11.07.2015 Views

Observing angular deviations in the specular reflection of a light beam

Observing angular deviations in the specular reflection of a light beam

Observing angular deviations in the specular reflection of a light beam

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

LETTERSNATURE PHOTONICS DOI: 10.1038/NPHOTON.2009.75aS<strong>in</strong>gle-mode fibrePolarizer (p or s)100bSuperlum<strong>in</strong>escent LEDPolarizationmodulator (p s)zLens*ObjectiveθθGlassprismRotationstagez〈Δθ p 〉 − 〈Δθ s 〉 (μrad)7550250−25−50−75−100θ B = 56.5°czLensBeam waist w 0Beam waist w 0Split detector*θSplit detectorGlassprismHere <strong>the</strong> suffix x <strong>in</strong> kDu x l has been suppressed, R p and R s are,respectively, <strong>the</strong> plane-wave p and s <strong>in</strong>tensity reflectivities, <strong>the</strong>partial derivatives <strong>of</strong> R p are taken <strong>in</strong> <strong>the</strong> u x direction (at u <strong>in</strong> ), and1 accounts for <strong>the</strong> effect <strong>of</strong> <strong>the</strong> s-admixture. This admixturebecomes relatively important for <strong>in</strong>cidence close to <strong>the</strong> Brewsterangle. If we assume an s-polarized <strong>in</strong>put <strong>beam</strong>, <strong>the</strong> p-admixturehas negligible effect:kDu s l R0 s4R su 2 0RotationstageLock-<strong>in</strong>Δθ p − Δθ s(versus θ)nV meterIn <strong>the</strong> geometrical optics limit (l ! 0orw 0 ! 1)wehaveu 0 ! 0,so accord<strong>in</strong>g to equations (3) and (4) <strong>the</strong> <strong>angular</strong> deviation vanishes.θzxΔθ p or Δθ s(versus θ)Figure 2 | Experimental set-up. a, Light source. The output <strong>of</strong> asuperlum<strong>in</strong>escent <strong>light</strong>-emitt<strong>in</strong>g diode (SLED) is spatially filtered by a s<strong>in</strong>glemodeoptical fibre to select <strong>the</strong> TEM 00 mode. This is converted <strong>in</strong>to acollimated <strong>beam</strong> by a microscope objective. The collimated <strong>beam</strong> is passedthroughapolarizertoselectp-polarization. b, Set-up to measure non<strong>specular</strong><strong>reflection</strong> over a wide range <strong>of</strong> <strong>in</strong>cident angles. Reflection takesplace at <strong>the</strong> surface <strong>of</strong> a right-angle BK7 glass prism (n ¼ 1.51). The (folded)optical axis <strong>of</strong> <strong>the</strong> set-up is <strong>in</strong>dicated by z. Technical noise is suppressed byswitch<strong>in</strong>g <strong>the</strong> polarization <strong>of</strong> <strong>the</strong> <strong>in</strong>cident <strong>beam</strong> between p and s, followed bysynchronous detection <strong>of</strong> <strong>the</strong> signal produced by <strong>the</strong> split detector. Thisyields <strong>the</strong> difference <strong>of</strong> <strong>the</strong> <strong>angular</strong> deviation for p versus s polarization.c, Set-up to measure non-<strong>specular</strong> <strong>reflection</strong> near <strong>the</strong> Brewster angle. The<strong>in</strong>cident <strong>beam</strong> is p-polarized. Technical noise is suppressed by us<strong>in</strong>g a null<strong>in</strong>gmethod: a small, controlled rotation <strong>of</strong> <strong>the</strong> glass prism leads to an unbalance<strong>of</strong> <strong>the</strong> split detector, which is <strong>the</strong>n nulled by a controlled lateral (x) shift <strong>of</strong><strong>the</strong> detector. From <strong>the</strong> magnitude <strong>of</strong> this null<strong>in</strong>g shift we deduce <strong>the</strong><strong>angular</strong> deviation.ð4ÞFor a p-polarized <strong>in</strong>put <strong>beam</strong> two special cases <strong>of</strong> equation (3)can be dist<strong>in</strong>guished. First, if <strong>the</strong> <strong>in</strong>put <strong>beam</strong> is <strong>in</strong>cident near<strong>the</strong> Brewster angle u B we have R p proportional to (u <strong>in</strong> – u B ) 2 .This leads to a dispersive resonance <strong>in</strong> <strong>the</strong> <strong>angular</strong> deviation(see Supplementary <strong>in</strong>formation)kDu p l ¼20 30 40 50θ (deg)2ðu <strong>in</strong> u B Þu 2 04ðu <strong>in</strong> u B Þ 2 þð1 þ 1Þu 2 0with 1 ¼ 4n4ð1 þ n 2 Þ 4 ð5Þand to a deviation <strong>of</strong> <strong>the</strong> reflected <strong>beam</strong> pr<strong>of</strong>ile from TEM 00 (seebelow). In our experiment n ¼ 1.51, lead<strong>in</strong>g to 1 ¼ 0.18. In <strong>the</strong>second case <strong>the</strong> <strong>in</strong>put angle is assumed to be sufficiently far from<strong>the</strong> Brewster angle, that is, ju <strong>in</strong> – u B ju 0 , lead<strong>in</strong>g tokDu p l ¼ R0 p4R pu 2 060 70 80Figure 3 | Angular deviation far from <strong>the</strong> Brewster angle u B . The <strong>the</strong>oreticalcurvegives<strong>the</strong><strong>angular</strong>deviation(kDu p l 2 kDu s l)versus<strong>the</strong>angle<strong>of</strong><strong>in</strong>cidence u, as deduced from equations (4) and (6). The brackets k...l referto averag<strong>in</strong>g over <strong>the</strong> <strong>angular</strong> <strong>beam</strong> pr<strong>of</strong>ile. Experimental data were obta<strong>in</strong>edwith <strong>the</strong> set-up <strong>of</strong> Fig. 2b for two <strong>in</strong>dependent experimental runs (open andfilled circles), both for a <strong>beam</strong> waist w 0 ¼ 59 mm. The <strong>in</strong>serts show <strong>the</strong>observed <strong>in</strong>tensity pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong> reflected <strong>beam</strong> at u ¼ 258 and 508.In this case <strong>the</strong> deviation <strong>of</strong> <strong>the</strong> reflected <strong>beam</strong> pr<strong>of</strong>ile from TEM 00 isvery small. Numerically we f<strong>in</strong>d that <strong>the</strong> deviation is less than 1% forju <strong>in</strong> – u B j . 2u 0 .We now turn to <strong>the</strong> experimental set-up shown <strong>in</strong> Fig. 2 (seeMethods for details). We used a TEM 00 Gaussian <strong>light</strong> <strong>beam</strong> withl ¼ 820 nm (Fig. 2a). A lens transforms <strong>the</strong> waist parameter w 0 toa desired value at a z-position <strong>in</strong>dicated by <strong>the</strong> asterisk <strong>in</strong> Fig. 2b.The <strong>beam</strong> is <strong>the</strong>n reflected by an air–glass <strong>in</strong>terface and its transverse(x) position is measured with a calibrated split detector. Theset-up operated <strong>in</strong> <strong>the</strong> far field—<strong>the</strong> distance between <strong>the</strong> detectorand <strong>the</strong> <strong>beam</strong> waist be<strong>in</strong>g chosen to be at least 10 times largerthan <strong>the</strong> Rayleigh range p(w 0 ) 2 /l. We switched <strong>the</strong> <strong>in</strong>cident polarizationbetween p and s (Fig. 2b) and used synchronous detection todeduce <strong>the</strong> polarization-differential <strong>angular</strong> shift <strong>of</strong> <strong>the</strong> <strong>beam</strong>,kDu p l – kDu s l. This was done as a function <strong>of</strong> <strong>the</strong> angle <strong>of</strong> <strong>in</strong>cidenceu (from now on we suppress <strong>the</strong> suffix ‘<strong>in</strong>’ <strong>of</strong> u <strong>in</strong> ). Figure 3 shows <strong>the</strong>data for u ¼ 20–808 at w 0 ¼ 59 mm; <strong>the</strong> agreement with <strong>the</strong> <strong>the</strong>oreticalcurve based upon equation (4) and (6) is very good (<strong>the</strong>re areno fit parameters). The dispersive s<strong>in</strong>gularity at u ¼ u B is due to <strong>the</strong>Du p divergence <strong>in</strong> equation (6) at R p ! 0. The <strong>in</strong>serts <strong>in</strong> Fig. 3 showmeasured <strong>in</strong>tensity pr<strong>of</strong>iles <strong>of</strong> <strong>the</strong> reflected <strong>beam</strong>. We f<strong>in</strong>d that for<strong>the</strong> <strong>in</strong>cident angles u <strong>in</strong>volved, <strong>the</strong> reflected <strong>beam</strong> rema<strong>in</strong>s TEM 00with<strong>in</strong> experimental accuracy (1%).ð6Þ338NATURE PHOTONICS | VOL 3 | JUNE 2009 | www.nature.com/naturephotonics© 2009 Macmillan Publishers Limited. All rights reserved.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!