relations analytiques des quantités sans dimensions utiles dans les validations.Dans la section 3.5 est abordée la validation de l’approche asymptotique avec la nouvellelongueur de mélange pour une couche limite sans gradient de pression. Nous comparonsnos résultats sur les vitesses u + à des expériences et des simulations numériquesdirectes (DNS de Skote et al) a<strong>in</strong>si que la contra<strong>in</strong>te turbulente sans dimension τ + .L’effet du paramètre n est analysé et n est calibré à n = 4 pour obtenir une meilleurevalidation sur la viscosité turbulente ou la longueur de mélange normalisée déterm<strong>in</strong>éesdans les expériences. n = 2.7 correspond à la valeur donnant des résultats identiques aumodèle de Michel. On relève la grande sensibilité des grandeurs de la couche limite auxvaleurs des nombres de Reynolds Re τ ou Re θ ou bien à la valeur de u + e = u e /u τ . Cequi explique la difficulté a validé correctement des calculs de couches limites turbulentes(issus de la théorie, de simulations) et des valeurs expérimentales. Quoi qu’il en soit,l’accord entre le modèle asymptotique et les DNS ou expériences est excellent sur le pr<strong>of</strong>ilde vitesse. L’accord est mo<strong>in</strong>s bon sur le pr<strong>of</strong>il de contra<strong>in</strong>te turbulente, spécialementpour des nombres de Reynolds R τ très faibles. Il est dû au fait que la zone logarithmiquen’existe plus à faible Reynolds et que la méthode pour déterm<strong>in</strong>er le coefficient defrottement turbulent peut provoquer une discont<strong>in</strong>uité forte sur la dérivée du pr<strong>of</strong>il decontra<strong>in</strong>te turbulente. C’est un artifact qui montre la limite de l’approche.38


La section 3.6 présente la validation et l’analyse de l’approche asymptotique pourune couche limite turbulente d’équilibre en présence d’un gradient de pression adverse.Il apparaît clairement que le modèle de Michel ne permet pas de bien prendre en compteles effets de gradient de pression, et qu’il faut modifier le paramètre n, jusqu’à n = 24(approximativement) pour obtenir un bon accord entre l’approche asymptotique et lesrésultats de DNS proposés par Skote [148], en particulier sur la contra<strong>in</strong>te turbulente.Deux gradients de pression faibles et modérés ont été comparés. On observe que laviscosité turbulente sans dimension dépend fortement du gradient de pression dans lecas de l’approche asymptotique, alors que la dépendance est plus faible dans le cas dessimulations numériques directes. Un post-traitement et une analyse des données DNSdisponibles met en évidence la difficulté de calculer avec précision le rapport u e /uτ, lenombre de Reynolds Re τ ou l’épaisseur de la couche limite dans le cas d’un gradientlongitud<strong>in</strong>al de pression non nul. Des bosses sont observées en particulier sur le pr<strong>of</strong>ilde la viscosité turbulence au vois<strong>in</strong>age de la f<strong>in</strong> de la couche limite, <strong>in</strong>troduisant uneerreur importante sur le calcul du Re τ . La sensibilité du modèle asymptotique déficitaireà la valeur de Re τ semble, en plus, plus importante dans le cas du gradient de pressionadverse. Un autre modèle de longueur de mélange avec plus de paramètres pourraitcerta<strong>in</strong>ement s’avérer nécessaire, en particulier lorsqu’on se rapproche du décollement.En conclusion l’approche asymptotique, pour une couche limite d’équilibre est capablede fournir des pr<strong>of</strong>ils de vitesse longitud<strong>in</strong>ale d’excellente qualité pour servir de conditionsd’entrée dans des simulations, pour peu que le modèle de longueur de mélangereprésente bien la physique. A<strong>in</strong>si la viscosité turbulente doit être calibrée vis-à-visdu gradient de pression de l’écoulement. Par contre, du fait de ses limites, l’approcheasymptotique ne peut fournir de pr<strong>of</strong>ils de vitesse ou de contra<strong>in</strong>tes turbulentes très convenablesà faibles nombres de Reynolds.39


3. Inflow conditions and asymptotic modell<strong>in</strong>g3.1 IntroductionThis Chapter is devoted to <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> <strong>in</strong>flow velocity pr<strong>of</strong>iles which arerequired for <strong>the</strong> test cases carried out with LES simulations where a turbulent boundarylayer <strong>in</strong>teracts with a cavity. Then, a brief <strong>in</strong>troduction on boundary layers is given <strong>the</strong>analytical approach to provide velocity pr<strong>of</strong>iles, based on <strong>the</strong> defect law and <strong>the</strong> wake correction<strong>of</strong> <strong>the</strong> turbulent logarithmic law. Then, some turbulent boundary layer pr<strong>of</strong>ilesare produced us<strong>in</strong>g Successive Complementary Expansion Method(SCEM). An alternateblend<strong>in</strong>g function is discussed under <strong>the</strong> mix<strong>in</strong>g length model section and <strong>the</strong> validationswith experimental are given. Zero pressure gradient and adverse pressure gradient caseswere simulated us<strong>in</strong>g asymptotic approach and validated aga<strong>in</strong>st <strong>the</strong> Direct <strong>Numerical</strong>Simulation data <strong>of</strong> Skote [148] and experiments <strong>of</strong> Kleban<strong>of</strong>f [73],Townsend [161].3.2 Boundary Layer3.2.1 Lam<strong>in</strong>ar boundary layerThe presence <strong>of</strong> a wall has a dom<strong>in</strong>ant effect on <strong>the</strong> processes that produce turbulence.The external flow is determ<strong>in</strong>ed by <strong>the</strong> displacement <strong>of</strong> streaml<strong>in</strong>es about <strong>the</strong> bodyand <strong>in</strong> which viscosity is negligible (potential flow) and <strong>the</strong> pressure field is developed.But boundary layers are th<strong>in</strong> regions <strong>in</strong> <strong>the</strong> flow where viscous forces are important.Although <strong>the</strong> name boundary layer orig<strong>in</strong>ally referred to <strong>the</strong> layer <strong>of</strong> fluid next to <strong>the</strong>wall. The essential ideas are that <strong>the</strong> layer is th<strong>in</strong> <strong>in</strong> <strong>the</strong> direction across <strong>the</strong> streaml<strong>in</strong>esand that viscous stresses are important only with<strong>in</strong> <strong>the</strong> layer and <strong>the</strong> velocity satisfies<strong>the</strong> no–slip condition at <strong>the</strong> wall.“ A very satisfactory explanation <strong>of</strong> <strong>the</strong> physical process <strong>in</strong> <strong>the</strong> boundary layerbetween a fluid and a solid body could be obta<strong>in</strong>ed by <strong>the</strong> hypo<strong>the</strong>sis <strong>of</strong> anadhesion <strong>of</strong> <strong>the</strong> fluid to <strong>the</strong> walls, that is, by <strong>the</strong> hypo<strong>the</strong>sis <strong>of</strong> a zero relativevelocity between fluid and wall. If <strong>the</strong> viscosity was very small and <strong>the</strong> fluidpath along <strong>the</strong> wall not too long, <strong>the</strong> fluids velocity ought to resume itsnormal value at a very short distance from <strong>the</strong> wall. In <strong>the</strong> th<strong>in</strong> transitionlayer, however, <strong>the</strong> sharp changes <strong>of</strong> velocity, even with small coefficient <strong>of</strong>friction, produce marked results ”.Ludwig Prandtl–Address to <strong>the</strong> 3 rd Ma<strong>the</strong>matical Congress <strong>in</strong> Heidelberg <strong>in</strong> 1904The concept <strong>of</strong> a boundary layer is from Ludwig Prandtl who showed that effects<strong>of</strong> friction with<strong>in</strong> <strong>the</strong> fluid (viscosity) are present only <strong>in</strong> a very th<strong>in</strong> layer close to <strong>the</strong>wall surface. If <strong>the</strong> flow velocity is high enough <strong>the</strong> flow <strong>in</strong> this layer will eventuallybecome unordered, swirl<strong>in</strong>g and chaotic or simply described as be<strong>in</strong>g turbulent. Thetransition from lam<strong>in</strong>ar to turbulent flow state was first <strong>in</strong>vestigated by Reynolds who40


eplacemen3.2. Boundary Layeryu ∞mean graphu ∞u esk<strong>in</strong> dragboundarylayerlam<strong>in</strong>ar boundary layerturbulent boundary layerxviscoussub layertransition zoneFigure 3.1: Boundary layer with details.performed experiments on water. He found that <strong>the</strong> flow state was determ<strong>in</strong>ed solelyby a non–dimensional parameter that is s<strong>in</strong>ce <strong>the</strong>n called <strong>the</strong> Reynolds number. TheReynolds number is a measure <strong>of</strong> <strong>the</strong> ratio between <strong>in</strong>ertial and viscous forces <strong>in</strong> <strong>the</strong>flow, i.e. a high Reynolds number flow is dom<strong>in</strong>ated by <strong>in</strong>ertial forces.The schematic figure 3.1 shows a flat plate boundary layer flow with undisturbedvelocity u ∞ perpendicular to <strong>the</strong> sharp lead<strong>in</strong>g edge and parallel to <strong>the</strong> plate surfacerepresent<strong>in</strong>g lam<strong>in</strong>ar boundary layer, transition zone and turbulent boundary layer.Velocity pr<strong>of</strong>ile near <strong>the</strong> wall is detailed <strong>in</strong> <strong>the</strong> figure 3.2.Prandtl postulated that <strong>the</strong> stra<strong>in</strong> rate very near to <strong>the</strong> surface would become aslarge as necessary to compensate for <strong>the</strong> vanish<strong>in</strong>g effect <strong>of</strong> viscosity, so that at least oneviscous term rema<strong>in</strong>ed. This very th<strong>in</strong> region near <strong>the</strong> wall became known as Prandtl’sboundary layer, and <strong>the</strong> length scale characteris<strong>in</strong>g <strong>the</strong> necessary gradient <strong>in</strong> velocitybecame known as <strong>the</strong> boundary layer thickness [47]. The boundary layer thickness δ(x)def<strong>in</strong>ed as <strong>the</strong> y value at whichu(x,y) | y=δ = 0.99u e (x) (3.1)u e is <strong>the</strong> velocity outside <strong>the</strong> boundary layer, where fluid can be considered as <strong>in</strong>viscid.In case <strong>of</strong> flat plate boundary layer with zero <strong>in</strong>cidence, u e is constant and equals to <strong>the</strong>upstream velocity u ∞ . The thickness depends on small velocity differences. In o<strong>the</strong>rwords, it is <strong>the</strong> layer where viscous effect cont<strong>in</strong>ue to be important. As <strong>the</strong> layer is th<strong>in</strong>,<strong>the</strong> derivatives across <strong>the</strong> flow direction might be expected to be larger than derivatives<strong>in</strong> <strong>the</strong> flow direction. More reliable ways to characterise <strong>the</strong> thickness <strong>of</strong> boundary layerare displacement thickness δ ∗ , momentum thickness θ and shape factor H. The flow near<strong>the</strong> surface is retarded, so that <strong>the</strong> streaml<strong>in</strong>es must be displaced outwards to satisfycont<strong>in</strong>uity. To reduce <strong>the</strong> total mass flow rate <strong>of</strong> a frictionless fluid by <strong>the</strong> same amount,41


303. Inflow conditions and asymptotic modell<strong>in</strong>g30viscous sublayer buffer layer <strong>in</strong>tertial sublayerdefectlayeru + = 1 κ lny+ + B20u + y +<strong>in</strong>tegral scales10u + = y +<strong>in</strong>ertial scalesdissipation scales0.1 1 2 5 1030100 1000 10000Figure 3.2: Log law <strong>of</strong> wall. McDonough [95].<strong>the</strong> surface would have to be displaced outward by a distance δ ∗ , called <strong>the</strong> displacementthickness.ρ e u e δ ∗ =∫ ∞0(ρ e u e − ρu)dy = mass flux deficit (3.2)The momentum thickness θ which is used to determ<strong>in</strong>e <strong>the</strong> sk<strong>in</strong> friction drag on asurface, is a <strong>the</strong>oretical length scale to quantify <strong>the</strong> effects <strong>of</strong> fluid viscosity <strong>in</strong> <strong>the</strong>vic<strong>in</strong>ity <strong>of</strong> a physical boundary. Physically it is distance by which <strong>the</strong> boundary shouldbe displaced to compensate for <strong>the</strong> reduction <strong>in</strong> momentum <strong>of</strong> <strong>the</strong> flow<strong>in</strong>g fluid onaccount <strong>of</strong> boundary layer formation.∫ ∞ρ e u 2 e θ = (u e − u) ρudy = momentum flux deficit (3.3)0Ano<strong>the</strong>r important parameter which characterise <strong>the</strong> boundary layer is <strong>the</strong> shapefactor H = δ∗. It is a function <strong>of</strong> <strong>the</strong> longitud<strong>in</strong>al pressure gradient and <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ar,θtransitional or turbulent state <strong>of</strong> <strong>the</strong> flow.The f<strong>in</strong>al goal <strong>of</strong> this chapter is to generate an <strong>in</strong>flow turbulent boundary layer for<strong>the</strong> cavity flows. It becomes more important to mention from <strong>the</strong> work <strong>of</strong> Colonius &Lele [22] that <strong>the</strong> value <strong>of</strong> momentum thickness θ at <strong>the</strong> cavity lead<strong>in</strong>g edge plays a vital42


3.2. Boundary Layerrole <strong>in</strong> <strong>the</strong> selection <strong>of</strong> <strong>the</strong> modes and <strong>in</strong> govern<strong>in</strong>g <strong>the</strong> growth <strong>of</strong> <strong>the</strong> shear layer(seeColonius & Lele [22], Rowley et al [132] and Tam [158]) that spans an open cavity(seeCharwat et al [13]).3.2.2 Turbulent boundary layerMost <strong>of</strong> <strong>the</strong> flow around any body are turbulent <strong>in</strong> nature. For example turbulent boundarylayer flow occurs on a high speed tra<strong>in</strong>, where <strong>the</strong> gap between <strong>the</strong> coaches build <strong>the</strong>cavity and <strong>the</strong> boundary layer develop<strong>in</strong>g along <strong>the</strong> tra<strong>in</strong> may have a size comparableto <strong>the</strong> cavity depth. In aeroplanes, <strong>the</strong>se turbulent boundary layer flow occur dur<strong>in</strong>gtak<strong>in</strong>g <strong>of</strong>f, fly<strong>in</strong>g at high velocity, land<strong>in</strong>g and tax<strong>in</strong>g. Many researchers worked on<strong>the</strong> turbulent flows and turbulent boundary layers . Turbulent flows over (rough) wallshave been studied by Hagen [59] <strong>in</strong> 1854 and Darcy [28] <strong>in</strong> (1857), who were concernedwith pressure losses <strong>in</strong> water conduits. Study and analysis on <strong>the</strong> turbulent boundarylayers were started while perform<strong>in</strong>g measurements <strong>in</strong> w<strong>in</strong>d–tunnel experiments. Experimentsperformed by Schultz–Grunow [141], Ludwieg and Tillman [92], Kleban<strong>of</strong>f [73]and Smith & Walker [150] were noteworthy. The first Direct <strong>Numerical</strong> simulation <strong>of</strong>a turbulent boundary layer was performed by Spalart [152]. Skote et al [148] obta<strong>in</strong>edturbulent boundary layers at different pressure gradients. The overall structure <strong>of</strong> turbulentboundary layers can be found <strong>in</strong> textbooks for <strong>in</strong>stance by Townsend [163]. Inthis work, mean thick turbulent boundary layer pr<strong>of</strong>iles are produced to impose on <strong>in</strong>let<strong>of</strong> <strong>the</strong> computational doma<strong>in</strong> to simulate cavity flows at different velocities and atdifferent Reynolds number.3.2.3 Power lawThe algebraic law for a flat plate turbulent boundary layer under zero pressure gradientknown as power law is given here. Because this approach has been <strong>in</strong>itially used togenerate <strong>in</strong>flow conditions <strong>in</strong> <strong>the</strong> simulation <strong>of</strong> cavity flows <strong>in</strong> this work. Then <strong>in</strong> <strong>the</strong>simulations at <strong>the</strong> later part, mean turbulent boundary layer pr<strong>of</strong>ile were imposed on<strong>the</strong> computational doma<strong>in</strong> <strong>of</strong> <strong>the</strong> cavity.Consider an <strong>in</strong>compressible flow over a smooth flat plate (zero pressure gradient).Simpler, but less accurate, relations between δ, δ ∗ , θ and H can be obta<strong>in</strong>ed if one uses<strong>the</strong> power–law assumption for <strong>the</strong> velocity distribution <strong>in</strong> which one assumeuu ∞=( yδ)1n(3.4)Here <strong>the</strong> exponent n is about 7 <strong>in</strong> a constant pressure boundary–layer, <strong>in</strong>creas<strong>in</strong>g slowlywith <strong>the</strong> Reynolds number. Us<strong>in</strong>g (3.4) and <strong>the</strong> def<strong>in</strong>itions <strong>of</strong> δ ∗ , θ and H, one can show43


3. Inflow conditions and asymptotic modell<strong>in</strong>gthatδ ∗δθδ==H =11 + nn(1 + n)(2 + n)2 + nn(3.5)O<strong>the</strong>r formulas obta<strong>in</strong>ed from power-law assumptions, given by Schlicht<strong>in</strong>g [139] are:Those equations are valid for Reynolds number Re x =10 7 . The dimensionless sk<strong>in</strong> friction co–efficient isδxθx= 0.37 (U∞ xν ∞) −1/5(3.6)= 0.036(U∞ xν ∞) −1/5(3.7)( )U∞ x, between 5 × 10 5 andν ∞C f =τ w12 ρu2 ∞(3.8)At higher Reynolds numbers <strong>the</strong> boundary layer thickness can be calculated more accuratelyby <strong>the</strong> follow<strong>in</strong>g empirical formula given by Granvilleδx = 0.0598logRe x − 3.170(3.9)This equation was obta<strong>in</strong>ed on <strong>the</strong> assumption that <strong>the</strong> boundary layer is turbulent from<strong>the</strong> lead<strong>in</strong>g edge onwards.3.3 Analytical methodThe boundary layer is described by a two–layer structure (see Mellor [96] and Yajnik[171]). The overall description <strong>of</strong> a turbulent boundary layer is dependent on twoseparate <strong>in</strong>ner and outer length scales:1. The outer length scale is commonly taken as <strong>the</strong> thickness <strong>of</strong> <strong>the</strong> boundary layerδ <strong>in</strong> outer layer where convective transport terms are important2. an <strong>in</strong>ner layer whose thickness is <strong>of</strong> order ν , where u τ is friction velocity and isu τ√τwu τ =ρ44where τ w is <strong>the</strong> wall shear stress.


3.3. Analytical methodIn between <strong>the</strong>se layers, <strong>the</strong>re is an overlap layer where both <strong>the</strong> convective transportand <strong>the</strong> viscous term are negligible. This is <strong>the</strong> logarithmic overlap region. The walllayer is fur<strong>the</strong>r divided <strong>in</strong>to a viscous sublayer where visous shear stress dom<strong>in</strong>ates andturbulent stresses are unimportant and <strong>in</strong>to a buffer layer where both stresses have tobe taken <strong>in</strong>to account. These layers are well represented <strong>in</strong> <strong>the</strong> figure 3.2.Normally <strong>in</strong> <strong>the</strong> boundary layer, viscosity effect is dom<strong>in</strong>ant below y + ≈ 5. The mostactive part <strong>of</strong> <strong>the</strong> flow lies between 10 y + 100 which is called <strong>the</strong> buffer region. Thebuffer layer is difficult to analyse <strong>the</strong>oretically s<strong>in</strong>ce both viscous and turbulent stressesare important. For example, from <strong>the</strong> DNS <strong>of</strong> unsteady channel flow from Jiménezand P. Mo<strong>in</strong> [70] observed that <strong>in</strong> moderate Reynolds number flows, this buffer regiongenerates most <strong>of</strong> <strong>the</strong> turbulent energy as it conta<strong>in</strong>s <strong>the</strong> nonl<strong>in</strong>ear self–susta<strong>in</strong><strong>in</strong>g cycle.S<strong>in</strong>ce <strong>the</strong> above said layers have different length scales, <strong>the</strong> whole turbulent boundarylayer can never be self similar. The wall layers alone are self similar. The outer layers<strong>of</strong> so called equilibrium boundary layers can be considered approximately self similar.To describe <strong>the</strong> mean velocity pr<strong>of</strong>ile <strong>in</strong> a turbulent boundary layer, similarity solutionsare sought <strong>in</strong> <strong>the</strong> <strong>in</strong>ner and <strong>the</strong> outer regions. In <strong>the</strong> <strong>in</strong>ner region, <strong>the</strong> mean streamwise velocity u scales with <strong>the</strong> wall friction velocity u τ and with <strong>the</strong> viscous length scalel = ν u τ, so thatu + = u u τ= f[ yuτνIn outer region, <strong>the</strong> velocity pr<strong>of</strong>ile is described by <strong>the</strong> velocity defect lawu e − uu τ[ y]= fδ](3.10)(3.11)In eqs. 3.10 and 3.11, u + is <strong>the</strong> normalised stream wise velocity, u e is <strong>the</strong> free-streamvelocity, ν is <strong>the</strong> k<strong>in</strong>ematic viscosity, y is <strong>the</strong> wall-normal distance and δ is <strong>the</strong> boundarylayer thickness, which is taken as <strong>the</strong> wall-normal distance at which u = u e . The outer–layer velocity distribution depends also on <strong>the</strong> external pressure gradient. Based on<strong>the</strong> existence <strong>of</strong> an overlap region between <strong>the</strong> <strong>in</strong>ner and <strong>the</strong> outer regions, Coles [17]proposed <strong>the</strong> follow<strong>in</strong>g additive law <strong>of</strong> <strong>the</strong> wall and law <strong>of</strong> <strong>the</strong> wake <strong>in</strong> non–dimensionalform:u + = 1 κ ln y+ + B + Π κ f (η)f (η) = 1 − cos (πη) (3.12)y + = yu τν ,η = y δwhere y + is <strong>the</strong> non–dimensional wall-normal distance (also called <strong>in</strong>ner variable), η is<strong>the</strong> non–dimensional wall–normal distance (also called outer variable), κ <strong>the</strong> von Kármánconstant, B <strong>the</strong> logarithmic law constant and Π is <strong>the</strong> wake parameter. The wakeparameter Π represents <strong>the</strong> effect on <strong>the</strong> outer layer dynamics. Coles [17] determ<strong>in</strong>ed45


3. Inflow conditions and asymptotic modell<strong>in</strong>g<strong>the</strong> wake parameter asΠ = κ 2(u + e − 1 )κ ln Re τ − B(3.13)u + e = u eu τ,Re τ = δu τνwhere u + e is <strong>the</strong> normalised free-stream velocity and Re τ is <strong>the</strong> boundary layer Reynoldsnumber which def<strong>in</strong>es <strong>the</strong> scale separation between <strong>the</strong> outer and <strong>in</strong>ner lengths. Fora given Reynolds number, this Π parameter cancels and <strong>the</strong>n <strong>the</strong> changes <strong>the</strong> sign(becomes negative) forRe τ = exp [ κ ( u + e − B )]It characterises <strong>the</strong> deviation <strong>of</strong> log law pr<strong>of</strong>ile at η → 1. At distances from <strong>the</strong> wall <strong>of</strong><strong>the</strong> order <strong>of</strong> boundary layer thickness, <strong>the</strong> size <strong>of</strong> <strong>the</strong> structures is limited by δ, whichbecomes <strong>the</strong> relevant length scale. Letf (η) = A 1 η 2 + A 2 η 3 (3.14)be a cubic polynomial approximation to f (η) <strong>in</strong> eq. 3.12. Substitut<strong>in</strong>g <strong>the</strong> boundaryconditions∂uu| y=δ = u e and∂y ∣ = 0 (3.15)y=δ<strong>in</strong> eq. 3.12, with f (η) from eq. 3.14, gives[A 1 = 6 1 + 1 ]6Πand[A 2 = −4 1 + 1 ],4Πwith Π def<strong>in</strong>ed by eq. 3.13. The law <strong>of</strong> <strong>the</strong> wake <strong>of</strong> eq. 3.12 <strong>the</strong>n becomesu + =Log-law <strong>of</strong> <strong>the</strong> wall{ }} {1κ ln y+ + B + 1 κ (η)2 (1 − η)} {{ }Pure wall flow+2Πκ (η)2 (3 − 2η)} {{ }. (3.16)Pure wake componentEquation 3.16 is validated over a relatively wide range <strong>of</strong> momentum thickness basedReynolds number Re θ = u eθ<strong>in</strong> section 3.4.1. To evaluate eq. 3.16, Rona et al [128]νtake κ = 0.41 and B = 5.0, as proposed by Coles [17].3.4 Successive Complementary Expansion MethodIn this section, an approach is ma<strong>in</strong>ly developed for <strong>the</strong> boundary layer, but manyextensions can be found for o<strong>the</strong>r flow such as channel flow.46


3.4. Successive Complementary Expansion MethodAccord<strong>in</strong>g to Cousteix & Mauss [25], Successive Complementary Expansion Method(SCEM) discusses about “s<strong>in</strong>gular perturbation problems” with a small parameter ǫ,where when ǫ → 0, <strong>the</strong> solution does not tend uniformly towards <strong>the</strong> correspond<strong>in</strong>greduced problem obta<strong>in</strong>ed for ǫ = 0. It is necessary to observe that <strong>the</strong> non-uniformityoccurs <strong>in</strong> a doma<strong>in</strong> whose dimension is smaller than <strong>the</strong> <strong>in</strong>itial doma<strong>in</strong>. The pr<strong>in</strong>ciple<strong>of</strong> SCEM is to f<strong>in</strong>d an “uniformly valid approximation” which is uniformly valid <strong>in</strong><strong>the</strong> whole flow field with an improved approximation near <strong>the</strong> walls. This improvedapproximation can be atta<strong>in</strong>ed by add<strong>in</strong>g a correction which takes <strong>in</strong>to account <strong>the</strong>effects <strong>of</strong> viscosity. The successive complemetary expansion method consists here <strong>in</strong>seek<strong>in</strong>g contiguous asymptotic matches between <strong>the</strong> <strong>in</strong>ner and <strong>the</strong> outer regions <strong>of</strong> an<strong>in</strong>compressible turbulent boundary layer. This approach has been <strong>in</strong>itially <strong>in</strong>troducedby Schlicht<strong>in</strong>g [139], Clauser [16], Mellor & Gibson [97] and Bradshaw [8].3.4.1 Mix<strong>in</strong>g length modelFigure 3.3 illustrates <strong>the</strong> shear stress τ = τ total near <strong>the</strong> wall. The shear stress is summation<strong>of</strong> lam<strong>in</strong>ar shear stress (τ lam ) and turbulent shear stress (τ turb ). The lam<strong>in</strong>ar stressis more dom<strong>in</strong>ant <strong>in</strong> <strong>the</strong> region very close to <strong>the</strong> wall (viscous layer). The dom<strong>in</strong>ancyand <strong>the</strong> <strong>in</strong>fluence decreases <strong>in</strong> <strong>the</strong> region away from <strong>the</strong> wall. The turbulent shear stress<strong>in</strong>creases with <strong>the</strong> <strong>in</strong>crease <strong>in</strong> y and decreases outside <strong>the</strong> boundary layer. Fundamentalequations for <strong>in</strong>compressible turbulent boundary layer are given here∂u∂x + ∂v∂yρu ∂u∂x + ρv∂v ∂y= 0= − ∂P∂x + ∂ ∂y(µ ∂u )∂y − ρ < u′ v ′ >where <strong>the</strong> pressure gradient is given by∂P∂x = dPdx = −ρ u eeu exbecause <strong>in</strong> a boundary layer flow, <strong>the</strong> pressure gradient across <strong>the</strong> flow is zero i.e ∂P∂y = 0.With zero <strong>in</strong>cidence <strong>of</strong> <strong>the</strong> flat plate, <strong>the</strong> streamwise pressure gradient is zero as welland <strong>the</strong> pressure is constant.Across <strong>the</strong> boundary layer, <strong>the</strong> local shear stress is given byτ = τ turb + τ lam= −ρu ′ v ′} {{ }turbulent stress+ µ ∂u∂y}{{}lam<strong>in</strong>ar stress(3.17)47


3. Inflow conditions and asymptotic modell<strong>in</strong>gττ totalτ turby + ≃ 10τ lamyFigure 3.3: Shear stress near <strong>the</strong> wall.where u ′ and v ′ are <strong>the</strong> time–dependent fluctuations <strong>of</strong> <strong>the</strong> streamwise and flow–normalvelocity components and are unknown. To avoid hav<strong>in</strong>g to resolve <strong>the</strong>se unknowns, <strong>the</strong>Reynolds shear stress is evaluated us<strong>in</strong>g Prandtl’s mix<strong>in</strong>g length model [115] l, with <strong>the</strong>Van Driest [165] near-wall damp<strong>in</strong>g correction ˜F. This gives∣ ( )τ t = −ρu ′ v ′ = ρ˜F 2 ∣∣∣l 2 ∂u∂u∂y ∣ ∂y˜F = 1 − exp) (− y+26(3.18)(3.19)In <strong>the</strong> <strong>in</strong>ner region, l = κy is l<strong>in</strong>ear, while <strong>in</strong> <strong>the</strong> outer region, l/δ → 0.085 as y → δ.These two asymptotic behaviour can be merged analytically <strong>in</strong>to a s<strong>in</strong>gle distribution for<strong>the</strong> mix<strong>in</strong>g length l across <strong>the</strong> whole boundary layer by <strong>the</strong> us<strong>in</strong>g a “blend<strong>in</strong>g” function.Michel et al. [99] used a blend<strong>in</strong>g function which is( ) κηl(η) = δ c l tanhc l(3.20)with c l = 0.085 and κ = 0.41. In [128] Airiau propose an alternative blend<strong>in</strong>g functionwhich improves <strong>the</strong> prediction <strong>of</strong> <strong>the</strong> turbulent shear stress pr<strong>of</strong>ile at <strong>the</strong> <strong>in</strong>terfacebetween <strong>the</strong> <strong>in</strong>ner and <strong>the</strong> outer layer, at low Reynolds numbers Re τ . This isl(η) = δκη[ ( ) κη n ] 1 n1 +c l(3.21)For 2.6 < n < 2.7, <strong>the</strong> l(η) pr<strong>of</strong>ile from equation 3.21 almost matches that from equation3.20.48


3.4. Successive Complementary Expansion Method3.4.2 Inner region velocity pr<strong>of</strong>ileInner region is given by y + ∈ [0 + ,50 − 100]. Normalis<strong>in</strong>g <strong>the</strong> local shear stress τ byτ w = ρu 2 τ and assum<strong>in</strong>g a monotonic velocity pr<strong>of</strong>ile, from eq. 3.18,(1 = ∂u+ ∂u+) 2∂y + + l+2˜F2 ∂y + (3.22)where l + = lu τν . In <strong>the</strong> viscous layer, <strong>the</strong> zone close to <strong>the</strong> wall with y+ < 1, <strong>the</strong>velocity is really small and l + is l<strong>in</strong>ear with respect to y + . The turbulent shear stress isnegligible compar<strong>in</strong>g to <strong>the</strong> viscous lam<strong>in</strong>ar shear stress. Then1 = ∂u+∂y + ⇒ u+ = y +This approximation falls <strong>in</strong> <strong>the</strong> range 10 < y + < 40. ˜F(y + ) → 1 when y + > 60–80 and<strong>the</strong> viscous term is neglected:( )1 = κ 2 y + 2 ∂u+∂y + ⇒ ∂u+∂y + = 1κy +<strong>the</strong>n <strong>the</strong> velocity satisfies a logarithmic law :u + = 1 κ log y+ + C (3.23)This region where <strong>the</strong> log–law is true is called <strong>the</strong> logarithmic region. Integration <strong>of</strong>equation (3.22)(for 40 < y + < 100 − 1000) gives (see Cousteix [23], Schlicht<strong>in</strong>g [139])C ≈ 5.25. Recent calculation from Cousteix [25] produces <strong>the</strong> value 5.28 (calculationspeformed <strong>in</strong> this work produce 5.28). Equation 3.22 is a quadratic <strong>in</strong> ∂u+ so <strong>the</strong>∂y +analytical solution is given by :∂u +∂y + = 2√[1 + 1 + 4 l + (y + ) ˜F(y](3.24)2 + )Integrat<strong>in</strong>g equation 3.24 with respect to y + with <strong>the</strong> boundary condition u + (x,0) = 0gives <strong>the</strong> <strong>in</strong>ner layer tangential velocity pr<strong>of</strong>ile that asymptotes to <strong>the</strong> log–law <strong>of</strong> <strong>the</strong>wall <strong>in</strong> equation 3.16 for y + → ∞.3.4.3 Outer region velocity pr<strong>of</strong>ileIn <strong>the</strong> outer region, <strong>the</strong> Reynolds stress component is dom<strong>in</strong>ant over <strong>the</strong> lam<strong>in</strong>ar shearstress where viscous stress is negligible, so τ ≃ τ t . From eq. 3.18, with <strong>the</strong> van Driestdamp<strong>in</strong>g constant ˜F → 1 at y + ≥ 100. The shear stress is :49


3. Inflow conditions and asymptotic modell<strong>in</strong>g( ) ∂u 2τ = τ t = ρl 2 (3.25)∂yIn an equilibrium turbulent boundary layer, <strong>the</strong> similarity solution for <strong>the</strong> outer layercan be expressed <strong>in</strong> terms <strong>of</strong> <strong>the</strong> velocity defect F ′ (η) = u + e − u + and <strong>the</strong> shear stressis obta<strong>in</strong>ed from <strong>the</strong> <strong>in</strong>tegration <strong>of</strong> <strong>the</strong> streamwise momentum equation :whereτ + = τ = 1 − F ( 1+ + 2β)ηF ′ (3.26)τ w F 1 F 1F (η) =∫ η0F ′ (ξ) dηF 1 = F (1)β = − δ du eu τ dx(3.27)The shear stress, from equation 3.25 is expressed as a function <strong>of</strong> <strong>the</strong> derivative <strong>of</strong> <strong>the</strong>defect law F :where F ′′ = dF ′dηregion becomes( )τ l 2= F ′′2τ w δ. Substitut<strong>in</strong>g forττ w<strong>in</strong> eq. 3.26, <strong>the</strong> similarity solution for <strong>the</strong> outer( lδ) 2F ′′2 = 1 − F ( 1+ + 2β)ηF ′ (3.28)F 1 F 1The parameter β represents <strong>the</strong> pressure gradient. Clauser had def<strong>in</strong>ed <strong>the</strong> factor β cβ c = δ∗u τdPdx(3.29)and is related to β asβ c= β δ∗δu eu τ(3.30)For zero pressure gradient flow, β = 0.To determ<strong>in</strong>e <strong>the</strong> most important boundary layer quantities, it is necessary to calculate<strong>the</strong> values <strong>of</strong> F 1 , F 2 and G asF 1 =∫ 10F ′ dη, F 2 =∫ 10F ′2 dη, G = F 2F 1For β = 0, and with Michel’s mix<strong>in</strong>g length model, F 1 = 3.15 and G = 6.13.50In <strong>the</strong> neighbourhood <strong>of</strong> η = 0, it is easy to demonstrate that F ′ (η) becomes loga-


3.4. Successive Complementary Expansion Methodrithmic from <strong>the</strong> equation (3.28)( lδ) 2F ′′2 = 1, L(η) = l δ = κηF ′ (η) = − 1 κ log η + D v(β)For a zero pressure gradient boundary layer flow (β = 0), Cousteix & Mauss [25] giveD v = 1.76.3.4.4 Asymptotic match<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>in</strong>ner and outer pr<strong>of</strong>ilesA match<strong>in</strong>g condition is sought for <strong>the</strong> velocity pr<strong>of</strong>iles <strong>of</strong> <strong>the</strong> <strong>in</strong>ner and outer regions,solutions <strong>of</strong> equations 3.24 and 3.28. This is obta<strong>in</strong>ed from standard asymptotic analysis(Cousteix & Mauss [25]) by consider<strong>in</strong>g y + → ∞ <strong>in</strong> equation 3.24 and η → 0 <strong>in</strong>equation 3.28. That gives respectivelyu + = 1 κ ln y+ + C (3.31)u + e − u+ = − 1 κ ln η + D v (3.32)Add<strong>in</strong>g eq. 3.31 to eq. 3.32 givesu + e = 1 κ ln Re τ + C + D v (3.33)Equation 3.33 can be re–casted as function <strong>of</strong> <strong>the</strong> wall sk<strong>in</strong> friction coefficientC f = 2 τ w(ρu 2 e ) = ρu2 τ12 ρu2 e= 2γ 2 (3.34)that is imposed with same value <strong>in</strong> <strong>the</strong> <strong>in</strong>ner and outer regions and provides <strong>the</strong> match<strong>in</strong>gcriterion for <strong>the</strong> two pr<strong>of</strong>iles√2= 1 C f κ ln Re τ + C + D v (3.35)3.4.5 Boundary layer quantitiesIt is possible to calculate analytically <strong>the</strong> displacement thickness, <strong>the</strong> momentum thicknessand <strong>the</strong> shape factor <strong>of</strong> <strong>the</strong> boundary layer as soon as <strong>the</strong> velocity pr<strong>of</strong>ile is known.γ =√Cf2 = u τu e= 1u + e51


3. Inflow conditions and asymptotic modell<strong>in</strong>gThe displacement thickness δ ∗ is given byδ ∗ =∫ δ0(1 − u u e)dy =⇒δ ∗δ = γF 1with γ =√Cf2 = u τ= 1u e u + . The momentum thickness θ is determ<strong>in</strong>ed byeθ =∫ δ0(u1 − u )dy =⇒u e u eThe shape factor H <strong>of</strong> <strong>the</strong> boundary layer isH = δ∗θ = 11 − γGθδ = γF 1 − γ 2 F 23.4.6 Turbulent shear stress and turbulent viscosityTo compare results with experimental or numerical data, <strong>the</strong> turbulent shear stress and<strong>the</strong> turbulent viscosity are converted to non–dimensional form, <strong>in</strong> <strong>the</strong> <strong>in</strong>ner and outerregion.Turbulent shear stressThe turbulent shear stress values are calculated us<strong>in</strong>g mix<strong>in</strong>g length model.τ t = −ρ < u ′ v ′ >= ρ ˜F 2 ( y +) ( ) ∂u 2l + ∂yIn <strong>the</strong> <strong>in</strong>ner region, <strong>the</strong> non–dimensional shear stress is[τ t= ˜F ( ( )y +) y+Lτ w R τR τ∂u +∂y +] 2Usually, for <strong>the</strong> defect zone, <strong>the</strong> damp<strong>in</strong>g function is not taken <strong>in</strong>to account ˜F, but here˜F is reta<strong>in</strong>ed. Because ˜F = 1 only for y + ≤ 100 :τ[t(= ˜F y+ ) ] 2L(η)F ′′ (η)(3.36)τ wDerivative ∂u∂yIn <strong>the</strong> <strong>in</strong>ternal layer, <strong>the</strong> velocity derivative <strong>in</strong> <strong>in</strong>ner variable y + is given by:52∂u∂y = u τ ∂u +l + ∂y + = u2 τ ∂u +ν ∂y + and l + = ν (3.37)u τ


3.4. Successive Complementary Expansion MethodFor <strong>the</strong> external layer, <strong>in</strong> outer variable η:∂u∂y = −u τδ F ′′ (η) = u2 τ ∂u +ν ∂y +and∂u +∂y + = − 1Re τF ′′ (η) (3.38)Turbulent dynamic viscosity ν tBy <strong>the</strong> def<strong>in</strong>ition, <strong>the</strong> turbulent dynamic viscosity ν t is given <strong>in</strong> dimensional form as∣ ∣∣∣ν t = ˜F 2 l 2 ∂u∂y ∣ (3.39)<strong>in</strong> non–dimensional form ˜ν t˜ν t = ν tu τ δ = ˜F 2 l δ∣ l ∣∣∣ ∂uu τ ∂y ∣ (3.40)In <strong>the</strong> <strong>in</strong>ternal layer, <strong>the</strong> above expression is written <strong>in</strong> variable y + as˜ν t = ˜F 2 l δl u 2 τ ∂u +u τ ν ∂y + = Re τ ˜F 2 (l + (y + )) 2∂u+∂y + = Re τ ˜F 2 (κy + ) 2∂u+∂y + (3.41)For <strong>the</strong> external layer, with <strong>the</strong> variable η, it yields˜ν t = ˜F 2 L 2 (η) ∣ ∣ F ′′ (η) ∣ ∣ = Reτ ˜F 2 L 2∂u+∂y + (3.42)The relationship between <strong>the</strong> non–dimensional turbulent viscosity ˜ν t and <strong>the</strong> non–dimensional turbulent stress τ tτ wis deduced:• In <strong>the</strong> <strong>in</strong>ner region, <strong>in</strong> variable y + :• In <strong>the</strong> outer region, <strong>in</strong> variable η :τ + t = ˜ν t Re τ∂u +∂y + (3.43)τ + t = ˜ν t∣ ∣ F ′′ (η) ∣ ∣ (3.44)3.4.7 <strong>Numerical</strong> implementationExplicit<strong>in</strong>g <strong>the</strong> outer region velocity pr<strong>of</strong>ile poses several challenges. Equation 3.28 isnon–l<strong>in</strong>ear and is ill–def<strong>in</strong>ed <strong>in</strong> at <strong>the</strong> upper boundary layer limit, at η → 1, whereF ′′ → 0, and at <strong>the</strong> lower boundary layer limit, at η → 0, where l/δ → 0 and F ′′ → ∞.To solve <strong>the</strong> problem, auxiliary approximate solutions are imposed on <strong>the</strong> floor <strong>of</strong> <strong>the</strong>lam<strong>in</strong>ar sub-layer and at <strong>the</strong> edge <strong>of</strong> <strong>the</strong> boundary layer, as shown <strong>in</strong> figure 3.4 so that<strong>the</strong> edges <strong>of</strong> <strong>the</strong> <strong>in</strong>ner and <strong>of</strong> <strong>the</strong> outer regions are modelled analytically while <strong>the</strong> overlapregion is resolved numerically.53


3. Inflow conditions and asymptotic modell<strong>in</strong>gln y ln ηu d (η)boundary layeranalytical solutionu = u eη = 1η = 1 − ǫ 1outer regionnumerical <strong>in</strong>tegration <strong>of</strong> eq. 3.28logarithmiclayerln y +numerical <strong>in</strong>tegration <strong>of</strong> eq. 3.24η = ǫ 0y 0 + = ǫ 0 × Re τ<strong>in</strong>ner regionFigure 3.4: Boundary layer decks.Let f (η) = F (η) . On <strong>the</strong> floor <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ar sub-layer, impos<strong>in</strong>g η = 0 and l = κy,F (1)as <strong>in</strong> section 3.4.1, eq. 3.28 becomes[κη F1 f ′′ (η) ] 2 = 1 − f (η) + (1 + 2βF1 )ηf ′ (η) (3.45)with <strong>the</strong> boundary condition f (0) = 0. Let ˜β = 2βF 1 . In a zero pressure gradientboundary layer, β = 0 by eq. 3.27, for which eq. 3.45 has <strong>the</strong> explicit solutionf (η) =f ′ (η) =f ′′ (η) =η24α 2 − η ln ηα+ ˜C ηη2α 2 − 1 + log η +α˜C12α 2 − 1αηwith α = F 1 κ. The <strong>in</strong>tegration constant ˜C is determ<strong>in</strong>ed by evaluat<strong>in</strong>g f ′ (η) at η = ǫ 0on <strong>the</strong> floor <strong>of</strong> <strong>the</strong> lam<strong>in</strong>ar sub-layer. In a non-zero pressure gradient boundary layer,˜βηf ′ → 0 as η → 0, so <strong>the</strong> zero pressure gradient pr<strong>of</strong>ile is used on <strong>the</strong> floor <strong>of</strong> <strong>the</strong>lam<strong>in</strong>ar sub-layer.At <strong>the</strong> edge <strong>of</strong> <strong>the</strong> boundary layer, close to η = 1, eq. 3.28 becomes[l1 F 1 f ′′ (η) ] (2 = 1 − f (η) + 1 + ˜β)ηf ′ (η) (3.46)with <strong>the</strong> boundary conditions f (1) = 1, f ′ (1) = 0, f ′′ (1) = 0 and l 1 is evaluated from54


3.5. Zero pressure gradient boundary layerRe θ Re τ u + e Π 100 × ǫ Symbol (Re τ ) num(u + e ) num100 × ǫ num300 145 18.25 0.228 1.33 ◦ 142 18.54 2.12697 335 20.25 0.219 1.35 ∗ 315 20.77 3.311003 460 21.50 0.317 1.78 △ 446 21.66 2.391430 640 22.40 0.336 1.38 · 627 22.51 2.772900 1192 24.33 0.421 1.02 ⊳ 1240 24.17 2.483654 1365 25.38 0.568 0.72 × 1551 24.71 2.445200 2000 26.00 0.505 1.62 ⊲ 2185 25.54 2.3812633 4436 28.62 0.643 0.71 □ 5188 27.65 2.5113000 4770 28.00 0.480 0.99 ♦ 5335 27.72 1.8422845 8000 30.15 0.662 1.01 + 9258 29.06 2.3431000 13030 30.00 0.388 2.05 ⋆ 12845 29.79 1.86Table 3.1: Experimental velocity pr<strong>of</strong>iles. Rona et al [128].eq. 3.21 at η = 1. Cousteix [24] proposed <strong>the</strong> solution for eq. 3.46 :(1 − η)3f (η) = 1 −3f ′ (η) = (1 − η) 2f ′′ (η) = −2 + 2η(3.47)For β = 0, <strong>the</strong> analytical solution has <strong>the</strong> attractive property <strong>of</strong> be<strong>in</strong>g <strong>in</strong>dependent fromF 1 and l 1 . The same solution is used <strong>in</strong> case <strong>of</strong> pressure gradient flow (β ≠ 0), as˜βηf ′ (η) = 0 by <strong>the</strong> boundary condition f ′ (1) = 0 <strong>in</strong> eq. 3.46.3.5 Zero pressure gradient boundary layer3.5.1 Comparison <strong>of</strong> velocity pr<strong>of</strong>ilesThe analytical and numerical methods for predict<strong>in</strong>g a boundary layer mean turbulentvelocity pr<strong>of</strong>ile are tested aga<strong>in</strong>st a range <strong>of</strong> streamwise velocity reference data (experimentsand numerical simulations) from zero pressure gradient boundary layers <strong>of</strong>Spalart [152], Erm and Joubert [37], De Graaff and Eaton [29] and Österlund [106], over<strong>the</strong> range Re θ ∈ [300,31000]. Table 3.1 lists <strong>the</strong> values <strong>of</strong> u + e , Re τ and Π at each Re θ <strong>of</strong><strong>the</strong> reference velocity records. The values <strong>of</strong> u + e and Re τ (column 1 to 3) are <strong>the</strong> ones reported<strong>in</strong> publications [152, 37, 29, 106] while Π (column 4) has been obta<strong>in</strong>ed by fitt<strong>in</strong>geq. 3.16 us<strong>in</strong>g <strong>the</strong> least squares fit. The normalised mean streamwise velocity u + is plottedaga<strong>in</strong>st <strong>the</strong> normalised wall-normal distance y + <strong>in</strong> figure 3.5 for different Reynoldsnumbers. The symbols used <strong>in</strong> figure 3.5 are measured values <strong>of</strong> [152, 37, 29, 106] atdifferent Re θ , labelled as <strong>in</strong> table 3.1. The cont<strong>in</strong>uous l<strong>in</strong>es show <strong>the</strong> fitted analyticalpr<strong>of</strong>iles for <strong>the</strong> outer layer. For clarity, an <strong>in</strong>cremental shift <strong>of</strong> u + = 2.5 is applied to allcurves. The three “0”labels on <strong>the</strong> vertical axis <strong>of</strong> figure 3.5 correspond to Re θ = 300,55


3. Inflow conditions and asymptotic modell<strong>in</strong>gu +30252015105050105010Re θ◦ 300∗ 697△ 1003· 1430⊳ 2900× 3654⊲ 5200□ 12633♦ 13000+ 22845⋆ 310000 1 2 3 4 510 10 10 10 10y +Figure 3.5: Turbulent boundary layer pr<strong>of</strong>iles fitted to eq. 3.16. Symbols as <strong>in</strong> table 3.1Rona et al [128].Re θ = 5200, and Re θ = 31000 respectively. The quality <strong>of</strong> <strong>the</strong> predictions is quantifiedby evaluat<strong>in</strong>g <strong>the</strong> mean square percentage error ǫ for each pr<strong>of</strong>ileǫ =√ 1 N(N∑ u+ e − u + ) 2ref(3.48)u + i=1 refwhere u + a is <strong>the</strong> predicted value and u + refis <strong>the</strong> correspond<strong>in</strong>g reference (experimental,numrical) value for a given yi + <strong>in</strong> a discretized velocity pr<strong>of</strong>ile <strong>of</strong> N po<strong>in</strong>ts. The ǫ obta<strong>in</strong>edat different Re θ with u + a evaluated from equation 3.16 is reported <strong>in</strong> table 3.1 (column5). The maximum ǫ is 2.05% at Re θ = 31000. Such error enables <strong>the</strong> use <strong>of</strong> eq. 3.16 topredict <strong>the</strong> mean streamwise velocity <strong>of</strong> boundary layers <strong>in</strong> many common eng<strong>in</strong>eer<strong>in</strong>gapplications, where an error marg<strong>in</strong> <strong>of</strong> 5% is <strong>of</strong>ten acceptable. The reference data seemto be randomly distributed about <strong>the</strong> fitted curve with no underly<strong>in</strong>g trend, suggest<strong>in</strong>gthat <strong>the</strong> curve fit has captured most <strong>of</strong> <strong>the</strong> u + dependence on δ, u e , u τ , and Re θ .Figure 3.6 compares velocity pr<strong>of</strong>iles obta<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong> Successive ComplementaryExpansion Method <strong>of</strong> section 3.4.7 with <strong>the</strong> same reference data <strong>of</strong> figure 3.5. n = 4was used for <strong>the</strong> numerical prediction <strong>of</strong> <strong>the</strong> mix<strong>in</strong>g length <strong>in</strong> eq. 3.21. The symbolsused <strong>in</strong> figure 3.16 are measured values [152, 37, 29, 106] at different Re θ , labelled as<strong>in</strong> table 3.1. The cont<strong>in</strong>uous l<strong>in</strong>es show <strong>the</strong> normalised numerical velocity pr<strong>of</strong>iles. Forclarity, <strong>the</strong> same <strong>in</strong>cremental shift <strong>of</strong> u + = 2.5 as <strong>in</strong> figure 3.5 is applied to all curves.The orig<strong>in</strong> <strong>of</strong> <strong>the</strong> ord<strong>in</strong>ate <strong>of</strong> figure 3.6 refers to <strong>the</strong> Re θ = 300 pr<strong>of</strong>ile. Figure 3.6 showsthat <strong>the</strong> Successive Complementary Expansion Method <strong>of</strong> section 3.4.7 produces a full56


3.5. Zero pressure gradient boundary layer60* * * * * * * * * * * * * * * * *5040Re θ* 31000u + 22845301300012633520036542029001430100369710300y +01 1000Figure 3.6: Turbulent boundary layer pr<strong>of</strong>iles fitted by <strong>the</strong> complementary expansionmethod. Symbols as <strong>in</strong> table 3.1.velocity pr<strong>of</strong>ile down to <strong>the</strong> wall. In <strong>the</strong> outer layer, <strong>the</strong> asymptotic method captures<strong>the</strong> Reynolds number dependent transition between <strong>the</strong> log–law and <strong>the</strong> constant free–stream velocity for most <strong>of</strong> <strong>the</strong> curves. The free–stream velocity at Re θ = 22845, 12663and 3654 appear to be under–predicted. In table 3.1, are found from column 7 to 9, <strong>the</strong>Reynolds number Re τ , <strong>the</strong> non–dimensional velocity u + e and <strong>the</strong> non–dimensional errorǫ num given from <strong>the</strong> asymptotic approach. The parameters Re θ , Re τ and u + e <strong>of</strong> C f aredirectly related for a given value <strong>of</strong> <strong>the</strong> pressure gradient coefficient β. Here <strong>the</strong> Reynoldsnumbers was choosen from <strong>the</strong> reference value, and Re τ and u + e were determ<strong>in</strong>ed by aniterative Newton approach. The differences between <strong>the</strong> reference data and <strong>the</strong> presentcalculations are confirmed by <strong>the</strong> correspond<strong>in</strong>g numerical mean square percentage error,ǫ num , which is computed by evaluat<strong>in</strong>g u + e <strong>in</strong> eq. 3.48. Specifically, <strong>the</strong> ǫ num at Re θ =22845, 12663 and 3654 are higher than for some <strong>of</strong> <strong>the</strong> o<strong>the</strong>r Reynolds numbers, due to<strong>the</strong> difference <strong>in</strong> <strong>the</strong> normalised free-stream velocity between experiment and prediction.Whereas, <strong>in</strong> general, <strong>the</strong> error from <strong>the</strong> numerical velocity pr<strong>of</strong>ile is higher than thatfrom <strong>the</strong> analytical pr<strong>of</strong>ile, it is with<strong>in</strong> <strong>the</strong> range for which <strong>the</strong> predictions can be usedfor eng<strong>in</strong>eer<strong>in</strong>g accurate predictions.The difference between <strong>the</strong> normalised free–stream velocity from experiments andfrom <strong>the</strong> SCEM approach is fur<strong>the</strong>r <strong>in</strong>vestigated <strong>in</strong> figure 3.7, where <strong>the</strong> outer layerportion <strong>of</strong> <strong>the</strong> predicted velocity pr<strong>of</strong>ile for Re θ = 22845 is re–plotted on a larger scale.The cont<strong>in</strong>uous black l<strong>in</strong>e is <strong>the</strong> numerical prediction obta<strong>in</strong>ed by match<strong>in</strong>g <strong>the</strong> experimentalvalue <strong>of</strong> Re θ <strong>in</strong> <strong>the</strong> matched complementary expansion, <strong>the</strong> red dash–dot l<strong>in</strong>e is57


3. Inflow conditions and asymptotic modell<strong>in</strong>g3530u + y + Experiment25Matched Re θMatched Re τMatched u + e201000 10000Figure 3.7: Outer layer pr<strong>of</strong>ile determ<strong>in</strong>ed from asymptotic approach. Re θ = 22845.(+) experiment, (−) SCEM approach.obta<strong>in</strong>ed by match<strong>in</strong>g <strong>the</strong> experimental value <strong>of</strong> Re τ , while <strong>the</strong> dashed blue l<strong>in</strong>e shows<strong>the</strong> predicted pr<strong>of</strong>ile with a matched normalised free-stream velocity u + e . Match<strong>in</strong>g <strong>the</strong>experimental Reynolds numbers seems to give similar pr<strong>of</strong>iles irrespective <strong>of</strong> whe<strong>the</strong>r <strong>the</strong>target Reynolds number is def<strong>in</strong>ed with respect to <strong>the</strong> momentum thickness, Re θ , or <strong>the</strong>friction velocity, Re τ . Fitt<strong>in</strong>g <strong>the</strong> outer pr<strong>of</strong>ile by impos<strong>in</strong>g <strong>the</strong> normalised free–streamvelocity u + e seems to over–predict <strong>the</strong> boundary layer thickness, lead<strong>in</strong>g to a coarserfit with experiment compared to <strong>the</strong> numerical predictions obta<strong>in</strong>ed by match<strong>in</strong>g <strong>the</strong>pr<strong>of</strong>ile Reynolds number.3.5.2 Validation <strong>of</strong> <strong>the</strong> new mix<strong>in</strong>g length model with experimentsThe optimised value <strong>of</strong> <strong>the</strong> n parameter <strong>in</strong> <strong>the</strong> new mix<strong>in</strong>g length model (eq. 3.21)has been determ<strong>in</strong>ed to fit with <strong>the</strong> experimental measurements <strong>of</strong> <strong>the</strong> non–dimensionallength l reported <strong>in</strong> Kleban<strong>of</strong>f [73].Figure 3.8(a) compares <strong>the</strong> normalised mix<strong>in</strong>g length distribution across a zero–pressure gradient boundary layer with l(η) /(δF 1 ) obta<strong>in</strong>ed from measurements at Re τ =1540 by Kleban<strong>of</strong>f [73], reported <strong>in</strong> H<strong>in</strong>ze [65]. The l distribution (Michel’s model,eq. 3.20) is shown by <strong>the</strong> cont<strong>in</strong>uous l<strong>in</strong>e while <strong>the</strong> dashed l<strong>in</strong>e shows <strong>the</strong> distributionfrom equation 3.21 with n = 4. n = 2.7 would provide <strong>the</strong> same plot as Michel’s modelcase. At this Reynolds number, <strong>the</strong> new formulation appears to be a good improvement<strong>in</strong> <strong>the</strong> predicted <strong>the</strong> mix<strong>in</strong>g length. No effort has been made to fur<strong>the</strong>r optimise n ∈ R58


3.5. Zero pressure gradient boundary layerl0.030.0250.020.0150.03Re τ = 1540Re τ = 1000,F 1 = 3.10440.025Re τ = 1000,F 1 = 3.1479ν0.02 tu τ δF 10.015δF 1Re τ = 1000,F 1 = 3.10440.010.005Re τ = 1540Re τ = 1000,F 1 = 3.14790.010.0050 0 0.2 0.4 η 0.6 0.8 1(a) Normalised Mix<strong>in</strong>g length l versus normaliseddistance from <strong>the</strong> wall η at Re τ = 1540.0 0 0.2 0.4 η 0.6 0.8 1(b) Normalised eddy viscosityν tu τδ F 1versus normaliseddistance from <strong>the</strong> wall η.Figure 3.8: Turbulence model variables. (◦) experiment [73] at Re τ = 1540, (□)experiment [161] at Re τ = 2775, (−−) asymptotic approach at Re τ = 1000 withF 1 = 3.1479 from eq. 3.20 (Michel’s model), (−) asymptotic approach at Re τ = 1000with F 1 = 3.1044 from eq. 3.21. (present model)by add<strong>in</strong>g decimal digits.Us<strong>in</strong>g <strong>the</strong> mix<strong>in</strong>g length model <strong>of</strong> Michel et al. [99], eq. 3.20, under–predicts <strong>the</strong>eddy viscosity, as shown by <strong>the</strong> cont<strong>in</strong>uous l<strong>in</strong>e. After optimisation <strong>of</strong> <strong>the</strong> parameter n(eq. 3.21) based on a comparison on <strong>the</strong> non–dimensional value <strong>of</strong> l (figure 3.8(a)), weν tare able to plot (figure 3.8(b)) <strong>the</strong> pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong> normalised eddy viscosityu τ F 1 δ across<strong>the</strong> same zero pressure gradient boundary layer <strong>of</strong> figure 3.8(a), where ν t is given fromequation 3.39. The symbols are from <strong>the</strong> same experiment [73] as <strong>in</strong> figure 3.8(a) (opencircles) to which fur<strong>the</strong>r measurements by Townsend [161] at Re τ = 2775 have beenadded (open squares). The figure clearly demonstrates <strong>the</strong> <strong>in</strong>terest and efficiency <strong>of</strong> <strong>the</strong>new mix<strong>in</strong>g length model on <strong>the</strong> Michel’s model. The agreement with <strong>the</strong> experimentalresults has been greatly improved. As a numerical experiment, <strong>the</strong> target Reynoldsnumber <strong>in</strong> <strong>the</strong> asymptotic approach was varied over <strong>the</strong> range 1000 ≤ Re τ ≤ 2775 (notshown here) and it was found to have very little effect on <strong>the</strong> predicted normalised ν t ,which is also <strong>the</strong> trend <strong>in</strong> experiment [73, 161].In Rona et al [128], no attempt have been made to predict <strong>the</strong> time–averaged velocitypr<strong>of</strong>iles <strong>of</strong> a boundary layers at Re τ < 300. A small explanation is required. In <strong>the</strong>asymptotic approach, with <strong>the</strong> sk<strong>in</strong> friction value, u + e , is obta<strong>in</strong>ed by match<strong>in</strong>g <strong>the</strong> outerlayer velocity pr<strong>of</strong>ile to <strong>the</strong> <strong>in</strong>ner layer velocity pr<strong>of</strong>ile <strong>in</strong> <strong>the</strong> logarithmic layer. WhenRe τ < 140, an overlap region <strong>in</strong> <strong>the</strong> form <strong>of</strong> a logarithmic layer is no longer present, whichprevents <strong>the</strong> method from evaluat<strong>in</strong>g u + e . Here <strong>the</strong> matched complementary expansionmethod <strong>in</strong> its present formulation has reached its Re τ applicability limit. To illustratethis upper limit <strong>in</strong> Re τ , <strong>the</strong> Figure 3.9 shows <strong>the</strong> velocity pr<strong>of</strong>ile created us<strong>in</strong>g asymptoticapproach for Re τ = 900 <strong>in</strong> <strong>in</strong>ner variable y + . In <strong>the</strong> u + pr<strong>of</strong>ile, <strong>the</strong> log law region is shedon light <strong>in</strong> <strong>the</strong> <strong>in</strong>terval y + ∈ [50,200]. The <strong>in</strong>ner region velocity pr<strong>of</strong>ile is obta<strong>in</strong>ed by<strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong> equation 3.24 and <strong>the</strong> velocity pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong> outer region is determ<strong>in</strong>ed59


3. Inflow conditions and asymptotic modell<strong>in</strong>g3025defect law pr<strong>of</strong>ile20u + y +15u + = 1 κ lny+ + C1050 1u + =∫ y+0∂u +∂y + dy+10 100Figure 3.9: Velocity pr<strong>of</strong>ile Re τ = 900from velocity from equation 3.28 (see 3.4.3 and 3.3). The pr<strong>of</strong>ile from <strong>in</strong>ner regionand outer region are overlapped us<strong>in</strong>g <strong>the</strong> asymptotic match<strong>in</strong>g which is expla<strong>in</strong>ed <strong>the</strong>section 3.4.4 (see <strong>the</strong> blue l<strong>in</strong>e with circle for <strong>the</strong> log law).The non–dimensional shear stress τ tand <strong>the</strong> derivative du+ (see 3.4.6) are plottedτ w dy +aga<strong>in</strong>st <strong>in</strong>ner variable y + <strong>in</strong> <strong>the</strong> figure 3.10. The shear stress (cont<strong>in</strong>ous l<strong>in</strong>e) whichis obta<strong>in</strong>ed from <strong>the</strong> asymptotic method shows a discont<strong>in</strong>uity near y + ∼ 100, <strong>in</strong> <strong>the</strong>overlapp<strong>in</strong>g log–law region. We obviously observe that <strong>the</strong> cont<strong>in</strong>uity <strong>of</strong> <strong>the</strong> velocity and<strong>of</strong> <strong>the</strong> shear stress are fixed. The derivative du+ decreases smoothly with <strong>in</strong>crease <strong>in</strong>dy +y + and <strong>the</strong> mix<strong>in</strong>g length cont<strong>in</strong>uously grows from zero at <strong>the</strong> wall to a constant valueat <strong>the</strong> edge <strong>of</strong> <strong>the</strong> boundary layer which implies that <strong>the</strong> shear shear is maximum ata given distance from <strong>the</strong> wall (quite close to <strong>the</strong> wall), decreases away from wall andgoes to zero <strong>in</strong> <strong>the</strong> external flow (i.e outside <strong>the</strong> boundary layer). This discont<strong>in</strong>uityon <strong>the</strong> non–dimensional shear stress results from <strong>the</strong> complex product <strong>of</strong> <strong>the</strong> decreas<strong>in</strong>gfunction du+ and <strong>of</strong> <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g function, <strong>the</strong> mix<strong>in</strong>g length l. This discont<strong>in</strong>uitydy +nei<strong>the</strong>r exist <strong>in</strong> <strong>the</strong> reality (experiment) nor <strong>in</strong> <strong>the</strong> Direct <strong>Numerical</strong> Simulation (seelater).To conclude, with <strong>the</strong> <strong>in</strong>terest <strong>of</strong> <strong>the</strong> new mix<strong>in</strong>g length model, a difference can beobserved <strong>in</strong> <strong>the</strong> velocity pr<strong>of</strong>ile with <strong>the</strong> Michel’s model on <strong>the</strong> velocity pr<strong>of</strong>ile, at agiven Reynolds number Re τ = 1000. On figure 3.11 u + versus y is plotted <strong>in</strong> <strong>the</strong> regionwhere <strong>the</strong> difference are readable with <strong>the</strong> both models : <strong>the</strong> present model <strong>in</strong> dashedl<strong>in</strong>e with n = 4 and <strong>the</strong> Michel’s model <strong>in</strong> cont<strong>in</strong>uous l<strong>in</strong>e. The small divergence <strong>in</strong> <strong>the</strong>60


3.5. Zero pressure gradient boundary layer10.8du +τ tτ wdy + y +0.60.40.201 10 100Figure 3.10: Non–dimensional turbulent stress τ tτ w(cont<strong>in</strong>ous l<strong>in</strong>e) and non–dimensionalvelocity slope du+dy + (dashed l<strong>in</strong>e) vs y+ at Re τ = 90025Michel’s modelAsymp, n = 4201510u + 510 100y +Re τ = 10001000Figure 3.11: Effect <strong>of</strong> new approach on <strong>the</strong> law u + (y + ), Re τ = 1000, cont<strong>in</strong>ous l<strong>in</strong>e:from Michel’s model, dashed l<strong>in</strong>e: new algebraic model with n = 4outer part <strong>of</strong> <strong>the</strong> boundary layer is due to <strong>the</strong> different value <strong>of</strong> <strong>the</strong> Reynolds numberR θ obta<strong>in</strong>ed for a given R tau value. The new model produces a smaller u + e value than61


3. Inflow conditions and asymptotic modell<strong>in</strong>gTestcase β c Re θ H GZPG 0 350 – 525 1.60 – 1.57 –APG1 0.24 390 – 620 1.62 – 1.57 7 – 6APG2 0.65 430 – 690 1.64 – 1.63 8 – 8.3Table 3.2: Description <strong>of</strong> Skote’s testcase [148]Testcase ‘Skote’ data Re τu eu τF 1 H GRe θRe τRe θZPG1 u200 222 19.54 3.0 1.59 7.2 1.9 422ZPG2 u350 272 20.45 3.3 1.54 7.2 2.3 588APG1 u350 251 20.6 3.8 1.58 7.5 2.4 606APG2 u335 251 21.7 4.4 1.625 8.35 2.7 681Table 3.3: Analysis <strong>of</strong> <strong>the</strong> Skote’s dataMichel’s model.3.5.3 Comparison with Direct <strong>Numerical</strong> SimulationFor turbulent flat plate boundary, numerous accurate direct numerical simulations arenot available, especially <strong>in</strong> <strong>the</strong> case <strong>of</strong> equilibrium boundary layer. For this comparison,numerical data (shear stress and pr<strong>of</strong>ile) which is referred here as Skote’s data is availableon-l<strong>in</strong>e is taken as reference. Analysis and curves can be found <strong>in</strong> <strong>the</strong> PhD <strong>of</strong> Skote [147]and <strong>in</strong> [148]. Three cases are considered <strong>in</strong> equilibrium turbulent state: a turbulentboundary layer with <strong>the</strong> zero pressure gradient (ZPG) flow and two cases with smalland moderate adverse pressure gradient (APG1 and APG2). A summary <strong>of</strong> <strong>the</strong> Skotedata [148] is given <strong>in</strong> <strong>the</strong> table 3.2 as described <strong>in</strong> <strong>the</strong> reference publication. The non–dimensional pressure gradient is given by <strong>the</strong> Clauser parameter β c (eq. 3.29). In[148] a different way is presented to evaluate <strong>the</strong> pressure gradient parameter and <strong>the</strong>equilibrium state is discussed as well. The β c value given here can be considered as meanvalue over a given range <strong>of</strong> Reynolds number Re θ .From <strong>the</strong> numerical data, <strong>the</strong> ma<strong>in</strong> important quantities which characterise a turbulentboundary layer have been calculated. For <strong>in</strong>stance, <strong>the</strong> follow<strong>in</strong>g parameters F 1 , Gand R θRe τhave been determ<strong>in</strong>ed from <strong>the</strong> follow<strong>in</strong>g formula :F 1 =∫ 10(u+e − u +) dη, G = u + e(1 − 1 ),HR θ= u + θeRe τ δRe tau and u + e have been read from <strong>the</strong> files (column 2 <strong>of</strong> <strong>the</strong> table 3.3), and R θ havebeen calculated. The figures are rounded <strong>of</strong>f to 1 or 2 digits. All <strong>the</strong> results are given<strong>in</strong> table 3.3.By compar<strong>in</strong>g <strong>the</strong> both tables 3.2 and 3.3, one can observe that <strong>the</strong> post-treatment62


3.5. Zero pressure gradient boundary layerTestcasedpdxRe τ β cu eu τF 1 Re θ H GZPG 1 0 220 0 19.8 3.10 477.4 1.43 5.96ZPG 2 0 270 0 20.5 3.10 592.8 1.414 5.96APG 1a (n = 4) < 0 250 0.24 21.1 3.64 621.14 1.465 6.705APG 1b (n = 24) < 0 250 0.24 21.0 3.60 618.9 1.434 6.55APG 2a (n = 4) < 0 250 0.65 22.5 4.40 718.5 1.532 7.82APG 2b (n = 24) < 0 250 0.65 22.3 4.35 715.4 1.522 7.75Table 3.4: Skote’s testcase, asymptotic analysis<strong>of</strong> <strong>the</strong> numerical data produce coherent values <strong>of</strong> <strong>the</strong> mean parameters. S<strong>in</strong>ce all <strong>the</strong>numerical data were not treated, one can state that, <strong>in</strong> <strong>the</strong> paper [148], <strong>the</strong> range <strong>in</strong> R θ<strong>in</strong> table 3.2 is a little bit under-estimated and that <strong>the</strong> shape factor <strong>in</strong> <strong>the</strong> both caseZPG2 and APG2 are over-estimated.By ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g constant pressure gradient parameter and Reynolds number Re τ ,correspond<strong>in</strong>g to a mean value <strong>of</strong> <strong>the</strong> Reynolds number Re θ given <strong>in</strong> Skote’s paper, <strong>the</strong>four testcases have been carried out with <strong>the</strong> asymptotic analysis. The results are given<strong>in</strong> table 3.4.For very low values <strong>of</strong> Reynolds number Re τ , <strong>the</strong> asymptotic method never converges.It has been expla<strong>in</strong>ed <strong>in</strong> a previous section that it is not possible to jo<strong>in</strong> <strong>the</strong> <strong>in</strong>ternaland external region <strong>in</strong> an <strong>in</strong>termediate log-law region. DNS are not restricted by <strong>the</strong>Reynolds number, naturally.It should be noted that <strong>the</strong> DNS always produces higher shape factor H and parameterG values than <strong>in</strong> <strong>the</strong> asymptotic case. On <strong>the</strong> contrary, <strong>the</strong> non–dimensionalexternal velocity u + e and consequently <strong>the</strong> Reynolds number Re θ are over-estimated with<strong>the</strong> asymptotic approach. The difference can have different reasons, from <strong>the</strong> difficultyto evaluate <strong>the</strong> exact value <strong>of</strong> <strong>the</strong> pressure gradient <strong>in</strong> DNS’s data to <strong>the</strong> assumptionmade as <strong>the</strong> equilibrium state <strong>of</strong> <strong>the</strong> boundary layer. The difficulty <strong>of</strong> determ<strong>in</strong><strong>in</strong>g aright value <strong>of</strong> <strong>the</strong> Reynolds number form DNS’s data is also discussed <strong>in</strong> a next section.Figures 3.12(a) and 3.12(b) show <strong>the</strong> streamwise non–dimensional velocity pr<strong>of</strong>ilesu + produced by DNS <strong>of</strong> Skote and asymptotic approach. A very good agreement couldbe observed for <strong>the</strong> both Reynolds number Re τ = 220 and Re τ = 270. As shown <strong>in</strong>tables, <strong>the</strong> u + e value is a little bit over-estimated <strong>in</strong> <strong>the</strong> asymptotic approach.Two plots <strong>in</strong> <strong>the</strong> figure 3.13 show <strong>the</strong> comparison <strong>of</strong> <strong>the</strong> non–dimensional <strong>turbulents</strong>hear stress for <strong>the</strong> test cases with Re τ = 220 (see figure 3.13(a)) and Re τ = 270 (seefigure 3.13). In <strong>the</strong> two cases, <strong>the</strong> shear stress curves are normally smooth with <strong>the</strong> DNSwhile <strong>the</strong> curves from asymptotic approach follows <strong>the</strong> DNS data all except a certa<strong>in</strong>range <strong>of</strong> y + ∈ 95 to 100, <strong>in</strong> <strong>the</strong> log-law <strong>in</strong>termediate region.The function which could be more syn<strong>the</strong>tic is <strong>the</strong> non dimensonal turbulent viscosity˜ν t =ν . The figure 3.14 gives <strong>the</strong> turbulent viscosity <strong>of</strong> <strong>the</strong> zero pressure gradientu τ δF 163


3. Inflow conditions and asymptotic modell<strong>in</strong>greplacements2015Asymp, n = 4Skote’s DNS data302520Asymp, n = 4Skote’s DNS datau +10u +155ret220105ret27001 y + 100(a) Re τ = 220, R θ = 477.4, H = 1.43, G = 5.9601 y + 100(b) Re τ = 270, R θ = 592.8, H = 1.414, G = 5.96Figure 3.12: Comparison <strong>of</strong> velocity pr<strong>of</strong>iles from Skote’s DNS and asymptotic approachfor n = 40.8Asymp, n = 4Skote’s data0.8Asymp, n = 4Skote’s data0.60.6τ + y +τ + y +0.40.40.20.201 100(a) Re τ = 220, R θ = 477.4, H = 1.43, G = 5.9601 100(b) Re τ = 270, R θ = 592.8, H = 1.414, G = 5.96Figure 3.13: Comparison <strong>of</strong> shear stress <strong>of</strong> test cases Re τ = 220 and Re τ = 270 <strong>of</strong>Skote’s DNS and aysmptotic approach n = 4cases <strong>of</strong> Skote’s DNS data (Re τ = 222 and Re τ = 272), asymptotic approach at Re τ =220, Re τ = 270 and Re τ = 1000, experiment <strong>of</strong> Kleban<strong>of</strong>f [73] with Re τ = 1540, andexperiment <strong>of</strong> Townsend [161] with Re τ = 2775. The figure shows <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> <strong>the</strong>Re τ number on <strong>the</strong> turbulent viscosity. This <strong>in</strong>fluence seems to be higher with <strong>the</strong>asymptotic approach, if DNS results are considered as <strong>the</strong> reference. The discont<strong>in</strong>uity<strong>of</strong> slope <strong>in</strong> <strong>the</strong> asymptotic curves comes from <strong>the</strong> discont<strong>in</strong>uity observed <strong>in</strong> <strong>the</strong> <strong>turbulents</strong>hear layer.For a given Re τ number and <strong>in</strong> <strong>the</strong> region close to <strong>the</strong> wall, <strong>the</strong> turbulent viscositydeterm<strong>in</strong>ed from asymptotic approach fits very well with that <strong>of</strong> DNS data, <strong>in</strong>dicat<strong>in</strong>g areally good evaluation <strong>of</strong> <strong>the</strong> sk<strong>in</strong> friction. In <strong>the</strong> region η ∈ [0.4,0.8], all <strong>the</strong> turbulentviscosity curves from experiment, DNS and asymptotic approach fit toge<strong>the</strong>r. But <strong>in</strong> <strong>the</strong><strong>in</strong>terval η ∈ [0.1,0.4], turbulent viscosity from asymptotic approach is underestimatedand a discont<strong>in</strong>uity appears <strong>in</strong> this region. The o<strong>the</strong>r region η ∈ [0.8,1] experimentaldata and asymptotic approach curves are <strong>in</strong> good agreement except <strong>the</strong> curves from64


eplacemen0.030.0250.02ν t0.0153.6. Adverse pressure gradient boundary layerRe τ = 1000TownsendKleban<strong>of</strong>fDNS, Re τ = 222DNS, Re τ = 272Re τ = 220Re τ = 270u τ δF 10 0 0.2 0.4 0.6 0.8 10.010.005Figure 3.14: Non–dimensional turbulent viscosity, zero pressure gradient, comparisonwith Skote’s DNS.ηDNS. It is strange s<strong>in</strong>ce <strong>the</strong> viscosity should go to zero outside <strong>the</strong> boundary layer. Afur<strong>the</strong>r analysis, detailed later, should <strong>in</strong>dicate a problem <strong>of</strong> <strong>the</strong> shorter height <strong>of</strong> <strong>the</strong>computational doma<strong>in</strong> <strong>in</strong> <strong>the</strong> DNS.3.6 Adverse pressure gradient boundary layer3.6.1 IntroductionBoundary layer flow depend on <strong>the</strong> shape (curvature, geometry discont<strong>in</strong>uity), roughnessproperties <strong>of</strong> <strong>the</strong> wall and <strong>the</strong> streamwise pressure gradient, outside <strong>the</strong> boundary layerand Reynolds number. In <strong>the</strong> streamwise direction, when <strong>the</strong>re is an <strong>in</strong>crease <strong>of</strong> fluidpressure, <strong>the</strong> streamwise velocity decreases <strong>in</strong>side <strong>the</strong> boundary layer and <strong>the</strong> flow iscalled as Pressure Gradient is Adverse (APG flow). In such a case, <strong>the</strong> potential energy<strong>of</strong> <strong>the</strong> fluid grows while simultaneouly reduc<strong>in</strong>g <strong>the</strong> k<strong>in</strong>etic energy. The flow decelarationcan be so strong that a reverse flow can exist. The flow separates when <strong>the</strong> velocityderivative <strong>in</strong> <strong>the</strong> normal direction becomes zero ( ∂u = 0) and naturally <strong>the</strong> wall shear∂ystress as well (see figure 3.15. The separation is really undesirale from <strong>the</strong> aerodynamicpo<strong>in</strong>t <strong>of</strong> view because its generates transition to turbulence <strong>in</strong> lam<strong>in</strong>ar flows enhanc<strong>in</strong>gturbulence activity. F<strong>in</strong>ally, <strong>the</strong> separation is <strong>in</strong>fluenced by a ’feedback’ effect <strong>of</strong> <strong>the</strong>65


3. Inflow conditions and asymptotic modell<strong>in</strong>gu ∞u ∞u ∞uuuτ w = 0Back flow(a) Weak adverse gradient:du dp< 0;dx dx > 0(b) Critical adverse gradient:Zero slope at <strong>the</strong> wall(c) Excessive adverse gradient:Backflow at <strong>the</strong> wall: separatedflow regionFigure 3.15: Effect <strong>of</strong> pressure gradient on boundary layer pr<strong>of</strong>iles [169]u +u +30So–MellorWilcox60So–MellorWilcox20401020β = 0β > 001 10(a) Constant pressure10 2 10 3 10 4y +0 1 10 10210 3 10 4y +(b) Adverse pressure gradientFigure 3.16: Velocity pr<strong>of</strong>ile: (a) Constant Pressure and (b) Adverse pressure gradient[170].pressure gradient and dramatically it <strong>in</strong>creases <strong>the</strong> drag with decreas<strong>in</strong>g lift <strong>in</strong> turbulentflows. Investigation <strong>of</strong> adverse pressure gradient boundary layer and control <strong>of</strong> separationare <strong>the</strong> two ma<strong>in</strong> topics <strong>in</strong> aerodynamics. Here, focus is laid on small or moderatestreamwise pressure gradient, before separation. In <strong>the</strong> present asymptotic approach,<strong>the</strong> wall shear stress is used as <strong>the</strong> reference quantity (or as parameter) which was <strong>the</strong>f<strong>in</strong>al output <strong>of</strong> <strong>the</strong> problem through <strong>the</strong> sk<strong>in</strong> friction coefficient.Experimental work <strong>of</strong> Clauser [16] and <strong>the</strong> work <strong>of</strong> Rotta [131] demonstrated thatequilibrium boundary layers <strong>in</strong> both zero and adverse pressure gradients could exist atleast approximately for a certa<strong>in</strong> distance along a smooth wall. O<strong>the</strong>r notable experimentsare <strong>of</strong> Herr<strong>in</strong>g & Norbury [64] <strong>in</strong> favorable pressure gradients and Bradshaw [8]<strong>in</strong> adverse pressure gradients.Townsend [162] tried to set out <strong>the</strong> necessary conditions for <strong>the</strong> existence <strong>of</strong> an equi-66


3.6. Adverse pressure gradient boundary layer3025Asymp, n = 24Asymp, n = 4Skote’s DNS data3025Asymp, n = 24Asymp, n = 4Skote’s DNS data2020u + y +1515u + y +10510501 100(a) Velocity pr<strong>of</strong>iles <strong>of</strong> <strong>the</strong> test case APG1 andaysmptotic approach01 100(b) Velocity pr<strong>of</strong>iles <strong>of</strong> <strong>the</strong> test case APG2 andaysmptotic approachFigure 3.17: Comparison <strong>of</strong> velocity pr<strong>of</strong>iles <strong>of</strong> <strong>the</strong> test cases (a) APG1 and (b) APG2with asymptotic approaches with n = 4 and n = 24librium layer with relation between velocity gradient and shear stress than <strong>the</strong> mix<strong>in</strong>g–length relation. Flows with <strong>the</strong> strong adverse pressure gradients must resemble moreclosely <strong>the</strong> zero–stress self–preserv<strong>in</strong>g flows. Kl<strong>in</strong>e et al [74] states that <strong>the</strong> wall–layerstreak breakup plays an important role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> structure <strong>of</strong> <strong>the</strong> entire turbulentboundary layer. In any turbulent shear flow, <strong>the</strong> turbulence production occursthrough <strong>the</strong> average action <strong>of</strong> <strong>the</strong> turbulence Reynolds stress aga<strong>in</strong>st <strong>the</strong> mean velocitygradients. In free shear layers, and <strong>in</strong> <strong>the</strong> outer regions <strong>of</strong> turbulent boundary layers,<strong>the</strong> turbulence consists <strong>of</strong> weakly correlated motions. Turbulent flows subjected to adversepressure gradients are frequently found to be a challenge to <strong>the</strong> prediction models.Figure 3.16 presents comparison <strong>of</strong> velocity pr<strong>of</strong>iles(non-equilibrium) from <strong>the</strong> computationsperformed by Wilcox [170] and from <strong>the</strong> experimental work <strong>of</strong> So & Mellor [151].The two cases are <strong>the</strong> constant–pressure and adverse–pressure gradient flows that have<strong>in</strong>vestigated experimentally. For <strong>the</strong> adverse pressure gradient case from figure 3.16(b),<strong>the</strong> maximum u + value is found higher (u + ≈ 60) than <strong>the</strong> case with constant pressure(u + ≈ 30) which is observed <strong>in</strong> <strong>the</strong> figure 3.16(a).3.6.2 Comparison with DNSTo validate <strong>the</strong> proposed approach and to test <strong>the</strong> new blend<strong>in</strong>g function with <strong>the</strong>parameter n <strong>in</strong> <strong>the</strong> mix<strong>in</strong>g length model, <strong>the</strong> obta<strong>in</strong>ed results are compared with Skote’sDNS results. As for <strong>the</strong> zero pressure gradient testcase, <strong>the</strong> tables 3.3 and 3.2 give<strong>the</strong> ma<strong>in</strong> parameters <strong>of</strong> <strong>the</strong> APG case, from <strong>the</strong> paper and from post-process<strong>in</strong>g fromnumerical files. A weak (APG1) and moderate (APG2) pressure gradient testcases areused as references.Two asymptotic calculations were performed with values n = 4 and n = 24 <strong>in</strong><strong>the</strong> equation (3.21) from mix<strong>in</strong>g length model (see section 3.4.1). The figures 3.17(a)and 3.17(b) show <strong>the</strong> turbulent velocity pr<strong>of</strong>iles for <strong>the</strong> both weak pressure gradient case67


3. Inflow conditions and asymptotic modell<strong>in</strong>g10.8Asymp, n = 24Skote’s DNS dataAsymp, n = 40.6τ + 0.4y +0.201 100Figure 3.18: Comparison <strong>of</strong> turbulent shear stresses <strong>of</strong> test case APG1 from asymptoticapproach with n = 4 and n = 24 and from DNS data <strong>of</strong> Skote1.41.21Asymp, n = 24Skote’s DNS dataAsymp, n = 40.80.60.40.20τ + 1y + 100Figure 3.19: Comparison <strong>of</strong> turbulent shear stresses <strong>of</strong> test case APG2 from asymptoticapproach with n = 4 and n = 24 and from DNS data <strong>of</strong> Skote(APG1, β c = 0.24) and moderate pressure gradient case (APG2, β c = 0.65) respectively.A good agreement is obta<strong>in</strong>ed from asymtotic approach and Skote’s DNS is found. Ama<strong>in</strong> difference was observed <strong>in</strong> <strong>the</strong> outer part <strong>of</strong> <strong>the</strong> boundary layer, s<strong>in</strong>ce asymptotic68


3.6. Adverse pressure gradient boundary layerapproach predicts slight over estimation <strong>of</strong> <strong>the</strong> non–dimensional external velocity u + e .The <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> n parameter exists on <strong>the</strong> velocity pr<strong>of</strong>ile even if it is really weak.The agreement is improved by <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> value <strong>of</strong> n.In <strong>the</strong> zero pressure gradient case, <strong>the</strong> turbulent shear stress is <strong>the</strong> relevant quantityfor comparison or validation. The shear stresses <strong>of</strong> APG1 and APG2 cases (which arecalculated by asymptotic approach) are plotted <strong>in</strong> <strong>the</strong> figures 3.18 and 3.19 respectivelyfor <strong>the</strong> values n = 4 and n = 24 and <strong>the</strong>y are compared with <strong>the</strong> shear stress valuesobta<strong>in</strong>ed from Skote’s DNS. In <strong>the</strong> APG1 case (see figure 3.18), with n = 4, <strong>the</strong> shearstress curve traces <strong>the</strong> turbulent shear stress <strong>of</strong> <strong>the</strong> DNS throughout <strong>the</strong> boundary layerexcept <strong>the</strong> range y + ∈ 90 − 110, where <strong>the</strong> discont<strong>in</strong>uity occurs. Even for <strong>the</strong> case withn = 24, such discont<strong>in</strong>uity is observed though <strong>the</strong> magnitude <strong>of</strong> <strong>the</strong> τ + is less thanfor <strong>the</strong> case with n = 4. Let’s rema<strong>in</strong> that <strong>the</strong> necessity, <strong>in</strong> <strong>the</strong> asymptotic approach,to overlap <strong>the</strong> <strong>in</strong>ner and outer velocity pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong> boundary layer gives rise to thisdiscont<strong>in</strong>uity which delimitates exactly <strong>the</strong> po<strong>in</strong>t where <strong>the</strong> both <strong>in</strong>ner and outer regionsare jo<strong>in</strong>ed.The two local peaks <strong>in</strong> <strong>the</strong> shear stress curves (for n = 4 or 24) are shown with <strong>the</strong>present approach. They represent <strong>the</strong> maximum shear stress values (from equations <strong>in</strong><strong>the</strong> sub section 3.4.6) which correspond to <strong>the</strong> <strong>in</strong>ner and outer region <strong>of</strong> <strong>the</strong> boundarylayer. Increase <strong>in</strong> <strong>the</strong> value <strong>of</strong> n shifts <strong>the</strong> discont<strong>in</strong>uity to <strong>the</strong> right hand side andimproves <strong>the</strong> pr<strong>of</strong>ile <strong>of</strong> shear stress curve (see figure 3.18), without suppress<strong>in</strong>g <strong>the</strong> twopeaks.The moderate pressure gradient APG2 case is a little bit different (see figure 3.19).An <strong>in</strong>appreciable agreement was not observed. The asymptotic approach seems to follow<strong>the</strong> DNS <strong>in</strong> parallel, <strong>the</strong> discont<strong>in</strong>uity <strong>in</strong> <strong>the</strong> slope <strong>of</strong> <strong>the</strong> turbulent shear stress is lesssignificant (<strong>the</strong> sign <strong>of</strong> <strong>the</strong> slope is <strong>the</strong> same) and just one global maximum is producedby <strong>the</strong> asymptotic analysis. However <strong>the</strong> same trend is observed <strong>in</strong> <strong>the</strong> both plots, achange <strong>in</strong> <strong>the</strong> slope occurs when y + ≈ 90 and <strong>the</strong> peak <strong>of</strong> <strong>the</strong> shear stress is predictedat <strong>the</strong> same location. As for <strong>the</strong> previous case, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> parameter n from 4 to 24improve <strong>the</strong> agreement, especially <strong>in</strong> <strong>the</strong> overlapp<strong>in</strong>g region.One <strong>of</strong> <strong>the</strong> conclusions could be that <strong>the</strong> parameter n is related to <strong>the</strong> pressuregradient.3.6.3 Eddy viscosity( )νtFigure 3.20 compares <strong>the</strong> turbulent viscosity curves <strong>of</strong> APG1 testcase with n =u τ δF 14 and n = 24, with <strong>the</strong> Skote’s DNS results. Experimental values from Townsend [161]and Klebn<strong>of</strong>f [73] <strong>in</strong> zero pressure gradient testcase (and a much larger R τ value) aregiven as reference. The DNS results exhibit a local maximum for <strong>the</strong> shear stress at <strong>the</strong>end <strong>of</strong> <strong>the</strong> <strong>in</strong>ner region. Then shear stress should decrease to zero at <strong>the</strong> edge <strong>of</strong> <strong>the</strong>boundary layer (η = 1). It is a similar problem like <strong>the</strong> ZPG testcases. The asymptotic69


3. Inflow conditions and asymptotic modell<strong>in</strong>g0.030.025ν t0.02TownsendKleban<strong>of</strong>fDNS, Re τ = 251Re τ = 250, n = 4Re τ = 250, n = 24u τ δF 10.0150 0 0.2 0.4 0.6 0.8 10.010.005Figure 3.20: Comparison <strong>of</strong> turbulent viscosity: weak pressure gradient test case APG1with DNS data and experimentsηapproach predicts better results represent<strong>in</strong>g <strong>the</strong> sk<strong>in</strong> friction at <strong>the</strong> wall <strong>in</strong> <strong>the</strong> viscouslayer region. A local maximum for DNS results and for <strong>the</strong> asymptotic approach withn = 24 is visible approximately at <strong>the</strong> same location, but not observed for n = 4. It<strong>in</strong>dicates <strong>the</strong> necessity to vary <strong>the</strong> value <strong>of</strong> parameter n with <strong>the</strong> pressure gradient. In <strong>the</strong>outer region, <strong>the</strong> non-agreement is not disappo<strong>in</strong>t<strong>in</strong>g, and <strong>the</strong> non–dimensional viscositygoes to zero when η goes to 1. With <strong>the</strong> moderate pressure gradient case (figure 3.21),<strong>the</strong> behaviour <strong>of</strong> <strong>the</strong> turbulent viscosity is quite different. The DNS results are wavy <strong>in</strong><strong>the</strong> overlapp<strong>in</strong>g and outer region, and does not goes to zero at <strong>the</strong> edge <strong>of</strong> <strong>the</strong> boundarylayer. Increas<strong>in</strong>g <strong>the</strong> value <strong>of</strong> n <strong>in</strong> <strong>the</strong> asymptotic model <strong>in</strong>creases <strong>the</strong> agreement on <strong>the</strong>non–dimensional turbulent viscosity <strong>in</strong> <strong>the</strong> <strong>in</strong>ner region. An agreement is comparablewith <strong>the</strong> weak pressure gradient case <strong>in</strong> <strong>the</strong> outer region.The improvement <strong>of</strong> <strong>the</strong> new mix<strong>in</strong>g length model compar<strong>in</strong>g to <strong>the</strong> Michel’s modelis demonstrated aga<strong>in</strong> <strong>in</strong> <strong>the</strong> <strong>the</strong>se plots, and it seems that DNS results present strangebehaviour which need more <strong><strong>in</strong>vestigation</strong>. It is <strong>the</strong> subject <strong>of</strong> <strong>the</strong> next section.3.6.4 Re τ sensitivityIt was quite difficult to determ<strong>in</strong>e <strong>the</strong> value <strong>of</strong> <strong>the</strong> Reynolds number Re τ from <strong>the</strong>DNS data, and <strong>the</strong> accuracy <strong>of</strong> its value is really important <strong>in</strong> comparison with o<strong>the</strong>rexperimental or numerical data or testcase.By def<strong>in</strong>ition, <strong>in</strong> <strong>the</strong> y coord<strong>in</strong>ate, <strong>the</strong> Reynolds number R τ is equal to <strong>the</strong> non–dimensional boundary layer thickness δl +. Actually, <strong>the</strong>re are three ways to def<strong>in</strong>e it70


3.6. Adverse pressure gradient boundary layer0.030.025ν t0.02TownsendKleban<strong>of</strong>fDNS, Re τ = 251Re τ = 250, n = 4Re τ = 250, n = 24u τ δF 10.0150 0 0.2 0.4 0.6 0.8 10.010.005Figure 3.21: Comparison <strong>of</strong> turbulent viscosity: moderate pressure gradient test case–APG2ηfrom data fields:1. The distance from <strong>the</strong> wall where <strong>the</strong> velocity defect u + dsmall parameter ǫ (0.001 for <strong>in</strong>stance).is smaller than a given2. The distance from <strong>the</strong> wall where <strong>the</strong> non–dimensional turbulent shear stress τ +is smaller than a given small parameter ǫ (0.001 for <strong>in</strong>stance).3. The distance from <strong>the</strong> wall where <strong>the</strong> non–dimensional turbulent viscosity is smallerthan a given small parameter ǫ (0.001 for <strong>in</strong>stance).In a ’perfect’ turbulent boundary layer, <strong>the</strong>se def<strong>in</strong>itions should provide <strong>the</strong> samevalue. As expla<strong>in</strong>ed earlier, <strong>the</strong> last def<strong>in</strong>ition corresponds to a limit <strong>of</strong> 0 over 0 <strong>in</strong> <strong>the</strong>edge <strong>of</strong> boundary layer which must be equal to 0. Theoretically it can be imposed,numerically <strong>the</strong> round <strong>of</strong>f errors, or any o<strong>the</strong>r numerical approximation can not <strong>in</strong>surea convergence <strong>of</strong> <strong>the</strong> turbulent viscosity to zero at <strong>the</strong> edge <strong>of</strong> <strong>the</strong> boundary layer.In this study, <strong>the</strong> guess <strong>of</strong> Re τ from <strong>the</strong> DNS data has followed <strong>the</strong> two first def<strong>in</strong>itions.This led to <strong>the</strong> results provided here. Figure 3.22 represents <strong>the</strong> follow<strong>in</strong>g functionwhich is proportional to <strong>the</strong> non–dimensional turbulent viscosity :Re τ ˜ν t = τ+du + = Re τν tu τ δdy +71


3. Inflow conditions and asymptotic modell<strong>in</strong>g252015ZPG1ZPG2APG1APG2105Re τ ν tu τ δ= τ+du +dy +0 0100 200 300 400 500y +Figure 3.22: DNS analysis :curveRe τ ν tu τ δ= τ + / du+ One po<strong>in</strong>t on 3 is designed for <strong>the</strong> DNSdy +for <strong>the</strong> zero and adverse pressure gradient cases.It can be observed that <strong>the</strong> third def<strong>in</strong>ition with a small parameter ǫ (≈ 0.001) cannot give a right value for R τ . In <strong>the</strong> pressure gradient case APG1, <strong>the</strong> function seemsto diverge after R τ = y + = 300 . A hump is observed <strong>in</strong> <strong>the</strong> <strong>in</strong>terval y + ∈ [250,300],lead<strong>in</strong>g to some error <strong>in</strong> <strong>the</strong> evaluation <strong>of</strong> R τ . The R τ values from <strong>the</strong> figure 3.22 whichis kept <strong>in</strong> <strong>the</strong> analysis done here correspond to a l<strong>in</strong>ear extrapolation from <strong>the</strong> slope <strong>of</strong><strong>the</strong> function plotted, before <strong>the</strong> hump or <strong>the</strong> divergence.The effect <strong>of</strong> a small variation <strong>of</strong> Re τ have been <strong>in</strong>vestigated. In table 3.3, <strong>the</strong> APG2case is given with Re τ = 272. Consider<strong>in</strong>g <strong>the</strong> Reynolds number Re τ = 282 <strong>in</strong> <strong>the</strong> DNSdata leads to Re θ = 689. Similarly, consider<strong>in</strong>g Re τ equals to 280 with <strong>the</strong> asymptoticapproach gives :H = 1.51, G = 7.75, u + e = 22.65, and R θ = 813A comparison with <strong>the</strong> figures <strong>in</strong> table 3.3 with Re τ = 270 demonstrates <strong>the</strong> sensitivity<strong>of</strong> all <strong>the</strong> outputs <strong>of</strong> <strong>the</strong> problem to <strong>the</strong> <strong>in</strong>put Re τ .The uncerta<strong>in</strong>ty on <strong>the</strong> Reynolds value can f<strong>in</strong>ally generate a larger discrepancybetween asymptotic and DNS results.The effect <strong>of</strong> an error on Re τ is emphasised <strong>in</strong> <strong>the</strong> figure 3.23 where <strong>the</strong> non–72


3.7. Conclusion1.5Re τ = 250, n = 24DNSRe τ = 250, n = 4Re τ = 280, n = 241τ +0.50 0100 y + 200 300Figure 3.23: Influence <strong>of</strong> Re τ on shear stress values–APG2dimensional turbulent shear stress is shown. Over estimation <strong>of</strong> <strong>the</strong> Reynolds numberRe τ <strong>in</strong>creases <strong>the</strong> maximum value <strong>of</strong> τ + and widens <strong>the</strong> difference between <strong>the</strong> asymptoticand numerical approach <strong>in</strong> <strong>the</strong> outer part <strong>of</strong> <strong>the</strong> boundary layer.It can be proposed that a new optimised mix<strong>in</strong>g length model could possibly improve<strong>the</strong> comparison. But new optimised mix<strong>in</strong>g lenght model should ideally reta<strong>in</strong> <strong>the</strong>properties <strong>in</strong> <strong>the</strong> viscous sublayer and should grow steeper <strong>in</strong> <strong>the</strong> <strong>in</strong>termediate layerand also <strong>in</strong> <strong>the</strong> outer region. The model proposed here conta<strong>in</strong>s only one parameter,<strong>the</strong> factor n, which is apparently <strong>in</strong>sufficient. A model based on Bezier curves allowsvery well to drive <strong>the</strong> curve l(η) (fig. 3.8(a)) as close as desired from experimental ornumerical data. In 3.22, even if one po<strong>in</strong>t over three is plotted (with symbols) for <strong>the</strong>DNS data, all <strong>the</strong> po<strong>in</strong>ts <strong>in</strong> y + are shown except <strong>the</strong> last two or three where divergenceis observed <strong>in</strong> <strong>the</strong> pressure gradient case. F<strong>in</strong>ally, from Skote et al [148], it can beconcluded that <strong>the</strong> bumps on <strong>the</strong> turbulent viscosity could be an effect <strong>of</strong> a shorterheight <strong>of</strong> computational doma<strong>in</strong> and <strong>the</strong> boundary condition at this location.DNS data can provide a valuable element <strong>of</strong> comparison but can not be used as <strong>the</strong>only source for validation.3.7 ConclusionAnalytical and asymptotic methods were followed to obta<strong>in</strong> <strong>the</strong> time averaged velocitypr<strong>of</strong>iles <strong>of</strong> a turbulent boundary layer and validation aga<strong>in</strong>st reference data have beencarried out. The analytical method given <strong>in</strong> this chapter is an extension to wake lawfrom Coles [17] that matches both <strong>the</strong> free stream velocity and <strong>the</strong> velocity gradient at73


3. Inflow conditions and asymptotic modell<strong>in</strong>g<strong>the</strong> boundary layer edge. The method is shown to predict <strong>the</strong> outer region <strong>of</strong> turbulentboundary layers ra<strong>the</strong>r well for zero streamwise pressure gradient test cases over <strong>the</strong>Reynolds number range 300 ≤ Re θ ≤ 31000, with a maximum mean square percentageerror <strong>of</strong> 2.05%.A modification was proposed to <strong>the</strong> Successive Complementary Expansion Methodpresented <strong>in</strong> Cousteix & Mauss [25], with an improved blend<strong>in</strong>g function for <strong>the</strong> mix<strong>in</strong>glength model. Comparison aga<strong>in</strong>st experimental data shows that this blend<strong>in</strong>g functionimproves <strong>the</strong> prediction <strong>of</strong> <strong>the</strong> mix<strong>in</strong>g length and <strong>of</strong> <strong>the</strong> eddy viscosity <strong>in</strong> <strong>the</strong> log-lawand outer region <strong>of</strong> a zero pressure gradient boundary layer. The new model is validatedaga<strong>in</strong>st experimental and numerical reference velocity pr<strong>of</strong>ile data over <strong>the</strong> Reynoldsnumber range 300 ≤ Re θ ≤ 31000 under zero streamwise pressure gradient and foundto achieve eng<strong>in</strong>eer<strong>in</strong>g accurate predictions. The new blend<strong>in</strong>g function <strong>in</strong>troduces anadditional adjustable parameter n <strong>in</strong> <strong>the</strong> model that can undergo a more extensivecalibration over a wider experimental dataset to improve <strong>the</strong> predictions.Velocity pr<strong>of</strong>iles, shear stress pr<strong>of</strong>iles and turbulent viscosity pr<strong>of</strong>iles for zero pressuregradient and adverse pressure gradient boundary layer have been compared to DNS datafrom Skote’s work. A good agreement is observed <strong>in</strong> <strong>the</strong> non–dimensional streamwisevelocity and turbulent shear stress <strong>in</strong> zero pressure gradient (ZPG) case than <strong>in</strong> adversepressure (APG) gradient boundary layer. The n parameter <strong>of</strong> <strong>the</strong> mix<strong>in</strong>g model isapproximately 4 and 24 respectively <strong>in</strong> ZPG and APG cases. The limit <strong>of</strong> <strong>the</strong> asymptoticmodel has been discussed as well as <strong>the</strong> sensitivity if <strong>the</strong> Reynolds number Re τ . Theplot <strong>of</strong> <strong>the</strong> non–dimensional eddy viscosity determ<strong>in</strong>ed from DNS results has shed a lighton <strong>the</strong> problem <strong>of</strong> accuracy <strong>in</strong> <strong>the</strong> Direct <strong>Numerical</strong> Simulation, at least for <strong>the</strong> adversepressure gradient case.F<strong>in</strong>ally, it seems that under <strong>the</strong> equilibrium assumption, <strong>the</strong> asymptotic approachis able to provide accurate velocity and turbulent stress pr<strong>of</strong>iles which can be imposedas <strong>in</strong>let <strong>of</strong> <strong>the</strong> computational doma<strong>in</strong> where DNS, RANS or LES is performed. For <strong>the</strong>present work, it is required for <strong>the</strong> cavity flow simulations.These works have been published <strong>in</strong> <strong>the</strong> four proceed<strong>in</strong>gs [128], [45], [44], [129] <strong>in</strong>2009 and have been done <strong>in</strong> collaboration with Dr Aldo Rona, from Leicester University,UK.74


Chapter 4<strong>Numerical</strong> simulation and LESmodelsContents4.1 The AVBP solver . . . . . . . . . . . . . . . . . . . . . . . . . 904.2 <strong>Numerical</strong> method . . . . . . . . . . . . . . . . . . . . . . . . . 914.3 Large Eddy Simulation . . . . . . . . . . . . . . . . . . . . . . 1044.4 Govern<strong>in</strong>g equations for LES . . . . . . . . . . . . . . . . . . 1054.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 1134.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128Résumé étendu en françaisSimulation numérique et modèles LESLe code de résolution AVBPCe chapitre est consacré au code de calcul utilisé pour simuler l’écoulement de cavitéen explicitant la méthode numérique, les conditions aux limites basées sur les caractéristiqueset la modélisation LES utilisée. AVBP est un code dévelopé au CERFACScapable de simuler des écoulements sur des maillages de tout type. L’emploi de maillageshybrides est faite dans l’objectif de pr<strong>of</strong>iter de l’efficacité des maillages non-structurés,de l’adaptation de maillage et d’améliorer la précision des solutions. C’est un code parallèlequi résout les équations de Navier-Stokes compressibles en régime lam<strong>in</strong>aire etturbulent, en 2D et 3D. Des cas stationnaires et <strong>in</strong>stationnaires peuvent être traités.Pour le calcul des cas <strong>in</strong>stationnaires turbulent plusieurs modèles de sous-maille pour laLES ont été implémentés. Bien qu’étant au départ dédié à l’aérodynamique externe, ila été étendu aux configurations <strong>in</strong>ternes et mêmes pour des écoulements réactifs. La loid’Arrhenius permet d’étudier la combustion dans des configurations complexes.75


4. <strong>Numerical</strong> simulation and LES modelsLes méthodes numériques sont basées sur des schémas de type Lax-Wendr<strong>of</strong>f [81, 82]ou de type éléments f<strong>in</strong>is faible-dissipation Taylor–Galerk<strong>in</strong>(Donea [33], Donea et al [34],Quartapelle & Selm<strong>in</strong> [118], Col<strong>in</strong> & Rudgyard [19]). Un modèle de viscosité artificielle(l<strong>in</strong>ear–preserv<strong>in</strong>g artificial viscosity model) y est aussi <strong>in</strong>clus.AVBP est actuellement utilisé par 30 doctorants et post-doctorants, des chercheurset <strong>in</strong>génieurs. Aujourd’hui, il est développé conjo<strong>in</strong>tement par le CERFACS, Toulouseet l’Institut Français du Pétrole (IFP), Paris, pour des applications aux turb<strong>in</strong>es à gazet aux moteurs à pistons. Il a conduit à la réalisation de plusieurs contrats européenset ce code est utilisé dans le cadre <strong>in</strong>dustriel (groupe Safran (Snecma, Turbomeca), AirLiquide, Gaz de France, Alstom et Siemens, ...).Méthodes numériquesLa discrétisation aux noeudsAVBP utilise la méthode de discrétisation aux volumes f<strong>in</strong>is (FV) (Hirsch [66]), avecles variables déf<strong>in</strong>ies aux noeuds, ce qui assure naturellement au schéma d’être compact.Cependant la majorité des opérations sont faites sur l’élément et souvent un transfertdes noeuds au centre de l’élement est nécessaire. Les opérations sont détaillées dans lesfigures 4.2(a)) et 4.2(b).L’approche des résidus du volume de contrôlePour la description de l’approche on considère les équations de Navier–Stokes lam<strong>in</strong>airessous forme conservatives∂U∂t + ∇ · F = 0 (4.1)Les termes d’espace sont approximés à chaque volume de contrôle, pour obtenir le résiduR Ωj = 1V Ωj∫∂Ω jF · ⃗ndS (4.2)Cette approximation est applicable à tout type de cellule et donc au maillage hybride. Lerésidu 4.2 est tout d’abord calculé pour chaque élément en faisant une simple <strong>in</strong>tégrationsur les faces. Quelque soit le maillage on essaie d’obtenir des triangles (déjà existantsou crées par découpage). La valeur du flux est obtenue en moyennant sur quatre triangles(deux divisions suivant la diagonale). Cette technique ‘l<strong>in</strong>ear preservation property’permet, dans l’algorithme, de préserver la précision sur un maillage irrégulier. Sousforme discrétisée l’équation 4.2 sur un volume arbitraire s’écrit76R Ωj = 1N d V Ωj∑i∈Ω jF i .d ⃗ S i (4.3)


Le volume V Ωj est déf<strong>in</strong>i par:V Ωj = 1N 2 d∑i∈Ω j⃗x i .d ⃗ S i (4.4)∇ · ⃗x = N d . Une fois le résidu calculé on obtient la forme semi-discrète:dU kdt= − 1 V k∑j|k∈Ω jD k Ω jV Ωj R Ωj (4.5)où D k Ω jest une matrice de distribution qui transfert le résidu des centres des cellules Ω jau noeud k (scatter operation), et V k est le volume de contrôle associé à chaque noeud.La conservation est assuré si ∑ k∈Ω jD k Ω j= I. Dans le présent contexte, l’équation 4.5est résolue pour obtenir la solution d’état stationnaire en utilisant le pas temporel Eulerou Runge–Kutta.La famille des schémas concernée utilise la déf<strong>in</strong>ition suivante pour la matrice dedistribution:D k Ω j= 1n n(I + C δt Ω jV ΩjA Ωj · d ⃗ S k)(4.6)Calcul des gradientsPour( )calculer la valeur des gradients aux noeuds ∇U ⃗ une approximation par cellule⃗∇U est tout d’abord calculée et ensuite distribuée aux noeuds. Pour chaque celluleΩ jon a:( ) ∂U≈ 1 ∫∫U · ⃗n∂S (4.7)∂x V C ∂Ω Cqui donne l’approximation suivante:C(⃗∇U)Ω j= 1V Ωj∑i∈Ω jU i d ⃗ S i (4.8)L’approximation du gradient au noeud est obtenue en réalisant la moyenne des gradientsdes cellules:(⃗∇U)k = 1V Ωk∑ ( )V j ⃗∇Uj|k∈Ω jΩ j(4.9)Calcul du pas de tempsLa discrétisation temporelle est explicite pour tous les schémas numériques dans AVBP.L’implémentation de ce type d’approche est aisée et le temps de calcul par itération estfaible. Le schéma explicite a cependant un pas de temps ∆t limité par le critère destabilité:m<strong>in</strong> (∆x)∆t < CFL(4.10)max | u | +a ∞77


4. <strong>Numerical</strong> simulation and LES modelsoù u est la vitesse de propagation d’une perturbation dans l’écoulement, a ∞ la vitesse duson, ∆x est la longueur de la maille et CFL est le nombre de Courant–Friedrichs–Lewy.La valeur CFL nécessaire pour la stabilité dépend du schéma choisi. Dans AVBP, il estfixé à 0.7.Le schéma de Lax–Wendr<strong>of</strong>fLes pr<strong>in</strong>cipaux schémas convectifs sont le schéma de Lax–Wendr<strong>of</strong>f (LW) de Lax &Wendr<strong>of</strong>f [81, 82] en volume f<strong>in</strong>i et le schéma à deux pas de Taylor–Galerk<strong>in</strong> (TTGC)de Col<strong>in</strong> & Rudgyard [19] en éléments f<strong>in</strong>is. Ces deux schémas sont respectivement desecond et de troisième ordre en temps. Le schéma diffusif est typiquement un schémacompact de second ordre. Les éléments utilisés par AVBP sont des triangles et quadranglesen 2D et des tetrahèdres, prismes, pyramides et hexahèdres en 3D. L’<strong>in</strong>tégrationtemporelle est explicite pour assurer la précision.Le schéma de Lax–Wendr<strong>of</strong>f (précis au second ordre en temps et en espace) est basésur l’expansion de Taylor expansion en temps pour la solution de U.U n+1 = U n + ∆t( ) ∂U n+ 1 ( ∂ 2 ) nU∂t 2 ∆t2 ∂t 2 + O(∆t 3 ) (4.11)Soit la forme conservative des équations de Navier-Stokes lam<strong>in</strong>aires:On a :∂U∂t + ∇ · F = 0 (4.12)∂U∂t= −∇ · F (4.13)et:∂ 2 U∂t 2 = ∂ [ ( )]∂F ∂U(−∇ · F) = −∇ ·∂t ∂t = −∇ · A = ∇ · [A (∇ · F)] (4.14)∂tsi A = ∂F∂Ula matrice Jacobienne. La solution au pas de temps n + 1 est donnée par:{U n+1 = U n − ∆t ∇ · F − 1 2 ∆t ∇ · [A (∇ · F)] − O ( ∆t 2)} (4.15)Le schéma à deux pas de Taylor–Galerk<strong>in</strong> (TTGC)Il est difficile de développer des schémas d’ordres très élevés (en espace) pour des maillagesstructurés en volumes f<strong>in</strong>is. La formulation aux noeuds peut être étendue à l’approcheéléments f<strong>in</strong>is où les ordres élevés sont possibles. Les schémas de Taylor–Galerk<strong>in</strong> (TG)développées <strong>in</strong>itialement par Donea [33, 34] comb<strong>in</strong>ent le dveloppement de Taylor en78


temps et la discrétisation en espace de Galerk<strong>in</strong>. Col<strong>in</strong> et Rudgyard [19] ont développéle schéma (TTGC) de troisième ordre en espace et en temps.Ũ nU n+1( ) ∂U n ( ∂= U n + α∆t + β∆t 2 2 ) nU∂t ∂t 2 (4.16)( ) n ( ) n= U n ∂Ũ+ ∆t + γ∆t 2 ∂ 2 Ũ∂t ∂t 2 (4.17)α = 1 2 − γ and β = 1 6(4.18)Les premières et secondes dérivées peuvent être obtenues par le schéma de Lax–Wendr<strong>of</strong>f(voir equation 4.13 et 4.14):Ũ n = U n − α∆t∇ · F n + β∆t 2 ∇ · [A (∇ · F n )] (4.19)U n+1 = U n − ∆t∇ · ˜F n + γ∆t 2 ∇ · [A (∇ · F n )] (4.20)Multipliant ces équations par une série de fonctions tests l<strong>in</strong>éaires φ i (“redsk<strong>in</strong> tent”functions)et <strong>in</strong>tégrant le résidu sur le doma<strong>in</strong>e du calcul Ω, nous obtenons cette formulation faible:∫˜R n φ i dV = −αL i (U n ) − β∆tLL i (U n ) (4.21)avec∫ΩΩR n+1 φ i dV = −L i(Ũn ) − γ∆tLL i (U n ) (4.22)˜R n = Ũn − U n, R n+1 = Un+1 − U n∆t∆t(4.23)etL i (U) =LL i (U) =∫∇ · F (U n )φ i dV (4.24)∫Ω∫A (∇ · F (U n )) ∇φ i dV − φ i A (∇ · F (U n )) dS (4.25)Ω} {{ }∂Ω} {{ }LL 0 i (Un )BT i (U n )Le terme LL i peut être séparé en faisant une <strong>in</strong>tégration par partie en supposant qua lanormale à la surface dS est externe. La première contribution LL 0 i (Un ) est <strong>in</strong>tégrablesur tout le doma<strong>in</strong>e alors que la seconde, BT i (U n ), est non nulle uniquement sur les limitesdu doma<strong>in</strong>e. La méthode de Galerk<strong>in</strong> est ensuite appliquée à la divergence du flux etaux résidus. A<strong>in</strong>si, elles peuvent être exprimées comme une somme de fonctions–formel<strong>in</strong>éaires ( identiques aux fonctions–test utilisées pour dériver la formulation faible),79


4. <strong>Numerical</strong> simulation and LES modelsdonnant:R n= ∑ kR n k φ k (4.26)∇ · F = ∑ kF k ∇φ k (4.27)où F k le flux discrétisé en chaque po<strong>in</strong>t du doma<strong>in</strong>e. Avec le choix des fonctions forme,les résidus sont exprimés a<strong>in</strong>si:∫Ω˜R n φ i dV = ∑ k(∫ )φ i φ k dV ˜R n k = ∑ΩkM ik ˜Rn k (4.28)notant M ik comme les composantes de ce qui appelée la matrice de masse qui, dansAVBP, est <strong>in</strong>versée localement par la méthode de Jacobi itérative.Dans la discrétisation, les contributions des <strong>in</strong>tégrales dans l’équation 4.24 et 4.25permettent d’avoir i comme seulement provenant des cellules adjacentes.L i (U n ) =∑L i (U n ) Ωj(4.29)j|i∈Ω jLL i (U n ) =∑LL i (U n ) Ωj(4.30)j|i∈Ω jEn utilisant les équations 4.26, L i (U n ) Ωjet LL i (U n ) Ωjon a:L i (U n ) Ωj= ∑ ∫Fkn φ i ∇φ k dV (4.31)k|k∈ΩΩ j j∑∫LL i (U n ) Ωj= A n Ω jFkn ∇φ · ∇φ k dVk|k∈ΩΩ j j∑∫− A n Ω jFkn φ i ∇φ k dS (4.32)k|∈∂Ω j ∩∂Ω∂Ω j ∩∂ΩPour les éléments triangulaires et tétrahédriques le gradient de la fonction forme estconstant sur chaque élément et l’<strong>in</strong>tégrale de φ i prend une forme simple (see Col<strong>in</strong> &Rudgyard [19]).80∫∇φ k = − ⃗ S kn d V Ωj(4.33)Ω kφ k dV = V Ω jn v(Ωj )∀k ∈ Ω j (4.34)


En substituant 4.33 et 4.34 dans 4.31:L i (U n ) Ωj= ∑ ∫Fk n ∇φ k φ i dVk|k∈ΩΩ j j= (∇ · F n ) Ωjφ i dV∫Ω j= R n Ω jV Ωjn v(Ωj )(4.35)De même:∑∫LL 0 i (U n ) Ωj= A n Ω jFk n ∇φ k · ∇φ i dVk|k∈ΩΩ j j= − 1 n d(A n Ω jR n Ω j)· S i|Ωj (4.36)Pour plus d’<strong>in</strong>formations sur les schémas dans AVBP vous pouvez consulter le chapitre5 de la thèse de Lamarque [76] .Termes de diffusionDans les équations de Navier–Stokes d’espèces ou de modèles, on a des termes de diffusionqui ont la forme générale suivante:∂u∂t= ∇.(ν∇u) (4.37)AVBP utilise deux differentes discrétisations du terme de diffusion: un opérateur 4△pour la diffusion lam<strong>in</strong>aire et un opérateur 2△ pour la diffusion turbulente. La discrétisationest aussi en volumes f<strong>in</strong>es ou éléments f<strong>in</strong>is. Pour plus de détails voir le manuel deAVBP [10]. Pour les volumes f<strong>in</strong>is, on a:u n+1i− u n i∆t= 1 V i∇.(ν∇u) | i(4.38)Avec les éléments f<strong>in</strong>is, la matrice de masse est appliquée et on a:u n+1i− u n i∆t= ( M −1 ∇.(ν∇u) ) | i(4.39)Viscosité ArtificielleLes méthodes de discrétisation spatiales dans AVBP sont centrées. Il est connu que cesschémas présentent des petites oscillations autour de la solution. Il est d’usage d’ajouterde la viscosité artificielle aux équations discrétisées pour lisser les très forts gardients.Les modèles utilisés dans AVBP sont basés sur la comb<strong>in</strong>aison des termes de capture dechoc (second ordre) et un terme de dissipation (quatrième ordre). Il y a des capteurs81


4. <strong>Numerical</strong> simulation and LES modelsqui vérifient si la viscosité artificielle est nécessaire ou pas. On a donc un paramètrede calibrage ζ Ωj pour chaque cellule Ω j égal à zéro ou un. ζ Ωj = 0 quand la solutionest bien résolue et donc pas d’utilisation de viscosité artificielle et ζ Ωj = 1 quand ilfaut l’utiliser. Dans AVBP il y a deux capteurs “capteur de Jameson”ζΩ J j[69] et celui“capteur de Col<strong>in</strong>”ζΩ C j[18].Capteur de JamesonPour chaque cellule Ω j , le capteur de Jameson ζ J Ω jest le maximum sur tous les noeudsde la cellule du capteur par noeud de Jameson ζ k :Pour les scalaires (la pression P) :ζ J Ω j= maxk∈Ω jζ J k (4.40)ζ J k = | ∆ k 1 − ∆k 2 || ∆ k 1 | + | ∆k 2 | + | P k |(4.41)où ∆ k 1 et ∆k 2 sont: ∆ k 1 = P Ω j− P k ∆ k 2 = (⃗∇P)k · (⃗xΩj − ⃗x k)(4.42)Le capteur de Col<strong>in</strong>Il est déf<strong>in</strong>i par:ζΩ C j= 1 ( ( )) Ψ − Ψ01 + tanh− 1 ( ( )) −Ψ01 + tanh2δ 2 δ(4.43)avec(∆ k )Ψ = max 0,k∈Ω j | ∆ k ζkJ | +ǫ 1 P k)= | ∆ k 1 − ∆k 2 | −ǫk max(| ∆ k 1 |, | ∆k 2 |(ǫ k max ( | ∆ k 1= ǫ 2 1 − ǫ |, | ∆k 2 |))2| ∆ k 1 | + | ∆k 2 | +P k∆ k(4.44)(4.45)(4.46)Dans AVBP les valeurs utilisées sont:Ψ 0 = 2 × 10 −2 δ = 1 × 10 −2 ǫ 1 = 1 × 10 −2 ǫ 2 = 0.95 ǫ 3 = 0.5 (4.47)Pour la viscosité artificielle utilisée il y a deux opérateurs: un de second ordre qui opèrecomme une viscosité “classique”. Il lisse les gradients, et <strong>in</strong>troduit de la dissipation.Le quatrième ordre s’utilise comme un bi–Laplacien et assure le contrôle des hautes82


fréquences (voir les expressions dans partie qui suit en anglais).Simulation de Grandes Echelles (LES)Dans cette méthodes seules les grandes échelles énergétiques sont calculées et les effetsde petites échelles sont modélisés. Elle permet de faire les calculs à des plus grandsnombres de Reynolds que la Simulation de Grandes Echelles avec des coût plus faibles.C’est une approche immédiate (voir Sagaut [137]) en comparaison à la simulation statistiquecalssique(RANS). Elle permet le calcul des écoulements <strong>in</strong>stationnaires et peutdonc être utilisée pour l’aéroacoustique, l’aéroélasticité ou le contrôle des écoulements.Historiquement cette méthode a été utilisée en météorologie ( Smagor<strong>in</strong>sky[149], Lilly[89], Deardorff [31] Mason [94]). Et ensuite elle a été appliquée à d’autres cas de plusen plus complexes ( Kraichnan [75], Chasnov [14], Deardorff [30], Schumann [142],Mo<strong>in</strong> and Kim [101], Piomelli [108], Akselvoll and Mo<strong>in</strong> [3], Haworth and Jansen[62]). Les équations pour la LES sont obtenues en appliquant un filtre aux équationsde Navier–Stokes compressibles. On résoud donc des équations filtrées. Pour tenircompte des échelles sous-mailles, on <strong>in</strong>troduit des modèles. La résolution permet a<strong>in</strong>side déterm<strong>in</strong>er le détacheemnt des tourbillons ou l’acoustique par exemple (voir Po<strong>in</strong>sot& Veynante [112]).Equations résolues en LESDans le cadre de ce travail l’écoulement est non-réactif. On utilise dans les équationsfiltrées relatives à cet écoulement.FiltragePour séparer les grandes échelles des petites, un filtre passe-bas G △ , est appliqué auxéquations du mouvement(voir Leonard [83]). Il s’agit d’un produit de convolution entretoute fonction, f , avec la fonction filtre G △ :∫¯f = f(x ′ )G △ (x − x ′ )dx ′ (4.48)La quantité filtrée, ¯f, représente les structures de grandes échelles alors que les structuresde tailles plus petit que la taille du filtre, △, sont contenues dans l’écoulement résiduel,f ′ :f ′ = f − ¯f (4.49)Pour l’écoulement à densité variable ρ, une moyenne pondérée par la masse ˜f (Favre [41]pour éviter l’apparition d’autres termes <strong>in</strong>connus.˜f = ρf¯ρ(4.50)83


4. <strong>Numerical</strong> simulation and LES modelsNavier–Stokes filtrées sans réactifLes équations s’écrivent comme suit:∂¯ρũ i∂t∂¯ρE∂t∂ ¯ρ k Ỹ k∂t∂¯ρ∂t + ∂ (¯ρũ i ) = 0 (4.51)∂x j+ ∂∂x j(¯ρũ i ũ j ) = − ∂∂x j[ ¯Pδij − ¯τ ij − ¯τ t ij+ ∂∂x j(¯ρEu j ) = − ∂∂x j[u i (Pδ ij − τ ij ) + ¯q j + ¯q t j+ ∂∂x j(¯ρỸkũ j)Si on écrit les équations pour les variables filtrées:](4.52)]+ ¯˙ω T + ¯Q r (4.53)= − ∂ [ ¯Jj,k +∂x ¯J t ]j,k + ¯˙ω k (4.54)jŪ = (¯ρũ, ¯ρṽ, ¯ρ ˜w, ¯ρẼ, ¯ρỸk), Les équations (4.53)-(4.54), s’expriment a<strong>in</strong>si:¯s est le tenseur des flux qui a trois contributions:∂Ū∂t + ∇ · ¯F = ¯s (4.55)¯F = ¯F I + ¯F V + ¯F t (4.56)avectermes non − visqueux :termes visqueux :Turbulent termes sous − maille :¯FI¯FV¯Ft= (¯fI ,ḡ I , ¯h I) T= (¯fV ,ḡ V , ¯h V ) T= (¯ft ,ḡ t , ¯h t) T(4.57)(4.58)(4.59)La coupure se situe au niveau de la taille de la maille (filterage implicite). Il est supposéque le filtrage et les dérivées spatiales commutent.Termes non-visqueuxLes trois parties du flux non-viqueux sont:⎛¯ρũ 2 + ¯P⎞ ⎛ ⎞ ⎛ ⎞¯ρũṽ¯ρũ ˜w¯ρũṽ¯ρṽ 2 + ¯P¯ρṽ ˜w¯fI =¯ρũ ˜w, ḡ I =¯ρṽ ˜w, ¯hI =¯ρ ˜w 2 + ¯P⎜⎝¯ρẼũ + Pu⎟⎜⎠ ⎝¯ρẼṽ + Pv⎟⎜⎠ ⎝¯ρẼ ˜w + Pw⎟⎠¯ρ k ũ¯ρ k ṽ¯ρ k ˜w(4.60)84


Termes visqueux filtrésLes composantes du tenseur des flux visqueux ont la forme suivante:avec⎛−τ xx−τ xy¯F V =−τ xz, (4.61)⎜⎝−(uτ xx + vτ xy + wτ xz ) + q ⎟ x ⎠⎛J x,k−τ xy−τ yyḠ V =−τ yz, (4.62)⎜⎝−(uτ xy + vτ yy + wτ yz ) + q ⎟ y ⎠⎛J y,k−τ xz⎞⎞−τ yz¯H V =−τ zz⎜⎝−(uτ xz + vτ yz + wτ zz ) + q ⎟ z ⎠J z,kτ ij = 2µ(S ij − 1 )3 δ ijS llapproximation : τ ij ≈ 2µ(˜S ij − 1 )3 δ ij ˜S ijavec : ˜Sij = 1 ( ∂ũj+ ∂ũ )i2 ∂x i ∂x j⎞(4.63)(4.64)(4.65)(4.66)µ ≈ µ( ˜T) (4.67)Equation 4.66 peut s’écrire a<strong>in</strong>si:τ xx ≈ 2µ (2 ∂ũ3 ∂x − ∂ṽ∂y − ∂ ˜w ) ( ∂ũ, τ xy ≈ µ∂z∂y + ∂ṽ )∂xτ yy ≈ 2µ (2 ∂ṽ3 ∂y − ∂ũ∂x − ∂ ˜w ) ( ∂ũ, τ xz ≈ µ∂z∂z + ∂ ˜w )∂xτ zz ≈ 2µ (2 ∂ ˜w3 ∂z − ∂ũ∂x − ∂ṽ ) ( ∂ṽ, τ yz ≈ µ∂y∂z + ∂ ˜w )∂y(4.68)(4.69)(4.70)85


4. <strong>Numerical</strong> simulation and LES modelsLe vecteur flux diffusif filtré d’espèces J i,kPour le cas non-réactifJ i,kapproximation : J i,k ≈ −ρavec :Ṽ icD k(W k= −ρ D kW(=≈N∑k=1D kW kWD kW kW)∂X k− Y k Vic∂x i)∂ ˜X k−∂x ỸkṼici(4.71)(4.72)∂ ˜X k∂x i(4.73)µ¯ρSc k(4.74)Le flux de chaleur filtré q iq i = −λ ∂T∂x i+approximation : q i ≈ −λ ∂ ˜T∂x i+avec : λ ≈µC p( ˜T)PrN∑J i,k h s,k (4.75)k=1N∑J i,k˜hs,k (4.76)k=1(4.77)Termes de sous-mailleLes flux de la turbulence de sous-maille sont:⎛F t =⎜⎝−τ xxt−τ xyt−τ xztq xtJ x,kt⎞⎛, G t =⎟ ⎜⎠ ⎝−τ xyt−τ yyt−τ yztq ytJ y,kt⎞⎛, H t =⎟ ⎜⎠ ⎝−τ xzt−τ yzt−τ zztq ztJ z,kt⎞⎟⎠(4.78)avec= −ρ(ũ i u j − ũ i ũ j ) (4.79)(approximation :τij t = 2ρν t˜S ij − 1 )3 δ ij ˜S ll (4.80)avec :˜S ij = 1 ( ∂ũi+ ∂ũ )j− 1 ∂ũ kδ ij (4.81)2 ∂x j ∂x i 3 ∂x kτ ijtDans l’équation 4.81, τ t ij est le tenseur de sous-maille, ν t est la viscosité sous-maille,et ˜S ij est le tenseur de déformation résolu. La modélisation de ν t est expliqué dans la86


section 4J t i,kmodélisé comme :J ijtavec :Ṽ c,ti=)= ρ(ũi Y k − ũ i Ỹ k(= −ρN∑k=1D t k = ν tSc t kD t kW kW∂ ˜X k c,t− ỸkṼi∂x i)(4.82)(4.83)Dkt W k ∂ ˜X k(4.84)W ∂x i(4.85)Le nombre de Schmidt turbulent Sc t k= 1 est le même pour toute les espèces et estfixé dans le code (comme Pr t ). Notez aussi qu’avoir un nombre de Schmidt turbulentn’implique pas, Ṽ c,ti= 0 car le terme W kWq itdans l’équation 4.84. est)= ρ(ũi E − ũ i Ẽ(4.86)modélisé comme :q it= −λ ∂ ˜T∂x i+ ∑ kJ i,kt˜hs,k (4.87)avec : λ t = µ tc PPr t (4.88)Modèle de sous-mailleLe modèle de sous-maille (SGS)s’écrit:τ ij t = −ρ(ũ i u j − ũ i ũ j ) (4.89)= 2 ρ ν t ˜Sij − 1 3 τ ll t δ ij (4.90)Le modèle de Smagor<strong>in</strong>sky [149] repose sur la viscosité turbulente :ν t = (C S △) 2 √2˜S ij ˜Sij (4.91)avec △ du filtre (△ = 3√ △x△y△z), C S est la constante du modèle égale à 0.18 mais estcomprise entre 0.1 et 0.18 suivant le cas (Lilly [89], Sagaut [137]). Le modèle dynamiquede Germano repose sur la déterm<strong>in</strong>ation dynamique de C S comme fonction d’espace etdu temps.ν t = (C SD △) 2 √2˜S ij ˜Sij (4.92)oùCS 2 D= 1 M ij M ij(4.93)2 L ij L ij87


4. <strong>Numerical</strong> simulation and LES modelsetM ij = ˆ∆ 2 √2 < ˜S ij >< ˜S ij > L ij =< ũ i >< ũ j > − < ũ i ũ j > (4.94)WALEPour obtenir la viscosité turblente proche d’une paroi, l’amortissement de Van Driest estsouvent utilisé [166]. Une autre voie est WALE (Wall-Adapt<strong>in</strong>g Local Eddy-viscosity)proposée par Nicoud & Ducros [35, 104]:s d ij = 1 2(˜g2 ij + ˜g ji) 2 1 + kk δ ij( )3(4.95)s dν t = (C w △) 2 ij sd 2ij) 5 ( )52(˜Sij ˜Sij + s d ij sd 4ij(4.96)avec ˜g 2 ij = ∂u i∂x k∂u k∂x j, Cw = 0.4929.Conditions aux limitesLes conditions aux limites jouent un rôle important en simulation numérique. Et surtoutpour l’aspect propagatif contenu dans les équations résolues par AVBP (voir Schöfeld &Rudgyard [140] et Po<strong>in</strong>sot & Veynante [111]). Dans AVBP appliquer les conditions auxlimites est équivalent à trouver les résidus R aux limites. Ce dernier esst obtenu enutilisant le schéma d’<strong>in</strong>tégration de Runge–Kutta.U n+1 = U n − R∆t (4.97)Comme le code est explicite seule la solution d’<strong>in</strong>dice n est utilisée. Pour corriger lerésidu aux limites deux méthodes sont utilisées: sans relation caractéristique ou avec(méthode (NSCBC)(voir Moureau et al [102] et Po<strong>in</strong>sot & Lele [113]). Dans ce derniercas contrairement au premier aucune valeur n’est imposée seules les amplitudes des ondessont spécifées.A chaque pas de temps, on utilise l’approche normale qui utilise les relations caractéristiquesau flux normal des dérivées du résidu. La formulation des conditions auxlimites a fait l’objet d’études poussées ( Nicoud [103]).Les relations caractéristiquesLe traitement des conditions aux limites dans AVBP est résumé sur la figure 4.4.88L’avancement explicite en temps dans AVBP donne U n+1pred :∂U = U n+1pred − Un = −R P ∆t (4.98)


Le résidu total R P peut être divisé en deux parties :∂U = −∆t ( R P BC + R P )U(4.99)R P BCest la part du résidu qui est modifiée par le traitement des conditions aux limiteset R P Ula part qui est <strong>in</strong>changée. Pour obtenir U au temps n + 1 : Un+1U n+1 = U n − ∆t ( R P BC + )RP U(4.100)R C BC est la partie qui a été corrigée en utilisant RP U , Un , le type de conditions auxlimites BC . La correction est comme suit:R C BC = RP BC − R<strong>in</strong>,P BC + R<strong>in</strong>,C BC(4.101)Pour plus de détails et comparaisons entre les différentes conditions voir Nicoud &Po<strong>in</strong>sot [105] et le manuel de AVBP [10].Conditions aux limites dans AVBPPlusieurs types de conditions aux limites existent dans AVBP en raison de son utilisationpour plusieurs applications. Table 4.1 donne les conditions aux limites utilisées danscette étude.Patches Location Conditions aux limites1 Condition d’entrée à gauche INLET RELAX UVW T Y2 limite supérieure WALL WAVE SLIP ADIAB3 Sortie à droite OUTLET RELAX P4 paroi en bas WALL WAVE NOSLIP ADIABTable 4.1: Conditions aux limites.Aux parois on utilise des conditions d’adhérence. Pour la condition <strong>the</strong>rmique, laparoi peut être adiabtique ou iso<strong>the</strong>rme. en entrée et sortie les relations caractéristiques(entrantes et sortantes) (NSCBC). En sortie une relxation est appliquée à la pression.89


4. <strong>Numerical</strong> simulation and LES models4.1 The AVBP solverThe chapter is totally devoted to expla<strong>in</strong> <strong>the</strong> numerical solver which is used to simulate<strong>the</strong> cavity flow. The chapter carries details about <strong>the</strong> numerical methods, artificialviscosity, derivation <strong>of</strong> govern<strong>in</strong>g equations for LES, models used <strong>in</strong> large eddy simulation(LES) and usage <strong>of</strong> characteristic boundary conditions <strong>in</strong> <strong>the</strong> simulation.The AVBP (A Very Big Project) was historically motivated by <strong>the</strong> idea <strong>of</strong> build<strong>in</strong>ga modern s<strong>of</strong>tware tool for Computational Fluid Dynamics (CFD) <strong>of</strong> high flexibility,efficiency and modularity. It was started at CERFACS <strong>in</strong> January 1993 as an <strong>in</strong>itiative<strong>of</strong> Michael Rudgyard and Thilo Schönfeld. The aim was to create an unstructuredsolver capable <strong>of</strong> handl<strong>in</strong>g grids <strong>of</strong> any cell type. The use <strong>of</strong> <strong>the</strong>se so-called hybridgrids is motivated by <strong>the</strong> efficiency <strong>of</strong> unstructured grid generation, <strong>the</strong> accuracy <strong>of</strong><strong>the</strong> computational results (us<strong>in</strong>g regular structured elements) and <strong>the</strong> ease <strong>of</strong> meshadaptation. The philosophy <strong>of</strong> build<strong>in</strong>g AVBP upon s<strong>of</strong>tware libraries was adopted tobest meet <strong>the</strong> modularity requirement.AVBP is a parallel CFD code that solves <strong>the</strong> lam<strong>in</strong>ar and turbulent compressibleNavier–Stokes equations <strong>in</strong> two and three space dimensions. Steady state or unsteadyflows may be simulated. For <strong>the</strong> prediction <strong>of</strong> unsteady turbulence, various Large-EddySimulation (LES) subgrid scale models have been implemented. AVBP was <strong>in</strong>itially conceivedfor primarily stationary external flows for aerodynamics applications. S<strong>in</strong>ce <strong>the</strong>mid-n<strong>in</strong>eties <strong>the</strong> emphasis <strong>of</strong> applications is on <strong>the</strong> model<strong>in</strong>g <strong>of</strong> unsteady turbulent flows(with and without chemical reactions) for ma<strong>in</strong>ly <strong>in</strong>ternal flow configurations. Theseactivities are partially related to <strong>the</strong> ris<strong>in</strong>g importance <strong>of</strong> <strong>the</strong> understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> flowstructure and mechanisms lead<strong>in</strong>g to turbulence. The prediction <strong>of</strong> <strong>the</strong>se unsteady turbulentflows is based on <strong>the</strong> LES approach which has emerged as a prospective techniquefor problems associated with time dependent phenomena and coherent eddy structures.An Arrhenius law reduced chemistry model allows <strong>in</strong>vestigat<strong>in</strong>g combustion for complexconfigurations.The handl<strong>in</strong>g <strong>of</strong> unstructured or hybrid grids is one key feature <strong>of</strong> AVBP. With <strong>the</strong>use <strong>of</strong> <strong>the</strong>se hybrid grids, where a comb<strong>in</strong>ation <strong>of</strong> several elements <strong>of</strong> different type isused <strong>in</strong> <strong>the</strong> framework <strong>of</strong> <strong>the</strong> same mesh, <strong>the</strong> advantages <strong>of</strong> structured and unstructuredgrid methodologies are comb<strong>in</strong>ed <strong>in</strong> terms <strong>of</strong> gridd<strong>in</strong>g flexibility and solution accuracy.Inorder to handle arbitrary hybrid grids, <strong>the</strong> data structure <strong>of</strong> AVBP employs a cell-vertexf<strong>in</strong>ite-volume approximation. The basic numerical methods are based on a Lax-Wendr<strong>of</strong>f[81, 82] or a f<strong>in</strong>ite-Element type low-dissipation Taylor–Galerk<strong>in</strong>(Donea [33], Donea etal [34], Quartapelle & Selm<strong>in</strong> [118], Col<strong>in</strong> & Rudgyard [19]) discretisation <strong>in</strong> comb<strong>in</strong>ationwith a l<strong>in</strong>ear–preserv<strong>in</strong>g artificial viscosity model.AVBP is built upon a modular s<strong>of</strong>tware library that <strong>in</strong>cludes <strong>in</strong>tegrated paralleldoma<strong>in</strong> partition and data reorder<strong>in</strong>g tools, handles message pass<strong>in</strong>g and <strong>in</strong>cludes support<strong>in</strong>grout<strong>in</strong>es for dynamic memory allocation, rout<strong>in</strong>es for parallel I/O and iterative90


4.2. <strong>Numerical</strong> methodPrimary cellCell centerGrid nodesiMedian dual cellFigure 4.1: Cell vertex cells. García [46].methods. AVBP is written <strong>in</strong> standard FORTRAN77 and C. but it is be<strong>in</strong>g upgraded toFORTRAN90 <strong>in</strong> a gradual fashion. One <strong>of</strong> its ma<strong>in</strong> features is its portability to differentmach<strong>in</strong>e architectures and it has proven to be efficient on most parallel architectures.AVBP is currently developed by more than 30 PhD students and Post-Doctoratestoge<strong>the</strong>r with research scientists and eng<strong>in</strong>eers. Today, <strong>the</strong> ownership <strong>of</strong> AVBP is sharedbetween CERFACS, Toulouse and Institut Français du Pétrole (IFP), Paris, follow<strong>in</strong>gan agreement <strong>of</strong> jo<strong>in</strong>t code development oriented towards gas turb<strong>in</strong>es and piston eng<strong>in</strong>eapplications. It is used <strong>in</strong> <strong>the</strong> framework <strong>of</strong> many bilateral <strong>in</strong>dustrial collaborations andnational research programs. At an European level it is used <strong>in</strong> several projects <strong>of</strong> <strong>the</strong> 5 th ,6 th and 7 th Framework Programs <strong>of</strong> <strong>the</strong> European Community (EC) and several researchfellows use it <strong>in</strong> <strong>the</strong> frame <strong>of</strong> <strong>the</strong> Marie Curie actions. Important l<strong>in</strong>ks to <strong>in</strong>dustry havealso been established with Safran Group (Snecma, Turbomeca), Air Liquide, Gaz deFrance as well as with Alstom and Siemens Power Generation.4.2 <strong>Numerical</strong> method4.2.1 The cell-vertex discretisationAVBP numerical schemes are based on <strong>the</strong> cell-vertex method which naturally ensuresa high compactness.The flow solver used for <strong>the</strong> discretisation <strong>of</strong> <strong>the</strong> govern<strong>in</strong>g equations is based on<strong>the</strong> f<strong>in</strong>ite volume (FV) method (Hirsch [66]). There are three common techniques forimplement<strong>in</strong>g FV methods: <strong>the</strong> so-called cell-centered, vertex-centered and cell-vertexapproaches. In <strong>the</strong> first two ones, <strong>the</strong> discrete values <strong>of</strong> <strong>the</strong> solution are stored at <strong>the</strong>centre <strong>of</strong> <strong>the</strong> control volume (grid cells for <strong>the</strong> cell-centered formulation and median dualcells for <strong>the</strong> vertex-centered one, see fig 4.1) and neighbour<strong>in</strong>g values are averaged across<strong>the</strong> control volume boundaries <strong>in</strong> order to calculate <strong>the</strong> fluxes.In <strong>the</strong> alternative cell-vertex technique, used as underly<strong>in</strong>g numerical discretisation91


4. <strong>Numerical</strong> simulation and LES modelsΩ jk(a) ga<strong>the</strong>r(b) scatterFigure 4.2: Cell-vertex pr<strong>in</strong>ciple:(a) ga<strong>the</strong>r and (b) scatter operation. García [46].method <strong>of</strong> AVBP (Rudgyard [134, 135]), <strong>the</strong> discrete values <strong>of</strong> <strong>the</strong> conserved variablesare stored at <strong>the</strong> cell vertices (or grid nodes), while conservation relations are appliedto <strong>the</strong> grid (or primary) cells. The advantages <strong>of</strong> us<strong>in</strong>g such a discretisation are:• The native capability <strong>of</strong> handl<strong>in</strong>g unstructured hybrid meshes.• An easy and efficient parallelisation.• Increased accuracy without an important additional cost, can be obta<strong>in</strong>ed by us<strong>in</strong>g<strong>the</strong> same spatial differential operators <strong>in</strong> a f<strong>in</strong>ite element framework (see Section4.2.6).In <strong>the</strong> cell-vertex method employed with<strong>in</strong> AVBP both solution and coord<strong>in</strong>ate vectorsare stored at <strong>the</strong> nodes <strong>of</strong> <strong>the</strong> grid. However, most <strong>of</strong> <strong>the</strong> operations are done on <strong>the</strong>elements and <strong>of</strong>ten a transfer from <strong>the</strong> cell vertices (<strong>the</strong> nodes) to <strong>the</strong> cell centers isrequired. This collect<strong>in</strong>g <strong>of</strong> <strong>the</strong> nodal <strong>in</strong>formation to temporary arrays that conta<strong>in</strong> <strong>the</strong><strong>in</strong>formation <strong>of</strong> <strong>the</strong> vertices for an element is done <strong>in</strong> a so-called data ga<strong>the</strong>r operation(figure 4.2(a)). At this stage each cell has locally its <strong>in</strong>formation available at <strong>the</strong> verticesand for example can calculate <strong>the</strong> cell gradient. The cell quantity is <strong>the</strong>n distributedback to <strong>the</strong> global nodes through an <strong>in</strong>verse so-called scatter operation (figure 4.2(b)).Nomenclature: In <strong>the</strong> rest <strong>of</strong> <strong>the</strong> section <strong>the</strong> follow<strong>in</strong>g subscripts are used:• i ∈ [1,N node ] is <strong>the</strong> <strong>in</strong>dex used for <strong>the</strong> global node number<strong>in</strong>g and <strong>the</strong> nodal values.• j ∈ [1,N cell ] is used for <strong>the</strong> cell number<strong>in</strong>g.• k ∈ [1,n v (Ω j )] is <strong>the</strong> local number<strong>in</strong>g <strong>of</strong> <strong>the</strong> vertices <strong>of</strong> a cell Ω j , with n v (Ω j ) <strong>the</strong>number <strong>of</strong> vertices <strong>of</strong> <strong>the</strong> cell Ω j .• Ω j is <strong>the</strong> <strong>in</strong>dex used to design a value at <strong>the</strong> centre or associated with <strong>the</strong> j–thcell.92


4.2. <strong>Numerical</strong> method• R i is <strong>the</strong> global nodal residual.• R Ωj is <strong>the</strong> global cell residual.• R i|Ωj is <strong>the</strong> part <strong>of</strong> <strong>the</strong> residual <strong>of</strong> element j to be scattered to node i.4.2.2 Weighted Cell Residual ApproachFor <strong>the</strong> description <strong>of</strong> <strong>the</strong> weighted cell–residual approach <strong>the</strong> lam<strong>in</strong>ar Navier–Stokesequations are considered <strong>in</strong> <strong>the</strong>ir conservative formulation:∂U∂t + ∇ · F = 0 (4.102)where U is <strong>the</strong> vector <strong>of</strong> conserved variables and F is <strong>the</strong> correspond<strong>in</strong>g flux tensor. Forconvenience, <strong>the</strong> latter is divided <strong>in</strong>to an <strong>in</strong>viscid and a viscous part,(F = F I (U) + F V U, ∇U ⃗ ). The spatial terms <strong>of</strong> <strong>the</strong> equations are <strong>the</strong>n approximated <strong>in</strong> each control volume Ω jto give <strong>the</strong> residualR Ωj = 1V Ωj∫∂Ω jF · ⃗ndS (4.103)where V Ωj is volume <strong>of</strong> <strong>the</strong> control volume and ∂Ω j denotes <strong>the</strong> boundary <strong>of</strong> Ω j withnormal ⃗n.This cell–vertex approximation is readily applicable to arbitrary cell types and ishence straight– forward to apply for hybrid grids. The residual 4.103 is first computedfor each element by mak<strong>in</strong>g use <strong>of</strong> a simple <strong>in</strong>tegration rule applied to <strong>the</strong> faces. Fortriangular faces, a straightforward mid–po<strong>in</strong>t rule is used, which is equivalent to <strong>the</strong>assumption that <strong>the</strong> <strong>in</strong>dividual components <strong>of</strong> <strong>the</strong> flux vary l<strong>in</strong>early on <strong>the</strong>se faces. Forquadrilateral faces, where <strong>the</strong> nodes may not be co–planar, <strong>in</strong> order to ensure that <strong>the</strong><strong>in</strong>tegration is exact for arbitrary elements if <strong>the</strong> flux functions do <strong>in</strong>deed vary l<strong>in</strong>early,each face is divided <strong>in</strong>to triangles and <strong>the</strong>n <strong>in</strong>tegrated over <strong>the</strong> <strong>in</strong>dividual triangles. Theflux value is <strong>the</strong>n obta<strong>in</strong>ed from <strong>the</strong> average <strong>of</strong> four triangles (two divisions along <strong>the</strong> twodiagonals). This so–called ‘l<strong>in</strong>ear preservation property ’plays an important part <strong>in</strong> <strong>the</strong>algorithm for ensur<strong>in</strong>g that accuracy is not lost on irregular meshes. Computationally,it is useful to write <strong>the</strong> discrete <strong>in</strong>tegration <strong>of</strong> equation 4.103 over an arbitrary cell asR Ωj = 1N d V Ωj∑i∈Ω jF i .d ⃗ S i (4.104)where F i is an approximation <strong>of</strong> F at <strong>the</strong> nodes, N d represents <strong>the</strong> number <strong>of</strong> spacedimensions and {i ∈ Ω j } are <strong>the</strong> vertices <strong>of</strong> <strong>the</strong> cell. In this formulation <strong>the</strong> geometrical<strong>in</strong>formation has been factored <strong>in</strong>to terms d ⃗ S i that are associated with <strong>in</strong>dividual nodes93


4. <strong>Numerical</strong> simulation and LES models<strong>of</strong> <strong>the</strong> cell but not faces; d ⃗ S i is merely <strong>the</strong> average <strong>of</strong> <strong>the</strong> area–weighted normals fortriangulated faces with a common node i, i ∈ Ω j . Note, that for consistency one has∑i∈Ω jd ⃗ S i = ⃗0. A l<strong>in</strong>ear preserv<strong>in</strong>g approximation <strong>of</strong> <strong>the</strong> divergence operator is obta<strong>in</strong>edif <strong>the</strong> volume V Ωj is def<strong>in</strong>ed consistently asV Ωj = 1N 2 d∑i∈Ω j⃗x i .d ⃗ S i (4.105)s<strong>in</strong>ce ∇ · ⃗x = N d . Once <strong>the</strong> cell residuals are calculated, one may <strong>the</strong>n def<strong>in</strong>e <strong>the</strong>semi–discrete schemedU kdt= − 1 V k∑j|k∈Ω jD k Ω jV Ωj R Ωj (4.106)where DΩ k jis a distribution matrix that weights <strong>the</strong> cell residual from cell centre Ω jto node k (scatter operation), and V k is a control volume associated with each node.Conservation is guaranteed if ∑ k∈Ω jD k Ω j= I. In <strong>the</strong> present context, equation 4.106is solved to obta<strong>in</strong> <strong>the</strong> steady–state solution us<strong>in</strong>g explicit Euler or Runge–Kutta time–stepp<strong>in</strong>g.The family <strong>of</strong> schemes <strong>of</strong> <strong>in</strong>terest makes use <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> distributionmatrix:D k Ω j= 1n n(I + C δt Ω jV ΩjA Ωj · d ⃗ S k)(4.107)where n n is <strong>the</strong> number <strong>of</strong> nodes <strong>of</strong> Ω j , δt Ωj is <strong>the</strong> cell ‘time-step’and A is <strong>the</strong> Jacobian<strong>of</strong> <strong>the</strong> flux tensor. The simplest ‘central difference’scheme is obta<strong>in</strong>ed by choos<strong>in</strong>g C =0 and is neutrally stable when comb<strong>in</strong>ed with Runge–Kutta time–stepp<strong>in</strong>g. A Lax–Wendr<strong>of</strong>f type scheme may also be formulated <strong>in</strong> which case C is chosen to be a constantthat depends on <strong>the</strong> number <strong>of</strong> space dimensions and <strong>the</strong> type <strong>of</strong> cells used–it maybe shown that this takes <strong>the</strong> simple form C =n2 v. If one replaces <strong>the</strong> cell ‘timestep’δtΩj by a matrix ΦΩ j with suitable properties, one may also obta<strong>in</strong> an2 N dSUPG–likescheme (for Streamwise Upw<strong>in</strong>d Petrov–Galerk<strong>in</strong>) from Brooks & Hugues [9] whichhas slightly better convergence and shock–captur<strong>in</strong>g behaviour, however, at some extracomputational cost.4.2.3 Computation <strong>of</strong> gradientsIn order to recover <strong>the</strong> nodal values <strong>of</strong> <strong>the</strong> gradients ∇U ⃗ ( )a cell approximation ⃗∇UΩ jis first calculated and <strong>the</strong>n distributed to <strong>the</strong> nodes. The cell–based gradient is def<strong>in</strong>ed<strong>in</strong> a manner similar to <strong>the</strong> divergence equation 4.104 so as to be transparent to l<strong>in</strong>earsolution variations:94( ) ∂U≈ 1 ∫∫U · ⃗n∂S (4.108)∂xCV C ∂Ω C


4.2. <strong>Numerical</strong> methodwhich leads to <strong>the</strong> approximation:(⃗∇U)Ω j= 1V Ωj∑i∈Ω jU i d ⃗ S i (4.109)A nodal approximation <strong>of</strong> <strong>the</strong> gradient is <strong>the</strong>n obta<strong>in</strong>ed us<strong>in</strong>g <strong>of</strong> a volume–weightedaverage <strong>of</strong> <strong>the</strong> cell–based gradients:(⃗∇U)k = 1V Ωk∑ ( )V j ⃗∇Uj|k∈Ω jΩ j(4.110)4.2.4 Computation <strong>of</strong> time stepTemporal discretisation is explicit for all numerical schemes <strong>in</strong> AVBP. The practicalimplementation <strong>of</strong> this k<strong>in</strong>d <strong>of</strong> approach is relatively straightforward and <strong>the</strong> computationalcost per iteration is small. The ma<strong>in</strong> drawback <strong>of</strong> explicit codes is that <strong>the</strong> timestep ∆t is limited for stability reasons:m<strong>in</strong> (∆x)∆t < CFL(4.111)max | u | +a ∞where u is <strong>the</strong> propagation speed <strong>of</strong> a perturbation <strong>in</strong> <strong>the</strong> flow, a ∞ is <strong>the</strong> sound speed,∆x is <strong>the</strong> mesh size and CFL is <strong>the</strong> Courant–Friedrichs–Lewy number. The CFL valuerequired for stability changes slightly depend<strong>in</strong>g on <strong>the</strong> scheme adopted. In AVBP, <strong>the</strong>CFL value is fixed to 0.7.4.2.5 The Lax–Wendr<strong>of</strong>f schemeThe ma<strong>in</strong> convective schemes are a f<strong>in</strong>ite volume Lax–Wendr<strong>of</strong>f type scheme (LW) fromLax & Wendr<strong>of</strong>f [81, 82] and a f<strong>in</strong>ite element two–step Taylor–Galerk<strong>in</strong> scheme (TTGC)from Col<strong>in</strong> & Rudgyard [19]. These two schemes are respectively 2 nd and 3 rd order <strong>in</strong>time and space. The diffusive scheme is a typical 2 nd order compact scheme. Elementtypes handled by AVBP are triangles and quadrangles <strong>in</strong> 2D and tetrahedrons, prisms,pyramids and hexahedrons <strong>in</strong> 3D. The time <strong>in</strong>tegration is fully explicit to maximiseaccuracy.The form <strong>of</strong> <strong>the</strong> distribution matrix D i|Ωj (see equation 4.107) determ<strong>in</strong>es <strong>the</strong> differentnumerical schemes available <strong>in</strong> AVBP. In <strong>the</strong> follow<strong>in</strong>g D i|Ωj is derived for <strong>the</strong>Lax–Wendr<strong>of</strong>f scheme [81, 82]. The Lax–Wendr<strong>of</strong>f scheme (second order accurate <strong>in</strong>space and time) is based on a Taylor expansion <strong>in</strong> time <strong>of</strong> <strong>the</strong> solution U.U n+1 = U n + ∆t( ) ∂U n+ 1 ( ∂ 2 ) nU∂t 2 ∆t2 ∂t 2 + O(∆t 3 ) (4.112)95


4. <strong>Numerical</strong> simulation and LES modelsConsider<strong>in</strong>g <strong>the</strong> conservative formulation <strong>of</strong> lam<strong>in</strong>ar Navier–Stokes equation<strong>the</strong> first temporal derivative can be expressed as:∂U∂t + ∇ · F = 0 (4.113)∂U∂t= −∇ · F (4.114)In a similar manner, <strong>the</strong> second derivative can be recast as:∂ 2 U∂t 2 = ∂ [ ( )]∂F ∂U(−∇ · F) = −∇ ·∂t ∂t = −∇ · A = ∇ · [A (∇ · F)] (4.115)∂tassum<strong>in</strong>g that temporal and spatial derivatives can be exchanges and def<strong>in</strong><strong>in</strong>g A = ∂F∂Uas Jacobian matrix. Hence, substitut<strong>in</strong>g equations 4.114, 4.115 <strong>in</strong>to equation 4.112, <strong>the</strong>solution a time n + 1 can be written as:{U n+1 = U n − ∆t ∇ · F − 1 2 ∆t ∇ · [A (∇ · F)] − O ( ∆t 2)} (4.116)In discrete form, remember<strong>in</strong>g <strong>the</strong> basic pr<strong>in</strong>ciple <strong>of</strong> <strong>the</strong> cell-vertex approach, <strong>the</strong> nodalresidual R i is obta<strong>in</strong>ed by summ<strong>in</strong>g <strong>the</strong> contributions <strong>of</strong> all <strong>the</strong> surround<strong>in</strong>g elements.The value is <strong>the</strong>n scaled by <strong>the</strong> nodal volume V i :R i = 1 ∑RV i|Ωj (4.117)ij|i∈Ω jThe residual contribution to node i <strong>of</strong> element j can be written as:R i|Ωj = R ΩjV Ωjn v(Ωj )− LW i|Ωj (4.118)The first term <strong>in</strong> equation 4.118 is <strong>the</strong> cell residual computed as <strong>in</strong> equation 4.104. Itis weighted by <strong>the</strong> volume <strong>of</strong> <strong>the</strong> cell divided by <strong>the</strong> number <strong>of</strong> vertices <strong>of</strong> <strong>the</strong> element.The LW i|Ωj term is computed on <strong>the</strong> dual cell C i tak<strong>in</strong>g advantage <strong>of</strong> <strong>the</strong> Green–Gauss<strong>the</strong>orem:LW i|Ωj = 1 ∫∫∫2 ∆t T∇ · [A (∇ · F)] dV = 1 ∫∫Ω j Ci2 ∆t ∇ · [A (∇ · F)] dS (4.119)∂C iThis term is <strong>the</strong>n discretised to give:LW i|Ωj ≃ 1 2 ∆t [A (∇ · F)] Ω j · Si|Ω jn d(4.120)where S i|Ωj is <strong>the</strong> normal associated with node i and cell j it is computed accord<strong>in</strong>g to96


4.2. <strong>Numerical</strong> method<strong>the</strong> scal<strong>in</strong>g by n d . It should be noticed that no weight<strong>in</strong>g is required for <strong>the</strong> LW termbecause it is computed on <strong>the</strong> dual cell. Substitut<strong>in</strong>g equation 4.104 and 4.120 <strong>in</strong>toequation 4.118 leads to:R i|Ωj =(I − ∆t2 n dn v(Ωj )V ΩjA Ωj · S i|Ωj)R ΩjV Ωjn v(Ωj )(4.121)Recall<strong>in</strong>g now equation 4.118 <strong>the</strong> distribution matrix takes <strong>the</strong> form:D i|Ωj = 1 (I − ∆t)n v(Ωj )A Ωj · Sn v(Ωj ) 2n d V i|ΩjΩj(4.122)4.2.6 The TTGC numerical schemeIt is nearly impossible to develop schemes <strong>of</strong> higher order (<strong>in</strong> space) on unstructuredmeshes <strong>in</strong> a f<strong>in</strong>ite volume context. The cell–vertex formulation can be extended toa f<strong>in</strong>ite element approach, where higher order schemes are possible. Taylor–Galerk<strong>in</strong>(TG) schemes were first given by Donea [33, 34] coupl<strong>in</strong>g a Taylor expansion <strong>in</strong> timeand a Galerk<strong>in</strong> discretisation <strong>in</strong> space. Col<strong>in</strong> and Rudgyard [19] developed a two–stepTaylor–Galerk<strong>in</strong> scheme (TTGC) that is third–order <strong>in</strong> space and time.Ũ nU n+1( ) ∂U n ( ∂= U n + α∆t + β∆t 2 2 ) nU∂t ∂t 2 (4.123)( ) n ( ) n= U n ∂Ũ+ ∆t + γ∆t 2 ∂ 2 Ũ∂t ∂t 2 (4.124)α = 1 2 − γ and β = 1 6(4.125)first and second temporal derivatives can be replaced as done for <strong>the</strong> Lax–Wendr<strong>of</strong>fscheme (see equation 4.114 and 4.115) giv<strong>in</strong>g:Ũ n = U n − α∆t∇ · F n + β∆t 2 ∇ · [A (∇ · F n )] (4.126)U n+1 = U n − ∆t∇ · ˜F n + γ∆t 2 ∇ · [A (∇ · F n )] (4.127)Multiply<strong>in</strong>g <strong>the</strong>se equations by a set <strong>of</strong> l<strong>in</strong>ear test functions φ i (“redsk<strong>in</strong> tent”functions)and <strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong>m over <strong>the</strong> computational doma<strong>in</strong> Ω, leads to <strong>the</strong> follow<strong>in</strong>g weakformulation:∫˜R n φ i dV = −αL i (U n ) − β∆tLL i (U n ) (4.128)∫ΩΩR n+1 φ i dV = −L i(Ũn ) − γ∆tLL i (U n ) (4.129)97


4. <strong>Numerical</strong> simulation and LES modelswith˜R n = Ũn − U n, R n+1 = Un+1 − U n∆t∆t(4.130)andL i (U) =LL i (U) =∫∇ · F (U n )φ i dV (4.131)∫Ω∫A (∇ · F (U n )) ∇φ i dV − φ i A (∇ · F (U n )) dS (4.132)Ω} {{ }∂Ω} {{ }LL 0 i (Un )BT i (U n )The LL i term can be split by perform<strong>in</strong>g an <strong>in</strong>tegration by parts assum<strong>in</strong>g <strong>the</strong> surfacenormal dS external. The first contribution LL 0 i (Un ) is <strong>in</strong>tegrated over all <strong>the</strong> computationaldoma<strong>in</strong> while <strong>the</strong> second one, BT i (U n ), is non zero only at boundaries. It shouldbe noticed that <strong>the</strong> LL i term <strong>in</strong>volves second spatial derivatives (like <strong>the</strong> LW i term,see for example equation 4.120), that are not expected when deal<strong>in</strong>g with convectionproblems. The Galerk<strong>in</strong> method is <strong>the</strong>n applied to <strong>the</strong> flux divergence and to residuals.Hence, <strong>the</strong>y can be expressed as a sum <strong>of</strong> l<strong>in</strong>ear shape–functions (same functions as <strong>the</strong>test–functions used to derive <strong>the</strong> weak formulation), lead<strong>in</strong>g to:R n= ∑ kR n k φ k (4.133)∇ · F = ∑ kF k ∇φ k (4.134)where F k is <strong>the</strong> discrete flux at each po<strong>in</strong>t <strong>of</strong> computational doma<strong>in</strong>. With this choice<strong>of</strong> shape functions, <strong>the</strong> residuals are recast as:∫Ω˜R n φ i dV = ∑ k(∫ )φ i φ k dV ˜R n k = ∑ΩkM ik ˜Rn k (4.135)denot<strong>in</strong>g M ik as <strong>the</strong> components <strong>of</strong> <strong>the</strong> so–called mass matrix which, <strong>in</strong> AVBP, is<strong>in</strong>verted locally by an iterative Jacobi method.In <strong>the</strong> spatial discretisation, <strong>the</strong> contributions <strong>of</strong> <strong>in</strong>tegrals <strong>in</strong> equation 4.131 and 4.132to node i come only from <strong>the</strong> adjacent cells.L i (U n ) =∑L i (U n ) Ωj(4.136)j|i∈Ω jLL i (U n ) =∑LL i (U n ) Ωj(4.137)j|i∈Ω j98


4.2. <strong>Numerical</strong> methodTak<strong>in</strong>g advantage <strong>of</strong> equations 4.133, L i (U n ) Ωjand LL i (U n ) Ωjcan be written as:L i (U n ) Ωj= ∑ ∫Fkn φ i ∇φ k dV (4.138)k|k∈ΩΩ j j∑∫LL i (U n ) Ωj= A n Ω jFkn ∇φ · ∇φ k dVk|k∈ΩΩ j j∑∫− A n Ω jFkn φ i ∇φ k dS (4.139)k|∈∂Ω j ∩∂Ω∂Ω j ∩∂ΩFor triangular and tetrahedron elements <strong>the</strong> gradient <strong>of</strong> <strong>the</strong> shape function is constant 1over each element and <strong>the</strong> <strong>in</strong>tegral <strong>of</strong> φ i takes a simple form(see Col<strong>in</strong> & Rudgyard [19]).∫∇φ k = − ⃗ S kn d V Ωj(4.140)Ω kφ k dV = V Ω jn v(Ωj )Substitut<strong>in</strong>g relations 4.140 and 4.141 <strong>in</strong> equation 4.138 yields:L i (U n ) Ωj= ∑k|k∈Ω jF n k ∇φ k∀k ∈ Ω j (4.141)∫Ω jφ i dV= (∇ · F n ) Ωj∫Ω jφ i dV= R n Ω jV Ωjn v(Ωj )(4.142)Apply<strong>in</strong>g <strong>the</strong> same procedure to <strong>the</strong> first term <strong>of</strong> equation 4.139 leads to:∑∫LL 0 i (U n ) Ωj= A n Ω jFk n ∇φ k · ∇φ i dVk|k∈ΩΩ j j= − 1 n d(A n Ω jR n Ω j)· S i|Ωj (4.143)These two operators are <strong>the</strong>refore equivalent to <strong>the</strong> ones encountered <strong>in</strong> <strong>the</strong> cell–vertexf<strong>in</strong>ite volume discretisation (see equation 4.121). The scal<strong>in</strong>g for <strong>the</strong> nodal volume doesnot appear explicitly <strong>in</strong> this derivation but it is taken <strong>in</strong>to account <strong>in</strong> <strong>the</strong> mass matrix.A more complete study <strong>of</strong> numerical schemes available <strong>in</strong> AVBP can be found from<strong>the</strong> Chapter 5 <strong>of</strong> Lamarque [76] <strong>the</strong>sis.It has a computational cost <strong>of</strong> approximately 2.5 times Lax–Wendr<strong>of</strong>f (which isslightly less than <strong>the</strong> three–step Runge-Kutta). Achiev<strong>in</strong>g higher order <strong>in</strong> space is par-1 For bil<strong>in</strong>ear and tril<strong>in</strong>ear elements (quads, hexahedra and pyramids for example) <strong>the</strong> gradient <strong>of</strong> <strong>the</strong>shape function over <strong>the</strong> element is no more constant. This difficulty is overcome by add<strong>in</strong>g a correctionto <strong>the</strong> residual computed as for l<strong>in</strong>ear element.99


4. <strong>Numerical</strong> simulation and LES modelsticularly useful for three–dimensional, unsteady simulations s<strong>in</strong>ce it provides a muchbetter accuracy on meshes already used for second–order simulations.Diffusion termsThe Navier–Stokes equations, species and model equations <strong>in</strong>clude diffusion terms whichhave <strong>the</strong> general form:∂u∂t= ∇.(ν∇u) (4.144)The diffusion term on <strong>the</strong> right-hand side <strong>of</strong> equation 4.144 can be discretised <strong>in</strong> manyways. The AVBP code uses two different discretisation <strong>of</strong> <strong>the</strong> diffusion term: a 4△operator for <strong>the</strong> diffusion by lam<strong>in</strong>ar diffusivity and a 2△ operator for <strong>the</strong> diffusion byturbulent diffusivity. As <strong>the</strong> AVBP code is a f<strong>in</strong>ite volume/f<strong>in</strong>ite element solver, It waschosen to consider only f<strong>in</strong>ite volume (FV) or f<strong>in</strong>ite element (FE) discretisations <strong>of</strong> <strong>the</strong>diffusion operator. More details related to <strong>the</strong> operators are found <strong>in</strong> <strong>the</strong> handbook<strong>of</strong> AVBP [10]. The left–hand side (LHS) <strong>of</strong> 4.144 can be discretised <strong>in</strong> a FV or FEmanner. If a FV convection scheme like <strong>the</strong> Lax-Wendr<strong>of</strong>f(LW) scheme is used, <strong>the</strong> LHSis discretised by <strong>the</strong> mass lumped matrix. The RHS operator is <strong>the</strong>n simply divided byV i :u n+1i− u n i∆t= 1 V i∇.(ν∇u) | i(4.145)If it is associated to a FE scheme TTGC, <strong>the</strong> mass matrix is applied to <strong>the</strong> operator:u n+1i− u n i∆t= ( M −1 ∇.(ν∇u) ) | i(4.146)It is important to remark that a FV or FE convection schemes can be associated withany FV or FE diffusion scheme.4.2.7 Artificial ViscosityThe numerical discretisation methods <strong>in</strong> AVBP are spatially centered. These types <strong>of</strong>schemes are known to be naturally subject to small–scale oscillations <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong>steep solution variations. It is a common practice to add artificial viscosity (AV) termto <strong>the</strong> discrete equations to avoid spurious modes and <strong>in</strong> order to smooth very stronggradients. we describe here <strong>the</strong> different artificial viscosity methods used <strong>in</strong> AVBP. Thedifferent artificial viscosity models which are used <strong>in</strong> this work are characterized by <strong>the</strong>l<strong>in</strong>ear preserv<strong>in</strong>g property which leartificial viscosityes unmodified a l<strong>in</strong>ear solution onany type <strong>of</strong> element. The models are based on a comb<strong>in</strong>ation <strong>of</strong> a “shock captur<strong>in</strong>g”term(called 2 nd order artificial viscosity) and a background dissipation term (called 4 th orderartificial viscosity). In AVBP, add<strong>in</strong>g artificial viscosity is done <strong>in</strong> two steps. Initial asensor detects if artificial viscosity is necessary, as a function <strong>of</strong> <strong>the</strong> given flow characteristics.Then a certa<strong>in</strong> amount <strong>of</strong> 2 nd and 4 th artificial viscosity is applied, depend<strong>in</strong>g100


4.2. <strong>Numerical</strong> methodon <strong>the</strong> sensor value and on user–def<strong>in</strong>ed parameters.SensorsA sensor ζ Ωj is a scaled parameter which is def<strong>in</strong>ed for every cell Ω j <strong>of</strong> <strong>the</strong> doma<strong>in</strong> thattakes values from zero to one. ζ Ωj = 0 means that <strong>the</strong> solution is well resolved andthat no artificial viscosity should be applied while ζ Ωj = 1 signifies that <strong>the</strong> solutionhas strong local variations and that artificial viscosity must be applied. This sensoris obta<strong>in</strong>ed by compar<strong>in</strong>g different evaluations (on different stencils) <strong>of</strong> <strong>the</strong> gradient <strong>of</strong>a given scalar (pressure, total energy, mass fractions, etc. ). If <strong>the</strong>se gradients areidentical, <strong>the</strong>n <strong>the</strong> solution is locally l<strong>in</strong>ear and <strong>the</strong> sensor is zero. On <strong>the</strong> contrary, if<strong>the</strong>se two estimations are different, local non–l<strong>in</strong>earities are present, and <strong>the</strong> sensor isactivated. The key po<strong>in</strong>t is to f<strong>in</strong>d a suitable sensor–function that is non–zero only atplaces where stability problems occur. Two sensors <strong>in</strong> AVBP which are used <strong>in</strong> thiswork are “Jameson-sensor”ζΩ J jfrom Jameson et al [69] and <strong>the</strong> “Col<strong>in</strong>–sensor”ζΩ C jfromCol<strong>in</strong> [18].Jameson cell sensorFor every cell Ω j , <strong>the</strong> Jameson cell–sensor ζ J Ω jis <strong>the</strong> maximum over all cell vertices <strong>of</strong><strong>the</strong> Jameson vertex-sensor ζ k :ζ J Ω j= maxk∈Ω jζ J k (4.147)The Jameson vertex–sensor for scalar quantity, for pressure P is :ζ J k = | ∆ k 1 − ∆k 2 || ∆ k 1 | + | ∆k 2 | + | P k |(4.148)where <strong>the</strong> ∆ k 1 and ∆k 2functions are def<strong>in</strong>ed as:(∆ k 1 = P Ωj − P k ∆ k 2 = ⃗∇P)k · (⃗x )Ωj − ⃗x k(4.149)where a(k subscript)denotes cell–vertex values while Ω j is <strong>the</strong> subscript for cell–averagedvalues. ⃗∇P is <strong>the</strong> gradient <strong>of</strong> P at node k as computed <strong>in</strong> AVBP. k ∆k 1 measures <strong>the</strong>variation <strong>of</strong> p <strong>in</strong>side <strong>the</strong> cell Ω j (us<strong>in</strong>g only quantities def<strong>in</strong>ed on this cell). ∆ k 2 is anestimation <strong>of</strong> <strong>the</strong> same variation but on a wider stencil (us<strong>in</strong>g all <strong>the</strong> neighbour<strong>in</strong>g cell<strong>of</strong> <strong>the</strong> node k).The Col<strong>in</strong> sensorThe Jameson sensor is smooth and was <strong>in</strong>itially derived for steady-state computations.But for most unsteady turbulent computations it is however necessary to have a sharpersensor, which is very small when <strong>the</strong> flow is sufficiently resolved, and which is nearly101


4. <strong>Numerical</strong> simulation and LES modelsmaximum when a certa<strong>in</strong> level <strong>of</strong> non–l<strong>in</strong>earities occurs. The exact def<strong>in</strong>ition <strong>of</strong> <strong>the</strong>Col<strong>in</strong> sensor is:ζΩ C j= 1 ( ( )) Ψ − Ψ01 + tanh− 1 ( ( )) −Ψ01 + tanh2δ 2 δ(4.150)with(∆ k )Ψ = max 0,k∈Ω j | ∆ k ζkJ | +ǫ 1 P k( )= | ∆ k 1 − ∆ k 2 | −ǫ k max | ∆ k 1 |, | ∆ k 2 |(ǫ k max ( | ∆ k 1= ǫ 2 1 − ǫ |, | ∆k 2 |))2| ∆ k 1 | + | ∆k 2 | +P k∆ k(4.151)(4.152)(4.153)The numerical values used <strong>in</strong> AVBP areΨ 0 = 2 × 10 −2 δ = 1 × 10 −2 ǫ 1 = 1 × 10 −2 ǫ 2 = 0.95 ǫ 3 = 0.5 (4.154)The operatorsThere are two artificial viscosity operators <strong>in</strong> AVBP: a 2 nd order operator and a 4 th orderoperator. The 2 nd order operator acts like a “classical”viscosity. It smoo<strong>the</strong>s gradients,and <strong>in</strong>troduces artificial dissipation. It is thus associated to a sensor which determ<strong>in</strong>eswhere it must be applied. Do<strong>in</strong>g this, <strong>the</strong> numerical scheme keeps its order <strong>of</strong> convergence<strong>in</strong> <strong>the</strong> zones where <strong>the</strong> sensor is <strong>in</strong>active, while ensur<strong>in</strong>g stability and robustness <strong>in</strong> <strong>the</strong>critical regions. It smooths any physical gradient. The 4 th order operator is a lesscommon operator. It acts as a bi–Laplacian and is used to control spurious high–frequency wiggles. The user-def<strong>in</strong>ed parameters smu2 for 2 nd order operator and smu4for 4 th order operator are selected before <strong>the</strong> start <strong>of</strong> simulation.The 2 nd order operatorA cell contribution <strong>of</strong> <strong>the</strong> 2 nd order artificial viscosity is first computed on each vertex<strong>of</strong> <strong>the</strong> cell Ω j :R k∈Ωj = − 1 N vV Ωj∆t Ωjsmu2 ζ Ωj(wΩj − w k)The nodal residual is <strong>the</strong>n found by add<strong>in</strong>g <strong>the</strong> surround<strong>in</strong>g cells contributions:(4.155)dw k = ∑ jR k∈Ωj (4.156)For example, on a 1D uniform mesh, <strong>of</strong> mesh size ∆x, and for ζ Ωj = ζ:dw k = − smu22ζ ∆x∆t (w k−1 − 2w k + w k+1 ) (4.157)102


4.2. <strong>Numerical</strong> methodwhich can be <strong>in</strong>terpreted as:dw k = −ν AV ∫(∆ k,∆x w) dx (4.158)with:ν AV =smu2 ζ∆x22∆t=smu2 ζ∆x | u + c |2 CFLand∆ FDk,∆x w = w k−1 − 2w k + w k+1∆x 2 (4.159)where ∆ FDk,∆xis exactly <strong>the</strong> classical FD Laplacian operator evaluated at k and <strong>of</strong> size∆x. This shows that ν AV can be seen as an artificial viscosity (it has <strong>the</strong> same units asa physical viscosity), which is controlled by <strong>the</strong> user–def<strong>in</strong>ed non-dimensional parametersmu2.The 4 th order operatorThe technique used for <strong>the</strong> 4 th order operator is identical to <strong>the</strong> technique <strong>of</strong> <strong>the</strong> 2 ndorder operator. A cell contribution is first computed on each vertex:R k∈Ωj = − 1 [V Ωj(⃗∇w )smu4 · (⃗x ) ( ) ]Ωj − ⃗x k − wΩj − w k (4.160)N v ∆t Ωj Ω jThe nodal value is <strong>the</strong>n found by add<strong>in</strong>g every surround<strong>in</strong>g cells contributions:dw k = ∑ jR k∈Ωj (4.161)For example, on a 1D uniform mesh, <strong>of</strong> mesh size ∆x, this yields:R k∈Ωleft = smu4 [( (∆x 1 wk − w k−22 ∆t 2 2 ∆x−smu4 [( )]∆x wk−1 + w k− w k2 ∆t 2R k∈Ωright = smu4 [( (∆x 1 wk+1 − w k−12 ∆t 2 2 ∆x−smu4 [( )]∆x wk + w k+1− w k2 ∆t 2Add<strong>in</strong>g <strong>the</strong>se two contributions delivers:+ w ))k+1 − w k−1·2 ∆x+ w ))k+2 − w k·2 ∆x( )] −∆x2(4.162)( )] −∆x2(4.163)dw k = smu4 ∆x16∆t (w k−2 − 4w k−1 + 6w k − 4w k+1 + w k+2 ) (4.164)103


4. <strong>Numerical</strong> simulation and LES modelswhich can be <strong>in</strong>terpreted:withκ AV =dw k = κ AV ∫ (∆∆FDk,∆x w ) dx (4.165)smu4 ∆x416 ∆t= smu4 ∆x3 | u + c |16 CFLand∆∆ FDk,∆x w = w k−2 − 4w k−1 + 6w k − 4w k+1 + w k+2∆x 4 (4.166)where ∆∆ FDk,∆xis exactly <strong>the</strong> classical FD bi-Laplacian operator evaluated at k and <strong>of</strong>size ∆x. This shows that κ AV can be seen as an artificial 4 th order hyper–viscosity,which is controlled by <strong>the</strong> user–dened non–dimensional parameter smu4.Artificial viscosity modelIn “Col<strong>in</strong>”model, three sensors are used <strong>in</strong> conjunction. The first one is based on totalenergy, <strong>the</strong> second one is based on species densities, and <strong>the</strong> last one is <strong>the</strong> maximum <strong>of</strong><strong>the</strong> two previous.ζE COL = ζΩ C j(ρE) , ζYCOL = maxk=1,neqs ζC Ω j(ρ k ) , and ζmax COL = max ( ζECOL,ζYCOL)(4.167)The sensor used <strong>in</strong> <strong>the</strong> 2 nd order operator is also <strong>the</strong> maximum sensor ζ COLmax . The 2nd and4 th order operators are <strong>the</strong>n applied on each species. This model is particularly dedicatedto LES <strong>of</strong> reactive flows. The lack <strong>of</strong> 4 th order artificial viscosity on momentum allowsto keep many small scale structures, while damp<strong>in</strong>g <strong>the</strong> wiggles on energy and species.Schönfeld–Lartigue–Kaufmann (SLK model) is an improvement <strong>of</strong> <strong>the</strong> “Col<strong>in</strong>”model.It is noticed that apply<strong>in</strong>g no 4 th order artificial viscosity at all on momentum can yetlead to non–negligible wiggles <strong>in</strong> some cases (<strong>of</strong>ten depend<strong>in</strong>g on <strong>the</strong> quality <strong>of</strong> <strong>the</strong> mesh)and this had to be avoided. This new “SLK”model is very similar to <strong>the</strong> “Col<strong>in</strong>”model,except that <strong>in</strong>stead <strong>of</strong> sett<strong>in</strong>g <strong>the</strong> modified 4 th order coefficient to zero for momentumequation, it is set to 10% <strong>of</strong> <strong>the</strong> value used for <strong>the</strong> o<strong>the</strong>r equations. This model is verywell suited for computations on poor quality meshes that exhibit velocity wiggles with<strong>the</strong> standard “Col<strong>in</strong>”model. Col<strong>in</strong> and SLK model are used <strong>in</strong> <strong>the</strong> present work. Values<strong>of</strong> <strong>the</strong> user def<strong>in</strong>ed parameters smu2 and smu4 are given <strong>in</strong> next chapter along with <strong>the</strong>details <strong>of</strong> <strong>the</strong> test cases.4.3 Large Eddy SimulationThe LES can be considered as a midpo<strong>in</strong>t between <strong>the</strong> RANS approach <strong>in</strong> which all <strong>the</strong>turbulent scales are modeled and <strong>the</strong> DNS <strong>in</strong> which all <strong>the</strong> turbulent scales are com-104


4.4. Govern<strong>in</strong>g equations for LESputed. In a LES simulation, only <strong>the</strong> largest scales - <strong>the</strong> scales that conta<strong>in</strong> most <strong>of</strong><strong>the</strong> energy - are computed; <strong>the</strong> effect <strong>of</strong> <strong>the</strong> smallest scales are modeled. The smallestscales have a more predictable behaviour and should be easier to model. LES has beenhighly developed by <strong>the</strong> eng<strong>in</strong>eer<strong>in</strong>g computational fluid dynamics community s<strong>in</strong>ce its<strong>in</strong>ception <strong>in</strong> 1970. Large-eddy simulation (LES) resolves only <strong>the</strong> dynamically importantflow scales and models <strong>the</strong> effects <strong>of</strong> smaller scales whereas DNS resolves all flow scalesas mentioned <strong>in</strong> <strong>the</strong> section 2.4. Because <strong>of</strong> its high computational cost, usage <strong>of</strong> DNSis limited to simple flow configurations at low to moderate Reynolds numbers. LargeEddy Simulation(see Sagaut [137]) is nowadays recognized as immediate approach <strong>in</strong>comparisons to <strong>the</strong> more classical Reynolds Averaged Navier–Stokes (RANS) methodologies.LES gives access to <strong>the</strong> dom<strong>in</strong>ant unsteady motion so that it can be used tostudy <strong>aeroacoustic</strong>s, fluid-structure <strong><strong>in</strong>teraction</strong> or <strong>the</strong> control <strong>of</strong> turbulence by an appropriateunsteady forc<strong>in</strong>g. Much <strong>of</strong> <strong>the</strong> pioneer<strong>in</strong>g work on LES (e.g., Smagor<strong>in</strong>sky[149],Lilly [89], Deardorff [31]) was motivated by meteorological applications, and atmosphericboundary layers rema<strong>in</strong> a focus <strong>of</strong> LES activities (e.g., Mason [94]). The developmentand test<strong>in</strong>g <strong>of</strong> LES methodologies have focused primarily on isotropic turbulence (e.g.,Kraichnan [75], Chasnov [14]), and on fully-developed turbulent channel flow (e.g., Deardorff[30], Schumann [142], Mo<strong>in</strong> and Kim [101], Piomelli [108]). A primary goal <strong>of</strong> work<strong>in</strong> this area is to apply LES to flows <strong>in</strong> complex geometries that occur <strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>gapplications (e.g., Akselvoll and Mo<strong>in</strong> [3], Haworth and Jansen [62]). The derivation<strong>of</strong> <strong>the</strong> new govern<strong>in</strong>g equations is obta<strong>in</strong>ed by <strong>in</strong>troduc<strong>in</strong>g operators to be applied to<strong>the</strong> set <strong>of</strong> compressible Navier–Stokes equations. Unclosed terms arise from <strong>the</strong>se manipulationsand models need to be supplied for <strong>the</strong> problem to be solved. In LES, <strong>the</strong>operator employed <strong>in</strong> <strong>the</strong> derivation is a spatially localized filter <strong>of</strong> given size △ to beapplied to a s<strong>in</strong>gle realisation <strong>of</strong> <strong>the</strong> studied flow. Result<strong>in</strong>g from this “spatial average”isa separation between <strong>the</strong> large (greater than <strong>the</strong> filter size) and small (smallerthan <strong>the</strong> filter size) scales. The unclosed terms are <strong>in</strong> LES representative <strong>of</strong> <strong>the</strong> physicsassociated with <strong>the</strong> small structures (with high frequencies) present <strong>in</strong> <strong>the</strong> flow. Due to<strong>the</strong> filter<strong>in</strong>g approach, LES allows a dynamic representation <strong>of</strong> <strong>the</strong> large scale motionswhose contributions are critical <strong>in</strong> complex geometries. The LES predictions <strong>of</strong> complexturbulent flows are henceforth closer to <strong>the</strong> physics s<strong>in</strong>ce large scale phenomena such aslarge vortex shedd<strong>in</strong>g and acoustic waves are embedded <strong>in</strong> <strong>the</strong> set <strong>of</strong> govern<strong>in</strong>g equations(see Po<strong>in</strong>sot & Veynante [112]). The basic idea <strong>of</strong> LES is to resolve (large) grid scales(GS), and to model (small) sub grid-scales(SGS).4.4 Govern<strong>in</strong>g equations for LESThe test cases presented <strong>in</strong> this work will not be reactive and <strong>the</strong>refore this sectiondiscusses only <strong>the</strong> filtered equations solved by AVBP for a turbulent non–react<strong>in</strong>g flow.105


4. <strong>Numerical</strong> simulation and LES modelsWith this <strong>in</strong>tention, <strong>the</strong> filter<strong>in</strong>g procedure is presented <strong>in</strong> Subsection 4.4.1. Subsection4.4.2 describes <strong>the</strong> equations solved for LES <strong>of</strong> non–react<strong>in</strong>g flows. Then, <strong>the</strong>different terms <strong>of</strong> <strong>the</strong> flux tensor are presented. f<strong>in</strong>ally, different models <strong>of</strong> <strong>the</strong> subgridstress tensor available <strong>in</strong> AVBP are described.4.4.1 Filter<strong>in</strong>g procedureTo separate large and small scales, a low–pass (<strong>in</strong> wavenumber) filter, G △ , is applied to<strong>the</strong> equations <strong>of</strong> motion (see Leonard [83]). Ma<strong>the</strong>matically, it consists <strong>of</strong> a convolution<strong>of</strong> any quantity, f , with <strong>the</strong> filter function G △ :∫¯f = f(x ′ )G △ (x − x ′ )dx ′ (4.168)The result<strong>in</strong>g filtered quantity, ¯f, represents <strong>the</strong> large-scale structures <strong>of</strong> <strong>the</strong> flow whereasall <strong>the</strong> structures <strong>of</strong> size smaller than <strong>the</strong> filter length, △, are conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> residualfield, f ′ :f ′ = f − ¯f (4.169)To apply this filter<strong>in</strong>g procedure to <strong>the</strong> <strong>in</strong>stantaneous balance equations [112], <strong>the</strong> filterG △ (typical a box or a Gaussian filter [136]) must satisfy some properties which are:conservation <strong>of</strong> constants, l<strong>in</strong>earity and commutation with temporal and spatial derivatives.The latter is satisfied only for homogeneous filters (i.e., grid meshes). For <strong>the</strong>sake <strong>of</strong> simplicity, this property is assumed hereafter.For variable density ρ, a density-weighted filter ˜f (Favre [41] averag<strong>in</strong>g) is used, <strong>in</strong>order to avoid model<strong>in</strong>g <strong>of</strong> additional terms <strong>in</strong>troduced by density fluctuations:˜f = ρf¯ρ(4.170)4.4.2 Filter<strong>in</strong>g Navier–Stokes equations for non–react<strong>in</strong>g flowsThe balance equations (mass, momentum, energy and species) for large–eddy simulationsare obta<strong>in</strong>ed by filter<strong>in</strong>g <strong>the</strong> <strong>in</strong>stantaneous balance equations (see Po<strong>in</strong>sot &Veynante [112]):106∂¯ρũ i∂t∂¯ρE∂t∂ ¯ρ k Ỹ k∂t∂¯ρ∂t + ∂∂x j(¯ρũ i ) = 0 (4.171)+ ∂∂x j(¯ρũ i ũ j ) = − ∂∂x j[ ¯Pδij − ¯τ ij − ¯τ t ij+ ∂∂x j(¯ρEu j ) = − ∂∂x j[u i (Pδ ij − τ ij ) + ¯q j + ¯q t j+ ∂∂x j(¯ρỸkũ j)](4.172)]+ ¯˙ω T + ¯Q r (4.173)= − ∂ [ ¯Jj,k +∂x ¯J t ]j,k + ¯˙ω k (4.174)j


4.4. Govern<strong>in</strong>g equations for LESwhere ũ i , Ẽ i and Ỹk denote <strong>the</strong> filtered velocity vector, total energy per unit mass andspecies mass fractions, respectively. A repeated <strong>in</strong>dex implies summation over this <strong>in</strong>dex(E<strong>in</strong>ste<strong>in</strong>’s rule <strong>of</strong> summation). Note also that <strong>the</strong> <strong>in</strong>dex k is reserved for referr<strong>in</strong>g to<strong>the</strong> k th species and does not follow <strong>the</strong> summation rule (unless specifically mentioned).Writ<strong>in</strong>g <strong>the</strong> vector <strong>of</strong> <strong>the</strong> filtered conservative variables as follows:Ū = (¯ρũ, ¯ρṽ, ¯ρ ˜w, ¯ρẼ, ¯ρỸk), equations (4.173)-(4.174), can be expressed as:∂Ū∂t + ∇ · ¯F = ¯s (4.175)where ¯s is <strong>the</strong> filtered source term and ¯F is <strong>the</strong> flux tensor which can be divided <strong>in</strong> threeparts:with¯F = ¯F I + ¯F V + ¯F t (4.176)Inviscid terms :Viscous terms :Turbulent subgrid − scale terms :¯FI¯FV¯Ft= (¯fI ,ḡ I , ¯h I) T= (¯fV ,ḡ V , ¯h V ) T= (¯ft ,ḡ t , ¯h t) T(4.177)(4.178)(4.179)The cut-<strong>of</strong>f scale corresponds to <strong>the</strong> mesh size (implicit filter<strong>in</strong>g). As usually done, weassume that <strong>the</strong> filter operator and <strong>the</strong> partial derivative commute.4.4.3 Inviscid termsThe three spatial components <strong>of</strong> <strong>the</strong> <strong>in</strong>viscid flux tensor based on <strong>the</strong> filtered quantitiesare:⎛¯ρũ 2 + ¯P⎞¯ρũṽ¯fI =¯ρũ ˜w, (4.180)⎜⎝¯ρẼũ + Pu⎟⎠¯ρ k ũ⎛ ⎞¯ρũṽ¯ρṽ 2 + ¯Pḡ I =¯ρṽ ˜w, (4.181)⎜⎝¯ρẼṽ + Pv⎟⎠¯ρ k ṽ107


4. <strong>Numerical</strong> simulation and LES models⎛ ⎞¯ρũ ˜w¯ρṽ ˜w¯h I =¯ρ ˜w 2 + ¯P⎜⎝¯ρẼ ˜w + Pw⎟⎠¯ρ k ˜w(4.182)4.4.4 Filtered viscous termsThe components <strong>of</strong> <strong>the</strong> viscous flux tensor take <strong>the</strong> form:⎛−τ xx−τ xy¯F V =−τ xz, (4.183)⎜⎝−(uτ xx + vτ xy + wτ xz ) + q ⎟ x ⎠⎛J x,k−τ xy−τ yy−τ yzḠ V =, (4.184)⎜⎝−(uτ xy + vτ yy + wτ yz ) + q ⎟ y ⎠⎛J y,k−τ xz−τ yz−τ zz⎞⎞¯H V =⎜⎝−(uτ xz + vτ yz + wτ zz ) + q ⎟ z ⎠J z,k⎞(4.185)filter<strong>in</strong>g <strong>the</strong> balance equations leads to unclosed quantities which need to be modeled.The filtered diffusion terms are (see Po<strong>in</strong>sot & Veynante [112], Chapter 4):Lam<strong>in</strong>ar filtered stress tensor ˜τ ijτ ij = 2µ(S ij − 1 )3 δ ijS llapproximation : τ ij ≈ 2µ(˜S ij − 1 )3 δ ij ˜S ijwith : ˜Sij = 1 ( ∂ũj+ ∂ũ )i2 ∂x i ∂x j108(4.186)(4.187)(4.188)µ ≈ µ( ˜T) (4.189)


4.4. Govern<strong>in</strong>g equations for LESEquation 4.188 may also be written as:τ xx ≈ 2µ 3τ yy ≈ 2µ 3τ zz ≈ 2µ 3(2 ∂ũ∂x − ∂ṽ∂y − ∂ ˜w ) ( ∂ũ, τ xy ≈ µ∂z∂y + ∂ṽ )∂x(2 ∂ṽ∂y − ∂ũ∂x − ∂ ˜w ) ( ∂ũ, τ xz ≈ µ∂z∂z + ∂ ˜w )∂x)(2 ∂ ˜w∂z − ∂ũ∂x − ∂ṽ∂y), τ yz ≈ µ( ∂ṽ∂z + ∂ ˜w∂y(4.190)(4.191)(4.192)Diffusive species flux vector J i,kFor non–react<strong>in</strong>g flows:J i,kapproximation : J i,k ≈ −ρwith :Ṽ icD k(W k= −ρ D kW(=≈N∑k=1D kW kWD kW kW)∂X k− Y k Vic∂x i)∂ ˜X k−∂x ỸkṼici(4.193)(4.194)∂ ˜X k∂x i(4.195)µ¯ρSc k(4.196)Filtered heat flux q iq i = −λ ∂T∂x i+approximation : q i ≈ −λ ∂ ˜T∂x i+with : λ ≈µC p( ˜T)PrN∑J i,k h s,k (4.197)k=1N∑J i,k˜hs,k (4.198)k=1(4.199)These forms assume that <strong>the</strong> spatial variations <strong>of</strong> molecular diffusion fluxes are negligibleand can be modeled through simple gradient assumptions.Subgrid–scale turbulent termsThe three components <strong>of</strong> <strong>the</strong> turbulent subgrid-scale flux take <strong>the</strong> form:⎛F t =⎜⎝−τ xxt−τ xyt−τ xztq xtJ x,kt⎞⎛, G t =⎟ ⎜⎠ ⎝−τ xyt−τ yyt−τ yztq ytJ y,kt⎞⎛, H t =⎟ ⎜⎠ ⎝−τ xzt−τ yzt−τ zztq ztJ z,kt⎞⎟⎠(4.200)109


4. <strong>Numerical</strong> simulation and LES modelsAs highlighted above, filter<strong>in</strong>g <strong>the</strong> transport equations leads to a closure problem evidencedby <strong>the</strong> so called “subgrid-scale”(SGS) turbulent fluxes. For <strong>the</strong> system to besolved numerically, closures need to be supplied. Details on <strong>the</strong> closures are:The Reynolds tensor τ ijt= −ρ(ũ i u j − ũ i ũ j ) (4.201)(modeled as : τij t = 2ρν t˜S ij − 1 )3 δ ij ˜S ll (4.202)with : ˜Sij = 1 ( ∂ũi+ ∂ũ )j− 1 ∂ũ kδ ij (4.203)2 ∂x j ∂x i 3 ∂x kτ ijtIn equation 4.203, τ t ij is <strong>the</strong> SGS tensor, ν t is <strong>the</strong> SGS turbulent viscosity, and ˜S ij is <strong>the</strong>resolved stra<strong>in</strong> rate tensor. The model<strong>in</strong>g <strong>of</strong> ν t is expla<strong>in</strong>ed <strong>in</strong> section 4.4.5The subgrid scale diffusive species flux vector J t i,kmodeled as :with :J t i,kJ ijtṼ c,ti=)= ρ(ũi Y k − ũ i Ỹ k(= −ρN∑k=1D t k = ν tSc t kD t kW kW∂ ˜X k c,t− ỸkṼi∂x i)(4.204)(4.205)Dkt W k ∂ ˜X k(4.206)W ∂x i(4.207)The turbulent Schmidt number Sc t k= 1 is <strong>the</strong> same for all species and is fixed <strong>in</strong> <strong>the</strong>source code (like Pr t ). Note also that hav<strong>in</strong>g one turbulent Schmidt number for all <strong>the</strong>species does not imply, Ṽ c,ti= 0 because <strong>of</strong> <strong>the</strong> W kWThe subgrid scale heat flux vector q itterm <strong>in</strong> equation 4.206.q it)= ρ(ũi E − ũ i Ẽ(4.208)modeled as :q it= −λ ∂ ˜T∂x i+ ∑ kJ i,kt˜hs,k (4.209)4.4.5 Subgrid scale modelwith :λ t = µ tc PPr t (4.210)In <strong>the</strong> broader context <strong>of</strong> turbulence modell<strong>in</strong>g <strong>in</strong>clud<strong>in</strong>g LES, Pope[114] suggests fivecriteria: level <strong>of</strong> description, completeness, cost and ease <strong>of</strong> use, range <strong>of</strong> applicability110


4.4. Govern<strong>in</strong>g equations for LESand accuracy. One needs a subgrid model to model <strong>the</strong> turbulent scales which cannot beresolved by <strong>the</strong> grid and <strong>the</strong> discretisation. LES models are derived on <strong>the</strong> <strong>the</strong>oreticalground that <strong>the</strong> LES filter is spatially and temporally <strong>in</strong>variant. Variations <strong>in</strong> <strong>the</strong>filter size due to non-uniform meshes or mov<strong>in</strong>g meshes are not directly accounted for<strong>in</strong> <strong>the</strong> LES models. Change <strong>of</strong> cell topology is only accounted for through <strong>the</strong> use<strong>of</strong> <strong>the</strong> local cell volume, that is △ = 3√ V cell . The application <strong>of</strong> any spatial filter<strong>in</strong>goperation to <strong>the</strong> Navier Stokes equations here done implicitly through <strong>the</strong> numericalapproximation be<strong>in</strong>g tied to <strong>the</strong> cell size △ leads to <strong>the</strong> LES equations The filteredcompressible Navier–Stokes equations exhibit subgrid scale (SGS) tensors and vectorsdescrib<strong>in</strong>g <strong>the</strong> <strong><strong>in</strong>teraction</strong> between <strong>the</strong> non-resolved and resolved motions. The <strong>in</strong>fluence<strong>of</strong> <strong>the</strong> SGS on <strong>the</strong> resolved motion is taken <strong>in</strong>to account <strong>in</strong> AVBP by a SGS model basedon <strong>the</strong> <strong>in</strong>troduction <strong>of</strong> a turbulent viscosity ν t . Such an approach assumes <strong>the</strong> effect <strong>of</strong><strong>the</strong> SGS field on <strong>the</strong> resolved field to be purely dissipative. The previous hypo<strong>the</strong>sisis essentially valid with<strong>in</strong> <strong>the</strong> cascade <strong>the</strong>ory <strong>of</strong> turbulence. The notion <strong>of</strong> turbulentviscosity can <strong>the</strong>refore be <strong>in</strong>troduced and yields a general model for <strong>the</strong> SGS whichreadsτ ij t = −ρ(ũ i u j − ũ i ũ j ) (4.211)= 2 ρ ν t ˜Sij − 1 3 τ ll t δ ij (4.212)In <strong>the</strong> equation, τ t ij is <strong>the</strong> SGS tensor to be modelled, ν t is <strong>the</strong> SGS turbulent viscosity,ũ i is <strong>the</strong> Favre filtered velocity vector (compressible flows) and ˜S ij is <strong>the</strong> resolved stra<strong>in</strong>rate tensor. The models <strong>in</strong> AVBP differs only <strong>in</strong> <strong>the</strong> way <strong>the</strong> turbulent viscosity valueν t is calculated.4.4.6 Smagor<strong>in</strong>sky’s ModelThe Smagor<strong>in</strong>sky’s model [149] was developed <strong>in</strong> <strong>the</strong> sixties by Smagor<strong>in</strong>sky. An eddyviscosity was supposed to take <strong>in</strong>to account subgrid-scale dissipation through a Kolmogorovk −5/3 cascade. It was heavily tested for multiple flow configurations. Thisclosure has <strong>the</strong> particularly <strong>of</strong> supply<strong>in</strong>g <strong>the</strong> right amount <strong>of</strong> dissipation <strong>of</strong> k<strong>in</strong>etic energy<strong>in</strong> homogeneous isotropic turbulent flows. Smagor<strong>in</strong>sky’s eddy viscosity isν t = (C S △) 2 √2˜S ij ˜Sij (4.213)where △ denotes <strong>the</strong> filter characteristic length(i.e △ = 3√ △x△y△z), C S is <strong>the</strong> modelconstant set to 0.18 but can vary between 0.1 and 0.18 depend<strong>in</strong>g on <strong>the</strong> flow configuration.The constant C S may determ<strong>in</strong>ed <strong>in</strong> isotropic turbulence which was performedby Lilly [89]. In <strong>the</strong> Smagor<strong>in</strong>sky model, <strong>the</strong> coefficient C S appears only <strong>in</strong> <strong>the</strong> product,hence decreas<strong>in</strong>g △ is equivalent to decreas<strong>in</strong>g C S . Locality is however lost and only111


4. <strong>Numerical</strong> simulation and LES modelsglobal quantities are ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> this model. The Smagor<strong>in</strong>sky model is known asbe<strong>in</strong>g “too dissipative”<strong>in</strong> presence <strong>of</strong> a wall and transition<strong>in</strong>g flows are not suited for itsuse. More details can be found <strong>in</strong> Lesieur [86] and Sagaut [137].4.4.7 Dynamic Smagor<strong>in</strong>sky’s ModelThe dynamic model was proposed by Germano et al [49], with important modifications.It is constructed to determ<strong>in</strong>e “dynamically”<strong>of</strong> <strong>the</strong> Smagor<strong>in</strong>sky model constant C S as afunction <strong>of</strong> space and time. The extensions <strong>of</strong> this model were provided by Lilly [90] andMeneveau et al [98]. The dynamic procedure has been most successful <strong>in</strong> remedy<strong>in</strong>g <strong>the</strong>standard Smagor<strong>in</strong>sky model’s serious deficiencies <strong>in</strong> lam<strong>in</strong>ar flows, transitional flowsand <strong>in</strong> <strong>the</strong> viscous near–wall region. The start<strong>in</strong>g po<strong>in</strong>t for development <strong>of</strong> <strong>the</strong> dynamicmodel is a special case <strong>of</strong> <strong>the</strong> Germano identity [48], relat<strong>in</strong>g <strong>the</strong> Leonard stress to asimilar twice–filtered tensor and a second filter<strong>in</strong>g <strong>of</strong> <strong>the</strong> usual SGS tensor. For example,details <strong>of</strong> construction <strong>of</strong> dynamic models were detailed by Sagaut [137]. Here <strong>in</strong> thismodel, <strong>the</strong> eddy viscosity is given byν t = (C SD △) 2 √2˜S ij ˜S ij (4.214)where<strong>the</strong> tensors from <strong>the</strong> previous expression are given byCS 2 D= 1 M ij M ij(4.215)2 L ij L ijM ij = ˆ∆ 2 √2 < ˜S ij >< ˜S ij > L ij =< ũ i >< ũ j > − < ũ i ũ j > (4.216)L ij is called Germano’s identity. The terms on <strong>the</strong> right hand side have to be modeled.The “test”filter <strong>of</strong> characteristic length ˆ∆ equal to <strong>the</strong> cubic root <strong>of</strong> <strong>the</strong> volume is<strong>in</strong>troduced and def<strong>in</strong>ed by all <strong>the</strong> cells surround<strong>in</strong>g <strong>the</strong> cell <strong>of</strong> <strong>in</strong>terest. Clipp<strong>in</strong>g andsmooth<strong>in</strong>g ensures non negative values for C SD . It can be shown that <strong>the</strong> dynamicmodel gives a zero subgrid–scale stress at <strong>the</strong> wall, where L ij vanishes, which is a greatadvantage with respect to <strong>the</strong> orig<strong>in</strong>al Smagor<strong>in</strong>sky model; it also gives <strong>the</strong> properasymptotic behaviour near <strong>the</strong> wall [86]. Simulations with this dynamic model werediscussed by Lesieur and Métais [85].4.4.8 WALE ModelTo obta<strong>in</strong> <strong>the</strong> right scal<strong>in</strong>g for <strong>the</strong> turbulent viscosity when approach<strong>in</strong>g a solid boundary,<strong>the</strong> Van Driest damp<strong>in</strong>g function is <strong>of</strong>ten used [166]. A more elegant way is <strong>the</strong> WALE(Wall-Adapt<strong>in</strong>g Local Eddy-viscosity) proposed by Nicoud & Ducros [35, 104]. It is aneddy viscosity model based on <strong>the</strong> square <strong>of</strong> <strong>the</strong> velocity gradient tensor and accounts112


4.5. Boundary conditionsfor <strong>the</strong> effects <strong>of</strong> both <strong>the</strong> stra<strong>in</strong> and <strong>the</strong> rotation rate to obta<strong>in</strong> <strong>the</strong> local eddy-viscosity.It recovers <strong>the</strong> proper y 3 near-wall scal<strong>in</strong>g for <strong>the</strong> eddy-viscosity without requir<strong>in</strong>g adynamic procedure. They replace <strong>the</strong> characteristic filtered rate <strong>of</strong> stra<strong>in</strong> by a term thatdetects strong rates <strong>of</strong> deformation and/or rotation and not shear as <strong>in</strong> Smagor<strong>in</strong>skymodel.s d ij = 1 2(˜g2 ij + ˜g ji) 2 1 + kk δ ij( )3(4.217)s dν t = (C w △) 2 ij sd 2ij) 5 ( )52(˜Sij ˜Sij + s d ij sd 4ij(4.218)with ˜g ij 2 = ∂u i ∂u kwhere △ denotes <strong>the</strong> filter characteristic length (cubic-root <strong>of</strong> <strong>the</strong>∂x k ∂x jcell volume), Cw = 0.4929 is <strong>the</strong> model constant was calibrated numerically on isotropicdecay<strong>in</strong>g turbulence and ˜g ij denotes <strong>the</strong> resolved velocity gradient. This expression forν t allows for <strong>the</strong> right scal<strong>in</strong>g <strong>of</strong> turbulent viscosity when approach<strong>in</strong>g walls and also for<strong>the</strong> prediction <strong>of</strong> transition.4.5 Boundary conditionsBoundary conditions plays an important role <strong>in</strong> any numerical tool, and especially here<strong>in</strong> AVBP because <strong>of</strong> acoustics present <strong>in</strong> <strong>the</strong> govern<strong>in</strong>g equations (see Schöfeld & Rudgyard[140] and Po<strong>in</strong>sot & Veynante [111]). Large–eddy simulation requires <strong>the</strong> sett<strong>in</strong>g <strong>of</strong>boundary conditions to fully determ<strong>in</strong>e <strong>the</strong> system and obta<strong>in</strong> a ma<strong>the</strong>matically well–posed problem. LES conta<strong>in</strong>s a large number <strong>of</strong> degrees <strong>of</strong> freedom. So it needs a precisespace–time determ<strong>in</strong>istic representation <strong>of</strong> <strong>the</strong> solution at <strong>the</strong> computational doma<strong>in</strong>boundaries. Apply<strong>in</strong>g boundary conditions <strong>in</strong> AVBP is equivalent to f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> residualR on <strong>the</strong> boundaries. The residuals <strong>in</strong> AVBP are obta<strong>in</strong>ed us<strong>in</strong>g a Runge–Kuttamulti–step time <strong>in</strong>tegration. The derivation for a s<strong>in</strong>gle–step Runge-Kutta scheme isgiven below. In such a scheme <strong>the</strong> solution at time t + ∆t(U n+1 ) can be derived from<strong>the</strong> solution at time t us<strong>in</strong>g:U n+1 = U n − R∆t (4.219)Note that <strong>the</strong> code is explicit <strong>the</strong>refore only <strong>the</strong> solution <strong>in</strong>dexed n is used. For eachnode <strong>in</strong> <strong>the</strong> boundaries, a residual R computed by <strong>the</strong> scheme is corrected us<strong>in</strong>g <strong>the</strong>target values from <strong>the</strong> boundary conditions. The residuals can be corrected us<strong>in</strong>g twomethods:Non characteristic method : This method imposes directly <strong>the</strong> target conservativevariables us<strong>in</strong>g <strong>the</strong> residual. In most cases, this means simply replac<strong>in</strong>g <strong>the</strong> boundaryvalue predicted by <strong>the</strong> scheme by <strong>the</strong> target value.113


4. <strong>Numerical</strong> simulation and LES modelsUConservative fluxes <strong>in</strong>global basis (i,j,k)MM −1VPrimitive variablesR uΩ vΩ −1vL uV nPrimitive variables <strong>in</strong>normal basis (n,t 1,t 2)RLWCharacteristicvariablesFigure 4.3: Relation between different set <strong>of</strong> variables and <strong>in</strong>termediate matrices <strong>in</strong>volved<strong>in</strong> <strong>the</strong> wave decomposition process.Characteristic method : The correction is applied through <strong>the</strong> use <strong>of</strong> a wave decomposition.This method is called Navier–Stokes characteristic boundary condition(NSCBC)(seeMoureau et al [102] and Po<strong>in</strong>sot & Lele [113]). Here, no value isimposed directly to variables such as velocities or densities. Only waves amplitudesare specified.Characteristic conditions for Euler equations were first derived by Thompson [159, 160]<strong>the</strong> extension to Navier–Stokes equations is due to Po<strong>in</strong>sot & Lele [113]. In o<strong>the</strong>r words,compressible flows are characterised by waves whose physics is to be respected <strong>in</strong> numericalsimulations. Characteristic boundary conditions allows for <strong>the</strong> correct treatment<strong>of</strong> waves impact<strong>in</strong>g a boundary <strong>of</strong> <strong>the</strong> computational doma<strong>in</strong>. At run time, ei<strong>the</strong>r <strong>the</strong>widely used full residual or <strong>the</strong> normal approach is selected. In <strong>the</strong> normal approach,<strong>the</strong> characteristic boundary conditions are applied to <strong>the</strong> normal flux derivatives <strong>of</strong> <strong>the</strong>residual, which is <strong>in</strong> general more accurate and implies a decomposition <strong>of</strong> variations <strong>in</strong><strong>the</strong> conservative variables <strong>in</strong>to a set <strong>of</strong> <strong>in</strong>go<strong>in</strong>g and outgo<strong>in</strong>g waves. The correct formulation<strong>of</strong> <strong>the</strong> boundary conditions has been <strong>the</strong> subject <strong>of</strong> an extensive <strong><strong>in</strong>vestigation</strong>(referto Nicoud [103]).4.5.1 Build<strong>in</strong>g <strong>the</strong> characteristic boundary conditionThe Navier–Stokes equations which is written for a multigas flow have been discussedfor DNS <strong>in</strong> section 2.4and LES <strong>in</strong> section 4.4. To be able to apply boundary conditions,follow<strong>in</strong>g ma<strong>the</strong>matical operations becomes essential:114


4.5. Boundary conditions• all equations must be written <strong>in</strong> a reference frame l<strong>in</strong>ked to shape <strong>of</strong> <strong>the</strong> boundarysection. This section has a normal vector ⃗n and two tangential vectors ⃗t 1 and ⃗t 2 .• all equations must be written <strong>in</strong> characteristic variables, i.e. <strong>in</strong> variables such as∂W 1 = ∂u n + ∂P , ∂W 2 = ∂u n ..... etc., because <strong>the</strong>se are <strong>the</strong> only variablesρa ∞which are significant <strong>in</strong> terms <strong>of</strong> waves. There are many ways to perform thisand appendix <strong>of</strong> AVBP [10] describes <strong>the</strong> rout<strong>in</strong>e followed <strong>in</strong> AVBP. Basically,transformations start from conservative variables ∂U to primitive variables ∂V<strong>the</strong>n to primitive variables <strong>in</strong> ( )⃗n,⃗t 1 , ⃗t 2 ∂Vn and f<strong>in</strong>ally to characteristic variables∂W (see figure 4.3) that can be seen as waves carry<strong>in</strong>g <strong>in</strong>formation normally to<strong>the</strong> boundary.The derivation starts directly from <strong>the</strong> equation for V n .∂V n∂t + N ∂V n∂⃗n + T ∂V n ∂V n1 + T 2 + S = 0 (4.220)∂⃗t 1 ∂⃗t 2where V n = (u n ,u t1 ,u t1 ,P,ρ 1 ,....ρ N ) T is <strong>the</strong> primitive variable vector (N = 1 for as<strong>in</strong>gle species gas), assum<strong>in</strong>g that dX⃗n + dY ⃗t 1 + dZ⃗t 2 = d⃗n + d⃗t 1 + d⃗t 2 to simplify <strong>the</strong>notation. N represents <strong>the</strong> normal Jacobian, T 1 and T 2 <strong>the</strong> two tangential Jacobiansalong ⃗t 1 and ⃗t 2 . The S term sums all <strong>the</strong> contributions related to diffusion terms andchemical reactions. The pr<strong>in</strong>ciple <strong>of</strong> characteristic boundary conditions is to diagonalise<strong>the</strong> normal Jacobian N to write convection equations for characteristic variables W:∂W∂t + D∂W ∂⃗n = S W − T W (4.221)where D is <strong>the</strong> diagonal matrix conta<strong>in</strong><strong>in</strong>g <strong>the</strong> propagation velocity (eigen values <strong>of</strong> N)<strong>of</strong> <strong>the</strong> waves and S W − T W are <strong>the</strong> sum <strong>of</strong> all non-hyperbolic terms associated to <strong>the</strong>wave: reaction, diffusion and tangential terms.⎛⎞⃗u.⃗n + a ∞ 0 ... 0 ... 00 ⃗u.⃗n − a ∞ 0D =. ⃗u.⃗n .0 ⃗u.⃗n 0⎜. ⎝ ... ⎟ . ⎠0 0 ... 0 ... ⃗u.⃗n(4.222)Variations <strong>of</strong> characteristic variables ∂W can be obta<strong>in</strong>ed from variations <strong>of</strong> primitivevariables and vice versa, us<strong>in</strong>g L and R matrices (see figure 4.3):∂W = L∂V n , ∂V n = R∂W (4.223)115


4. <strong>Numerical</strong> simulation and LES modelsSimilar relations hold for <strong>the</strong> passage from variations <strong>of</strong> conservative variables ∂U tovariations <strong>of</strong> characteristic variables ∂W us<strong>in</strong>g L U and R U matrices:∂W = L U ∂U, ∂U = R U ∂W (4.224)The expressions <strong>of</strong> <strong>the</strong> variations <strong>of</strong> characteristic variables <strong>in</strong> terms <strong>of</strong> primitive variablesare recalled :⎛⎛ ⎞∂W 1 ∂u n + 1 ⎞∂Pρa ∞ ∂W 2−∂u n + 1∂P∂W 3ρa ∞ =∂u⎜⎝ ∂W 4 ⎟t1⎠⎜ ∂u t2∂W 4+k ⎝− Y ⎟⎠ka 2 ∂P + ∂ρ k∞(4.225)The first two characteristic variations represent acoustic disturbances, <strong>the</strong> third and <strong>the</strong>fourth are related to variations <strong>in</strong> shear velocity and <strong>the</strong> ∂W 4+k correspond to chemicalspecies k. The associated propagation velocities are:⎛ ⎞ ⎛ ⎞λ 1 u n + a ∞λ 2u n − a ∞λ 3=u n⎜⎝ λ 4 ⎟ ⎜⎠ ⎝ u ⎟ n ⎠λ 4+kThe so called entropy wave can be recast by summ<strong>in</strong>g all <strong>the</strong> species waves as:∂W S =N∑k=1u n(4.226)∂W 4+k = − 1a 2 ∂P + ∂ρ (4.227)∞Some important <strong>in</strong>verse relations useful for <strong>the</strong> imposition <strong>of</strong> <strong>the</strong> <strong>in</strong>com<strong>in</strong>g waves from<strong>the</strong> outgo<strong>in</strong>g ones are recalled:∂u n = 1 (∂W 1 − ∂W 2) (4.228)2∂u t1 = ∂W 3 (4.229)∂u t2 = ∂W 4 (4.230)∂u = 1 2 n x(∂W 1 − ∂W 2) + t 1x ∂W 3 + t 2x ∂W 4 (4.231)∂v =1 2 n (y ∂W 1 − ∂W 2) + t 1y ∂W 3 + t 2y ∂W 4 (4.232)∂w = 1 2 n x(∂W 1 − ∂W 2) + t 1z ∂W 3 + t 2z ∂W 4 (4.233)116


4.5. Boundary conditions∂P = 1 2 ρa ∞(∂W 1 + ∂W 2) (4.234)∂ρ k = ρ k(∂W 1 + ∂W 2) + ∂W 4+k (4.235)2a ∞ρ (∂ρ = ∂W 1 + ∂W 2) + ∂W S (4.236)2a ∞∂Y k = 1 (∂W 4+k − Y k ∂W S) (4.237)ρ( )∂r =1 ∑r k ∂W 4+k − r∂W S (4.238)ρk∂T = βT2a ∞(∂W 1 + ∂W 2) − ∑ jr j Tρr ∂W 4+j (4.239)∂ρu = ρ(u + a ∞n x )∂W 1 + ρ(u − a ∞n x )∂W 2 +2a ∞ 2a ∞ρt 1x ∂W 3 + ρt 2x ∂W 4 + u∂W S (4.240)∂ρv = ρ(u + a ∞n y )∂W 1 + ρ(u − a ∞n y )∂W 2 +2a ∞ 2a ∞ρt 1y ∂W 3 + ρt 2y ∂W 4 + v∂W S (4.241)∂ρw = ρ(w + a ∞n z )∂W 1 + ρ(u − a ∞n z )∂W 2 +2a ∞ 2a ∞ρt 1z ∂W 3 + ρt 2z ∂W 4 + w∂W S (4.242)It is important to understand :• <strong>the</strong> deal<strong>in</strong>g with variations <strong>of</strong> characteristic variables (obta<strong>in</strong>ed by variations <strong>of</strong>conserved or primitive variables). The choice <strong>of</strong> calculat<strong>in</strong>g <strong>the</strong>se variatiosn has tobe done on <strong>the</strong> ∂W variables. In <strong>the</strong> follow<strong>in</strong>g sections <strong>the</strong> two approaches: <strong>the</strong>spatial form and <strong>the</strong> temporal form are discussed.• ∂W described here correspond exactly to strength variables <strong>in</strong> <strong>the</strong> AVBP cod<strong>in</strong>g.• relations 4.229 to 4.242 are used for all boundary condition formulations <strong>in</strong> AVBPto prescribe <strong>in</strong>com<strong>in</strong>g waves. As expla<strong>in</strong>ed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g sections, only <strong>the</strong> <strong>the</strong>evaluation <strong>of</strong> <strong>the</strong> wave amplitudes from <strong>the</strong> predicted values <strong>of</strong> U depends on <strong>the</strong>formulation chosen.It should be noted that strength(4) is always <strong>the</strong> acoustic <strong>in</strong>com<strong>in</strong>g wave (i.e. ∂W 1for <strong>in</strong>flows and ∂W 2 for outflows) s<strong>in</strong>ce it follows <strong>the</strong> sign <strong>of</strong> <strong>the</strong> vector normal to <strong>the</strong>boundary which, <strong>in</strong> AVBP, po<strong>in</strong>ts always <strong>in</strong>ward.The procedure <strong>of</strong> Boundary Condition treatment <strong>in</strong> AVBP is summarised <strong>in</strong> figure4.4.117


4. <strong>Numerical</strong> simulation and LES modelsPredicted valuesPrediction <strong>of</strong> <strong>the</strong>numerical schemestrength p = strength p = strength p =L Uλ ∂U ∂n LU(Rp − R p t ) L UR pcompute wavesamplitudeR <strong>in</strong>,PBC= RU · strength(<strong>in</strong>)Pcontribution <strong>of</strong> “wrong”<strong>in</strong>com<strong>in</strong>g wavesBoundary ConditionsINLET WAVE UVW T YINLET RELAX UVW T YOUTLET RELAX PSpecify <strong>in</strong>com<strong>in</strong>g vsoutgo<strong>in</strong>g wavesSame approach for allformulationsR <strong>in</strong>,CBC= RU · strength(<strong>in</strong>)CRedistribute corrected<strong>in</strong>com<strong>in</strong>g waves toresidualsU n+1 = U n − ∆t(R P BC − R <strong>in</strong>,PBC+ R<strong>in</strong>,C BC + RP U)Apply correctedresiduals to advance<strong>the</strong> solution <strong>in</strong> timeFigure 4.4: Scheme <strong>of</strong> <strong>the</strong> global procedure for characteristic boundary conditions fromStaffelbach [155].The explicit time advancement scheme <strong>of</strong> AVBP leads to <strong>the</strong> predicted value U n+1pred :∂U = U n+1pred − Un = −R P ∆t (4.243)The total residual R P can be split <strong>in</strong>to two parts :∂U = −∆t ( R P BC + R P )U(4.244)R P BC is <strong>the</strong> residual part which will be modified by <strong>the</strong> BC treatment and RP U <strong>the</strong>part which will be left unchanged. The objective <strong>of</strong> <strong>the</strong> BC treatment is to construct<strong>the</strong> f<strong>in</strong>al value <strong>of</strong> U at time n + 1 : U n+1U n+1 = U n − ∆t ( R P BC + R P )U(4.245)where R C BC is <strong>the</strong> part <strong>of</strong> <strong>the</strong> residual which has been corrected us<strong>in</strong>g RP U , Un , <strong>the</strong>type <strong>of</strong> BC and <strong>the</strong> target values. The correction is made <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g way:118R C BC = R P BC − R <strong>in</strong>,PBC + R<strong>in</strong>,C BC(4.246)


4.5. Boundary conditionsi.e. by substitut<strong>in</strong>g <strong>the</strong> contribution on <strong>the</strong> residuals <strong>of</strong> <strong>the</strong> predicted “wrong”<strong>in</strong>com<strong>in</strong>gwaves R <strong>in</strong>,PBCby <strong>the</strong>ir correct values given by <strong>the</strong> boundary condition R<strong>in</strong>,CBC . A fundamentalissue is to choose <strong>the</strong> residual part to update R P BC. There are two ma<strong>in</strong> methods<strong>in</strong> AVBP to update R P BCl<strong>in</strong>ked to <strong>the</strong> spatial and temporal formulation described <strong>in</strong><strong>the</strong> next sections. O<strong>the</strong>r ways to choose <strong>the</strong> part <strong>of</strong> update do exist, us<strong>in</strong>g:• <strong>the</strong> advection terms <strong>of</strong> <strong>the</strong> bi-characteristic equations (from Hirsch [66]).• a Fourier decomposition <strong>of</strong> <strong>the</strong> solution at <strong>the</strong> boundary (from Giles [51]).• viscous and react<strong>in</strong>g terms (see Su<strong>the</strong>rland [157]).• a decomposition between <strong>the</strong> convective and <strong>the</strong> acoustic part to build <strong>the</strong> waves(fromProsser [116, 117]These topics are not be presented here. More details and comparisons between all <strong>the</strong>semethods can be found <strong>in</strong> Nicoud & Po<strong>in</strong>sot [105] and <strong>in</strong> <strong>the</strong> AVBP handbook [10].4.5.2 Spatial formulationIn <strong>the</strong> spatial formulation, which is <strong>the</strong> <strong>in</strong>itial form <strong>of</strong> <strong>the</strong> Navier–Stokes characteristicboundary condition method from Po<strong>in</strong>sot & Lele [113], <strong>the</strong> ∂W are def<strong>in</strong>ed from spatialgradients:∂W = strength = −λ ∂W ∆t (4.247)∂nwhere λ is a vector conta<strong>in</strong><strong>in</strong>g <strong>the</strong> eigenvalues <strong>of</strong> <strong>the</strong> normal Jacobian, i.e. <strong>the</strong> propagationspeed <strong>of</strong> <strong>the</strong> waves. This means that <strong>the</strong> variations <strong>of</strong> characteristic variables <strong>in</strong> <strong>the</strong>spatial formulation are proportional to normal spatial gradients <strong>of</strong> variables. Follow<strong>in</strong>g<strong>the</strong> development by Po<strong>in</strong>sot & Lele [113] we can <strong>in</strong>troduce <strong>the</strong> L notation:L = λ ∂W∂n(4.248)More <strong>in</strong>formations on Navier–Stokes characteristic boundary condition and on <strong>the</strong> equivalencewith <strong>the</strong> ∂W notation can be found <strong>in</strong> <strong>the</strong> AVBP handbook [10]. To build <strong>the</strong>boundary condition, variations <strong>of</strong> characteristic variables ∂W must be obta<strong>in</strong>ed fromresiduals. The computations <strong>of</strong> <strong>the</strong> strength from <strong>the</strong> residuals R P is <strong>the</strong>n performedus<strong>in</strong>g <strong>the</strong> normal residual approach. This corresponds to <strong>the</strong> Navier–Stokes characteristicboundary condition formulation from Po<strong>in</strong>sot & Lele [113] <strong>in</strong> which spatial derivativesnormal to <strong>the</strong> boundary are used to update R P BC . To do this, <strong>the</strong> residual RP must besplit <strong>in</strong> two parts :R P =R P n + R P t + R P Diffusion}{{}+ RP Chemistry} {{ }normal part non normal part(4.249)119


4. <strong>Numerical</strong> simulation and LES modelsThe Navier–Stokes characteristic boundary condition method assumes that only <strong>the</strong>normal part must be updated :R P BC = R P n (4.250)while <strong>the</strong> non normal part is unchanged:R P U = R P t + R P Diffusion + RP Chemistry (4.251)Therefore, variations <strong>of</strong> conservative variables l<strong>in</strong>ked to <strong>the</strong> normal residual can be writtenas∂U = −R P n ∆t (4.252)The normal part <strong>of</strong> <strong>the</strong> residuals can be def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g way:R P n = N U∂U∂n(4.253)where N U = A U n x + B U n y + C U n z z is <strong>the</strong> normal Jacobian <strong>in</strong> conservative variables.With wave decomposition from Handbook <strong>of</strong> AVBP [10], N U is:N U = R U DL U (4.254)where, as usual, D is <strong>the</strong> eigenvalues diagonal matrix. The values <strong>of</strong> predicted strengthare obta<strong>in</strong>ed by :strength P ∂U= ∂W = −L U ∂U = −L U R U DL U∂n ∆t = −L ∂UUλ i ∆t (4.255)∂nCharacteristic variables variations are <strong>the</strong>refore calculated us<strong>in</strong>g spatial normal derivates<strong>of</strong> conserved variables. The boundary condition are applied to impose <strong>the</strong> <strong>in</strong>go<strong>in</strong>g wavesstrength(<strong>in</strong>) C and <strong>the</strong> solution is projected back to <strong>the</strong> residuals accord<strong>in</strong>g to equation4.246:()R C BC = R P BC − R<strong>in</strong>,P BC + R<strong>in</strong>,C BC(4.256)where:∆tR P BC∆tR <strong>in</strong>,PBC∆tR <strong>in</strong>,CBC= R U strength P= R U strength(<strong>in</strong>) P= R U strength(<strong>in</strong>) CThe f<strong>in</strong>al value for U n+1 is <strong>the</strong>n :U n+1 = U n − ∆tR C BC − ∆t [ R P t + R P Diffusion + ]RP Chemistry(4.257)120


4.5. Boundary conditionsNote that this method does not enforce strictly <strong>the</strong> value <strong>of</strong> U n on <strong>the</strong> boundary s<strong>in</strong>ce<strong>the</strong> tangential, viscous and chemical terms are not accounted for when assess<strong>in</strong>g <strong>the</strong>corrected value <strong>of</strong> <strong>the</strong> <strong>in</strong>com<strong>in</strong>g waves.Col<strong>in</strong> [18] developed an alternative method for calculat<strong>in</strong>g <strong>the</strong> normal part <strong>of</strong> <strong>the</strong>residuals (iwave = 3). The idea is to subtract <strong>the</strong> transverse part <strong>of</strong> <strong>the</strong> residual from<strong>the</strong> total residual.R P BC − R P n = R P − R P t (4.258)This transverse residual R P t can be calculated on <strong>the</strong> boundary us<strong>in</strong>g <strong>the</strong> “complete”centerednumerical scheme. On <strong>the</strong> contrary, gradients normal to <strong>the</strong> wall used for iwave = 1,are calculated with a “truncated”and less precise scheme, s<strong>in</strong>ce, on <strong>the</strong> boundary, wehave access only to cells <strong>in</strong>side <strong>the</strong> doma<strong>in</strong>.4.5.3 Temporal formulationComput<strong>in</strong>g spatial derivatives as <strong>in</strong> <strong>the</strong> spatial form can be difficult. An alternativesolution is to use time variations to evaluate R P BC: <strong>in</strong> <strong>the</strong> temporal formulation orig<strong>in</strong>ally<strong>in</strong>troduced by Thompson [159], <strong>the</strong> ∂W are def<strong>in</strong>ed as∂W = ∂W ∂t∆t = strength (4.259)Characteristic variables variations are <strong>the</strong>n calculated as a temporal variation (not atemporal derivative) <strong>of</strong> primitive (or conserved) variables. The computation <strong>of</strong> <strong>the</strong>variations <strong>of</strong> characteristic variables strength from <strong>the</strong> residuals R P is <strong>the</strong>n performedus<strong>in</strong>g <strong>the</strong> full residual approach. In this case <strong>the</strong> total residual R P is used for R P BC sothat R P U= 0 <strong>in</strong> equation 4.244 The predicted variations <strong>in</strong> conservative variables are∂U = −R P ∆t (4.260)where R P is <strong>the</strong> actual residual calculated by AVBP before <strong>the</strong> application <strong>of</strong> boundaryconditions. This means that only time changes are used to compute waves and <strong>the</strong>re is noneed for normal spatial gradients. Now predicted variations <strong>of</strong> characteristic variablescan be computed from <strong>the</strong> variations <strong>of</strong> conservative variables us<strong>in</strong>g <strong>the</strong> left passagematrix L U .strength P = ∂W = L U ∂U = −L U R P ∆t (4.261)All waves go<strong>in</strong>g out <strong>of</strong> <strong>the</strong> doma<strong>in</strong> are left unchanged <strong>in</strong> strength P while corrected<strong>in</strong>com<strong>in</strong>g waves strength(<strong>in</strong>) C are computed us<strong>in</strong>g <strong>the</strong> relations not detailed here butfound <strong>in</strong> <strong>the</strong> AVBP handbook. Hav<strong>in</strong>g modified strength(<strong>in</strong>) P , <strong>the</strong> corrected R C BC isobta<strong>in</strong>ed, as for <strong>the</strong> spatial formulation, by :R C BC = R P BC − R <strong>in</strong>,PBC + R<strong>in</strong>,C BC(4.262)121


4. <strong>Numerical</strong> simulation and LES modelsPatches Location Boundary condition1 Inlet at left INLET RELAX UVW T Y2 Top portion WALL WAVE SLIP ADIAB3 Outlet at right OUTLET RELAX P4 Walls at bottom WALL WAVE NOSLIP ADIABTable 4.2: Boundary conditions.where:∆tR P BC∆tR <strong>in</strong>,PBC∆tR <strong>in</strong>,CBC= R U strength P= R U strength(<strong>in</strong>) P= R U strength(<strong>in</strong>) Cand U n+1 can f<strong>in</strong>ally be obta<strong>in</strong>ed by equation 4.245:U n+1 = U n − R C BC∆t (4.263)Boundary conditionsBecause <strong>of</strong> <strong>the</strong> wide range <strong>of</strong> applications <strong>of</strong> AVBP, variety <strong>of</strong> boundary conditions areavailable <strong>in</strong> AVBP. Boundary conditions which are used this work are given here <strong>in</strong> <strong>the</strong>table 4.2. Derivation, implementation are discussed <strong>in</strong> this section.4.5.4 No–Slip ConditionsThe presence <strong>of</strong> solid wall <strong>in</strong>hibits growth <strong>of</strong> small scales and modifies <strong>the</strong> turbulencedynamics <strong>in</strong> several ways. When a fluid flow over a solid surface, <strong>the</strong> layer next to<strong>the</strong> surface may come attached to it. This is called <strong>the</strong> ‘no–slip condition’. In mostreferences concerned with fluid mechanics, <strong>the</strong> only boundary condition discussed is <strong>the</strong>no–slip condition. This condition is <strong>the</strong> analog <strong>of</strong> <strong>the</strong> constitutive relations and <strong>the</strong>reforeonly holds when at least one material is a Navier–Stokes fluid. The no–slip boundarycondition demands that <strong>the</strong> velocity component tangential to <strong>the</strong> wall be <strong>the</strong> same as <strong>the</strong>tangential velocity <strong>of</strong> <strong>the</strong> wall. If <strong>the</strong> wall is at rest relative, <strong>the</strong>n <strong>the</strong> no–slip conditiondemands <strong>the</strong> tangential flow velocity be identically zero at <strong>the</strong> surface. The no–slipconditions are normally ignored when <strong>the</strong> <strong>in</strong>viscid approximation is made.WALL WAVE NOSLIP ADIABThis no–slip adiabatic wall boundary condition imposes zero velocity on <strong>the</strong> wall througha characteristic treatment <strong>of</strong> <strong>the</strong> acoustic and <strong>the</strong> shear waves (strength(4),strength(2)and strength(3)) such as <strong>the</strong> one used with INLET WAVE UVW T Y. o<strong>the</strong>r waves are left122


4.5. Boundary conditionsunchanged. It also imposes a zero heat flux and species mass flux through <strong>the</strong> wall. TheVon Neumann conditions are applied <strong>in</strong> a weak way. The “weak”part <strong>of</strong> <strong>the</strong> boundarycondition expresses that <strong>the</strong> temperature, pressure and <strong>the</strong> species gradients normal to<strong>the</strong> wall are zero. In <strong>the</strong> “characteristic”part we let <strong>the</strong> scheme predict every variable,except for <strong>the</strong> velocity which must be corrected. Hence <strong>in</strong> terms <strong>of</strong> wave:strength(4) = strength(5) + 2(U t n − U n)strength(2) =U t t1 − U t1strength(3) = U t t2 − U t2 (4.264)(4.265)WALL WAVE NOSLIP ISOTThis no–slip iso<strong>the</strong>rmal wall boundary condition imposes both zero velocity and prescribedtemperature on <strong>the</strong> wall through a characteristic treatment <strong>of</strong> <strong>the</strong> acoustic, shearand species waves ( strength(4), strength(2), strength(3) and strength(5+k)) suchas <strong>the</strong> one used with INLET WAVE UVW T Y. Hence:strength(4) = strength(5) + 2(U t n − U n )strength(2) =U t t1 − U t1strength(3) = U t t2 − U t2 (4.266)strength(5 + k) =strength(1) =Y k strength(1)ρβ [strength(5) + (Uta n − U n ) ] − ρ(T t − T)∞ T tS<strong>in</strong>ce species are not imposed on walls (target values = predicted values) species contributionsare neglected.4.5.5 InletIn AVBP, a variety <strong>of</strong> <strong>in</strong>let boundary conditions (<strong>in</strong>troduc<strong>in</strong>g an acoustic excitation,turbulent perturbation, supersonic) are available. But <strong>in</strong>let conditions relevant to <strong>the</strong>simulation are discussed <strong>in</strong> detail here. The table 4.3 gives <strong>the</strong> correspondance between<strong>the</strong> notation used <strong>in</strong> derviation and <strong>in</strong> AVBP.INLET WAVE UVW T YThis <strong>in</strong>let characteristic boundary condition allows to impose <strong>the</strong> velocity components,<strong>the</strong> static temperature and <strong>the</strong> mass fraction at an <strong>in</strong>let <strong>in</strong> a strong way. The <strong>in</strong>go<strong>in</strong>gwaves are computed from <strong>the</strong> knowledge <strong>of</strong> <strong>the</strong> outgo<strong>in</strong>g waves and <strong>of</strong> <strong>the</strong> current state<strong>in</strong> such a way that velocity and temperature are properly imposed. The set <strong>of</strong> equations123


4. <strong>Numerical</strong> simulation and LES modelsInflow boundaryType Way AVBP <strong>in</strong> derivations [103]acoustic wave out strength(5) ∂W 2entropy wave <strong>in</strong> strength(1) ∂W stransverse shear <strong>in</strong> strength(2) ∂W 3transverse shear <strong>in</strong> strength(3) ∂W 4acoustic wave <strong>in</strong> strength(4) ∂W 1species waves <strong>in</strong> strength(5 + k) ∂W 4+kTable 4.3: Inflow boundary : Correspondence between <strong>the</strong> ∂W notation and <strong>the</strong>strength array <strong>in</strong> <strong>the</strong> AVBP implementation (<strong>in</strong> 3D)correspond<strong>in</strong>g to this boundary condition is thus :∂u = 0, ∂v = 0, ∂w = 0,∂T = 0, and ∂Y k = 0 (4.267)For an <strong>in</strong>let, it is necessary to impose values for <strong>the</strong> <strong>in</strong>com<strong>in</strong>g acoustic wave, <strong>the</strong> two shearwaves (<strong>in</strong> 3D) and all <strong>the</strong> species waves. S<strong>in</strong>ce, as expla<strong>in</strong>ed before, <strong>the</strong> ∂W notation isemployed for both spatial and temporal formulations to prescribe <strong>in</strong>com<strong>in</strong>g waves, <strong>the</strong>derivation <strong>of</strong> all boundary conditions will be made with this notation. Moreover, someh<strong>in</strong>ts on <strong>the</strong> actual cod<strong>in</strong>g are added. The <strong>in</strong>com<strong>in</strong>g acoustic wave can be derived∂W 1 = ∂W 2 + 2∂u (4.268)Us<strong>in</strong>g equations 4.268, 4.238 and 4.239 can be rewritten to give <strong>the</strong> entropy wave∂W S = − ρ∂TT+ ρβ (∂W 2 + ∂u ) − ρ ∂r (4.269)a ∞ rIn AVBP, <strong>the</strong> variations <strong>of</strong> <strong>the</strong> characteristic variables are called strength. The values<strong>of</strong> <strong>the</strong>se variables are <strong>the</strong> same as ∂W but <strong>the</strong> number<strong>in</strong>g is different. Note that <strong>the</strong><strong>in</strong>com<strong>in</strong>g acoustic wave is always strength(4) s<strong>in</strong>ce it is related to <strong>the</strong> boundary normalwhich, <strong>in</strong> AVBP, is always <strong>in</strong>ternal. Accord<strong>in</strong>g to this change <strong>of</strong> variables and torelations 4.267, waves should be written as:124strength(4) = strength(5)strength(2) = 0strength(3) = 0 (4.270)strength(5 + k) = 0strength(1) =ρβ strength(5)a ∞


4.5. Boundary conditionsVelocity, temperature and species mass fractions should not change. To avoid drifts <strong>of</strong>imposed values, <strong>the</strong> variations <strong>of</strong> <strong>the</strong>se variables are added. For example ∂u is approximatedby <strong>the</strong> difference between <strong>the</strong> target value <strong>of</strong> <strong>the</strong> velocity and its actual value.The boundary condition is f<strong>in</strong>ally written:strength(4) = strength(5) + 2 ( Un t − U )nstrength(2) = U t t1 − U t1strength(3) = Ut2 t − U t2 (4.271)strength(5 + k) = ρ ( Yk t − Y )kstrength(1) =ρβ [ ( )]strength(5) + Ut T t − Ta n − U n − ρ∞ T t− ∑ kρW ( Yk t − Y )kW kTo recast <strong>the</strong> last term <strong>of</strong> equation 4.269 as done <strong>in</strong> <strong>the</strong> actual cod<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>gexpression is used:∑r k ∂Y k = ∑kkrWW k∂Y k = ∂r (4.272)INLET RELAX UVW T YThis characteristic boundary condition INLET RELAX UVW T Y imposed at <strong>the</strong> <strong>in</strong>let <strong>of</strong>any doma<strong>in</strong> with relax<strong>in</strong>g co-efficients for velocity components, temperature, and species.The purely non reflect<strong>in</strong>g condition should impose no <strong>in</strong>com<strong>in</strong>g wave at all, which means:strength(2) = 0strength(3) = 0strength(4) = 0andstrength(5 + k) = 0 (4.273)However, to keep <strong>the</strong> mean <strong>in</strong>let variables (U n , U t1 , U t2 , T and Y k ) under control (around<strong>the</strong> target values Un, t Ut1 t , Ut t2 , T t and Yk t ), <strong>the</strong> condition is written <strong>in</strong> a different way:by specify<strong>in</strong>g <strong>the</strong> <strong>in</strong>go<strong>in</strong>g waves to relax every variable toward its target:strength(4) = 2K Un ∆t(U t n − U n)strength(2) = K Ut ∆t(U t t1 − U t1)strength(3) = K Ut ∆t(U t t2 − U t2) (4.274)strength(5 + k) = ρK Y ∆t(Y tk − Y k)strength(1) = −ρK T ∆t (T t − T)T125


4. <strong>Numerical</strong> simulation and LES modelsOutflow boundaryType Way AVBP <strong>in</strong> derivations [103]acoustic wave out strength(4) ∂W 2entropy wave <strong>in</strong> strength(1) ∂W stransverse shear <strong>in</strong> strength(2) ∂W 3transverse shear <strong>in</strong> strength(3) ∂W 4acoustic wave <strong>in</strong> strength(5) ∂W 1species waves <strong>in</strong> strength(5 + k) ∂W 4+kTable 4.4: Outflow boundary : Correspondence between <strong>the</strong> ∂W notation and <strong>the</strong>strength array <strong>in</strong> <strong>the</strong> AVBP implementation (<strong>in</strong> 3D)Each relaxation coefficient, K i which is homogeneous to a frequency, allows <strong>the</strong> boundarycondition to act as a high frequency filter, with a cut frequency <strong>of</strong> <strong>the</strong> order <strong>of</strong> K i .Therefore,it is possible to keep <strong>the</strong> mean <strong>in</strong>let variables around <strong>the</strong>ir target values andat <strong>the</strong> same time let <strong>the</strong> high frequency waves leave <strong>the</strong> doma<strong>in</strong>. Choos<strong>in</strong>g values forK i requires a priori evaluation which is described by Selle et al. [143] and few tests. Itshould be noted when <strong>the</strong> relax coefficient is <strong>in</strong>creased, INLET RELAX UVW T Y will behavelike INLET WAVE UVW T Y. For all relaxed <strong>in</strong>let boundary conditions, <strong>the</strong> entropy waveis calculated reta<strong>in</strong><strong>in</strong>g only <strong>the</strong> contribution <strong>of</strong> temperature. This is an approximationthat can be accepted, s<strong>in</strong>ce a “s<strong>of</strong>t”boundary condition is dealt, allow<strong>in</strong>g <strong>the</strong> fluctuation<strong>of</strong> boundary values.4.5.6 OutletOutlet boundary conditions followed <strong>in</strong> <strong>the</strong> simulation are discussed <strong>in</strong> detail here. Similarto <strong>the</strong> table from section4.5.5, <strong>the</strong> table 4.4 gives <strong>the</strong> correspondance between <strong>the</strong>notation used <strong>in</strong> derviation and <strong>in</strong> AVBP.OUTLET WAVE PThis characteristic outlet boundary condtion OUTLET WAVE P allows to impose <strong>the</strong> staticpressure at an outlet <strong>in</strong> a strong way. This means that <strong>the</strong> <strong>in</strong>go<strong>in</strong>g wave is computedfrom <strong>the</strong> knowledge <strong>of</strong> <strong>the</strong> outgo<strong>in</strong>g waves and <strong>of</strong> <strong>the</strong> current state <strong>in</strong> such a way that<strong>the</strong> pressure is properly imposed. This outlet condition imposes no pressure variationon <strong>the</strong> boundary condition:∂P = 0 (4.275)This purely reflect<strong>in</strong>g condition should be recast <strong>in</strong>to:126strength(4) = strength(5) (4.276)


4.5. Boundary conditionsbut to avoid pressure drifts, <strong>the</strong> condition is corrected :strength(4) = strength(5) + 2ρa ∞(P t P) (4.277)This ensures that P rema<strong>in</strong>s exactly equal to target pressure P t .OUTLET RELAX PThe static pressure is imposed at an outlet <strong>in</strong> a s<strong>of</strong>t way <strong>in</strong> OUTLET RELAX P characteristicoutlet boundary condition. The OUTLET WAVE P boundary condition are perfectlyreflect<strong>in</strong>g, and thus do not allow <strong>the</strong> acoustic energy to leave <strong>the</strong> computational doma<strong>in</strong>,which may lead to an accumulation <strong>of</strong> energy <strong>in</strong> <strong>the</strong> doma<strong>in</strong> and to a non–physicalbehaviour. OUTLET RELAX P boundary condition impose quantities <strong>in</strong> a partially non–reflect<strong>in</strong>g way. The amount <strong>of</strong> reflection is controlled by <strong>the</strong> “relax”coefficient. A relaxequal to zero leads to a perfectly non–reflect<strong>in</strong>g boundary condition while large valueslead to nearly reflect<strong>in</strong>g boundary condition. The maximum value allowed for <strong>the</strong> relaxis 1 . With this maximum value, <strong>the</strong>RELAX boundary conditon acts as <strong>the</strong> WAVE boundarycondition. Above this value, <strong>the</strong> boundary condition is unstable∆t(over-relaxation).The first “relaxed”boundary condition is a subsonic outlet boundary where pressure isimposed but with a non–reflect<strong>in</strong>g condition. This is achieved by impos<strong>in</strong>g a relaxationon <strong>the</strong> strength(4) wave. A perfectly non–reflect<strong>in</strong>g boundary condition wouldbe strength(4) = 0. However this formulation can be shown to be ill–posed (it leads topressure drift, as no <strong>in</strong>formation is provided from <strong>the</strong> outside, (more details <strong>in</strong> Po<strong>in</strong>sot&Veynante [112]).strength(4) = 2 K P ∆t (P t − P n )ρa ∞(4.278)The K P parameter is <strong>the</strong> so–called “Pressure Relax”coefficient. This coefficient has <strong>the</strong>same unit as a pulsation (s −1 ) . It allows <strong>the</strong> boundary condition to act as a high1frequency filter, with a cut–<strong>of</strong>f frequency <strong>of</strong> <strong>the</strong> order <strong>of</strong> K P . is thus a roughestimation <strong>of</strong> <strong>the</strong> relaxation time (<strong>the</strong> time needed to move from P n to P t ). WhenK P = 0, this formula gives a perfectly non–reflect<strong>in</strong>g boundary condition. The <strong>in</strong>com<strong>in</strong>gwave is <strong>in</strong>dependent <strong>of</strong> <strong>the</strong> outgo<strong>in</strong>g wave, which is <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> a non–reflect<strong>in</strong>gboundary condition. Choos<strong>in</strong>g a value <strong>of</strong> K P is equivalent to choos<strong>in</strong>g a reflect<strong>in</strong>gcoefficient R. Selle et al [143] have derived <strong>the</strong> follow<strong>in</strong>g relation between R and K P :K PR = R K − 11 − i 2ωK P(4.279)F<strong>in</strong>ally, relation 4.278 is imposed only if <strong>the</strong> local Mach number is less than unity.127


4. <strong>Numerical</strong> simulation and LES modelsOUTLET R RELAX PThe classical outlet boundary condition OUTLET R RELAX P can be easily extended to apartially reflect<strong>in</strong>g characteristic boundary condition. By writ<strong>in</strong>gstrength(4) = 2 K P ∆t (P t − P n )ρa ∞−strength(5) · R K (4.280)a constant reflection coefficient <strong>of</strong> magnitude R K is imposed <strong>in</strong> <strong>the</strong> frequency rangewhere <strong>the</strong> classical relax outlet is non–reflect<strong>in</strong>g. Then <strong>the</strong> reflection coefficient is:4.6 ConclusionR = −R K + R K − 11 − i 2ωK P(4.281)The spatial discretisation, numerical schemes Lax–Wendr<strong>of</strong>f and TTGC were discussedalong with <strong>the</strong> artificial viscosity <strong>in</strong> this chapter. Govern<strong>in</strong>g equations, filter<strong>in</strong>g procedure,turbulence models were given <strong>in</strong> detail for <strong>the</strong> large eddy simulation. Thecharacteristic boundary conditions handled <strong>in</strong> AVBP solver were slso expla<strong>in</strong>ed elaborately.With <strong>the</strong> solver, few simulations are conducted to simulate <strong>the</strong> cavity flow and<strong>the</strong> results are analysed <strong>in</strong> <strong>the</strong> next chapter.128


Chapter 5Analysis <strong>of</strong> <strong>the</strong> cavity flowsContents5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365.2 Two–dimensional cavity . . . . . . . . . . . . . . . . . . . . . 1365.3 Three–dimensional rectangular cavity . . . . . . . . . . . . . 1615.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164Résumé étendu en françaisAnalyse des écoulements cavitésDans les écoulements compressibles à faibles nombres de Mach (subsoniques), l’amplitudedes perturbations acoustiques est d’un ou deux ordres de grandeurs plus faibles queles amplitudes des <strong>in</strong>stabilités ou des fluctuations d’orig<strong>in</strong>e hydrodynamique. Ceci expliquequ’en général les outils (numériques, expérimentaux) pour déterm<strong>in</strong>er les champsmoyens et fluctuants et les perturbations acoustiques soient différents. A<strong>in</strong>si dans cechapitre, l’écoulement est résolu à l’aide de simulations numériques de grandes échelles(LES) alors que le champ de pression acoustique <strong>in</strong>stationnaire est déterm<strong>in</strong>é par l’analogieacoustique de Lighthill-Curle.Sont présentés successivement, l’étude numérique des écoulements de cavité bidimensionnelspuis tridimensionnels et l’étude aéroacoustique. Une conclusion clotûre cechapitre. Notons que l’étude 3D, <strong>in</strong>complète, a juste pour objectif de montrer la limitationde l’étude 2D.129


5. Analysis <strong>of</strong> <strong>the</strong> cavity flowsEcoulement de cavité 2DPrésentation des cas tests et du calculLa géométrie de la cavité et le doma<strong>in</strong>e de calcul sont décrits sur la figure 5.1 etdans le tableau 5.1. Le rapport d’aspect de la cavité est L/D = 4. Le maillage estdess<strong>in</strong>é en partie sur la figure 5.2 et est composé d’environ 225 000 po<strong>in</strong>ts. Le maillagecorrespondant à la cavité est de 221 × 121 cellules. Des maillages plus grossiers ont ététestés mais il s’avère que la complexité de la dynamique de l’écoulement, avec l’apparitionde très forts cisaillements ou gradients aux vois<strong>in</strong>ages des parois de la cavité ou desparois horizontales amont et aval, a nécessité une densification des mailles et donc unaccroissement de po<strong>in</strong>ts dans ces zones. La première maille dans l’écoulement est fixée àune distance d’environ y + = 2 des parois. Il n’existe pas de zone tampon pour amortir les<strong>in</strong>stabilités qui pourraient apparaître sur les frontières ouvertes du doma<strong>in</strong>e de calcul. Lesdifférents problèmes numériques rencontrés associés à une sous déf<strong>in</strong>ition du maillage, àdes <strong>in</strong>stabilités numériques, à un manque de précision dans le calcul des forts gradients etau choix des conditions aux limites avec des réflections d’ondes non physiques ne serontpas développés en détail dans le document, bien qu’ayant pris une part très importantedu temps de travail.Les équations modèles utilisées (LES) et toutes les méthodes numériques employéespar le code AVBP, qui est notre outil de base, ont déjà été décrites avec précision dansles chapitres précécents.Le tableau 5.2 rappelle les paramètres numériques importants des simulationsassociés aux 3 pr<strong>in</strong>cipaux cas tests nommés U20, U40 and U5.8. Le nombre dans le nom<strong>in</strong>dique la vitesse <strong>in</strong>f<strong>in</strong>i amont du cas en m/s.Rappelons que les conditions à l’entrée du doma<strong>in</strong>e ne comportent pas de champfluctuant turbulent. Seulement le pr<strong>of</strong>il moyen d’une couche limite turbulente est prescrit,correspondant à une épaisseur de quantité de mouvement θ fixée par les cas tests,tout en sachant que le rapport entre cette épaisseur θ et la pr<strong>of</strong>ondeur et la longueur dela cavité joue un rôle crucial dans la dynamique de l’écoulement et dans la générationdu bruit. Le dernier cas test à basse vitesse correspond à des paramètres très proche desexpériences de Haigermoser [60] qui a participé au programme AeroTraNet à Tur<strong>in</strong> (voirles paramètres dans le tableau 5.5). La forte épaisseur relative de la couche limite parrapport à la hauteur de la cavité est illustrée, pour le premier cas test U20, par la figure5.3 (δ/D = 2.2). Pour les deux premiers cas tests, le pr<strong>of</strong>il moyen turbulent est fournipar une loi en puissance alors que dans le dernier cas test, nous avons <strong>in</strong>troduit unpr<strong>of</strong>il de couche limite en équilibre, calculé très précisement par l’approche asymptotiquedécrite dans le troisième chapitre.Des conditions aux limites de type caractéristiques sont <strong>in</strong>troduites sur les frontièresdu doma<strong>in</strong>e, hors paroi avec des paramètres de relaxation pour éviter les <strong>in</strong>fluences non130


physiques des quantités entrantes et sortantes. Les conditions sont décrites dans lechapitre précédent, mais les conditions et les paramètres, pour respectivement les deuxpremiers cas et le dernier cas tests, sont fournis dans les tableaux 5.6 et 5.7.Evolution de la couche limiteNaturellement, avant d’atte<strong>in</strong>dre la cavité (x/D ≤ 5), l’écoulement se comporte commeune couche limite turbulente. Nous avons donc chercher à qualifier cette couche limite.Pour les deux cas où la vitesse <strong>in</strong>f<strong>in</strong>ie amont est de 5.8 m/s et de 20m/s, sontreprésentés respectivement le pr<strong>of</strong>il de vitesse adimesnionnelle u + dans cette région del’écoulement sur les figures 5.4 et 5.5. Des comparaisons ont eu lieu avec des pr<strong>of</strong>ils decouche limite en équilibre dans des conditions équivalentes (même nombres de ReynoldsRe τ et Re θ ). Il s’avère, comme on pouvait s’y attendre, qu’en dehors de la couche <strong>in</strong>terne,la couche limite produite par l’écoulement n’est pas une couche limite turbulenteen équilibre. On le remarque en particulier sur les valeurs de la vitesse adimensionnelleu + e largement sous évaluées par le modèle asymptotique. Les différences entre lessolutions asymptotiques et les solutions numériques s’accroissent avec la vitesse <strong>in</strong>f<strong>in</strong>ieamont. L’existence de la cavité modifie aussi le gradient de pression longitud<strong>in</strong>al dansla couche limite amont, l’<strong>in</strong>fluence est négligable pour un mode de cisaillement et plusimportante pour un mode de sillage. Ceci semble se confirmer en observant l’évolutionde la contra<strong>in</strong>te de frottement pariétale pour le cas U5.8 (figure 5.8). La contra<strong>in</strong>te τ wdécroît normalement avec la distance longitud<strong>in</strong>ale, puis semble ’diverger’ au vois<strong>in</strong>agedu début de la cavité.Des comparaisons avec la couche limite aval à la cavité ne sont pas possibles carcelle-ci est fortement décollée et <strong>in</strong>stationnaire.Ecoulement autour et dans la cavitéL’écoulement dans la cavité est fortement <strong>in</strong>stationnaire, mais devient périodique aprèsun certa<strong>in</strong> temps, comme l’atteste les figures 5.9, 5.10 où sont montrées les évolutionstemporelles des deux composantes de la vitesse (u,v) en fonction d’un temps adimensionnelbasé sur la pr<strong>of</strong>ondeur D de la cavité et la vitesse <strong>in</strong>f<strong>in</strong>ie amont. Les po<strong>in</strong>tsde mesure se trouvent répartis longitud<strong>in</strong>alement juste au-dessus du niveau de la cavité.Les comportements sont similaires pour les deux cas U20 et U40 bien que les phénomènessoient toujours accentués lorsque la vitesse augmente. A<strong>in</strong>si la vitesse u est parfairementpériodique après une certa<strong>in</strong> temps T ∗ On observe des pics importants réguliers sur lavitesse verticale au vois<strong>in</strong>age du co<strong>in</strong> aval de la cavité. Ils représentent les signatures desstructures tourbillonnaires de fortes <strong>in</strong>tensités qui impactent le co<strong>in</strong> aval tout en sortantde la cavité. Pour ces deux cas ce sont typiquement des modes de sillage 2D (wake mode)qui apparaissent. Cela semble en accord avec les travaux de Rowley [133] où l’<strong>in</strong>fluencede la valeur relative de l’épaisseur de quantité de mouvement θ/L est l’un des deux131


5. Analysis <strong>of</strong> <strong>the</strong> cavity flowsparamètres déterm<strong>in</strong>ant (le second est le nombre de Mach). Pour la cas à faible vitesse(figure 5.11 ), l’évolution temporelle de la vorticité ω z montre une périodicité dans ladynamique de l’écoulement arrivant beaucoup plus tôt. On remarque que la vorticitédemeure négative, comme dans une couche limite, au po<strong>in</strong>t notée 3 sur la figure, ce qui<strong>in</strong>dique l’absence d’un décollement. La vorticié positive sur la paroi verticale aval dela cavité <strong>in</strong>dique l’existence de décollements, de cisaillements forts et la naissance d’untourbillon contrarotatif. Enf<strong>in</strong> pour le po<strong>in</strong>t de mesure situé à la limite verticale de lacavité et proche de la partie aval, on observe que la vorticité est essentiellement négativetout en ayant des très faibles valeurs positives, ce qui <strong>in</strong>dique l’existence d’un mode decisaillement, contrairement au cas à plus grandes vitesses. Les courbes ne semblent pasmontrer de changement de mode (de cisaillement vers le mode de sillage ou <strong>in</strong>versement)au cours du calcul, et pour les trois cas tests, comme cela est parfois observé danscerta<strong>in</strong>es simulations.Sur la Figure 5.12 est présentée l’évolution de la vorticité <strong>in</strong>stannée ω z au cours d’unepériode et pour le cas U40. Elle est typique du mode de sillage. Un tourbillon négatif seforme dès le début de la couche de cisaillement, sur le bord amont de la cavité, donnantnaturellement naissance à un second tourbillon de vorticité opposée au fond de la cavité.Le premier tourbillon capte de l’énergie au fluide, s’amplifie tout en étant convecté versl’aval. Il f<strong>in</strong>it par s’éclater sur le co<strong>in</strong> aval. On observe au cours du cycle des zones àtrès fort cisaillement dans la cavité, zones qui numériquement nécessite de la viscositéartificielle pour rester stable. Juste après le co<strong>in</strong> aval, le tourbillon positif <strong>in</strong>itialementdans la cavité est éjectée de celle-ci pour aller se mélanger avec le tourbillon négatif déjàéclaté, ce qui entraîne, sur la paroi aval, une très forte <strong>in</strong>stationnarité de la couche limiteet de forts décollements, suite au passage des différentes structures tourbillonnaires. Cesévolutions complexes vont générer du bruit, lorsqu’un tourbillon impacte le co<strong>in</strong> aval, etdes fortes augmentations de traînée à cause des décollements et des forts gradients depression favorables puis adverses qui apparaîssent cycliquement.La figure 5.13 présente la même vorticité au cours d’un cycle mais pour le cas àfaible vitesse U5.8. L’existence du mode de sillage est très visible, puisqu’on observeune sorte de langue de vorticité négative typique. La longeur d’onde des <strong>in</strong>stabilités(oscillations longitud<strong>in</strong>ales) est aussi visualisé. La dynamique tourbillonnaire est cettefois ci concentrée au vois<strong>in</strong>age de la paroi verticale aval. Essentiellement deux tourbillonsde signes opposés restent prisonniers de la cavité, tout en déstabilisant la couche decisaillement et en l’alimentant en vorticité positive. La vorticité positive est généréepar des <strong>in</strong>stabilités centrifuges <strong>in</strong>duites par la rotation forcèe du fluide. La couche decisaillement vient ensuite s’éclater sur la co<strong>in</strong> amont, mo<strong>in</strong>s vigoureusement que pour lescas à plus grande vitesse. Les zones de cisaillement dans la cavité semblent aussi mo<strong>in</strong>simportantes. En aval de la cavité, la couche limite reste attachée tout en convectant les<strong>in</strong>stabilités issues de la couche de cisaillement et énergétisées dans la cavité.132


Les figures 5.14(a) et 5.14(b) présentent les pr<strong>of</strong>ils de vitesse longitud<strong>in</strong>ale moyennedans trois sections de la cavité et pour les deux cas de vitesse aval U20 et respectivementU5.8. On observe pour tous les cas, les fortes variations de vitesses au se<strong>in</strong> de lacavité, <strong>in</strong>diquant une forte activité tourbillonnaire en moyenne, a<strong>in</strong>si qu’une zone oùcette activité est plus réduite, lorsque sur les courbes, la pente est autour de zéro. Onremarque que le cisaillement est naturellement beaucoup plus faible dans le cas de modede cisaillement que du mode de sillage.Une analyse spectrale a été menée dans le but de valider les résultats obtenues. Lessignaux sont mesurés au vois<strong>in</strong>age du co<strong>in</strong> aval de la cavité, là où les phénomènesphysiques sont les plus <strong>in</strong>tenses. Les spectres de l’énergie associée à la perturbationde vitesse longitud<strong>in</strong>ale, et pour les deux premiers cas de vitesse bien que relativementchaotiques, permettent de retrouver approximativement la pente en -5/3 pour leshautes fréquences. Deux pics, respectivement pour un nombre de Strouhal de 0.194 etde 0.205, et pour les cas U20 et respectivement U40, sont observables. Pour un cas testtrès similaire au cas U40, Larsson et al [80] ont reporté une fréquence fondamentalede St L = 0.245. Colonius et al [21] ont trouvé similairement St L = 0.248. Shieh &Morris [144] ont donné St L = 0.216 pour une cavité identique mais pour un nombre deMach M = 0.6 dans un écoulement turbulent.Les spectres des vitesses longitud<strong>in</strong>ales <strong>in</strong>stantannées, pour les mêmes cas et po<strong>in</strong>tssont tracés sur les figures 5.18 et 5.19. On observe plus disct<strong>in</strong>ctement la présence desmodes fondamentaux mais aussi l’existence d’harmoniques. Pour le cas à 40m/s il y aun signal à basse fréquence qui semble correspondre à une résonance acoustique de tube,associée à la longueur du doma<strong>in</strong>e de calcul.Les courbes iso-rms des fluctuations turbulentes√u ′2 et√u ′2 , pour le cas U5.8sont montrées respectivement sur les figures 5.21 et 5.22. On peut les comparer auxmesures expérimentales, les variances u ′ u ′ et v ′ v ′ , fournies par Haigermoser et al [61].On remarque que les zones de forte activité de la turbulence sont différentes entre lasimulation et les expériences, par contre les valeurs des <strong>in</strong>tensités sont très proches(attention à la rac<strong>in</strong>e carrée). Dans l’expérience l’activité est concentrée au vois<strong>in</strong>agedu co<strong>in</strong> aval de la cavité alors que dans la simulation, à part pour un pic sur le co<strong>in</strong>,l’activité turbulente est plus proche du fond de la cavité. F<strong>in</strong>alement un accord sur lesniveaux est obtenu malgré les énormes différences existantes entre les conditions de lasimulation et l’expérience a<strong>in</strong>si que les nombreuses <strong>in</strong>certitudes sur les conditions exactesde l’expérience.Les figures 5.24 et 5.25 montrent les mêmes quantités pour le cas testU40. L’existencedu mode de sillage <strong>in</strong>troduit une localisation différente de l’activité turbulente. Le co<strong>in</strong>aval est toujours un po<strong>in</strong>t avec un maximum local, mais on oberve aussi plusieurs zonesd’agitation : au se<strong>in</strong> de la cavité, près de la paroi du fond, dans les zones décollées etsur la paroi en aval de la cavité où les tourbillons éjectés de la cavité créent leur propre133


5. Analysis <strong>of</strong> <strong>the</strong> cavity flowsdynamique.Les figures 5.26, 5.27, 5.28 et 5.29 présentent des pr<strong>of</strong>ils des fluctuations turbulentesu ′ u ′ , u ′ v ′ et v ′ v ′ , dans la couche limite en amont de la cavité et dans la cavité, pour lescas U5.8 et U40. On remarque que dans la zone de couche limite, les différents pr<strong>of</strong>ilssont typiques, mais que l’<strong>in</strong>tensité est beaucoup plus faible pour le cas U5.8 que pour lecas U40, de pratiquement deux ordres de grandeurs. Dans la cavité les évolutions sontcomme attendues, très différentes entre le cas avec un mode de sillage et celui avec unmode de cisaillement. On retrouve des ordres de grandeurs corrects. Les fluctuationspour le mode de cisaillement sont qualitativement cohérentes avec les résultats de Bertieret al [5] et sont typiques des écoulements décollés. Dans toutes ses courbes, des picslocaux peuvent être associés aux évènements rencontrés dans la cavités (décollement,forts cisaillements, centre de rotation).Ecoulement de cavité 3DLe calcul en trois dimensions a pour ojectif de se rapprocher de cas d’étude réels. A<strong>in</strong>sidans certa<strong>in</strong>es configurations 2D, on observe des modes de sillage dans la cavité quif<strong>in</strong>alement n’existent plus lorsqu’on effectue un calcul en 3D. Ces modes de sillage sontd’ailleurs difficilement observables dans les expériences quand ils existent.D’un po<strong>in</strong>t de vue numérique, le doma<strong>in</strong>e bidimensionnel a été étendu par translationde plan à la troisième dimension en dim<strong>in</strong>uant la résolution 2D. Ceci est un problèmeimportant en terme de qualité des résultats obtenus. Les conditions aux limites dans latroisième direction sont celle d’une symétrie suivant la dénom<strong>in</strong>ation dans le code AVBP.Sur la figure 5.34 où est montrée la vorticité <strong>in</strong>stantannée ω z , on observe l’existenced’un mode de cisaillement. Une vue plus détaillée montrerait les structures turbulentestridimensionnelles dans la zone en aval de la cavité. Ce travail est malheureusementtrop prélim<strong>in</strong>aire et mériterait d’être appr<strong>of</strong>ondi.Aéroacoustique pour les cas 2DLes ondes de pression générées par la dynamique tourbillonnaire <strong>in</strong>tense et les fluctuationsturbulentes au se<strong>in</strong> de la cavité sont propagées dans tout l’écoulement. A partirdes simulations LES, et en appliquant l’analogie de Lighthill-Curle, il a été possible dedéterm<strong>in</strong>er le niveau de bruit, mesuré en SPL dedans mais surtout autour de la cavité.Dans l’analogie, seules les <strong>in</strong>tégrales de surface ont été prises en compte, les <strong>in</strong>tégralesde volumes étant souvent négligées pour les écoulements à faible vitesse.Les iso-contours de niveau de pression, en SPL, sont dess<strong>in</strong>és sur la figure 5.30 etpour le cas U5.8. Globalement, lo<strong>in</strong> de la cavité, les lignes de niveau sont concentriquespar rapport à la cavité avec une légère directivité (orientabilité) vers l’amont, confirmantque la source sonore se situe bien au vois<strong>in</strong>age du co<strong>in</strong> aval de cette cavité. Le maximumest de l’ordre de 92dB, situé légèrement dans la cavité près du mur aval. Ces perturba-134


tions acoustiques ne semblent pas être propagées par l’écoulement en aval de la cavité.Similairement, dans les expériences de Haigermoser [60], les lignes de niveau étaientconcentriques par rapport à la cavité, sans <strong>in</strong>diquer de directivité, et le maximum étaitaussi de 92dB.Pour le cas U40 (figure 5.31) Le maximum de bruit est situé sensiblement à lamême position, confirmant f<strong>in</strong>alement ce qu’on savait déjà, mais l’amplitude a augmentéjusqu’à 134dB. On remarque que les forts tourbillons présents dans l’écoulement (cavitéet en aval); associés au mode de sillage perturbent fortement la progapation des perturbationsacoustiques, tout en les amplifiant. Une faible directivité vers l’amont sembleexistée. Ahuja & Mendoza [2] ont rapporté dans leur expérience une très faible directivité(à la perpendiculaire de la cavité) pour la même géométrie. Rowley et al [132],dans des simulations numériques directes a trouvé une directivité autour de 135 ◦ , maispour une cavité de rapport d’aspect de 2, et pour un nombre de Mach de 0.6.ConclusionUne étude numérique d’un écoulement turbulent de cavité 2D et 3D a été menée, pourun rapport d’aspect de 4, et pour 3 cas de vitesse amont de l’écoulement. Le modèleLES dans des cas à très faibles nombres de Mach a été utilisé. Différentes conditionsd’entrée (pr<strong>of</strong>il de couche limite turbulente) ont aussi été <strong>in</strong>troduites, dont l’un basésur la solution asymptotique de la couche limite d’équilibre. L’écoulement turbulent, envaleur moyenne et en termes de fluctuations a été analysé. Le mode de cisaillement aété obtenu pour le cas correspondant à la plus faible vitesse, choisi pour correspondreau cas expérimental de Haigermoser. Pour les autres cas, seul le mode de sillage aété trouvé en 2D. Il disparaît en 3D conformément à la littérature sur le sujet. Lesniveaux de pression acoustique ont été calculés pour deux cas présentant soit le mode decisaillement, soit le mode de sillage. Globalement une faible directivité vers l’amont aété montrée. La vitesse est un facteur qui accroit les niveaux maximums, et les lignes deniveaux sont fortement perturbés lorsque l’écoulement turbulent est décollé ou chahutépar des structures tourbillonaires relativement <strong>in</strong>tenses.135


5. Analysis <strong>of</strong> <strong>the</strong> cavity flows5.1 IntroductionIn low Mach number flows, <strong>the</strong> ratio between <strong>the</strong> acoustic and hydrodynamic lengthscales is <strong>of</strong> order 10 − 100. It expla<strong>in</strong>s why usually <strong>the</strong> numerical tools or approachesare different to compute hydrodynamic field and <strong>aeroacoustic</strong> perturbations. In thischapter, <strong>the</strong> flow field is determ<strong>in</strong>ed by <strong>the</strong> large eddy simulation at very low Machnumber <strong>in</strong> <strong>the</strong> range <strong>of</strong> <strong>in</strong>compressible flow. The acoustic pressure field is provided by<strong>the</strong> Lighthill-Curle’s acoustic analogy but without volume <strong>in</strong>tegral.In this chapter are successively presented and analysed <strong>the</strong> hydrodynamic over atwo–dimensional and three-dimensional cavity flow. Geometry, mesh, boundary conditionsand mean flow field and turbulent quantities are discussed. It is followed by <strong>the</strong><strong>aeroacoustic</strong> study and a conclusion.5.2 Two–dimensional cavity5.2.1 Geometry and meshAll simulations were performed on <strong>the</strong> cavity <strong>of</strong> aspect ratio (L/D) 4. Through out <strong>the</strong>work, <strong>the</strong> length <strong>of</strong> <strong>the</strong> cavity is ma<strong>in</strong>ta<strong>in</strong>ed as 0.04 m and depth <strong>of</strong> <strong>the</strong> cavity as 0.01 m.The coord<strong>in</strong>ates are non–dimensionalised by depth <strong>of</strong> <strong>the</strong> cavity D. Figure 5.1 illustrates<strong>the</strong> schematic diagram <strong>of</strong> two–dimensional doma<strong>in</strong> adopted to simulate cavity flows. Theflow is from left to right hand side. The doma<strong>in</strong> extends between 0 ≤ x/D ≤ 25 and−1 ≤ y/D ≤ 20. The computational doma<strong>in</strong> extends to 5D and 16D upstream anddownstream <strong>of</strong> <strong>the</strong> cavity lead<strong>in</strong>g and trail<strong>in</strong>g edges, respectively. Few test cases wereperformed with coarser meshes and Direct <strong>Numerical</strong> Simulations, and a compromisehas been found between accuracy and <strong>the</strong> computational time. F<strong>in</strong>ally, Large EddySimulations have been preferred.The table 5.1 summaries <strong>the</strong> details related to <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> two dimensionalcavity.Total length <strong>of</strong> <strong>the</strong> doma<strong>in</strong> 0.25 mHeight <strong>of</strong> <strong>the</strong> doma<strong>in</strong> 0.20 mCavity length L0.04 mCavity depth D0.01 mAspect ratio <strong>of</strong> <strong>the</strong> cavity L D 4Table 5.1: Details <strong>of</strong> <strong>the</strong> GeometryThe grid has been ref<strong>in</strong>ed near <strong>the</strong> horizontal and <strong>the</strong> vertical walls because boundarylayers and high gradients <strong>of</strong> turbulent fluctuations were expected. In <strong>the</strong> turbulent flow,<strong>the</strong> first grid po<strong>in</strong>t is approximately located at <strong>the</strong> <strong>in</strong>ner variable y + = 2. Stretch<strong>in</strong>g136


5.2. Two–dimensional cavity20DINFLOWCharacteristic BCθDOUTFLOWCharacteristic BC824 × 244Characteristic BCOUTFLOWCharacteristic BCD y00x5D202 × 1214DADIABATIC WALL16DFigure 5.1: Schematic diagram <strong>of</strong> <strong>the</strong> computational doma<strong>in</strong>Figure 5.2: Mesh density at <strong>the</strong> top corners <strong>of</strong> <strong>the</strong> cavityalong x and y directions were <strong>in</strong>troduced to accommodate <strong>the</strong> ref<strong>in</strong>ed mesh <strong>in</strong>, near <strong>the</strong>cavity and also at <strong>the</strong> downstream wall region <strong>of</strong> <strong>the</strong> cavity.Figure 5.2 shows <strong>the</strong> density <strong>of</strong> mesh resolution near <strong>the</strong> walls and <strong>in</strong> <strong>the</strong> cavityregion. The boxed region which is highlighted at <strong>the</strong> upper left corner represents <strong>the</strong>high mesh density. It is <strong>the</strong> region where <strong>the</strong> shear layer and o<strong>the</strong>r important mechanismsbeg<strong>in</strong> for hydrodynamics and <strong>aeroacoustic</strong>s. The mesh density at <strong>the</strong> region immediateto <strong>the</strong> downstream corner <strong>of</strong> <strong>the</strong> cavity is higher than <strong>in</strong> <strong>the</strong> upstream region <strong>of</strong> <strong>the</strong> cavity.In <strong>the</strong> literature, it is predicted that <strong>the</strong> mesh at corner and <strong>the</strong> vertical walls <strong>of</strong> <strong>the</strong>downstream edge <strong>of</strong> <strong>the</strong> cavity has to handle high gradients dur<strong>in</strong>g <strong>the</strong> imp<strong>in</strong>gement <strong>of</strong>shear layer or <strong>the</strong> energetic eddies. Lean mesh density is at <strong>the</strong> top <strong>of</strong> <strong>the</strong> computationaldoma<strong>in</strong>. The lean mesh density reflects <strong>the</strong> absence <strong>of</strong> eddies and gradients <strong>in</strong> topextreme region <strong>of</strong> <strong>the</strong> doma<strong>in</strong>. No buffer region have been added.Large eddy simulations were performed on <strong>the</strong> test cases with larger doma<strong>in</strong> (mentioned<strong>in</strong> figure 5.1) with coarser mesh and ref<strong>in</strong>ed mesh. The f<strong>in</strong>al computationaldoma<strong>in</strong> on which <strong>the</strong> simulations are performed has 202 × 121 cells <strong>in</strong> <strong>the</strong> cavity regionand 824 × 244 cells <strong>in</strong> <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> doma<strong>in</strong>. It corresponds to 225 500 gridpo<strong>in</strong>ts.Many numerical problems have been encountered (numerical <strong>in</strong>stabilities, difficulty137


5. Analysis <strong>of</strong> <strong>the</strong> cavity flowsU20 U40 U5.8Turbulence model Filtered Smagor<strong>in</strong>sky Smagor<strong>in</strong>sky Filtered Smagor<strong>in</strong>skyIntegration scheme TTGC TTGC TTGCTime <strong>in</strong>tegration Runge–Kutta Runge–Kutta Runge–KuttaTime step (△t) 2.90 × 10 −8 s 2.88 × 10 −8 s 2.88 × 10 −8 sCFL number 0.7 0.7 0.7Fourier number 0.3 0.3 0.3Artificial viscosity SLK sensor SLK sensor SLK sensorArtificial viscosity coefficients4 th order 0.05 0.05 0.052 nd order 0.2 0.2 0.2Table 5.2: <strong>Numerical</strong> Parameters <strong>of</strong> <strong>the</strong> two–dimensional test cases U20, U40 and U5.8to solve accurately high gradients, bad outflow boundary conditions, waves reflection,etc ...). They will not be discussed here though a lot <strong>of</strong> time has been spend to solve<strong>the</strong>m step by step.5.2.2 <strong>Numerical</strong> schemes and LES ModelAs mentioned <strong>in</strong> <strong>the</strong> chapter 4 that <strong>the</strong> solver AVBP handles many species (N 2 , O 2 , CO 2 ,CH 4 , etc). In this work, nei<strong>the</strong>r combustion nor chemical reaction between species isstudied. Therefore only two gases Nitrogen (N 2 ) and Oxygen (O 2 ) are handled and itscomb<strong>in</strong>ation results <strong>in</strong> air which is approximately 80% nitrogen and 20% oxygen by volume.The numerical methods which are used <strong>in</strong> <strong>the</strong> computations are <strong>the</strong> Lax Wendr<strong>of</strong>fscheme from section 4.2.5 and <strong>the</strong> Two step Taylor Galerk<strong>in</strong> Col<strong>in</strong> (TTGC) scheme 4.2.6.Classic Smagor<strong>in</strong>sky model (with model constant C s = 0.18) and filtered Smagor<strong>in</strong>skymodel (with model constant C SF = 0.37) are used to determ<strong>in</strong>e <strong>the</strong> turbulent viscosityν t . More details <strong>of</strong> which can be obta<strong>in</strong>ed from chapter 4.The table 5.2 summaries <strong>the</strong> numerical parameters followed <strong>in</strong> <strong>the</strong> two–dimensionaltest cases: U20, U40 and U5.8. These three test cases are named with respect to <strong>the</strong>stream wise velocity values u ∞ = 20 m/s, u ∞ = 40 m/s, u ∞ = 5.8 m/s.The AVBP is a parallelised solver. All two–dimensional simulations are performedon <strong>the</strong> super computers which are given <strong>in</strong> <strong>the</strong> table 5.3.5.2.3 Inlet conditionThe details <strong>of</strong> <strong>the</strong> two–dimensional test cases are given <strong>the</strong> table 5.4. The dimensionalvariables which characterise <strong>the</strong> cavity flow accord<strong>in</strong>g to Colonius [20] are <strong>the</strong> length <strong>of</strong><strong>the</strong> cavity L, <strong>the</strong> depth <strong>of</strong> <strong>the</strong> cavity D, free stream velocity u ∞ , momentum thicknessθ, velocity <strong>of</strong> sound <strong>in</strong> <strong>the</strong> medium a ∞ , and k<strong>in</strong>ematic viscosity ν ∞ . The role played by<strong>the</strong> momentum thickness θ at <strong>the</strong> lead<strong>in</strong>g edge <strong>of</strong> <strong>the</strong> cavity <strong>in</strong> <strong>the</strong> selection <strong>of</strong> modes138


5.2. Two–dimensional cavityOrganisationIDRIS, OrsayIDRIS, OrsayCALMIP, ToulouseSuper computersIBM Regatta Power4 (Zahir)No. <strong>of</strong> processors used : 8 or 32IBM eServer, Regatta Power6 (Vargas)No. <strong>of</strong> processors used : 32 or 64Altix 3700 128 processeurs (Soleil)No. <strong>of</strong> processors used : 32 or 64Table 5.3: Super comput<strong>in</strong>g facilities used for perform<strong>in</strong>g simulationsLTest case u ∞ M ∞ Re D δ[mm] θ[mm] Re θθat <strong>in</strong>letU20 20 m/s 0.058 13.68 × 10 3 21.92 2.133 2920 18.75 MTBLU40 40 m/s 0.117 27.37 × 10 3 19.08 1.857 5100 21.54 MTBLU5.8 5.84 m/s 0.017 3.96 × 10 3 21.00 2.24 900 17.85 ETBLTable 5.4: Flow parameters <strong>of</strong> <strong>the</strong> test cases conducted.u ∞ Re L δ[mm] θ[mm] Re θLθ0.4 m/s 16 × 10 3 21.00 2.24 900 18Table 5.5: Flow parameters <strong>of</strong> <strong>the</strong> test case carried by Haigermoser [60]was observed by Colonius et al [22]. For cavity flows, <strong>the</strong> ratio L plays a major role <strong>in</strong>θdeterm<strong>in</strong><strong>in</strong>g <strong>the</strong> mode (shear mode or wake mode). The flow parameters relevant to <strong>the</strong>three cases <strong>in</strong> this work are given <strong>in</strong> <strong>the</strong> table 5.4.The <strong>in</strong>let conditions <strong>of</strong> <strong>the</strong> first two test cases are imposed with mean turbulentboundary layers where as for <strong>the</strong> test case U5.8, <strong>the</strong> boundary layer pr<strong>of</strong>ile is generatedus<strong>in</strong>g equilibrium turbulent boundary layer approach (ETBL) (see section 3.4). Thistest case is similar to <strong>the</strong> Particle Image Velocimetry (PIV) experiment <strong>in</strong> a watercavity flow carried out by Haigermoser [60]. The characteristics are summarised <strong>in</strong><strong>the</strong> table 5.5. The turbulent boundary layer <strong>in</strong> <strong>the</strong> experiment is thick and conta<strong>in</strong>snaturally turbulent quantities where as <strong>in</strong> <strong>the</strong> present numerical work, <strong>the</strong> turbulentboundary layer which is imposed at <strong>the</strong> <strong>in</strong>let <strong>of</strong> <strong>the</strong> computational doma<strong>in</strong> does notcarry any turbulent quantities.A mean stream wise velocity pr<strong>of</strong>ile for <strong>the</strong> thick turbulent boundary layer <strong>of</strong> <strong>the</strong> testcase U20 is shown <strong>in</strong> <strong>the</strong> figure 5.3. For this test case U20, <strong>the</strong> boundary layer thicknessδ is 22 mm which is greater than <strong>the</strong> depth <strong>of</strong> <strong>the</strong> cavity (D = 10 mm). It shouldbe noted that <strong>the</strong> ratio L is a measure used to express <strong>the</strong> thickness <strong>of</strong> <strong>the</strong> boundaryθlayer <strong>in</strong> non–dimensional form and <strong>the</strong> ratios correspond<strong>in</strong>g to <strong>the</strong> test cases given <strong>in</strong><strong>the</strong> table 5.4.139


5. Analysis <strong>of</strong> <strong>the</strong> cavity flows32.52y1.5D10.500 0.2 0.4 0.6 0.8 1u/u eFigure 5.3: Mean stream wise velocity pr<strong>of</strong>ile for <strong>the</strong> turbulent boundary layer <strong>in</strong> externalunits, u ∞ = 20m/s5.2.4 Boundary conditionsMore details about <strong>the</strong> boundary conditions which are imposed on <strong>the</strong> computationaldoma<strong>in</strong> are discussed <strong>in</strong> section 4.5.5. A characteristic boundary condition is imposedat <strong>the</strong> <strong>in</strong>let (left hand side edge <strong>of</strong> <strong>the</strong> doma<strong>in</strong>) with relaxation parameters on velocitycomponents, temperature and species (INLET RELAX UVW T Y called <strong>in</strong> AVBP). Therelax type (see table 5.6) signifies that <strong>the</strong> <strong>in</strong>go<strong>in</strong>g waves which are computed po<strong>in</strong>twiseso that <strong>the</strong> relaxation tends to drive <strong>the</strong> velocity components and temperature towards<strong>the</strong> exact pr<strong>of</strong>iles given by <strong>the</strong> reference state. At <strong>the</strong> <strong>in</strong>let, <strong>the</strong> <strong>in</strong>go<strong>in</strong>g waves are takenproportional to <strong>the</strong> difference between <strong>the</strong> actual state at <strong>the</strong> boundary nodes and <strong>the</strong>reference velocity and temperature. Three <strong>in</strong>teger parameters allow to fix <strong>the</strong> way <strong>the</strong>waves are calculated <strong>in</strong> <strong>the</strong> solver AVBP, <strong>the</strong> way <strong>the</strong> reference state is def<strong>in</strong>ed and <strong>the</strong>type <strong>of</strong> relaxation that is performed. Four real parameters are used to prescribe <strong>the</strong> values<strong>of</strong> <strong>the</strong> relaxation coefficients: relax on Un, relax on Ut, relax on T, relax on Y.Temporal approximation is followed. The variations <strong>of</strong> <strong>the</strong> conservative variables areassessed from <strong>the</strong>ir time derivative and <strong>the</strong> strength <strong>of</strong> <strong>the</strong> wave. More details are found<strong>in</strong> <strong>the</strong> section 4.5.5.With <strong>the</strong> details from <strong>the</strong> section 4.5.6, <strong>the</strong> top and right hand side edges <strong>of</strong> <strong>the</strong> computationaldoma<strong>in</strong> are treated as outlet and characteristic boundary conditionOUTLET RELAX Pis applied withrelax on P, <strong>the</strong> relaxation parameter on <strong>the</strong> pressure (see equation 4.280).An improved normal approximation as <strong>in</strong> [18] is followed and suits well for <strong>the</strong> outletboundaries. F<strong>in</strong>ally <strong>the</strong> bottom edges <strong>of</strong> <strong>the</strong> doma<strong>in</strong> are treated as <strong>the</strong> solid walls withno slip and adiabatic boundary condition WALL NOSLIP ADIAB (see <strong>the</strong> subsection 4.5.4).Details <strong>in</strong> table 5.6 relate <strong>the</strong> location <strong>of</strong> <strong>the</strong> boundaries and its respective boundaryconditions with <strong>the</strong> parameters for <strong>the</strong> test cases U20 and U40 where as <strong>the</strong> table 5.7140


5.2. Two–dimensional cavityInlet Top portion + Outlet WallsBC INLET RELAX UVW T Y OUTLET RELAX P WALL NOSLIP ADIABwave 2 wave 3ref type 1 ref type 1relax type 1 relax type 1relax on Un 100 relax on P 10relax on Ut 100relax on T 100relax on Y 0Table 5.6: Boundary conditions and correspond<strong>in</strong>g values for <strong>the</strong> test cases U40 and U20Inlet Top portion + Outlet WallsBC INLET RELAX UVW T Y OUTLET RELAX P WALL NOSLIP ADIABwave 2 wave 3ref type 1 ref type 1relax type 1 relax type 1relax on Un 2000 relax on P 2000relax on Ut 2000relax on T 2000relax on Y 0Table 5.7: Boundary conditions and correspond<strong>in</strong>g values for <strong>the</strong> test case U5.8carries <strong>the</strong> boundary condition details <strong>of</strong> <strong>the</strong> test case U5.8.5.2.5 Boundary layer flow partVelocity pr<strong>of</strong>ilesThe <strong>in</strong>com<strong>in</strong>g boundary layer <strong>of</strong> <strong>the</strong> test cases behaves, <strong>in</strong> <strong>the</strong> region x ≤ 5, like aDflat plate boundary layer as it is shown <strong>in</strong> figures 5.4 and 5.5. Time averaged velocitypr<strong>of</strong>iles <strong>in</strong> <strong>in</strong>ner coord<strong>in</strong>ates are plotted at stations x = 2,4, and 5 which represent <strong>the</strong>Dupstream <strong>of</strong> <strong>the</strong> cavity. In test case U5.8, The <strong>in</strong>let flow is given from <strong>the</strong> equilibriumturbulent boundary layer approach with Re θ = 900. The velocity pr<strong>of</strong>iles shown <strong>in</strong>figure 5.4 are similar to those given from <strong>the</strong> asymptotic approach, but not equal s<strong>in</strong>ce<strong>the</strong> equilibrium boundary layer assumes a constant boundary thickness <strong>in</strong> zero pressuregradient flow. A more accurate analysis show higher non dimensional external velocityu + e<strong>in</strong> <strong>the</strong> simulated flow than <strong>in</strong> <strong>the</strong> asymptotic solution. As a simple conclusion,<strong>the</strong> comparison with asymptotic approach have demonstrated that <strong>in</strong> this section <strong>the</strong>boundary layer is no longer <strong>in</strong> equilibrium. The discrepancy <strong>in</strong>creases with <strong>the</strong> <strong>in</strong>letmean velocity.141


eplacemen5. Analysis <strong>of</strong> <strong>the</strong> cavity flows25at x D = 2at x D = 4at x D = 520< u + >151002 2 04 4 05 5510 1 10 2Figure 5.4: Velocity pr<strong>of</strong>iles at <strong>the</strong> upstream <strong>of</strong> <strong>the</strong> cavity <strong>in</strong> <strong>the</strong> test case U5.8y +181614at x D = 2at x D = 4at x D = 512< u + >10864210 1 10 2 10 3Figure 5.5: Velocity pr<strong>of</strong>iles at <strong>the</strong> upstream <strong>of</strong> <strong>the</strong> cavity <strong>in</strong> <strong>the</strong> test case U20y +Pressure gradientFigure 5.6 shows <strong>the</strong> non–dimensionalised time averaged pressure gradient,along <strong>the</strong> stream wise direction for <strong>the</strong> test case U40 where( ) ∗dPdx( ) ∗dP= dPdx dxD0.5ρu 2 ∞142


5.2. Two–dimensional cavity( dPdx12×10 −284) ∗ 0−4−8−12−16−20−242468yD =0.5xD2510 12 14 16 18 20x/D920Figure 5.6: Pressure gradient for test case U40 along stream wise direction at y D = 0.5,between x D= 2 and 20x( dPdx×10 −28) ∗ 40yD =0.5D25920−4−8246 810 12 14 16 18 20x/DFigure 5.7: Pressure gradient for test case U5.8 along stream wise direction at y D = 0.5,between x D= 2 and 20The pressure gradient is extracted between x D = 2 and 20 at y = 0.5. A slightD<strong>in</strong>crease can be observed <strong>in</strong> pressure gradient along <strong>the</strong> x-direction until <strong>the</strong> cavity. Thefluctuations <strong>in</strong> <strong>the</strong> pressure gradient between x D = 5 and x = 16 is due to <strong>the</strong> presenceD<strong>of</strong> cavity and vortices <strong>in</strong> <strong>the</strong> downstream <strong>of</strong> <strong>the</strong> cavity. The gradient approaches zerowhen <strong>the</strong> flow nears <strong>the</strong> exit <strong>of</strong> <strong>the</strong> computational doma<strong>in</strong>.For <strong>the</strong> test case U5.8, <strong>the</strong> time averaged pressure gradient along <strong>the</strong> stream wisedirection is shown <strong>in</strong> <strong>the</strong> figure 5.7. The pressure gradient is extracted between x D = 2and 20 at y = 0.5. For this case, <strong>the</strong> turbulent pr<strong>of</strong>ile which is imposed at <strong>the</strong> <strong>in</strong>letDis generated from <strong>the</strong> equilibrium turbulent boundary layer method. No change <strong>in</strong> <strong>the</strong>pressure gradient is observed between x D = 2 and x = 6. This expla<strong>in</strong>s <strong>the</strong> presenceD<strong>of</strong> undisturbed shear layer until <strong>the</strong> middle <strong>of</strong> <strong>the</strong> cavity. The pressure gradient goes tozero after <strong>the</strong> location x = 16 <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> movement <strong>of</strong> <strong>the</strong> less energetic vortices <strong>in</strong>D143


5. Analysis <strong>of</strong> <strong>the</strong> cavity flows0.09< τw >0.080.070.06xD150.050.041 1.5 2 2.5 3 3.5 4 4.5x/D5Figure 5.8: Time averaged shear stress at <strong>the</strong> wall along <strong>the</strong> upstream <strong>of</strong> <strong>the</strong> cavity <strong>in</strong><strong>the</strong> test case U5.8<strong>the</strong> downstream <strong>of</strong> <strong>the</strong> cavity.Wall shear stressNon–dimensionalised time averaged shear stress at <strong>the</strong> wall along <strong>the</strong> upstream (fromxD = 1 to x = 5) <strong>of</strong> <strong>the</strong> cavity <strong>in</strong> <strong>the</strong> test case U5.8 is shown <strong>in</strong> <strong>the</strong> figure 5.8. TheDshear stress value decreases along <strong>the</strong> x coord<strong>in</strong>ate. A peak occurs at <strong>the</strong> lip <strong>of</strong> <strong>the</strong>cavity ( x D = 5).5.2.6 Cavity resultsTime tracesThe three cases U40, U20 and U5.8 are imposed with thick boundary layer with lowMach number (see table 5.4). Figure 5.9 and 5.10 shows <strong>the</strong> times traces <strong>of</strong> velocitycomponents u and v versus non–dimensional time T ∗ for <strong>the</strong> test cases U20 and U40respectively, whereT ∗ = u ∞ tDThe cont<strong>in</strong>uous vertical l<strong>in</strong>e <strong>in</strong>dicates <strong>the</strong> start<strong>in</strong>g po<strong>in</strong>t <strong>of</strong> periodic oscillations. For<strong>the</strong> test caseU20, <strong>the</strong> periodic oscillation starts at T ∗ ≈ 250. From <strong>the</strong> figure 5.9, normalvelocity component v at <strong>the</strong> station x D = 8, y = 0.1 (cont<strong>in</strong>uous red l<strong>in</strong>e) shows <strong>the</strong>Dpresence <strong>of</strong> mode.For <strong>the</strong> test case U40, <strong>the</strong> periodic oscillation starts at T ∗ ≈ 60. Peaks are observedfor <strong>the</strong> normal velocity at <strong>the</strong> station x D = 9, y = 0.1 (thick cont<strong>in</strong>uous cyan colouredDl<strong>in</strong>e). These represent <strong>the</strong> energetic vortices cross<strong>in</strong>g <strong>the</strong> station which is close to <strong>the</strong>upper right corner <strong>of</strong> <strong>the</strong> cavity. Only one wake mode is found <strong>in</strong> <strong>the</strong>se two test caseswith periodic oscillations. The test cases treated here have <strong>the</strong> ratios L = 18.75 (U20)θand 21.54 (U40). Rowley [133] states that <strong>the</strong> transition is a function <strong>of</strong> Mach number,and for L = 102, shear layer mode occurs for Mach number M < 0.3, and wake modeθfor M > 0.3.144


eplacemen5.2. Two–dimensional cavity110.50.5vu00.60.40.20−0.2at x D = 6, y D = 0.1 at x D = 7, y D = 0.1 at x D = 8, y D = 0.1 T ∗05000.60.40.20−0.25506000100 200 300 400 500 600 500T ∗550600Figure 5.9: Time traces <strong>of</strong> <strong>the</strong> velocity components u and v versus non–dimensional timeT ∗ for <strong>the</strong> test case U20.0.2at x D = 6 at x D = 7 at x D = 8 at x D = 9100.5v u0.21.510.507001.510.5750800000.50100 200 300 400 500 600 700T ∗800700750T ∗800Figure 5.10: Time traces <strong>of</strong> <strong>the</strong> velocity components u and v versus non–dimensionaltime T ∗ for <strong>the</strong> test case U40.For <strong>the</strong> third test case U5.8, <strong>the</strong> figure 5.11 illustrates <strong>the</strong> time traces <strong>of</strong> vorticityvalues at three po<strong>in</strong>ts (po<strong>in</strong>t 1 at x D = 8, yD = 0; po<strong>in</strong>t 2 at x D = 9 − ε, yD = −0.5and po<strong>in</strong>t 3 at x D = 9.3, y= ε; where ε = 0.002). The po<strong>in</strong>t 2 is located next to downDstream vertical wall <strong>in</strong>side <strong>the</strong> cavity where as <strong>the</strong> po<strong>in</strong>t 3 is very close to <strong>the</strong> wall <strong>in</strong> <strong>the</strong>downstream <strong>of</strong> <strong>the</strong> cavity. The oscillation is periodic at T ∗ ≈ 250. The negative vorticityvalues found at po<strong>in</strong>t 3 <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> <strong>the</strong> absence <strong>of</strong> detachment resembl<strong>in</strong>g boundarylayers. The positive values at po<strong>in</strong>t 2, very close to <strong>the</strong> downstream vertical wall <strong>of</strong><strong>the</strong> cavity shows <strong>the</strong> existence <strong>of</strong> detachment, strong shear and <strong>the</strong> counter rotat<strong>in</strong>geddy. And at <strong>the</strong> po<strong>in</strong>t 1, vorticity values carry ma<strong>in</strong>ly negative values and low positivevalues, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> shear mode. Shear-layer mode oscillations become evident. The145


5. Analysis <strong>of</strong> <strong>the</strong> cavity flows4020Po<strong>in</strong>t 1 Po<strong>in</strong>t 2 Po<strong>in</strong>t 35ωz−201ω z0−4023ω z−5ω z0−10−60−150 50 100 210 220 230T ∗ 150 200 235 200235T ∗Figure 5.11: Time traces <strong>of</strong> <strong>the</strong> vorticity ω z vs non–dimensional time T ∗ for <strong>the</strong> testcase U5.8.time traces <strong>of</strong> different po<strong>in</strong>ts look similar <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> absence <strong>of</strong> mixed mode or apossibility <strong>of</strong> mode switch<strong>in</strong>g.Wake modeFor test cases U20 and U40, wake mode is observed. Figure 5.12 shows <strong>the</strong> <strong>in</strong>stantaneousvorticity fields ω z over a period for <strong>the</strong> test U40. A vortex is formed from <strong>the</strong> trail<strong>in</strong>gedge and fills <strong>the</strong> cavity region is shown <strong>in</strong> figure 5.12(a). A low pressure zone is createdat <strong>the</strong> downstream wall <strong>of</strong> <strong>the</strong> cavity. In figure 5.12(b), <strong>the</strong> vortex detaches and imp<strong>in</strong>geson <strong>the</strong> downstream corner <strong>of</strong> <strong>the</strong> cavity. Due to <strong>the</strong> imp<strong>in</strong>gement, <strong>the</strong> is ruptured andmoves out <strong>of</strong> <strong>the</strong> cavity, while ano<strong>the</strong>r eddy enter <strong>the</strong> cavity from <strong>the</strong> lead<strong>in</strong>g edge <strong>of</strong><strong>the</strong> cavity (see fig. 5.12(c)). The eddy which is broken at this po<strong>in</strong>t <strong>of</strong> time movesdownstream <strong>of</strong> <strong>the</strong> cavity, while ano<strong>the</strong>r new eddy grows to fill <strong>the</strong> cavity is shown <strong>in</strong><strong>the</strong> figure 5.12(d). The flow above <strong>the</strong> cavity region is affected by <strong>the</strong> flow from <strong>the</strong>cavity. The free stream flow is periodically directed <strong>in</strong>to <strong>the</strong> cavity.Near <strong>the</strong> upstream vertical wall <strong>of</strong> <strong>the</strong> cavity <strong>in</strong> <strong>the</strong> figure 5.12(b) and <strong>in</strong> <strong>the</strong> middle<strong>of</strong> <strong>the</strong> cavity <strong>of</strong> <strong>the</strong> figure 5.12(c), <strong><strong>in</strong>teraction</strong> <strong>of</strong> two counter rotat<strong>in</strong>g eddies producehigh gradients, and <strong>in</strong>voke numerical errors result<strong>in</strong>g <strong>in</strong> blow<strong>in</strong>g up <strong>of</strong> <strong>the</strong> solution. The<strong>in</strong>clusion <strong>of</strong> artificial viscosity (see subsection 4.2.7) tends to smooth <strong>the</strong>se gradientsand <strong>in</strong>troduces artificial dissipation. Different values <strong>of</strong> artificial viscosity values havebeen tried for this configuration and <strong>the</strong> solution is converged with <strong>the</strong> follow<strong>in</strong>g artificialviscosity values: smu4= 0.05 for 4 th order operator andsmu2= 0.2 for 2 nd order operator.The flow was found to be highly unsteady and strongly <strong>in</strong>fluenced by <strong>the</strong> behaviour<strong>of</strong> <strong>the</strong> shear layer. Larsson et al [80] observed wake mode at M = 0.15 <strong>in</strong> his two–dimensional direct numerical simulations.146


5.2. Two–dimensional cavityω z10.50−0.5−1(a) Time period t = t 01ω z0.50−0.5−1(b) Time period t = t 0 + T 4ω z10.50−0.5−1(c) Time period t = t 0 + T 2ω z10.50−0.5−1(d) Time period t = t 0 + 3T 4Figure 5.12: Instantaneous vorticity fields ω z for wake mode (test case U40) at fourdifferent times (a-d) correspond<strong>in</strong>g to approximately a quarter <strong>of</strong> a period <strong>of</strong> oscillations.Only a small portion <strong>of</strong> <strong>the</strong> computational doma<strong>in</strong> near <strong>the</strong> cavity is shown.Shear modeThe test case U5.8 (with equilibrium turbulent boundary layer) oscillates <strong>in</strong> shear mode.The turbulent boundary layer which separates from <strong>the</strong> lead<strong>in</strong>g edge <strong>of</strong> cavity forms anoscillat<strong>in</strong>g shear layer. Figure 5.13 shows <strong>the</strong> <strong>in</strong>stantaneous vorticity fields ω z over aperiod T . Figure 5.13(a) shows <strong>the</strong> shear layer stretch<strong>in</strong>g from <strong>the</strong> upstream <strong>of</strong> <strong>the</strong>cavity and is parallel to <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> cavity. Over <strong>the</strong> right upper corner <strong>of</strong> <strong>the</strong>cavity, shear layer with a tongue like structure extends to <strong>the</strong> downstream <strong>of</strong> <strong>the</strong> cavityfrom <strong>the</strong> vortex near to <strong>the</strong> vertical wall <strong>of</strong> <strong>the</strong> cavity. Figure 5.13(b) describes <strong>the</strong>complex <strong><strong>in</strong>teraction</strong> between <strong>the</strong> shear layer and <strong>the</strong> vortex at <strong>the</strong> downstream wall <strong>of</strong><strong>the</strong> cavity. The <strong>in</strong>com<strong>in</strong>g shear layer extends until <strong>the</strong> middle <strong>of</strong> <strong>the</strong> cavity region and<strong>the</strong> lip <strong>of</strong> <strong>the</strong> shear layer swipes on <strong>the</strong> vertical wall at <strong>the</strong> trail<strong>in</strong>g edge <strong>of</strong> <strong>the</strong> cavity.The swip<strong>in</strong>g action cuts <strong>the</strong> tongue like shear layer to travel downstream <strong>of</strong> <strong>the</strong> cavity.147


5. Analysis <strong>of</strong> <strong>the</strong> cavity flowsω z10.50−0.5−1(a) Time period t = t 0ω z10.50−0.5−1(b) Time period t = t 0 + T 4ω z10.50−0.5−1(c) Time period t = t 0 + T 2ω z10.50−0.5−1(d) Time period t = t 0 + 3T 4Figure 5.13: Instantaneous vorticity fields ω z for shear mode (test case U5.8) at fourdifferent times (a-d) correspond<strong>in</strong>g to approximately a quarter <strong>of</strong> a period <strong>of</strong> oscillations.Only a small portion <strong>of</strong> <strong>the</strong> computational doma<strong>in</strong> near <strong>the</strong> cavity is shown.The shear layer which extends due to <strong>the</strong> oscillation, imp<strong>in</strong>ges on <strong>the</strong> upper right corner<strong>of</strong> cavity and breaks <strong>in</strong>to two (see figure 5.13(c)) and at time period 3T i.e <strong>in</strong> <strong>the</strong>4figure 5.13(d), one part <strong>of</strong> <strong>the</strong> lip <strong>of</strong> <strong>the</strong> broken shear layer enters <strong>the</strong> cavity creat<strong>in</strong>g aeddy close to <strong>the</strong> downstream wall with <strong>the</strong> size <strong>of</strong> cavity depth, while <strong>the</strong> o<strong>the</strong>r part <strong>of</strong><strong>the</strong> shear layer moves downstream <strong>of</strong> <strong>the</strong> cavity with less energetic eddies.The oscillation frequency is ma<strong>in</strong>ly def<strong>in</strong>ed by <strong>the</strong> convective velocity <strong>of</strong> <strong>the</strong> vorticesmov<strong>in</strong>g <strong>in</strong> <strong>the</strong> free shear layer, as <strong>the</strong> upstream <strong>in</strong>fluence <strong>of</strong> <strong><strong>in</strong>teraction</strong> between <strong>the</strong>sevortices and rear cavity edge is almost <strong>in</strong>stantaneous. The convective velocity is knownto depend on <strong>the</strong> thickness <strong>of</strong> <strong>the</strong> velocity pr<strong>of</strong>ile (see Dix & Bauer [32]). The smalldisturbances which are amplified by <strong>the</strong> Kelv<strong>in</strong>–Helmholtz <strong>in</strong>stability <strong>in</strong>teract to producepressure waves from <strong>the</strong> downstream wall <strong>of</strong> <strong>the</strong> cavity. The red contour region near<strong>the</strong> downstream <strong>of</strong> <strong>the</strong> cavity <strong>in</strong>dicates <strong>the</strong> centrifugal <strong>in</strong>stability which depends on<strong>the</strong> strength <strong>of</strong> <strong>the</strong> recirculat<strong>in</strong>g region. This <strong>in</strong>stability is associated with <strong>the</strong> closedstreaml<strong>in</strong>es <strong>in</strong> <strong>the</strong> recirculat<strong>in</strong>g vortical flow near <strong>the</strong> downstream wall <strong>of</strong> <strong>the</strong> cavity.The thick <strong>in</strong>itial boundary layer <strong>in</strong> this case leads to a weaker recirculat<strong>in</strong>g vortical flowwith<strong>in</strong> <strong>the</strong> cavity. Rowley [132] observes a shear mode for M < 0.3 with L = 102 andθ<strong>in</strong>itialis<strong>in</strong>g lam<strong>in</strong>ar boundary layer pr<strong>of</strong>ile.148


5.2. Two–dimensional cavity32.52at x D = 6at x D = 7at x D = 81.5y 1D0.5xD 6 7 80−0.5−1−0.20 0.2 0.4 0.6 0.8 1 1.2u/u ∞(a) Time averaged velocity pr<strong>of</strong>ile <strong>in</strong> <strong>the</strong> cavity for <strong>the</strong> test case U2032.52at x D = 6at x D = 7at x D = 81.5y 1D0.5xD 6 7 80−0.5−1−0.20 0.2 0.4 0.6 0.8u/u ∞1(b) Time averaged velocity pr<strong>of</strong>iles <strong>in</strong> <strong>the</strong> cavity for <strong>the</strong> test case U5.8Figure 5.14: Velocity pr<strong>of</strong>iles <strong>of</strong> (a) U20 and (b) U5.8 <strong>in</strong> <strong>the</strong> cavity region represent<strong>in</strong>g<strong>the</strong> wake and shear mode respectivelyVelocity pr<strong>of</strong>iles <strong>in</strong> <strong>the</strong> cavitiesThe time averaged velocity pr<strong>of</strong>iles <strong>in</strong> <strong>the</strong> cavity region for <strong>the</strong> test cases U20 andU5.8 atstations x/D = 6,7,8 are shown <strong>in</strong> figures 5.14(a) and 5.14(b) respectively. In <strong>the</strong> testcase U20 with wake mode and <strong>in</strong> <strong>the</strong> figure 5.14(a), <strong>the</strong> moderate slope <strong>of</strong> <strong>the</strong> velocitypr<strong>of</strong>ile <strong>in</strong>dicates <strong>the</strong> oscillat<strong>in</strong>g shear layer <strong>in</strong> <strong>the</strong> cavity region. The slope betweeny= −0.5 and 0.5 represents <strong>the</strong> occurrence <strong>of</strong> vortex dynamics <strong>in</strong> <strong>the</strong> region and <strong>the</strong>Dboundary layer is disturbed upto y = 0.5 over <strong>the</strong> cavity region. Inside <strong>the</strong> cavityDregion, a shift <strong>in</strong> <strong>the</strong> curve can be observed. This expla<strong>in</strong>s <strong>the</strong> to and fro movement<strong>of</strong> eddy/eddies between <strong>the</strong> upstream vertical wall <strong>of</strong> <strong>the</strong> cavity and <strong>the</strong> downstreamvertical wall <strong>of</strong> <strong>the</strong> cavity. The drag <strong>in</strong> <strong>the</strong> cavity operat<strong>in</strong>g <strong>in</strong> wake regime should beaccumulated due <strong>the</strong> movement <strong>of</strong> <strong>the</strong> eddy over <strong>the</strong> bottom wall <strong>of</strong> <strong>the</strong> cavity.149


5. Analysis <strong>of</strong> <strong>the</strong> cavity flows×102−310U5.8U40C f−1−2−3−4xD5 9−55 5.5 6 6.5 7 7.5 8 8.5 9x/DFigure 5.15: Comparison <strong>of</strong> sk<strong>in</strong> friction on <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> cavities U5.8 and U40The shear mode <strong>in</strong> <strong>the</strong> o<strong>the</strong>r test case U5.8 is clearly evident from <strong>the</strong> figure 5.14(b)with a zero slope <strong>of</strong> <strong>the</strong> velocity pr<strong>of</strong>ile between uu ∞= 0.1 and 0.7. This clearly show<strong>the</strong> shear layer is not ruptured and extended even after <strong>the</strong> middle <strong>of</strong> <strong>the</strong> cavity region.Inside <strong>the</strong> cavity ( y D = 0 to −1), at <strong>the</strong> station x = 6, close to <strong>the</strong> upstream verticalDwall <strong>of</strong> <strong>the</strong> cavity, <strong>the</strong> time averaged velocity pr<strong>of</strong>ile <strong>in</strong>dicates <strong>the</strong> absence <strong>of</strong> eddy. Butat <strong>the</strong> stations x D = 7 and x = 8, <strong>the</strong> velocity plot denotes <strong>the</strong> existence <strong>of</strong> eddy withDcounter direction. This is clearly visible <strong>in</strong> <strong>the</strong> figure 5.13.Sk<strong>in</strong> friction on <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> cavitiesFigure 5.15 compares <strong>the</strong> sk<strong>in</strong> friction C f (non–dimensional time averaged wall shearstress τ w ) values on <strong>the</strong> bottom wall <strong>of</strong> <strong>the</strong> cavities U5.8 and U40, whereC f =τ w0.5ρu 2 ∞The shear stress on <strong>the</strong> bottom wall depends on <strong>the</strong> <strong><strong>in</strong>teraction</strong> <strong>of</strong> vortices and wallsurface. The shear stress values found on upstream side <strong>of</strong> <strong>the</strong> cavity bottom (betweenx= 5 and 5.5) forU5.8 are lesser than <strong>the</strong> values from <strong>the</strong> cavity U40. In this region, <strong>the</strong>Dcavity U5.8 which is operat<strong>in</strong>g <strong>in</strong> <strong>the</strong> shear mode, <strong>the</strong> <strong><strong>in</strong>teraction</strong> between <strong>the</strong> vorticesand <strong>the</strong> bottom wall is less. A peak is observed near <strong>the</strong> downstream region <strong>of</strong> <strong>the</strong> cavity(at x = 8.5) <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> <strong><strong>in</strong>teraction</strong> <strong>of</strong> primary vortex and <strong>the</strong> bottom wall.DIn case <strong>of</strong> cavity U40 which falls <strong>in</strong> wake regime, <strong>the</strong> peaks are observed <strong>in</strong> <strong>the</strong>upstream region and <strong>the</strong> downstream region <strong>of</strong> <strong>the</strong> cavity. It <strong>in</strong>dicates <strong>the</strong> level <strong>of</strong><strong><strong>in</strong>teraction</strong> between <strong>the</strong> vortices and <strong>the</strong> bottom wall. At x = 8.5, <strong>the</strong> sk<strong>in</strong> frictionDvalue <strong>of</strong> U5.8 is higher than <strong>the</strong> U40. This <strong><strong>in</strong>teraction</strong> reflects on <strong>the</strong> shear stress valuesand <strong>the</strong>refore should <strong>in</strong>crease <strong>the</strong> overall value <strong>of</strong> cavity drag.150


5.2. Two–dimensional cavityat x atD = x 8, y D = D 8, = y D 0=0Energy spectrum10 0 10 010 −2− 5 310 −410 −610 −810 −1 0.194Figure 5.16: Energy spectrum <strong>of</strong> velocity component <strong>in</strong> x-direction at x D = 8, yD = 0for <strong>the</strong> test case U20.The sampl<strong>in</strong>g time <strong>of</strong> 125 ≤ T ∗ ≤ 600St LEnergy and FFT spectrumThe energy spectra <strong>of</strong> velocity component <strong>in</strong> x-direction versus <strong>the</strong> Strouhal numberSt L = fLu ∞(where f is <strong>the</strong> frequency) for <strong>the</strong> test cases U20 and U40 are calculated at po<strong>in</strong>t x D =8, y = 0 near <strong>the</strong> upper corner <strong>of</strong> <strong>the</strong> downstream cavity wall and are plotted <strong>in</strong>Dfigures 5.16 and 5.17 respectively. The sampl<strong>in</strong>g time was 125 ≤ T ∗ ≤ 600 for <strong>the</strong> testcase U20 and for <strong>the</strong> test case U40, <strong>the</strong> sampl<strong>in</strong>g time was 100 ≤ T ∗ ≤ 800.From <strong>the</strong> figure 5.16, <strong>the</strong> energy cascade for <strong>the</strong> cavity U20 can be observed. Theslope <strong>of</strong> <strong>the</strong> cascade fits well with <strong>the</strong> <strong>the</strong>oretical prediction <strong>of</strong> − 5 3 .Also shown <strong>in</strong> <strong>the</strong> figure 5.17 <strong>of</strong> test case U40 is a − 5 Kolmogorov slope plotted by3<strong>the</strong> solid l<strong>in</strong>e. Two apparent peaks correspond<strong>in</strong>g to <strong>the</strong> dom<strong>in</strong>ant oscillation frequencyand its first harmonic can be observed. A less prom<strong>in</strong>ent peak at <strong>the</strong> frequency <strong>of</strong> <strong>the</strong>second harmonic is also <strong>in</strong>dicated.From figure 5.18, <strong>the</strong> fundamental frequency <strong>of</strong> St L = 0.194 is observed for <strong>the</strong> testcase U20. This value is less than <strong>the</strong> St L <strong>of</strong> <strong>the</strong> cavity U40. From <strong>the</strong> figure 5.19, <strong>the</strong>fundamental frequency is St L = 0.205, and all harmonics <strong>of</strong> this fundamental frequencycan be observed. For <strong>the</strong> test case U40, <strong>the</strong> fundamental frequency <strong>of</strong> St L = 0.245as reported by Larsson [80] is worth mention<strong>in</strong>g here. Colonius et al [21] found afundamental frequency <strong>of</strong> St L = 0.248. Shieh & Morris [144] found St L = 0.216 <strong>in</strong> acavity with aspect ratio <strong>of</strong> 4 for a Mach number M = 0.6 and with a turbulent flow.From <strong>the</strong> figure 5.20, <strong>the</strong> fundamental frequency is St L = 0.72, and all harmonics <strong>of</strong>this fundamental frequency can be observed. The value is related to <strong>the</strong> first Rossiter151


5. Analysis <strong>of</strong> <strong>the</strong> cavity flowsat x D = 8, y at x D = 0D = 8, y D = 010 0 10 0Energy spectrum− 5 310 −210 −410 −610 −80.20510 −1 St LFigure 5.17: Energy spectrum <strong>of</strong> velocity component u at x D = 8, yDcase U40. The sampl<strong>in</strong>g time <strong>of</strong> 100 ≤ T ∗ ≤ 800= 0 for <strong>the</strong> test2.520.194at x at x/D =8, y/D =0D = 8, y D = 01.5FFT10.500 0.1 0.194 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Figure 5.18: FFT spectrum for U20 <strong>of</strong> velocity component u at x D = 8, yD = 0 withsampl<strong>in</strong>g time <strong>of</strong> 125 ≤ T ∗ ≤ 600.St Lmode <strong>of</strong> <strong>the</strong> shear layer mode, and it is a higher frequency than <strong>the</strong> one found with <strong>the</strong>o<strong>the</strong>r two testcases U20 and U40 which are operat<strong>in</strong>g <strong>in</strong> wake mode.5.2.7 Turbulent fluctuationsMean fluctuat<strong>in</strong>g velocity fieldFigures 5.21 and 5.22 portray <strong>the</strong> mean fluctuat<strong>in</strong>g velocity fields√u ′2 and√u ′ 2respectively which are normalised with respect to <strong>the</strong> square <strong>of</strong> <strong>the</strong> free stream velocityu 2 ∞ for <strong>the</strong> test case U5.8. The contours which are extended from <strong>the</strong> trail<strong>in</strong>g edge to<strong>the</strong> middle <strong>of</strong> cavity region and parallel to <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> cavity describe <strong>the</strong> shearlayer. The contours over <strong>the</strong> cavity and <strong>the</strong> downstream <strong>of</strong> <strong>the</strong> cavity represent <strong>the</strong> fluid152


5.2. Two–dimensional cavity4.54at x D = 8, y D = 03.53FFT2.521.510.50 00.1 0.205 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Figure 5.19: FFT spectrum for U40 <strong>of</strong> velocity component u at x D = 8, yD = 0 withsampl<strong>in</strong>g time <strong>of</strong> 100 ≤ T ∗ ≤ 800St L0.50.4at x D = 8, y D = 00.3FFT0.20.100 0.72 1 2 3Figure 5.20: FFT spectrum for U5.8 <strong>of</strong> velocity component v at x D = 8, yD = 0 withsampl<strong>in</strong>g time <strong>of</strong> 58 ≤ T ∗ ≤ 174St LxD0.030.030.03 0.03 0.03 0.03 0.03 0.030.03 0.03 0.030.030.030.150.090.030.030.030.030.03q0.030.1500u ′20.030.11250.07500.030.030.030.03750.00005 6 7 8 9Figure 5.21: Mean fluctuat<strong>in</strong>g velocity√u ′2 field for <strong>the</strong> test case U5.8.153


5. Analysis <strong>of</strong> <strong>the</strong> cavity flows0.04xD0.040.08 0.08 0.080.200.080.080.080.040.045 6 7 8 9Figure 5.22: Mean fluctuat<strong>in</strong>g velocity√v ′2 field for <strong>the</strong> test case U5.8.q0.20 v ′20.150.100.050.0010.5yD0−0.510.5yD0−0.50 1 2 3 4x/D(a) Mean fluctuat<strong>in</strong>g velocity u′2u 2 ∞field.0 1 2 3 4x/D(b) Mean fluctuat<strong>in</strong>g velocity v′2u 2 ∞field.Figure 5.23: Mean fluctuat<strong>in</strong>g velocities from experiments <strong>of</strong> Haigermoser et al [61]at <strong>the</strong> top region <strong>of</strong> <strong>the</strong> thick boundary√layer and is not disturbed by <strong>the</strong> shear layeroscillations. A maximum value ( u ′2 ≈ 0.15) is observed at <strong>the</strong> downstream top corner<strong>of</strong> <strong>the</strong> cavity which corresponds to <strong>the</strong> stagnation po<strong>in</strong>t. An eddy near <strong>the</strong> downstreamwall <strong>of</strong> <strong>the</strong> cavity portrays <strong>the</strong> presence <strong>of</strong> vortex without grow<strong>in</strong>g√or ruptur<strong>in</strong>g due to<strong>the</strong> periodic <strong>in</strong>flow <strong>of</strong> <strong>the</strong> fluid <strong>in</strong>side <strong>the</strong> cavity. The contours u ′2 <strong>in</strong> downstream areparallel to <strong>the</strong> wall, represent<strong>in</strong>g√<strong>the</strong> absence <strong>of</strong> energetic vortices.A maximum value v ′2 ≈ 0.2 is found√for <strong>the</strong> mean fluctuat<strong>in</strong>g normal velocity√(see figure 5.22). The role played by <strong>the</strong> u ′2 quantities is slightly less than <strong>the</strong> v ′ 2quantities <strong>in</strong> <strong>the</strong> shear mode.Figures 5.23(a) and 5.23(b) from Haigermoser et al [61] represent respectively <strong>the</strong>variance u ′2 and v ′2 <strong>of</strong> <strong>the</strong> longitud<strong>in</strong>al and <strong>of</strong> normal to <strong>the</strong> wall fluctuation velocities,normalised with respect to <strong>the</strong> square√<strong>of</strong> <strong>the</strong>√free stream velocity u 2 ∞. Though <strong>the</strong> meanfluctuat<strong>in</strong>g velocity contours ( u ′2 and v ′2 ) from Haigermoser et al [61] do notmatch, <strong>the</strong> order <strong>of</strong> fluctuat<strong>in</strong>g velocity values fit very well with <strong>the</strong> values found <strong>in</strong> thistest case. It should be noted that <strong>in</strong> this test case U5.8, no turbulent quantities were<strong>in</strong>cluded <strong>in</strong> <strong>the</strong> <strong>in</strong>com<strong>in</strong>g turbulent√boundary layer.The mean fluctuat<strong>in</strong>g velocity u ′2 contours from figure 5.24 for <strong>the</strong> test case U40show <strong>the</strong> maximum value <strong>of</strong> <strong>the</strong> fluctuat<strong>in</strong>g component near <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> wall.In <strong>the</strong> wake mode, <strong>the</strong> vortex which fills <strong>the</strong> cavity brushes <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> cavitybefore imp<strong>in</strong>g<strong>in</strong>g on <strong>the</strong> vertical downstream <strong>of</strong> <strong>the</strong> wall. This phenomenon expla<strong>in</strong>s <strong>the</strong>presence <strong>of</strong> higher value <strong>of</strong> fluctuat<strong>in</strong>g component near <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> cavity. Theoscillation <strong>of</strong> <strong>the</strong> shear layer <strong>in</strong> <strong>the</strong> cavity region disturbs <strong>the</strong> fluid flow above <strong>the</strong> cavity154


5.2. Two–dimensional cavityxD0.250.250.250.25 0.250.250.38 0.38 0.380.250.380.250.250.380.250.380.255 6 7 8 90.250.250.38Figure 5.24: Mean fluctuat<strong>in</strong>g velocity0.25 0.25 0.25 0.25 0.25 0.250.250.250.250.25√u ′2 field for <strong>the</strong> test case U40.0.250.25qu0.500′20.3750.2500.1250.0000.10.10.10.10.10.10.10.10.1xD0.10.30.10.30.10.30.3 0.30.30.1 0.1 0.10.10.3 0.50.50.30.15 6 7 8 90.30.1Figure 5.25: Mean fluctuat<strong>in</strong>g velocity0.1 0.1 0.1 0.1 0.1 0.1qv ′20.5000.3750.2500.1250.000√v ′2 field for <strong>the</strong> test case U40.region and <strong>the</strong> vortices (which are created after <strong>the</strong> imp<strong>in</strong>gement <strong>of</strong> shear layer) move<strong>in</strong> downstream <strong>of</strong> <strong>the</strong> cavity.√The mean fluctuat<strong>in</strong>g√velocity v ′2 contours is shown <strong>in</strong> <strong>the</strong> figure 5.25. Contours<strong>of</strong> higher values v ′2 = 0.5 are concentrated at <strong>the</strong> top downstream corner <strong>of</strong> <strong>the</strong> cavity.Contours with value 0.3 represents <strong>the</strong> movement <strong>of</strong> fluctuat<strong>in</strong>g quantities towards <strong>the</strong>downstream region <strong>of</strong> <strong>the</strong> cavity.√In <strong>the</strong> wake√mode (U40), <strong>the</strong> contour values <strong>of</strong> u ′2 are <strong>in</strong> <strong>the</strong>√same order <strong>of</strong> <strong>the</strong>contours√<strong>of</strong> v ′2 where as <strong>in</strong> <strong>the</strong> shear mode (U5.8), <strong>the</strong> order <strong>of</strong> u ′2 is less than <strong>the</strong>v ′2 . Increas<strong>in</strong>g velocity from 5.8 m/s to 40 m/s <strong>in</strong>creases <strong>the</strong> order <strong>of</strong> magnitude <strong>of</strong><strong>the</strong> turbulent <strong>in</strong>tensity by two. This clearly states <strong>the</strong> role and <strong>the</strong> amount <strong>of</strong> velocityfluctuations due to vortices <strong>in</strong> <strong>the</strong> cavities operat<strong>in</strong>g <strong>in</strong> wake mode.155


5. Analysis <strong>of</strong> <strong>the</strong> cavity flows10.8at x D = 2at x D = 4at x D = 510.810.8yD0.60.40.60.40.60.40.20.20.20 0 0.02 0.040−2 0 20 0 1 2u ′ u ′u ′ v ′ ×10 −3 v ′ v ′ ×10 −3Figure 5.26: Shear stress pr<strong>of</strong>iles for <strong>the</strong> test case U40 at <strong>the</strong> stations x D = 2,4,5upstream <strong>of</strong> <strong>the</strong> cavityShear stress pr<strong>of</strong>ilesMean stress pr<strong>of</strong>iles u ′ u ′ , u ′ v ′ and v ′ v ′ <strong>of</strong> <strong>the</strong> test cases U40 and U5.8 are discussedhere. The pr<strong>of</strong>iles presented <strong>in</strong> this section are extracted at <strong>the</strong> stations x = 2,4 andD5 for y ∈ [0,1] which means that <strong>the</strong> pr<strong>of</strong>iles are determ<strong>in</strong>ed from <strong>the</strong> wall until <strong>the</strong>Dexternal flow region above <strong>the</strong> turbulent boundary layer. These three stations are <strong>in</strong> <strong>the</strong>upstream <strong>of</strong> <strong>the</strong> cavity.In <strong>the</strong> figure 5.26, mean stresses u ′ u ′ , u ′ v ′ , v ′ v ′ pr<strong>of</strong>iles obta<strong>in</strong>ed at x D = 2 and 4resemble <strong>the</strong> usual turbulent boundary layer pr<strong>of</strong>iles. The u ′ v ′ pr<strong>of</strong>ile at station x D = 5predicts <strong>the</strong> separation <strong>of</strong> shear layer at <strong>the</strong> upstream top left corner <strong>of</strong> <strong>the</strong> cavity.The o<strong>the</strong>r three stations x = 6,7 and 8 are <strong>in</strong>side <strong>the</strong> cavity region and <strong>the</strong> pr<strong>of</strong>ilesDare calculated between <strong>the</strong> bottom surface <strong>of</strong> <strong>the</strong> cavity to <strong>the</strong> external flow region above<strong>the</strong> boundary layer( y ∈ [−1,1]). For <strong>the</strong> test case U40, <strong>in</strong> <strong>the</strong> cavity at <strong>the</strong> locationsDxD = 6,7 and 8, mean stresses u′ u ′ , u ′ v ′ , v ′ v ′ pr<strong>of</strong>iles are plotted and shown <strong>in</strong> <strong>the</strong>figure 5.27. The u ′ u ′ pr<strong>of</strong>ile shows high values <strong>in</strong>side <strong>the</strong> cavity region <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong>velocity fluctuations <strong>in</strong> <strong>the</strong> stream wise direction. It’s <strong>in</strong>fluence is <strong>in</strong> <strong>the</strong> whole region<strong>of</strong> boundary layer. The Reynolds stress u ′ v ′ values represent <strong>the</strong> energy content <strong>of</strong> <strong>the</strong>fluctuations <strong>in</strong> <strong>the</strong> shear layer and <strong>in</strong> <strong>the</strong> cavity. The v ′ v ′ pr<strong>of</strong>iles portray <strong>the</strong> fluctuationstrength particularly <strong>in</strong> <strong>the</strong> shear layer.Figure 5.28 shows <strong>the</strong> shear stress pr<strong>of</strong>iles for test case U5.8 at <strong>the</strong> stations x D =2,4,5 and repeat <strong>the</strong> pr<strong>of</strong>iles from a flat plate boundary layer. The mean Reynolds shear156


5.2. Two–dimensional cavity1at x 11D = 6 at x D = 6at x D = 7at x D = 7 at x D = 8at x D = 80.50.50.5yD000−0.5−0.5−0.5−10−1−10.1 0.2 −0.06 −0.02 0 0 0.05 0.1u ′ u ′ u ′ v ′ v ′ v ′Figure 5.27: Shear stress pr<strong>of</strong>iles for <strong>the</strong> test case U40 at <strong>the</strong> stations x Dcavity= 6,7,8 <strong>in</strong> <strong>the</strong>10.90.8at x D = 2at x D = 4at x D = 510.90.810.90.80.70.70.7yD0.60.50.40.60.50.40.60.50.40.30.30.30.20.20.20.10.10.10 0 5 10 150−2 −1 00 0 1 2 3u ′ u ′ ×10 −4 u ′ v ′×10 −5 v ′ v ′ ×10 −6Figure 5.28: Shear stress pr<strong>of</strong>iles for test case U5.8 at <strong>the</strong> stations x D<strong>of</strong> <strong>the</strong> cavity= 2,4,5 upstreamstress is high at <strong>the</strong> top left upstream corner <strong>of</strong> <strong>the</strong> cavity (at x = 5) and reflects <strong>the</strong>Dabsence <strong>of</strong> separation.In <strong>the</strong> shear layer mode, <strong>the</strong> stress pr<strong>of</strong>iles (see figure 5.29) <strong>of</strong> <strong>the</strong> test case U5.8 arequalitatively similar to pr<strong>of</strong>iles from Bertier et al [5] and are typically <strong>of</strong> separated flows.157


5. Analysis <strong>of</strong> <strong>the</strong> cavity flows10.80.6at x D = 6at x D = 7at x D = 810.80.610.80.60.40.40.4yD0.20−0.20.20−0.20.20−0.2−0.4−0.4−0.4−0.6−0.6−0.6−0.8−10−0.8−0.82 4 6−1−5 0 5−10 0.005 0.01u ′ u ′ ×10 −3 u ′ v ′ ×10 −3 v ′ v ′Figure 5.29: Shear stress pr<strong>of</strong>iles for <strong>the</strong> test case U5.8 at <strong>the</strong> stations x Dcavity= 6,7,8 <strong>in</strong> <strong>the</strong>The two peaks <strong>of</strong> u ′ u ′ at <strong>the</strong> station x = 8 <strong>in</strong>dicates <strong>the</strong> division <strong>of</strong> shear layer near <strong>the</strong>Dtop right downstream <strong>of</strong> <strong>the</strong> cavity. Presence <strong>of</strong> vortex is shown by <strong>the</strong> Reynolds stressu ′ v ′ pr<strong>of</strong>ile at x D = 8. The order <strong>of</strong> v′ v ′ value is higher than <strong>the</strong> u ′ u ′ <strong>in</strong>dicates <strong>the</strong> higherrole played by <strong>the</strong> fluctuation quantity v ′ v ′ . Therefore <strong>the</strong> anisotropic contribution t<strong>of</strong>low fluctuations is mostly distributed on <strong>the</strong> low frequency part <strong>of</strong> <strong>the</strong> spectrum (seefigure 5.17). The fluctuat<strong>in</strong>g turbulent u ′ u ′ and v ′ v ′ may contribute more significantlyto <strong>the</strong> high frequencies part. The turbulent shear stress u ′ v ′ is directly l<strong>in</strong>ked with largeeddies motion.5.2.8 AeroacousticsThe <strong><strong>in</strong>teraction</strong> <strong>of</strong> <strong>the</strong> vortex with <strong>the</strong> trail<strong>in</strong>g edge <strong>of</strong> <strong>the</strong> cavity generates pressure waveswhich are radiated <strong>in</strong>to <strong>the</strong> far field. These pressure waves are identified as aerodynamicnoise. To determ<strong>in</strong>e <strong>the</strong> sound pressure level us<strong>in</strong>g <strong>the</strong> acoustic analogy, an acousticdoma<strong>in</strong> <strong>of</strong> size 0 ≤ x/D ≤ 25 and −1 ≤ y/D ≤ 20 with 50 × 50 grid po<strong>in</strong>ts is generated.The <strong>in</strong>tersection po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> grid represent <strong>the</strong> observers. The sound pressure levelvalues are calculated for both doma<strong>in</strong>s us<strong>in</strong>g Matlab R○ code which was developed <strong>in</strong>Department <strong>of</strong> Aerospace Eng<strong>in</strong>eer<strong>in</strong>g from Polytechnic <strong>of</strong> Tor<strong>in</strong>o, Italy. The soundpressure level SPL is given by158SPL = 20log p′ rmsp ref(5.1)


5.2. Two–dimensional cavity20707 0157272yD107477674787 67 47 27 085840080825888486921080xD82157 880827 67 42025Figure 5.30: Sound Pressure Level (dB) <strong>in</strong> <strong>the</strong> doma<strong>in</strong> for <strong>the</strong> test case U5.8.where p ref = 20 µPa and p ′ rms is <strong>the</strong> root mean square <strong>of</strong> <strong>the</strong> pressure fluctuations.A l<strong>in</strong>e <strong>in</strong>tegral over <strong>the</strong> <strong>in</strong>stantaneous pressure and time derivative is considered and<strong>the</strong> quadrupole noise sources <strong>in</strong> <strong>the</strong> aerodynamic field are neglected due to <strong>the</strong>ir m<strong>in</strong>orcontribution.The two–dimensional pressure fields are obta<strong>in</strong>ed from <strong>the</strong> large eddy simulation.The f<strong>in</strong>al two–dimensional form <strong>of</strong> <strong>the</strong> Curle’s equation is used, where equation 2.55 isfrom chapter 2 is <strong>in</strong>tegrated <strong>in</strong> <strong>the</strong> z–direction from −w to +w, where w is half <strong>the</strong>cavity span wise extension, yield<strong>in</strong>gp(x,t) − p 0 = 1 ∫( w) ṗδijl i n j[2 arctan + 2w pδ ]ij4π Lr a ∞ r 2 dL(y) (5.2)Figure 5.30 shows <strong>the</strong> sound pressure level for <strong>the</strong> test case U5.8. The contourspac<strong>in</strong>g is △SPL = 2 dB. SPL iso–contours appear to be concentric about <strong>the</strong> cavity,which confirms that <strong>the</strong> trail<strong>in</strong>g edge is <strong>the</strong> ma<strong>in</strong> location <strong>of</strong> sound source at <strong>the</strong> selectedconditions. The maximum SPL value <strong>of</strong> 92dB is found near <strong>the</strong> downstream wall <strong>of</strong><strong>the</strong> cavity. The pressure oscillations which are propagat<strong>in</strong>g <strong>in</strong>to <strong>the</strong> far field <strong>of</strong> <strong>the</strong>doma<strong>in</strong> are not disturbed by <strong>the</strong> less energetic vortices which are mov<strong>in</strong>g downstream.The direction <strong>of</strong> sound propagation appears perpendicular to <strong>the</strong> bottom wall <strong>of</strong> <strong>the</strong>159


5. Analysis <strong>of</strong> <strong>the</strong> cavity flows2011611 61511611811 88yD101112012012212012250012212451261281 3 013410124xD128126151241281262025Figure 5.31: Sound Pressure Level (dB) <strong>in</strong> <strong>the</strong> doma<strong>in</strong> for <strong>the</strong> test case U40cavity for low Mach number flow with equilibrium turbulent <strong>in</strong>com<strong>in</strong>g boundary layer.Concentric iso–contours were observed <strong>in</strong> <strong>the</strong> experiments <strong>of</strong> Haigermoser [60] and amaximum sound pressure level <strong>of</strong> 92dB was found with no prom<strong>in</strong>ent directivity <strong>of</strong>sound propagation.The figure 5.31 shows <strong>the</strong> sound pressure level for <strong>the</strong> test case U40. The maximumSPL value <strong>of</strong> 134dB is found near <strong>the</strong> downstream wall <strong>of</strong> <strong>the</strong> cavity which confirms<strong>the</strong> louder flow. The pressure oscillation which are propagat<strong>in</strong>g <strong>in</strong>to <strong>the</strong> far field <strong>of</strong> <strong>the</strong>doma<strong>in</strong> are disturbed by <strong>the</strong> vortices which are mov<strong>in</strong>g downstream. The direction <strong>of</strong>sound propagation is perpendicular to <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> cavity. Ahuja & Mendoza [2]observed a flat directivity for <strong>the</strong> cavity <strong>of</strong> aspect ratio L = 4. This is <strong>in</strong> contrary toDRowley et al [132] who observe <strong>the</strong> peak radiation to <strong>the</strong> far field to occur at an angle<strong>of</strong> 135 ◦ from <strong>the</strong> downstream axis <strong>of</strong> <strong>the</strong> cavity for an aspect ratio L = 2 and MachDnumber M = 0.6. The discrepancy is due to <strong>the</strong> low Mach number flow with <strong>in</strong>com<strong>in</strong>gthick boundary layer <strong>of</strong> L = 17.85. The o<strong>the</strong>r discrepancies might be <strong>the</strong> differentθtechniques (Direct noise computation, Experiments) employed <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> soundpressure level. It should be noted that few assumptions were made when deriv<strong>in</strong>g Curle’sequation <strong>in</strong> two–dimensional form.160


5.3. Three–dimensional rectangular cavityzyx5D25D4DDL16D10DFigure 5.32: Schematic diagram represent<strong>in</strong>g <strong>the</strong> three–dimensional computational doma<strong>in</strong>5DyDxx/D = 5 Lx/D = 9Figure 5.33: Mesh <strong>in</strong> and near <strong>the</strong> cavity region5.3 Three–dimensional rectangular cavity5.3.1 Geometry and meshThe aim <strong>of</strong> this section is to determ<strong>in</strong>e whe<strong>the</strong>r a wake mode is observed <strong>in</strong> three–dimensional simulation with a power law pr<strong>of</strong>ile imposed at <strong>the</strong> <strong>in</strong>let <strong>of</strong> <strong>the</strong> doma<strong>in</strong>.A three–dimensional computational doma<strong>in</strong> (see figure 5.32) <strong>of</strong> size 0 ≤ x ≤ 25D,−D ≤ y ≤ 10D and 0 ≤ z ≤ 5D was constructed to simulate a rectangular cavity <strong>of</strong>aspect ratio L = 4. Actually, <strong>the</strong> two–dimensional computational doma<strong>in</strong> was extrudedD<strong>in</strong> z direction to obta<strong>in</strong> a three–dimensional computational doma<strong>in</strong>. The total number<strong>of</strong> nodes <strong>in</strong> <strong>the</strong> doma<strong>in</strong> is 2 269 491 where as <strong>the</strong> cavity region conta<strong>in</strong>s 91 × 31 × 67nodes <strong>in</strong> x, y and z directions respectively. A close-up <strong>of</strong> <strong>the</strong> mesh <strong>in</strong> <strong>the</strong> cavity is shown<strong>in</strong> <strong>the</strong> figure 5.33. It should be noted that <strong>the</strong> grid is coarser than <strong>the</strong> grid used <strong>in</strong>161


5. Analysis <strong>of</strong> <strong>the</strong> cavity flows3DU20Turbulence model Smagor<strong>in</strong>skyIntegration scheme Lax–Wendr<strong>of</strong>f 2 nd order <strong>in</strong> space and timeTime <strong>in</strong>tegration Runge–KuttaTime step (△t) 6.32 × 10 −7 sCFL number 0.7Fourier number 0.1Artificial viscosity sensor Col<strong>in</strong> sensorArtificial viscosity coefficients4 th order 0.0052 nd order 0.05Table 5.8: <strong>Numerical</strong> Parameters <strong>of</strong> <strong>the</strong> three–dimensional test case 3DU20<strong>the</strong> two–dimensional cases. In <strong>the</strong> region above <strong>the</strong> cavity, <strong>the</strong> grid is stretched us<strong>in</strong>gexponential function. Like <strong>the</strong> two–dimensional case, <strong>the</strong> grid is ref<strong>in</strong>ed near <strong>the</strong> walls(to resolve <strong>the</strong> gradients).5.3.2 <strong>Numerical</strong> schemes and LES ModelLarge eddy simulation was performed on a three–dimensional test case 3DU20 for <strong>the</strong>velocity <strong>of</strong> u ∞ = 20m/s and Re D = 13.68 × 10 3 . A velocity pr<strong>of</strong>ile generated by powerlaw (see subsection 3.2.3) was imposed at <strong>the</strong> <strong>in</strong>let <strong>of</strong> <strong>the</strong> doma<strong>in</strong>. Parameters followed<strong>in</strong> this three–dimensional test case are given <strong>the</strong> table 5.8.5.3.3 Boundary conditionsA characteristic boundary condition INLET RELAX UVW T Y is imposed on <strong>the</strong> <strong>in</strong>let (lefthand side edge <strong>of</strong> <strong>the</strong> doma<strong>in</strong>) with relaxation parameters on velocity components, temperatureand species. The values <strong>of</strong> relax type,relax on Un,relax on Ut,relax on T,relax on Y are given <strong>in</strong> <strong>the</strong> table 5.9. OUTLET RELAX P is an outlet characteristic boundarycondition at <strong>the</strong> outlet <strong>of</strong> <strong>the</strong> doma<strong>in</strong>. And f<strong>in</strong>ally <strong>the</strong> bottom edges <strong>of</strong> <strong>the</strong> doma<strong>in</strong> aretreated as solid walls with no slip and adiabatic boundary condition WALL NOSLIP ADIAB(see <strong>the</strong> subsection 4.5.4). The SYMMETRY boundary condition is applied on <strong>the</strong> faces <strong>in</strong><strong>the</strong> span wise direction. The table 5.9 relates <strong>the</strong> location <strong>of</strong> <strong>the</strong> boundaries and itsrespective boundary conditions and shows <strong>the</strong> correspond<strong>in</strong>g values <strong>of</strong> <strong>the</strong> relaxationparameters.5.3.4 ResultsAs it is mentioned earlier that <strong>the</strong> purpose <strong>of</strong> conduct<strong>in</strong>g <strong>the</strong> three dimensional simulationis to demonstrate <strong>the</strong> wake mode <strong>in</strong> <strong>the</strong> three–dimensional cavity. It should be162


5.3. Three–dimensional rectangular cavityBCInlet Top portion Span wise WallsINLET RELAX UVW T Y OUTLET RELAX P SYMMETRY WALL NOSLIP ADIABwave 2 wave 3ref type 1 ref type 1relax type 1 relax type 1relax on Un 700 relax on P 10relax on Ut 700relax on T 100relax on Y 0Table 5.9: Boundary conditions and correspond<strong>in</strong>g values for <strong>the</strong> three–dimensional testcase 3DU20ω z1.00.50.0−0.5−1.0Figure 5.34: Iso contours <strong>of</strong> vorticity ω z <strong>of</strong> a three–dimensional cavitynoted that <strong>the</strong> simulation has not reached a converged state. Only prelim<strong>in</strong>ary resultsare presented here.At <strong>the</strong> start <strong>of</strong> simulation, <strong>the</strong> three–dimensional flow rema<strong>in</strong>s uniform <strong>in</strong> <strong>the</strong> spanwise direction and oscillates <strong>in</strong> wake mode as time progresses. The wake mode is rupturedand a shear mode is followed. Due to <strong>the</strong> high value <strong>of</strong> <strong>the</strong> <strong>in</strong>com<strong>in</strong>g boundarylayer thickness, self–susta<strong>in</strong>ed oscillations were not observed. The <strong>in</strong>com<strong>in</strong>g turbulentboundary layer leads to a low frequency flapp<strong>in</strong>g <strong>of</strong> <strong>the</strong> shear layer result<strong>in</strong>g <strong>in</strong> an irregularvortex shedd<strong>in</strong>g from <strong>the</strong> lead<strong>in</strong>g edge <strong>of</strong> <strong>the</strong> cavity. An explanation is due to <strong>the</strong>turbulent structures <strong>of</strong> <strong>the</strong> <strong>in</strong>com<strong>in</strong>g boundary layer which cont<strong>in</strong>ue to exist <strong>in</strong>side <strong>the</strong>cavity shear layer result<strong>in</strong>g <strong>in</strong> <strong>in</strong>stability mechanisms.The figure 5.34 gives <strong>the</strong> iso contours <strong>of</strong> <strong>the</strong> vortices produced <strong>in</strong> <strong>the</strong> three–dimensionalrectangular cavity <strong>of</strong> aspect ratio L = 4. In real flows which are three–dimensional <strong>in</strong>Dnature, wake modes are not observed.For <strong>the</strong> two–dimensional test cases U20, U40 presented <strong>in</strong> <strong>the</strong> earlier section, wake163


5. Analysis <strong>of</strong> <strong>the</strong> cavity flowsmode was observed. The presence <strong>of</strong> wake mode is due to <strong>the</strong> absence <strong>of</strong> 3D effects,which is considered as an artifact <strong>of</strong> two–dimensional cavity flow.5.4 ConclusionA numerical study on two–dimensional and three–dimensional shallow cavities with <strong>the</strong>aspect ratio L = 4 was done with <strong>in</strong>com<strong>in</strong>g turbulent boundary layers. Large eddyDsimulation with (3 rd order <strong>in</strong> space and time) has been performed to simulate <strong>the</strong> cavityflow.Influence <strong>of</strong> boundary layer on <strong>the</strong> mode selection was studied by vary<strong>in</strong>g thickness <strong>of</strong>boundary layer and <strong>the</strong> Mach number <strong>of</strong> <strong>the</strong> flow. The low velocity test case correspondsto experiments <strong>of</strong> Haigermoser.Three test cases with different Mach number (all less than 0.3) were simulated andanalysed and compared with <strong>the</strong> experiments and exist<strong>in</strong>g literature. Among <strong>the</strong> threetest cases conducted, one test case (U5.8) was performed with <strong>in</strong>com<strong>in</strong>g turbulent boundarylayer which was generated from <strong>the</strong> equilibrium turbulent boundary layer approach.The test cases with stream wise velocities u ∞ = 20m/s and u ∞ = 40m/s falls <strong>in</strong> <strong>the</strong>wake regime where as <strong>the</strong> o<strong>the</strong>r test case u ∞ = 5.8 m/s operates <strong>in</strong> shear mode. Thisclearly shows <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> thickness <strong>of</strong> <strong>the</strong> boundary layer which <strong>in</strong>troduces strongshear flow to oscillate at a dom<strong>in</strong>ant frequency, and <strong>the</strong> Mach number selected for <strong>the</strong>configuration.The both modes were analysed from <strong>the</strong> means and <strong>in</strong>stantaneous turbulent velocityand vorticity field. The region <strong>of</strong> high turbulence activity have been observed through<strong>the</strong> iso–contours <strong>of</strong> ma<strong>in</strong> turbulent turbulent fluctuations.Comparison with turbulent <strong>in</strong>tensity field from Haigermoser [61] has shown thatregion <strong>of</strong> high <strong>in</strong>tensity were given different by <strong>the</strong> simulation, but levels have beenpredicted well.A three–dimensional simulation was performed to verify <strong>the</strong> presence <strong>of</strong> wake modeas found <strong>in</strong> <strong>the</strong> two dimensional test case. In <strong>the</strong> three–dimensional cavity, wakemode was not observed for <strong>the</strong> test case with u ∞ = 20 m/s. Due to <strong>the</strong> absence <strong>of</strong>three–dimensional effects <strong>in</strong> <strong>the</strong> two–dimensional flow, presence <strong>the</strong> wake mode (<strong>in</strong> two–dimensional cases) can be considered as an artifact.Sound pressure levels for <strong>the</strong> test case u ∞ = 5.8m/s and u ∞ = 40m/s are calculated.The maximum SPL values (which are observed at <strong>the</strong> downstream vertical wall) arevalidated. The mode <strong>of</strong> propagation and <strong>the</strong> directivity <strong>of</strong> <strong>the</strong> propagation for <strong>the</strong>selow Mach numbers are not prom<strong>in</strong>ent. But this study aga<strong>in</strong> proves <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> <strong>the</strong>boundary layer thickness and velocity at <strong>the</strong> <strong>in</strong>let <strong>in</strong> <strong>the</strong> generation <strong>of</strong> sound and its<strong>in</strong>tensity.164


ConclusionsRésumé étendu en françaisCette thèse s’<strong>in</strong>téresse à l’étude par simulation numérique de l’écoulement d’une couchelimite compressible bidmensionnelle arrivant sur une cavité en se focalisant sur les aspectsà la fois dynamique et acoustique. Elle s’<strong>in</strong>tègre dans l’action de formation <strong>in</strong>itialeeuropéenne Marie Curie appelée AeroTraNet.L’approche numérique est basée sur la simulation de grandes échelles dont les équationssont résolues par le code AVBP du CERFACS. L’analyse des sources et des propagationsacoustiques est basée sur la théorie de Lighthill-Curle en collaboration avec C.Haigermoser.Couramment, l’écoulement sur une cavité peut être décrit en regardant trois parties:la couche limite turbulente amont qui se développe et croît avant d’atte<strong>in</strong>dre lacavité, l’écoulement turbulent dans et sur la cavité qui peut être soit un mode de sillageou un mode de cisaillement, et l’écoulement en val la cavité qui est une couche limite<strong>in</strong>stationnaire décollée ou non et qui convecte les structures éjectées par la cavité.Dans notre cas la couche limite turbulente amont a été <strong>in</strong>itialement déf<strong>in</strong>ie avec unpr<strong>of</strong>il de vitesse moyenne en loi puissance. Une extension de l’approche assymptotiqueusuelle basée sur la loi déficitaire dans la région externe de la couche et sur la loil<strong>in</strong>éaire et la loi log dans la région <strong>in</strong>terne a été proposée dans le cas d’une couche limiteen équilibre. Spécifiquement, une nouvelle fonction du modèle de longueur de mélange,qui améliore l’accord avec les écoulements de plaque plane avec ou sans gradient depression adverse, a été proposée. L’unique paramètre de cette fonction a été déterm<strong>in</strong>éà l’aide des données expérimentales et a été modifié à l’aide de la simulation numériquedirecte d’une couche limite avec gradient de pression. L’accord est très bon avec lecas sans gradient de pression. Avec un gradient de pression adverse quelques désaccordsexistent qui peuvent s’expliquer en partie par le problème des conditions aux limites dansles calculs DNS, en partie par les limites de l’approche asymptotique surtout à faiblesnombres de Reynolds et grands gradients de pression longitud<strong>in</strong>aux de l’écoulement.La simulation de Grandes Echelles (LES) avec le schéma de Taylor Galerk<strong>in</strong> Col<strong>in</strong> àdeux pas (3 eme ordre en espace et en temps) a été utilisée pour simuler l’écoulement decavité. Le modèle de Smagor<strong>in</strong>sky et Smagor<strong>in</strong>sky filtré ont été adoptés dans ce travail.165


ConclusionsLe conditions aux limites basées sur les caractéristiques sont utilisées comme conditionsnon réfléchissantes sur les bords du doma<strong>in</strong>es et aux parois. Les écoulements bidimensionnelsde cavité sont simulés avec la couche limite turbulente amont épaisse. le rapportd’aspect de la cavité est de 4. L’épaisseur de la couche limite <strong>in</strong>troduit un fort écoulementcisaillé au-dessus et dans la cavité qui peut osciller à la fréquence dom<strong>in</strong>ante, avec unmode de cisaillemnt à faible vitesse et au mode de sillage à vitesse modérée. Le cas testà faible vitesse qui est celui correspondant à l’expérience de Haigermoser [61] avec modede cisaillement a permis de valider nos résultats. Les deux modes ont été analysés enexam<strong>in</strong>ant l’écoulement moyen, l’écoulement fluctuant et le champ de vorticité. La zonede turbulence forte a été mise en évidence grâce aux iso-valeurs de la moyenne des fluctuationsturbulentes. La comparaison avec le champ des <strong>in</strong>tensités turbulentes obtenuespar Haigermoser a permis de monter l’accord parfait entre les calculs et l’expérience.L’<strong>in</strong>tensité turbulente est liée au type de mode qui dépend du rapport de l’épaisseur dequantité de mouvement de la couche limite à la pr<strong>of</strong>ondeur de la cavité et du nombre deMach de l’écoulement. Passant d’une vitesse de 5.8 à 40m/s fait augmenter l’<strong>in</strong>tensitéturbulente d’un ordre de grandeur.A 20m/s, le cas bidimensionnel a été étendu au cas 3D pour montrer que le modede sillage est un pur artefact de la simulation numérique 2D. En 3D seul le mode decisaillement est observé. Dans le cas tridimenionnel, <strong>in</strong>itialement l’écoulement resteuniforme en envergure et oscille suivant le mode sillage. Avec le temps le mode sillagedisparaît et il est suivi du mode de cisaillement. La couche limite turbulente amontconduit à un détachement tourbillonnaire irrégulier provenant du co<strong>in</strong> amont de la cavitéet à un battement basse fréquence de la zone cisaillée. L’explication est que les structuresde la turbulence de cette couche limite amont cont<strong>in</strong>uent à exister dans la zone cisailléede la cavité et impactent le co<strong>in</strong> aval pour générer les mécanismes d’<strong>in</strong>stabilité.L’étude de l’aéroacoustique qui a suivi a consisté en l’analyse des émissions sonores etdes sources. Un large ensemble de champs de pression <strong>in</strong>stantannée a été déterm<strong>in</strong>é parsimulations de grandes échelles et ont servi à alimenter l’analogie de Curle qui permetde calculer la pression acoustique dans la zone visée. Le niveau des émissions sonoresest lié à la vitesse amont et au type de mode dans la cavité. Dans tous les cas une faibledirectivité (orientabilité) dans la direction amont a été observée. Le mode sillage avecune dynamique tourbillonnaire complexe impacte localement et directement sur le niveaudes émissions sonores et sur l’orientabilité.PerspectivesAvec l’augmentation des resources de calcul (de IDRIS, Paris et de CALMIP, Toulouse),La simulation de grandes échelles et la simulation directe de l’écoulement de cavité pourrontêtre réalisées avec de grands doma<strong>in</strong>es de calcul et des maillages f<strong>in</strong>s. L’améliorationdes modèles comme WALE, Smagor<strong>in</strong>sky filtré et dynamique permettra de mieux pren-166


Conclusionsdre en compte la physique des écoulements <strong>turbulents</strong> complexes. Pour une grandeplage du nombre de Reynolds, les grandeurs moyennes et les fluctuations turbulentesde couches limites turbulentes épaisses, déterm<strong>in</strong>ées expérimentalement peuvent êtreajoutées à celles existantes pour fournir des conditions d’entrée plus réalistes en 2D et3D. L’étude des cavités avec différents rapports d’aspect peut être faite avec des coucheslimites épaisses à différents nombres de Reynolds pour analyser les parmètres qui <strong>in</strong>fluencentles mécanismes d’<strong>in</strong>stabilité et les modes.Dans le calcul des niveaux de pression sonore à faibles nombres de Mach, l’<strong>in</strong>tégralede volume a été négligée dans le code Matlab R○ . Pour améliorer la précision de l’évaluationdes niveaux de pression sonore, l’<strong>in</strong>tégrale de volume devra être ajoutée à celle de surfacepour prédire l’acoustique à nombre de Mach élevé et pour des écoulements fortementcompressibles. L’<strong>in</strong>fluence de l’épaisseur de la couche limite sur les niveaux de pressionsonore et sur l’orientabilité de la propagation serait <strong>in</strong>téressante à poursuivre.167


ConclusionsConclusionsThis PhD is concerned with a numerical study <strong>of</strong> <strong>the</strong> two–dimensional turbulent cavityflows regard<strong>in</strong>g <strong>the</strong> fluid dynamic and <strong>the</strong> acoustic aspects. It is <strong>in</strong>tegrated <strong>in</strong>to a MarieCurie Early Stage Tra<strong>in</strong><strong>in</strong>g Actions called AeroTraNet.The numerical approach is based on Large Eddy Simulations which are resolvedus<strong>in</strong>g <strong>the</strong> AVBP code from CERFACS. The acoustic analysis based on <strong>the</strong> Lighthill-Curle analogy has been performed.The flow over a cavity can be divided <strong>in</strong>to three regions : An <strong>in</strong>com<strong>in</strong>g turbulentboundary layer which develops and grows before reach<strong>in</strong>g <strong>the</strong> cavity, <strong>the</strong> turbulent flow<strong>in</strong>side and above <strong>the</strong> cavity which can be dist<strong>in</strong>guished <strong>in</strong>to a wake mode and a shearlayer mode, and an unsteady boundary layer flow downstream <strong>of</strong> <strong>the</strong> cavity which iswith or without separation and convects <strong>the</strong> structures ejected from <strong>the</strong> cavity.In our case, an <strong>in</strong>com<strong>in</strong>g turbulent boundary layer has been <strong>in</strong>itially def<strong>in</strong>ed with apower law mean velocity pr<strong>of</strong>ile.In <strong>the</strong> case <strong>of</strong> an equilibrium boundary layer, extension <strong>of</strong> <strong>the</strong> usual asymptoticapproach based on <strong>the</strong> defect law <strong>in</strong> <strong>the</strong> outer turbulent region and <strong>the</strong> usual frictionlaw and log law <strong>in</strong> <strong>the</strong> <strong>in</strong>ner region has been proposed.A new blend<strong>in</strong>g function <strong>of</strong> <strong>the</strong> mix<strong>in</strong>g length model has been proposed to improve<strong>the</strong> agreement between flat plate zero and adverse pressure gradient turbulent flows. Aparameter <strong>of</strong> <strong>the</strong> blend<strong>in</strong>g function has been determ<strong>in</strong>ed from experimental data andmodified <strong>in</strong> comparison with <strong>the</strong> Direct <strong>Numerical</strong> Simulation <strong>of</strong> adverse pressure gradientboundary layer flow. There is a good agreement between zero pressure gradient casesand DNS experiments. In <strong>the</strong> case <strong>of</strong> an adverse pressure gradient flow, some discrepanciesexist, some <strong>of</strong> which can be expla<strong>in</strong>ed as problems with <strong>the</strong> boundary conditionsimplemented <strong>in</strong> <strong>the</strong> simulations (DNS), <strong>the</strong> o<strong>the</strong>r be<strong>in</strong>g <strong>the</strong> limit <strong>of</strong> <strong>the</strong> asymptoticapproach, especially at low Reynolds number and high pressure gradient flow.Large eddy simulation with Two step Taylor Galerk<strong>in</strong> Col<strong>in</strong> scheme (3 rd order <strong>in</strong>space and time) has been performed to simulate <strong>the</strong> cavity flow. Classic Smagor<strong>in</strong>skyand filtered Smagor<strong>in</strong>sky are <strong>the</strong> turbulence models used <strong>in</strong> this work. Characteristicboundary conditions are used at <strong>the</strong> non–reflect<strong>in</strong>g boundaries and at <strong>the</strong> walls.Two–dimensional cavity flows were simulated with <strong>in</strong>com<strong>in</strong>g thick turbulent boundarylayer, with an constant aspect ratio <strong>of</strong> 4. The thickness <strong>of</strong> <strong>the</strong> boundary layer<strong>in</strong>troduces a strong shear flow <strong>in</strong> <strong>the</strong> cavity which can oscillate at a dom<strong>in</strong>ant frequency,with a shear layer mode at low velocity and wake mode at moderate velocities.The low velocity test case corresponds to <strong>the</strong> experiments, with a shear layer modeprovid<strong>in</strong>g a validation for <strong>the</strong> numerical simulation. Both modes were analysed for<strong>the</strong> mean, <strong>in</strong>stantaneous turbulent velocity and vorticity fields. The iso contours <strong>of</strong>turbulent fluctuations depict regions <strong>of</strong> high turbulent activities. The levels <strong>of</strong> Intensityfields obta<strong>in</strong>ed from <strong>the</strong> experiments agree with <strong>the</strong> values obta<strong>in</strong>ed from <strong>the</strong> numerical168


Conclusionssimulation, al though <strong>the</strong> fields are different.The turbulent <strong>in</strong>tensity is related to <strong>the</strong> mode, which depends on <strong>the</strong> ratio <strong>of</strong> <strong>the</strong>momentum thickness <strong>of</strong> <strong>the</strong> boundary layer to <strong>the</strong> cavity depth and on <strong>the</strong> Mach number.Increas<strong>in</strong>g <strong>the</strong> value <strong>of</strong> <strong>the</strong> <strong>in</strong>com<strong>in</strong>g velocity from 5.8m/s to 40m/s <strong>in</strong>creases <strong>the</strong> order<strong>of</strong> magnitude <strong>of</strong> <strong>the</strong> turbulent <strong>in</strong>tensity by two.At 20 m/s, <strong>the</strong> two–dimensional case has been extended to three–dimensional todemonstrate that <strong>the</strong> wake mode is a pure artifact <strong>of</strong> <strong>the</strong> numerical simulation, s<strong>in</strong>ceonly a shear mode is observed <strong>in</strong> three–dimensional cases. In <strong>the</strong> three–dimensionalcase, <strong>in</strong>itially <strong>the</strong> flow rema<strong>in</strong>s uniform <strong>in</strong> <strong>the</strong> span wise direction and oscillates <strong>in</strong> wakemode. After an <strong>in</strong>itial period, <strong>the</strong> wake mode ruptures <strong>in</strong>to a shear mode. The <strong>in</strong>com<strong>in</strong>gturbulent boundary layer leads to a low frequency flapp<strong>in</strong>g <strong>of</strong> <strong>the</strong> shear layer result<strong>in</strong>g<strong>in</strong> an irregular vortex shedd<strong>in</strong>g from <strong>the</strong> lead<strong>in</strong>g edge <strong>of</strong> <strong>the</strong> cavity. An explanation isdue to <strong>the</strong> turbulent structures <strong>of</strong> <strong>the</strong> <strong>in</strong>com<strong>in</strong>g boundary layer which cont<strong>in</strong>ue to exist<strong>in</strong>side <strong>the</strong> cavity shear layer result<strong>in</strong>g <strong>in</strong> <strong>in</strong>stability mechanisms.The <strong>aeroacoustic</strong> study has been done to analyse <strong>the</strong> acoustic sources and propagation.A large set <strong>of</strong> <strong>in</strong>stantaneous pressure field was determ<strong>in</strong>ed from large eddysimulation and used as an <strong>in</strong>put to <strong>the</strong> Curle’s analogy, to compute <strong>the</strong> acoustic pressure<strong>of</strong> an observer region. The Sound Pressure Level (SPL), is related to <strong>the</strong> upstreamvelocity and <strong>the</strong> oscillat<strong>in</strong>g mode <strong>of</strong> <strong>the</strong> shear layer. In all <strong>the</strong> cases a weak directivity<strong>in</strong> <strong>the</strong> upstream direction has been observed. Wake modes with a complex vorticitydynamic directly impacts locally SPL and directivity.Suggestions for future workWith <strong>the</strong> <strong>in</strong>creased comput<strong>in</strong>g resources (for e.g. IDRIS, Paris and CALMIP, Toulouse),Large eddy simulation and direct numerical simulation could be performed to simulatecavity flows with huge doma<strong>in</strong>s and well ref<strong>in</strong>ed grids. Improved sub grid models such asWALE, Filtered Smagor<strong>in</strong>sky model and Dynamic Smagor<strong>in</strong>sky model could be followedto allow a better representation <strong>of</strong> local phenomena typical <strong>of</strong> complex turbulent flows.For a wide range <strong>of</strong> Reynolds number, thick turbulent boundary layer from experiments(with turbulent quantities) can be added to <strong>the</strong> exist<strong>in</strong>g boundary layer so that<strong>the</strong>y could be imposed at <strong>the</strong> <strong>in</strong>let <strong>of</strong> <strong>the</strong> two–dimensional and three–dimensional doma<strong>in</strong>s.Studies over cavities with different aspect ratios could be made with <strong>the</strong> thick turbulentboundary layer <strong>of</strong> vary<strong>in</strong>g Reynolds number to analyse <strong>the</strong> parameters which<strong>in</strong>fluence <strong>the</strong> <strong>in</strong>stability mechanism and mode switch<strong>in</strong>g.Study on <strong>the</strong> three–dimensional rectangular cavities could be extended to cyl<strong>in</strong>dricalcavities which show more complex flow <strong>in</strong>side and over <strong>the</strong> cavity region with asymmetricacoustic near field.In calculat<strong>in</strong>g <strong>the</strong> sound pressure level for <strong>the</strong> low Mach number flow, <strong>the</strong> volume169


Conclusions<strong>in</strong>tegral <strong>of</strong> <strong>the</strong> Curle’s analogy was neglected <strong>in</strong> <strong>the</strong> code.Apart from improv<strong>in</strong>g <strong>the</strong>accuracy <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> sound pressure level, <strong>in</strong>clusion <strong>of</strong> <strong>the</strong> volume <strong>in</strong>tegral with<strong>the</strong> exist<strong>in</strong>g surface <strong>in</strong>tegral could help to capture <strong>the</strong> acoustics for high Mach numberand compressible flows. Influence <strong>of</strong> boundary layer thickness on <strong>the</strong> sound pressurelevel and <strong>the</strong> directivity <strong>of</strong> <strong>the</strong> propagation <strong>of</strong> <strong>the</strong> sound could be an <strong>in</strong>terest<strong>in</strong>g studyto cont<strong>in</strong>ue.170


Bibliography[1] Future Noise Policy, European Commission Green Paper, November 1996.COM(96)540 Brussels. 4[2] Ahuja, K. K., and Mendoza, J. Effects <strong>of</strong> cavity dimensions, boundary layerand temperature on cavity noise with emphasis on benchmark data to validatecomputational aeroaoucstic codes. Task 13 NAS1–19061, NASA Contractor Report:4653, 1995. 16, 17, 135, 160[3] Akselvoll, K., and Mo<strong>in</strong>, P. Large–eddy simulation <strong>of</strong> turbulent conf<strong>in</strong>edcoannular jets. Journal <strong>of</strong> Fluid Mechanics 315 (1996), 387–411. 83, 105[4] Arunajatesan, S., and N. S<strong>in</strong>ha, N. Hybrid RANS–LES model<strong>in</strong>g for cavity<strong>aeroacoustic</strong>s predictions. International Journal <strong>of</strong> Aeroacoustics 2, 1 (2003), 65–93. 30[5] Bertier, N., Courbet, B., Dutoya, D., Vuillot, F., and Sagaut, P.Large eddy simulation <strong>of</strong> a subsonic flow over a cavity on general unstructuredgrids. AIAA 679 (2004). 134, 157[6] Bird, R., Stewart, W., and Lightfoot, E. Transport Phenomena. JohnWiley & Sons, New York, 1960. 25[7] Bouss<strong>in</strong>esq, J. Essai sur la théorie des eaux courantes. Mémoires présentés pardivers savants à l’Académie des Sciences XXIII (1877), 1–660. 26[8] Bradshaw, P. The turbulence structure <strong>of</strong> equilibrium boundary layers. Journal<strong>of</strong> Fluid Mechanics 29, 4 (1967), 625–645. 47, 66[9] Brooks, A. N., and Hugues, T. J. R. Streaml<strong>in</strong>e upw<strong>in</strong>d/Petrov–Galerk<strong>in</strong>formulations for convection dom<strong>in</strong>ated flows with particular emphasis on <strong>the</strong> <strong>in</strong>compressibleNavier–Stokes equations. Computer Methods <strong>in</strong> Applied Mechanicsand Eng<strong>in</strong>eer<strong>in</strong>g 32 (1990), 199–259. 94[10] CERFACS. The AVBP Handbook. 42, Avenue Gaspard Coriolis. 31057 ToulouseCedex 01, Oct 2008. 81, 89, 100, 115, 119, 120171


BIBLIOGRAPHY[11] Chang, K., Constant<strong>in</strong>escu, G., and Park, S. Analysis <strong>of</strong> <strong>the</strong> flow and masstransfer processes for <strong>the</strong> <strong>in</strong>compressible flow past an open cavity with a lam<strong>in</strong>arand a fully turbulent <strong>in</strong>com<strong>in</strong>g boundary layer. Journal <strong>of</strong> Fluid Mechanics 561(2006), 113–145. 9, 13, 18[12] Chapman, G. T., and Tobak, M. Observations, <strong>the</strong>oretical ideas, and model<strong>in</strong>g<strong>of</strong> turbulent flows–past, present and future. In Theoretical Approaches toTurbulence (1985), D. L. Dwoyer, M. Y. Hussa<strong>in</strong>i, and R. G. Voigt, Eds., vol. 58<strong>of</strong> Applied Ma<strong>the</strong>matical Sciences, Spr<strong>in</strong>ger–Verlag, New York, pp. 19–49. 27[13] Charwat, A. F., Roos, J. N., Dewey Jr, F. C., and Hitz, J. A. An<strong><strong>in</strong>vestigation</strong> <strong>of</strong> separated flows. Part I: The pressure field. Journal <strong>of</strong> AerospaceSciences 28, 6 (1961), 457–470. 16, 43[14] Chasnov, J. R. Simulation <strong>of</strong> <strong>the</strong> Kolmogorov <strong>in</strong>ertial subrange us<strong>in</strong>g an improvedsubgrid model. Physics <strong>of</strong> Fluids A 3 (1991), 188–200. 83, 105[15] Chassa<strong>in</strong>g, P. Turbulence en mécanique des fluides, analyse du phénomène envue de sa modélisation à l’usage de l’<strong>in</strong>génieur. Cépaduès–éditions, 2000. 30[16] Clauser, F. H. Turbulent boundary layers <strong>in</strong> adverse pressure gradients. Journal<strong>of</strong> <strong>the</strong> Aeronautical Sciences 21 (1954), 91–108. 47, 66[17] Coles, D. The law <strong>of</strong> <strong>the</strong> wake <strong>in</strong> <strong>the</strong> turbulent boundary layer. Journal <strong>of</strong> FluidMechanics 1 (January 1956), 191–226. 45, 46, 73[18] Col<strong>in</strong>, O. Simulations aux grandes échelles de la combustion turbulenteprémélangé dans les statoréacteurs. PhD <strong>the</strong>sis, Institut National Polytechniquede Toulouse, 2000. 82, 101, 121, 140[19] Col<strong>in</strong>, O., and Rudgyard, M. Development <strong>of</strong> high–order Taylor–Galerk<strong>in</strong>schemes for LES. Journal <strong>of</strong> Computational Physics 162 (2000). 76, 78, 79, 80,90, 95, 97, 99[20] Colonius, T. An overview <strong>of</strong> simulation, model<strong>in</strong>g and active control <strong>of</strong>flow/acoustic resonance <strong>in</strong> open cavities. AIAA paper (2001). 2001–0076. 138[21] Colonius, T., Basu, A. J., and Rowley, C. W. Computation <strong>of</strong> soundgeneration and flow/acoustics <strong>in</strong>stabilities <strong>in</strong> <strong>the</strong> flow past an open cavity. In 3rdASME/JSME Jo<strong>in</strong>t Fluids Eng<strong>in</strong>eer<strong>in</strong>g Conference (San Francisco, California,USA, 1999), no. 7228 <strong>in</strong> FEDSM99. 133, 151[22] Colonius, T., and Lele, S. K. Computational <strong>aeroacoustic</strong>s: progress onnonl<strong>in</strong>ear problems <strong>of</strong> sound generation. Progress <strong>in</strong> Aerospace Sciences 40, 6(August 2004), 345–416. 16, 42, 43, 139172


BIBLIOGRAPHY[23] Cousteix, J. Turbulence et couche limite. Cépaduès, 1989. 49[24] Cousteix, J. Outer boundary layer self–similar solution. Private communication,2009. 55[25] Cousteix, J., and Mauss, J. Asymptotic Analysis and Boundary Layers.Spr<strong>in</strong>ger–Verlag, Berl<strong>in</strong> Heidelberg, 2007. 38, 47, 49, 51, 74[26] Curle, N. The <strong>in</strong>fluence <strong>of</strong> solid boundaries upon aerodynamic sound. Proceed<strong>in</strong>gs<strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> London A23 (1955), 505–514. 34, 35[27] D. Stull, D., and Prophet, H. JANAF <strong>the</strong>rmochemical tables, 2 nd edition.Tech. rep., NSRDS–NBS 37, US National Bureau <strong>of</strong> Standards, 1971. 21, 24[28] Darcy, H. Recherches expérimentales relatives au mouvement de leau dans lestuyaux. Imprimerie impériale, Paris, 1857. 43[29] De Graaff, D. B., and Eaton, J. K. Reynolds number scal<strong>in</strong>g <strong>of</strong> <strong>the</strong> flat–plate turbulent boundary layer. Journal <strong>of</strong> Fluid Mechanics 422 (November 2000),319–346. 55, 56[30] Deardorff, J. A numerical study <strong>of</strong> three–dimensional turbulent channel flowat large Reynolds numbers. Journal <strong>of</strong> Fluid Mechanics 41 (1970), 453–480. 83,105[31] Deardorff, J. W. Three–dimensional numerical study <strong>of</strong> <strong>the</strong> height and meanstructure <strong>of</strong> a heated planetary boundary layer. Boundary–Layer Meteorology 7,1 (1974), 81–106. 83, 105[32] Dix, R. E., and Bauer, R. C. Experimental and predicted acoustic amplitutdes<strong>in</strong> a rectangular cavity. AIAA Paper, 2000–0472 (2000). 16, 148[33] Donea, J. Taylor–Galerk<strong>in</strong> method for convective transport problems. InternationalJournal for <strong>Numerical</strong> Methods <strong>in</strong> Fluids 20, 1 (1984), 101–119. 76, 78, 90,97[34] Donea, J., Quartapelle, L., and Selm<strong>in</strong>, V. An analysis <strong>of</strong> time discretization<strong>in</strong> <strong>the</strong> nite element solution <strong>of</strong> hyperbolic problems. Journal <strong>of</strong> ComputationalPhysics 70 (1987), 463–499. 76, 78, 90, 97[35] Ducros, F., Nicoud, F., and Po<strong>in</strong>sot, T. Wall–adapt<strong>in</strong>g local eddy–viscositymodels for simulations <strong>in</strong> complex geometries. In ICFD (1998), pp. 293–300. 88,112[36] Dybenko, J., Her<strong>in</strong>g, T., and Savory, E. Turbulent flow over circular cyl<strong>in</strong>dricalcavities with vary<strong>in</strong>g depth to diameter ratio. In International Council <strong>of</strong><strong>the</strong> Aeronautical Sciences Congress (Hamburg, Germany, September 2006). 18173


BIBLIOGRAPHY[37] Erm, L. P., and Joubert, P. N. Low–Reynolds–number turbulent boundarylayers. Journal <strong>of</strong> Fluid Mechanics 230 (1991), 1–44. 55, 56[38] ESDU. Aerodynamics and aero–acoustics <strong>of</strong> rectangular planform cavities. partI: Time–averaged flow. Data Item 02008, ESDU International, 2004. 14[39] E<strong>the</strong>mbabaoglu, S. On <strong>the</strong> fluctuat<strong>in</strong>g flow characteristics <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong>gate slots. PhD <strong>the</strong>sis, Division <strong>of</strong> Hydraulic Eng<strong>in</strong>eer<strong>in</strong>g, Norwegian Institute <strong>of</strong>Technology, University <strong>of</strong> Trondheim, 1973. 16[40] Faure, T. M., Adrianos, P., Lusseyran, F., and Pastur, L. Visualizations<strong>of</strong> <strong>the</strong> flow <strong>in</strong>side an open cavity at medium range Reynolds numbers. Experiments<strong>in</strong> Fluids 42 (2007), 169–184. 18[41] Favre, A. Statistical equations <strong>of</strong> turbulent gases. In Problems <strong>of</strong> hydrodynamicsand cont<strong>in</strong>uum mechanics (1969), 231–266. 83, 106[42] Ffowcs Williams, J. E., and Hawk<strong>in</strong>gs, D. L. Sound generation by turbulenceand surfaces <strong>in</strong> arbitrary motion. Philosophical Transactions <strong>of</strong> <strong>the</strong> RoyalSociety A264, 1151 (1969), 321–342. 34[43] Forestier, N., Jacqu<strong>in</strong>, L., and Geffroy, P. The mix<strong>in</strong>g layer over a deepcavity at high–subsonic speed. Journal <strong>of</strong> Fluid Mechanics 475 (2003), 101–145.13[44] Gandhi, T., Airiau, C., Kourta, A., and Po<strong>in</strong>sot, T. Sound emission from a2-d thick turbulent boundary layer flow past an elongated cavity. In 19 th CongrèsFrançais de Mécanique, Marseille, France (24–28 August 2009). 74[45] Gandhi, T., Airiau, C., Po<strong>in</strong>sot, T., and Kourta, A. Analysis <strong>of</strong> turbulenceand noise emission <strong>in</strong> open rectangular cavity and separated flows. In 3 rd Europeanconference for Aero-Space Sciences, Versailles, France (July 06–09 2009). 74[46] García, M. Développement et validation du formalisme Euler–Lagrange dans unsolveur parallèle et non–structuré pour la simulation aux grandes échelles. PhD<strong>the</strong>sis, Institut National Polytechnique de Toulouse, January 2009. 91, 92[47] George, W. K. Lectures <strong>in</strong> turbulence for <strong>the</strong> 21 st century. 41[48] Germano, M. Turbulence: The filter<strong>in</strong>g approach. Journal <strong>of</strong> Fluid Mechanics238 (1992), 325–336. 112[49] Germano, M., Piomelli, U., Mo<strong>in</strong>, P., and Cabot, W. H. A dynamicsubgrid–scale eddy viscosity model. Physics <strong>of</strong> fluids A 3 (July 1991), 1760–1765.112174


BIBLIOGRAPHY[50] Gharib, M., and Roshko, A. The effect <strong>of</strong> flow oscillations on cavity drag. J.Fluid Mechanics 177 (1987), 501–530. 16, 17[51] Giles, M. Non–reflect<strong>in</strong>g boundary conditions for euler equation calculations.AIAA Journal 28, 12 (1990), 2050–2058. 119[52] Gloerfelt, X., Bailly, C., and Juvé, D. Direct computation <strong>of</strong> <strong>the</strong> noiseradiated by a subsonic cavity flow and application <strong>of</strong> <strong>in</strong>tegral methods. Journal <strong>of</strong>Sound and Vibration 266, 1 (September 2003), 119–146. 12[53] Gloerfelt, X., Bogey, C., and Bailly, C. <strong>Numerical</strong> evidence <strong>of</strong> modeswitch<strong>in</strong>g <strong>in</strong> <strong>the</strong> flow–<strong>in</strong>duced oscillations by a cavity. International Journal <strong>of</strong>Aeroacoustics 2, 2 (2003), 193–217. 13[54] Gloerfelt, X., Bogey, C., and Bailly, C. <strong>Numerical</strong> <strong><strong>in</strong>vestigation</strong> <strong>of</strong> <strong>the</strong>coexistence <strong>of</strong> multiple tones <strong>in</strong> flow–<strong>in</strong>duced cavity noise. In 9 th AIAA/CEASAeroacoustics Conference (Hilton head, South Carol<strong>in</strong>a, USA, 12–13 May 2003),AIAA Paper. 2003–3234. 13[55] Gloerfelt, X., Bogey, C., Bailly, C., and Juvé, D. Aerodynamic noise<strong>in</strong>duced by lam<strong>in</strong>ar and turbulent boundary layers over rectangular cavities. In8 th AIAA/CEAS AeroAcoustics Conference, Breckenridge (CO), USA (17–19 June2002), AIAA Paper. 2002-2476. 8, 12[56] Grace, S. M., Dewar, W. G., and Wroblewski, D. E. Experimental <strong><strong>in</strong>vestigation</strong><strong>of</strong> <strong>the</strong> flow characteristics with<strong>in</strong> a shallow wall cavity for both lam<strong>in</strong>ar andturbulent upstream boundary layers. Experiments <strong>in</strong> fluids 36 (2004), 791–804.16[57] Grottadaurea, M., and Rona, A. Noise sources from a cyl<strong>in</strong>drical cavity.AIAA paper (2007). 2007–3723. 19[58] Grottadaurea, M., and Rona, A. The radiat<strong>in</strong>g pressure field <strong>of</strong> a turbulentcyl<strong>in</strong>drical cavity flow. AIAA paper (2008). 19[59] Hagen, G. Über den E<strong>in</strong>fluss der Temperatur auf die Bewegung des Wassers <strong>in</strong>Röhren. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berl<strong>in</strong>,ma<strong>the</strong>matische Klasse (1854), 17–98. 43[60] Haigermoser, C. Investigation <strong>of</strong> cavity flows us<strong>in</strong>g advanced optical methods.PhD <strong>the</strong>sis, Politecnico di Tor<strong>in</strong>o, 2009. 130, 135, 139, 160[61] Haigermoser, C., Vesely, L., Novara, M., and Onorato, M. A time–resolved particle image velocimetry <strong><strong>in</strong>vestigation</strong> <strong>of</strong> a cavity flow with a thick<strong>in</strong>com<strong>in</strong>g turbulent boundary layer. Physics <strong>of</strong> fluids 20, 105101 (2008). 133, 154,164, 166175


BIBLIOGRAPHY[62] Haworth, D. C., and Jansen, K. Large–eddy simulation on unstructureddeform<strong>in</strong>g meshes: towards reciprocat<strong>in</strong>g IC eng<strong>in</strong>es. Computers and fluids 29(2000), 493–524. 83, 105[63] Hedges, L., Trav<strong>in</strong>, A., and Sparlart, P. Detached–eddy simulation over asimplified land<strong>in</strong>g gear. Journal <strong>of</strong> Fluids Eng<strong>in</strong>eer<strong>in</strong>g 124, 2 (2002), 413–424. 30[64] Herr<strong>in</strong>g, H. J., and Norbury, F. J. Experiments on equilibrium turbulentboundary layers <strong>in</strong> favourable pressure gradients. Journal <strong>of</strong> Fluid Mechanics 27(1967), 541. 66[65] H<strong>in</strong>ze, J. O. Turbulence. McGraw–Hill, New York, 1975. 58[66] Hirsch, C. F<strong>in</strong>ite volume method and conservative discretization with an <strong>in</strong>troductionto f<strong>in</strong>ite element method. In <strong>Numerical</strong> Computation <strong>of</strong> <strong>in</strong>ternal andexternal flows: Fundamentals <strong>of</strong> Computational Fluid Dynamics, second ed. NewYork:John Wiley and Sons, 2007. 76, 91, 119[67] Hirschfelder, J., Curtiss, C., and Bird, R. Molecular Theory <strong>of</strong> Gases andLiquids. John Wiley & Sons, New York, 1954. 25[68] Hiwada, M., Kawamura, T., Mabuchi, I., and Kumada, M. Some characteristics<strong>of</strong> flow pattern and heat transfer pas a circular cyl<strong>in</strong>drical cavity. Bullet<strong>in</strong><strong>of</strong> <strong>the</strong> JSME 26, 220 (October 1983). 10, 18[69] Jameson, A., Schmidt, W., and Turkel, E. <strong>Numerical</strong> solution <strong>of</strong> <strong>the</strong> Eulerequations by f<strong>in</strong>ite volume methods us<strong>in</strong>g Runge–Kutta time–stepp<strong>in</strong>g schemes.AIAA (June 1981). 82, 101[70] Jiménez, J., and Mo<strong>in</strong>, P. The m<strong>in</strong>imal flow unit <strong>in</strong> near wall turbulence.Journal <strong>of</strong> Fluid Mechanics 225 (1991), 213–240. 45[71] Karamcheti, K. Sound radiation from surface cutouts <strong>in</strong> high speed flow. PhD<strong>the</strong>sis, California Institute <strong>of</strong> Technology, January 1956. 12, 17[72] Karbon, K., and S<strong>in</strong>gh, R. Simulation and design <strong>of</strong> automobile sunro<strong>of</strong> buffet<strong>in</strong>gnoise control. AIAA, 2550 (2002). 12[73] Kleban<strong>of</strong>f, P. S. Characteristics <strong>of</strong> turbulence <strong>in</strong> a boundary layer with zeropressure gradient. TR 1247. NACA (1955). 40, 43, 58, 59, 64, 69[74] Kl<strong>in</strong>e, S. J., Reynolds, W. C., Schraub, F. A., and Runstadler, P. W.The structure <strong>of</strong> turbulent boundary layers. Journal <strong>of</strong> Fluid Mechanics 30, 4(1967), 741–773. 67176


BIBLIOGRAPHY[75] Kraichnan, R. H. Eddy viscosity <strong>in</strong> two and three dimensions. Journal <strong>of</strong> <strong>the</strong>Atmospheric Sciences 33 (1976), 1521–1536. 83, 105[76] Lamarque, N. Schémas numériques et conditions limites pour la simulation auxgrandes échelles de la combustion diphasique dans les foyers d’hélicoptère. PhD<strong>the</strong>sis, Institut National Polytechnique de Toulouse, 2007. 81, 99[77] Larchevêque, L., Sagaut, P., Le, T., and Comte, P. Large–eddy simulation<strong>of</strong> a compressible flow <strong>in</strong> a three–dimensional open cavity at high Reynolds number.Journal <strong>of</strong> Fluid Mechanics, 516 (2004), 265–301. 9, 18[78] Larchevêque, L., Sagaut, P., Mary, I., Labbé, O., and Comte, P. Large–eddy simulation <strong>of</strong> a compressible flow past a deep cavity. Physics <strong>of</strong> Fluids 15, 1(2003), 193–210. 8, 13[79] Larsson, J. Computational Aero Acoustics for Vehicle Applications. PhD <strong>the</strong>sis,Chalmers University <strong>of</strong> Technology, 2002. 11, 36[80] Larsson, J., Davidson, L., Eriksson, L.-E., and Olsson, M. Aeroacoustic<strong><strong>in</strong>vestigation</strong> <strong>of</strong> an open cavity at low Mach number. AIAA 42, 12 (2004), 2462–2473. 35, 133, 146, 151[81] Lax, P. D., and Wendr<strong>of</strong>f, B. Systems <strong>of</strong> conservation laws. Communicationson Pure and Applied Ma<strong>the</strong>matics 13 (1960), 217–237. 76, 78, 90, 95[82] Lax, P. D., and Wendr<strong>of</strong>f, B. Difference schemes for hyperbolic equationswith high order <strong>of</strong> accuracy. Communications on Pure and Applied Ma<strong>the</strong>matics17 (1964), 381–398. 76, 78, 90, 95[83] Leonard, A. Energy Cascade <strong>in</strong> Large–Eddy Simulations <strong>of</strong> Turbulent FluidFlows, vol. 18. Advances <strong>in</strong> Geophysics, Academic Press, Inc., New York, USA,1974. 83, 106[84] Lesieur, M. Turbulence <strong>in</strong> Fluids, second revised edition ed. Kluwer AcademicPress, Dordrecht,, 1990. 29[85] Lesieur, M., and Métais, O. New trends <strong>in</strong> Large–Eddy Simulations <strong>of</strong> turbulence.Annual Review <strong>of</strong> Fluid Mechanics 28 (January 1996), 45–82. 112[86] Lesieur, M., Métais, O., and Comte, P. Large–Eddy Simulations <strong>of</strong> Turbulence.Cambridge, 2008. 112[87] Lighthill, M. J. On sound generated aerodynamically: I. General Theory.Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> London, Series A 211 (1952), 564–587. 33177


BIBLIOGRAPHY[88] Lighthill, M. J. On sound generated aerodynamically: II. Turbulence as asource <strong>of</strong> sound. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Royal Society <strong>of</strong> London, Series A 222 (1954),1–32. 33[89] Lilly, D. K. The representation <strong>of</strong> small–scale turbulence <strong>in</strong> numerical simulationexperiments. In IBM Scientific Comput<strong>in</strong>g Symposium on Environmental Sciences(Yorktown Heights, New York, 1967), IBM Form, pp. 195–210. 83, 87, 105, 111[90] Lilly, D. K. A proposed modification <strong>of</strong> <strong>the</strong> Germano subgrid–scale closuremethod. Physics <strong>of</strong> fluids A 4 (1992), 633–635. 112[91] Lorenz, E. N. Determ<strong>in</strong>istic nonperiodic flow. Journal <strong>of</strong> <strong>the</strong> AtmosphericSciences 20 (1963), 130–141. 27[92] Ludwieg, H., and Tillman, W. Investigations <strong>of</strong> <strong>the</strong> wall shear<strong>in</strong>g stress <strong>in</strong>turbulent boundary layers. TM 1285. NACA (1950). 43[93] Marsden, O., Bogey, C., and Bailly, C. Investigation <strong>of</strong> flow features andacoustic radiation <strong>of</strong> a round cavity. In 14 th AIAA/CEAS Aeroacoustics Conference,5–7 May, Vancouver, Canada (2008), AIAA Paper. 2008–2851. 18, 19[94] Mason, P. J. Large–Eddy Simulation: A critical review <strong>of</strong> <strong>the</strong> technique. QuarterlyJournal <strong>of</strong> <strong>the</strong> Royal Meteorology Society 120, 515 (1994), 1–26. 83, 105[95] McDonough, J. M. Introductory lectures on Turbulence–Physics, Ma<strong>the</strong>maticsand Model<strong>in</strong>g. University <strong>of</strong> Kentucky, 2008. 27, 42[96] Mellor, G. L. The large Reynolds number, asymptotic <strong>the</strong>ory <strong>of</strong> turbulentboundary layers. International Journal <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g Sciences 10, 10 (1972),851–873. 44[97] Mellor, G. L., and Gibson, D. M. Equilibrium turbulent boundary layers.Journal <strong>of</strong> Fluid Mechanics 24, 2 (1966), 225–253. 38, 47[98] Meneveau, C., Lund, T. S., and Cabot, W. H. A Lagrangian dynamicsubgrid–scale model <strong>of</strong> turbulence. Journal <strong>of</strong> Fluid Mechanics 319 (1996), 353–385. 112[99] Michel, R., Quémard, C., and Durant, R. Application d’un schéma delongueur de mélange à l’étude des couches limites turbulentes d’équilibre. TechnicalNote 154, ONERA, 1969. 38, 48, 59[100] Mihǎescu, M. Computational Aeroacoustics Based on Large Eddy Simulationand Acoustic Analogies. PhD <strong>the</strong>sis, Lund Institute <strong>of</strong> Technology, Sweden, April2005. 32178


BIBLIOGRAPHY[101] Mo<strong>in</strong>, P., and Kim, J. <strong>Numerical</strong> <strong><strong>in</strong>vestigation</strong> <strong>of</strong> turbulent channel flow. Journal<strong>of</strong> Fluid Mechanics 118 (1982), 341–377. 83, 105[102] Moureau, V., Lartigue, G., Sommerer, Y., Angelberger, C., Col<strong>in</strong>, O.,and Po<strong>in</strong>sot, T. <strong>Numerical</strong> methods for unsteady compressible multi–componentreact<strong>in</strong>g flows on fixed and mov<strong>in</strong>g grids. Journal <strong>of</strong> Computational Physics 202,2 (January 2005), 710–736. 88, 114[103] Nicoud, F. Def<strong>in</strong><strong>in</strong>g wave amplitude <strong>in</strong> characteristic boundary conditions. Journal<strong>of</strong> Computational Physics 149, 2 (March 1999), 418–422. 88, 114, 124, 126[104] Nicoud, F., and Ducros, F. Subgrid–scale stress modell<strong>in</strong>g based on <strong>the</strong> square<strong>of</strong> <strong>the</strong> velocity gradient tensor. Flow, Turbulence and Combustion 62 (1999), 183–200. 88, 112[105] Nicoud, F., and Po<strong>in</strong>sot, T. Boundary conditions for compressible unsteadyflows. In Articial Boundary Conditions with Applications to Computational FluidDynamics Problems (2001), L. Tourrette and L. Halpern, Eds., Editions Novascience,New–York. 89, 119[106] Österlund, J. M. Experimental studies <strong>of</strong> zero pressure–gradient turbulentboundary layer flow. PhD <strong>the</strong>sis, Royal Institute <strong>of</strong> Technology, KTM, Stockholm,1999. 55, 56[107] Ozsoy, E., Rambaud, P., Stitou, A., and Riethmuller, M. L. Vortexcharacteristics <strong>in</strong> lam<strong>in</strong>ar cavity flow at very low Mach number. Experiments <strong>in</strong>Fluids 38 (2005), 133–145. 16[108] Piomelli, U. High Reynolds number calculations us<strong>in</strong>g <strong>the</strong> dynamic subgrid–scale stress model. Physics <strong>of</strong> Fluids A 5 (1993), 1484–1490. 83, 105[109] Plentovich, E. Three–dimensional cavity flow fields at subsonic and transonicspeeds. Tech. Rep. TM 4209, NASA Langley Research Center, 1992. 15, 16[110] Po<strong>in</strong>caré, H. Les methodes nouvelles de la mécanique celeste. Gauthier Villars,Paris 1–3 (1899). 27[111] Po<strong>in</strong>sot, T., and Veynante, D. Combustion numérique–cours de DEA, 1999.88, 113[112] Po<strong>in</strong>sot, T., and Veynante, D. Theoretical and <strong>Numerical</strong> Combustion. R TEdwards, 2001. 23, 83, 105, 106, 108, 127[113] Po<strong>in</strong>sot, T. J., and Lele, S. K. Boundary conditions for direct simulations<strong>of</strong> compressible viscous flows. Journal <strong>of</strong> Computational Physics 101 (July 1992),104–129. 88, 114, 119179


BIBLIOGRAPHY[114] Pope, S. B. Turbulent Flows. Cambridge University Press, Cambridge, 2000. 30,110[115] Prandtl, L. Bericht über untersuchungen zur ausgebildeten turbulenz.Zeitschrift für angewandte Ma<strong>the</strong>matik und Mechanik 5 (1925), 136–139. 27, 48[116] Prosser, R. Improved boundary conditions for <strong>the</strong> direct numerical simulation<strong>of</strong> turbulent subsonic flows. I. <strong>in</strong>viscid flows. Journal <strong>of</strong> Computational Physics207, 2 (2005), 736–768. 119[117] Prosser, R., and Schluter, J. Toward improved boundary conditions for <strong>the</strong>DNS and LES <strong>of</strong> turbulent subsonic flows. In In Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Summer Program(2004), Center for Turbulence Research, NASA AMES/Stanford University,Stanford, pp. 395–399. 119[118] Quartapelle, L., and Selm<strong>in</strong>, V. High–order Taylor–Galerk<strong>in</strong> methods fornon–l<strong>in</strong>ear multidimensional problems. F<strong>in</strong>ite Elements <strong>in</strong> Fluids (1993). 76, 90[119] Raman, G., Envia, E., and Bencic, T. J. Tone noise and near field pressureproduced by jet–cavity <strong><strong>in</strong>teraction</strong>. In Aerospace Sciences Meet<strong>in</strong>g and Exhibit,37 th , Reno, NV (January. 11–14 1998). AIAA 1999–604. 16[120] Reynolds, O. An experimental <strong><strong>in</strong>vestigation</strong> <strong>of</strong> <strong>the</strong> circumstances which determ<strong>in</strong>ewhe<strong>the</strong>r <strong>the</strong> motion <strong>of</strong> water shall be direct or s<strong>in</strong>uous, and <strong>of</strong> <strong>the</strong> law <strong>of</strong>resistance <strong>in</strong> parallel channels. Philosophical Transactions <strong>of</strong> <strong>the</strong> Royal Society174 (1883), 935–982. 26[121] Ribner, H. S. The generation <strong>of</strong> sound by turbulent jets, vol. 8. Advances <strong>in</strong>Applied Mechanics, 1964. 32[122] Ricot, D., Maillard, V., and Bailly, C. <strong>Numerical</strong> simulation <strong>of</strong> unsteadycavity flow us<strong>in</strong>g Lattice Boltzmann Method. In 8 th AIAA/CEAS AeroAcousticsConference, Breckenridge (CO), USA (17–19 June 2002), AIAA Paper. 2002–2532.8, 12[123] Rizzetta, D. P., and Visbal, M. R. Large–eddy simulation <strong>of</strong> supersoniccavity flowfields <strong>in</strong>clud<strong>in</strong>g flow control. AIAA Journal 41, 8 (2003), 1452–1462. 9,18[124] Rockwell, D. Prediction <strong>of</strong> oscillation frequencies for unstable flow past cavities.ASME Journal <strong>of</strong> Fluids Eng<strong>in</strong>eer<strong>in</strong>g 99, 2 (1977), 294–300. 15[125] Rockwell, D., and Knisely, C. Observations <strong>of</strong> <strong>the</strong> three–dimensional nature<strong>of</strong> unstable flow past a cavity. Physics <strong>of</strong> Fluids 23, 3 (1980), 425–431. 9, 17180


BIBLIOGRAPHY[126] Rockwell, D., and Naudascher, E. Review–self–susta<strong>in</strong><strong>in</strong>g oscillations <strong>of</strong>flow past cavities. Journal <strong>of</strong> fluid Eng<strong>in</strong>eer<strong>in</strong>g 100 (1978), 152–165. 15[127] Rona, A. The acoustic resonance <strong>of</strong> rectangular and cyl<strong>in</strong>drical cavities. AIAA(2007). 2007–3420. 10, 18[128] Rona, A., Grottadaurea, M., Monti, M., Airiau, C., and Gandhi, T.Generation <strong>of</strong> a turbulent boundary layer <strong>in</strong>flow for RANS simulations. In 15 thAIAA/CEAS Aeroacoustics Conference (30 th AIAA Aeroacoustics Conference)(May 2009). AIAA 09–3272. 37, 46, 48, 55, 56, 59, 74[129] Rona, A., Grottadaurea, M., Monti, M., Airiau, C., and Gandhi, T.On <strong>the</strong> generation <strong>of</strong> <strong>the</strong> mean velocity pr<strong>of</strong>ile for turbulent boundary layers withpressure gradient under equilibrium conditions. In 2 nd CEAS European Air andSpace conference, Manchester, UK (26–29 October 2009). 74[130] Rossiter, J. E. W<strong>in</strong>d–tunnel experiments on <strong>the</strong> flow over rectangular cavitiesat subsonic and transonic speeds. Aeronautical Research Council. Reports andmemoranda, 3438 (1966). 14, 16[131] Rotta, J. C. Turbulent boundary layers <strong>in</strong> <strong>in</strong>compressible flow. Progress <strong>in</strong>Aerospace Sciences 2 (1962), 1–219. 66[132] Rowley, C., Colonius, T., and Basu, A. On self–susta<strong>in</strong>ed oscillations <strong>in</strong>two–dimensional compressible flow over rectangular cavities. Journal <strong>of</strong> FluidMechanics 455 (2002), 315–346. 16, 17, 43, 135, 148, 160[133] Rowley, C. W. Model<strong>in</strong>g, simulation, and control <strong>of</strong> cavity flow oscillations.PhD <strong>the</strong>sis, California Institute <strong>of</strong> technology, California, US, August 2001. 131,144[134] Rudgyard, M. Cell vertex methods for compressible gas flows. PhD <strong>the</strong>sis,Oxford University Comput<strong>in</strong>g Laboratory, 1990. 92[135] Rudgyard, M. Cell vertex methods for steady <strong>in</strong>viscid flow. In Lectures Series1993–04, Von Karman Institute for Fluid Dynamics, 1993. 92[136] Sagaut, P. Introduction à la simulation des grandes échelles, mathématiques etapplications. Spr<strong>in</strong>ger, 1998. 106[137] Sagaut, P. Large Eddy Simulation for Incompressible Flows. Spr<strong>in</strong>ger, Berl<strong>in</strong>,1998. 83, 87, 105, 112[138] Sarohia, V. Experimental <strong><strong>in</strong>vestigation</strong> <strong>of</strong> oscillations <strong>in</strong> flows over shallow cavities.AIAA paper 15, 7 (1977). 12, 14, 31181


BIBLIOGRAPHY[139] Schlicht<strong>in</strong>g, H., and Gersten, K. Boundary layer <strong>the</strong>ory. spr<strong>in</strong>ger, 2003. 44,47, 49[140] Schöfeld, T., and Rudgyard, M. Steady and unsteady flows simulations us<strong>in</strong>g<strong>the</strong> hybrid flow solver avbp. AIAA 37, 11 (1999), 1378–1385. 88, 113[141] Schultz-Grunow. Neues reibungswiederstandsgesetz für glatte platten. TechnicalReport 8, Luftfahrtforschung (1940). Translated as New frictional resistancelaw for smooth plates, NACA TM–986, 1941. 43[142] Schumann, U. Subgrid scale model for f<strong>in</strong>ite difference simulations <strong>of</strong> turbulentflows <strong>in</strong> plane channels and annuli. Journal <strong>of</strong> Computational Physics 18 (1975),376–404. 83, 105[143] Selle, L., Nicoud, F., and Po<strong>in</strong>sot, T. Actual impedence <strong>of</strong> non reflect<strong>in</strong>gboundary conditions: Implications for computaion <strong>of</strong> resonators. AIAA 42, 5(2004), 958–964. 126, 127[144] Shieh, C. M., and Morris, P. J. Parallel computational <strong>aeroacoustic</strong> simulation<strong>of</strong> turbulent subsonic cavity flow. AIAA Paper, 2000–1914 (2000). 17, 133, 151[145] S<strong>in</strong>ger, B., and Guo, Y. Development <strong>of</strong> computational <strong>aeroacoustic</strong>s toolsfor airframe noise calculations. International Journal <strong>of</strong> Computational Fluid Dynamics18, 6 (2004), 455–469. 30[146] S<strong>in</strong>ha, S. N., Gupta, A. K., and Oberai, M. M. Lam<strong>in</strong>ar separat<strong>in</strong>g flow overbacksteps and cavities Part II: Cavities. AIAA Journal 20(3) (1982), 370–375. 12[147] Skote, M. Studies <strong>of</strong> turbulent boundary layer flow through direct numericalsimulation. PhD <strong>the</strong>sis, KTH, Sweden, February 2001. 62[148] Skote, M., Henkes, R., and Henn<strong>in</strong>gson, D. Direct numerical simulation<strong>of</strong> self–similar turbulent boundary layers <strong>in</strong> adverse pressure gradients. In Flow,Turbulence and Combustion, vol. 60. Kluwer Academic Publishers, 1998, pp. 47–85. 39, 40, 43, 62, 63, 73[149] Smagor<strong>in</strong>sky, J. General circulation experiments with <strong>the</strong> primitive equations.Monthly Wea<strong>the</strong>r Review 91 3 (1963), 99–164. 83, 87, 105, 111[150] Smith, D. W., and Walker, J. H. Sk<strong>in</strong>–friction measurements <strong>in</strong> <strong>in</strong>compressibleflow. NASA TR R–26 (1959). 43[151] So, R. M. C., and Moller, G. L. An experimental <strong><strong>in</strong>vestigation</strong> <strong>of</strong> turbulentboundary layers along curved surfaces. NASA CR (1940). 67182


BIBLIOGRAPHY[152] Spalart, P. R. Direct simulation <strong>of</strong> a turbulent boundary layer up to Re θ = 1410.Journal <strong>of</strong> Fluid Mechanics 187 (1988), 61–98. 43, 55, 56[153] Spalart, P. R., Jou, W. H., Strelets, M., and Allmaras, S. R. Commentson <strong>the</strong> feasibility <strong>of</strong> LES for w<strong>in</strong>gs and a hybrid RANS/LES approach. In InAdvances <strong>in</strong> DNS/LES. 1 st AFOSR International Conference DNS/LES (1997),C. Liu, Z. Liu, and L. Sakell, Eds., Columbus, OH: Greyden, pp. 137–147. 30[154] Sr<strong>in</strong>ivasan, S., and Baysal, O. Navier–stokes calculations <strong>of</strong> transonic flowpast cavities. Journal <strong>of</strong> Fluids Eng<strong>in</strong>eer<strong>in</strong>g, 113 (September 1991), 369–376. 16[155] Staffelbach, G. Simulation aux grandes échelles et analyse acoustique de turb<strong>in</strong>esà gaz <strong>in</strong>dustrielles multi–bruleurs. PhD <strong>the</strong>sis, Institut National Polytechniquede Toulouse, May 2006. 118[156] Suponitsky, V., Avital, E., and Gaster, M. On three–dimensionality andcontrol <strong>of</strong> <strong>in</strong>compressible cavity flow. Physics <strong>of</strong> Fluids 17 (2005). 104103. 17, 18[157] Su<strong>the</strong>rland, J. C., and Kennedy, C. A. Improved boundary conditionsfor viscous, react<strong>in</strong>g, compressible flows. Journal <strong>of</strong> Computational Physics 191(2003), 502–524. 119[158] Tam, C. K. W. Computational Aeroacoustics: An overview <strong>of</strong> computationalchallenges and applications. International Journal <strong>of</strong> Computational Fluid Dynamics18, 6 (2004), 547–567. 11, 16, 36, 43[159] Thompson, K. W. Time dependent boundary conditions for hyperbolic systems.Journal <strong>of</strong> Computational Physics 68 (1987), 1–24. 114, 121[160] Thompson, K. W. Time dependent boundary conditions for hyperbolic systems,II. Journal <strong>of</strong> Computational Physics 89 (1990), 439–461. 114[161] Townsend, A. A. The structure <strong>of</strong> <strong>the</strong> turbulent boundary layer. Ma<strong>the</strong>maticalProceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Cambridge Philosophical Society 47, 2 (April 1951), 375–395.40, 59, 64, 69[162] Townsend, A. A. Equilibrium layers and wall turbulence. Journal <strong>of</strong> FluidMechanics 11 (August 1961), 97–120. 66[163] Townsend, A. A. The Structure <strong>of</strong> Turbulent Shear Flows, 2 nd ed. CambridgeUniversity Press, Cambridge, UK, 1976. 43[164] Tracy, M. B., and Plentovich, E. Measurements <strong>of</strong> fluctuat<strong>in</strong>g pressure <strong>in</strong>a rectangular cavity <strong>in</strong> transonic flow at high Reynolds numbers. Tech. Rep. TM4363, NASA Langley Research Center, 1992. 16183


BIBLIOGRAPHY[165] van Driest, E. R. On dimensional analysis and <strong>the</strong> presentation <strong>of</strong> data <strong>in</strong>fluid–flow problems. ASME Journal <strong>of</strong> Applied Ma<strong>the</strong>matics 13, 1 (March 1946),34–40. 48[166] van Driest, E. R. On <strong>the</strong> turbulent flow near a wall. Journal <strong>of</strong> AerospaceScience 23 (1956), 1007–1011. 88, 112[167] Wagner, C., Hüttl, T., and Sagaut, P. Large–Eddy Simulation for Acoustics.Cambridge, 2007. 36[168] Wang, M., Freund, J. B., and Lele, S. K. Computational prediction <strong>of</strong>flow–generated sound. Annual Review <strong>of</strong> Fluid Mechanics 38, 1 (2006), 483–512.33[169] White, F. M. Fluid Mechanics, 4 th ed. McGraw-Hill, 2001. 66[170] Wilcox, D. C. Turbulence Model<strong>in</strong>g for CFD. DCW Industries, Inc., La Cañada,California, November 1993. 66, 67[171] Yajnik, K. S. Asymptotic <strong>the</strong>ory <strong>of</strong> turbulent shear flows. Journal <strong>of</strong> FluidMechanics 42, 2 (1970), 411–427. 44184


DOCTORAT DE L’UNIVERSITE DE TOULOUSEDélivré par : Institut National Polytechnique de ToulouseÉcole doctorale : Mécanique, Energétique, Génie Civil, Procédés (MEGeP)Spécialité : Dynamique des fluidesSoutenance : le 10 Novembre 2009Auteur : Thangasivam GANDHICalcul et analyse de l’<strong><strong>in</strong>teraction</strong> aéroacoustique dans un écoulement <strong>turbulents</strong>ubsonique affleurant une cavitéL’objectif de cette thèse est d’étudier numériquement l’aéroacoustique à faibles nombresde Mach (M < 0.3) pour un écoulement de couche limite turbulente épaisse affleurantune cavité, sur la base de simulations numériques à grandes échelles (LES). Un pr<strong>of</strong>il devitesse en loi puissance et pour une couche limite d’équilibre ont servi comme conditionsen entrée du doma<strong>in</strong>e de calcul. La couche limite d’équilibre, sans et avec gradient depression adverse, a été résolue par une approche asymptotique basée sur une formulationdéficitaire avec un nouveau modèle de longueur de mélange. Ce dernier a été validé pouraméliorer les comparaisons avec les expériences et les simulations numériques directes.Des simulations LES ont permis de regarder l’<strong>in</strong>fluence de l’épaisseur de la couche limiteturbulente amont sur le mode d’oscillation d’une cavité L/D = 4. Un accord satisfaisantavec les expériences d’Haigermoser et l’émergence du mode de cisaillement aété obtenu pour la vitesse amont de 5.8m/s. Le mode était de type sillage pour lesdeux autres cas tests (20 et 40 m/s). F<strong>in</strong>alement, une simulation 3D a montré que lemode de sillage est un artefact du calcul 2D. En utilisant l’analogie de Lighthill-Curleet les champs de pression <strong>in</strong>stationnaire issus de la simulation, nous avons déterm<strong>in</strong>éles niveaux de pression sonore dans le champ proche et lo<strong>in</strong>ta<strong>in</strong>. Conformément auxexpériences d’Haigermoser, une faible directivité vers l’amont est trouvée. Le mode desillage <strong>in</strong>fluence très fortement les niveaux de pression acoustique.Mots clefs : Couche limite turbulente, longueur de mélange, cavité, LES, aéroacoustique.<strong>Numerical</strong> <strong><strong>in</strong>vestigation</strong> <strong>of</strong> <strong>aeroacoustic</strong> <strong><strong>in</strong>teraction</strong> <strong>in</strong> <strong>the</strong> turbulent subsonicflow past an open cavityThe objective <strong>of</strong> this <strong>the</strong>sis is to study numerically <strong>the</strong> <strong>aeroacoustic</strong>s <strong>of</strong> low Mach number(M < 0.3) flow with thick turbulent boundary layer past a cavity based on LargeEddy Simulation (LES). Velocity pr<strong>of</strong>iles from power law and equilibrium turbulentboundary layer were imposed as <strong>in</strong>let conditions on <strong>the</strong> computational doma<strong>in</strong>. Theequilibrium turbulent boundary layer pr<strong>of</strong>iles (zero and adverse pressure gradient) havebeen generated us<strong>in</strong>g asymptotic approach with an improved mix<strong>in</strong>g length model. Agood agreement is observed between <strong>the</strong> computed boundary layer pr<strong>of</strong>iles and <strong>the</strong> pr<strong>of</strong>ilesobta<strong>in</strong>ed from experiments and direct numerical simulations. LES results present<strong>the</strong> <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> thickness <strong>of</strong> <strong>the</strong> <strong>in</strong>com<strong>in</strong>g turbulent boundary layers on <strong>the</strong> mode<strong>of</strong> oscillation <strong>in</strong> <strong>the</strong> shallow cavity <strong>of</strong> L/D = 4. An agreement with <strong>the</strong> experiments <strong>of</strong>Haigermoser and <strong>the</strong> shear mode have been found for <strong>the</strong> upstream velocity 5.8 m/s.Wake mode was observed for <strong>the</strong> o<strong>the</strong>r two test cases at 20 and 40 m/s. A 3D cavitysimulation is performed to show that <strong>the</strong> wake mode observed <strong>in</strong> <strong>the</strong> 2D calculations isan artifact. The hydrodynamic pressure field obta<strong>in</strong>ed from <strong>the</strong> 2D simulation is usedas an <strong>in</strong>put to <strong>the</strong> acoustic analogy (Lighthill–Curle’s analogy), to compute <strong>the</strong> acousticpressure field at <strong>the</strong> near and far–field <strong>of</strong> <strong>the</strong> cavities. Conform<strong>in</strong>g <strong>the</strong> experiments<strong>of</strong> Haigermoser, a weak directivity <strong>of</strong> sound propagation was observed. Shear mode<strong>in</strong>fluences <strong>the</strong> sound pressure levels strongly.Key words : Turbulent boundary layer, mix<strong>in</strong>g length, cavity flow, LES, <strong>aeroacoustic</strong>s.Institut de Mécanique des Fluides de Toulouse, Allée du Pr. Camille Soula, 31400, Toulouse.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!