11.07.2015 Views

The extended gateway concept in port hinterland container logistics ...

The extended gateway concept in port hinterland container logistics ...

The extended gateway concept in port hinterland container logistics ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

models and methods <strong>in</strong> the field of <strong>in</strong>termodal <strong>logistics</strong>. Danielis (2006) has put <strong>in</strong>to evidence therole of the economic analysis for <strong>in</strong>vestigat<strong>in</strong>g <strong>in</strong>termodal railway trans<strong>port</strong>. Yet, research on themodell<strong>in</strong>g of dry <strong>port</strong>s is only at the beg<strong>in</strong>n<strong>in</strong>g and many issues still need to be morecomprehensively considered. Indeed, new types of models need to be developed to address the<strong>extended</strong> <strong>gateway</strong> role of dry <strong>port</strong>s <strong>in</strong> both supply cha<strong>in</strong> management and <strong>port</strong> h<strong>in</strong>terland <strong>in</strong>termodal<strong>in</strong>frastructure and service networks. In addition, these models should be formulated based on the socalled‘triple bottom l<strong>in</strong>e’ or ‘susta<strong>in</strong>able’ perspective, by simultaneously <strong>in</strong>corporat<strong>in</strong>g economic,environmental and social performance measures of <strong>port</strong> h<strong>in</strong>terland conta<strong>in</strong>er <strong>logistics</strong>.Motivated by these reasons, <strong>in</strong> this paper a capacitated network programm<strong>in</strong>g model featur<strong>in</strong>gl<strong>in</strong>ear parameters and constra<strong>in</strong>ts – called the ‘<strong>in</strong>ter<strong>port</strong> model’ – is theoretically illustrated <strong>in</strong> detailas a tool for the economic analysis and strategic plann<strong>in</strong>g of <strong>port</strong> h<strong>in</strong>terland conta<strong>in</strong>er <strong>logistics</strong>systems accord<strong>in</strong>g to the <strong>extended</strong> <strong>gateway</strong> <strong>concept</strong>. <strong>The</strong> model optimizes the <strong>in</strong>land multimodaldistribution of full and empty conta<strong>in</strong>ers im<strong>port</strong>ed through a regional sea<strong>port</strong> cluster (<strong>in</strong>ward<strong>in</strong>ter<strong>port</strong> model). <strong>The</strong> load<strong>in</strong>g units can also transit through one or more regional dry <strong>port</strong> facilitiesact<strong>in</strong>g as <strong>extended</strong> <strong>gateway</strong>s (the so-called <strong>in</strong>ter<strong>port</strong>s), as well as through extra-regional <strong>in</strong>landlocations featur<strong>in</strong>g a railway term<strong>in</strong>al, before reach<strong>in</strong>g their f<strong>in</strong>al dest<strong>in</strong>ations. As presented here,the model is a novel extension of the homonym transhipment model formulated and empiricallyapplied by Iannone and Thore (2010) to <strong>in</strong>vestigate the <strong>in</strong>land distribution of conta<strong>in</strong>ers im<strong>port</strong>ed <strong>in</strong>Italy through the Campanian sea-land <strong>logistics</strong> system. Based on a perspective of susta<strong>in</strong>able<strong>logistics</strong>, the primal objective function now also <strong>in</strong>ternalizes the external costs <strong>in</strong> terms ofgreenhouse gas emissions, air pollution, noise, accidents and congestion deriv<strong>in</strong>g from <strong>in</strong>landtrans<strong>port</strong> operations.<strong>The</strong> major novelty of this analytical tool consists of the detailed modell<strong>in</strong>g of the conta<strong>in</strong>er releaseoperations at sea<strong>port</strong>s and <strong>in</strong>ter<strong>port</strong>s, <strong>in</strong>clud<strong>in</strong>g the possibility for shippers to postpone storage andcustoms operations to the <strong>in</strong>ter<strong>port</strong>s. More specifically, the <strong>in</strong>ter<strong>port</strong> model allows the measurementof the economic, environmental and social benefits aris<strong>in</strong>g from the employment of <strong>extended</strong><strong>gateway</strong>s and <strong>in</strong>termodal trans<strong>port</strong> <strong>in</strong> <strong>port</strong> h<strong>in</strong>terland conta<strong>in</strong>er distribution. It can simulate longterm alternative scenarios <strong>in</strong> terms of supply of <strong>in</strong>frastructure and services, demand characteristics,and government and <strong>in</strong>dustrial policies. In this respect, the model also enables an exam<strong>in</strong>ation ofpossible public and private policy <strong>in</strong>itiatives to stimulate <strong>port</strong> h<strong>in</strong>terland <strong>in</strong>termodal <strong>logistics</strong>.1.4 Plan for this research<strong>The</strong> rest of the chapter is organized as follows. <strong>The</strong> next section conta<strong>in</strong>s an overview of<strong>in</strong>troductory topics <strong>in</strong> l<strong>in</strong>ear programm<strong>in</strong>g which <strong>in</strong>cludes a <strong>concept</strong>ual explanation of the relationsbetween primal and dual programs. Section 3 proposes a stylized representation of how a typical<strong>port</strong> h<strong>in</strong>terland network over which conta<strong>in</strong>er distribution operations are performed is entered <strong>in</strong>tothe <strong>in</strong>ter<strong>port</strong> model. Based on such hypothetical network, a detailed analytical formulation of theprimal and dual programs of the <strong>in</strong>ward <strong>in</strong>ter<strong>port</strong> problem <strong>in</strong>corporat<strong>in</strong>g trans<strong>port</strong> external costs ispresented. F<strong>in</strong>ally, an explanation on how to represent simultaneously the primal and dual problemsby means of data-boxes is provided. Section 4 <strong>in</strong>troduces possible empirical applications of themodel to address practical <strong>port</strong> h<strong>in</strong>terland conta<strong>in</strong>er <strong>logistics</strong> problems <strong>in</strong> Northern Europe andItaly. In addition, some limits of the current formulation of the model are highlighted, envisag<strong>in</strong>gfurther research developments.2. L<strong>in</strong>ear programm<strong>in</strong>g: a methodological overviewL<strong>in</strong>ear programm<strong>in</strong>g is a method of applied mathematical economic analysis for allocat<strong>in</strong>g andutiliz<strong>in</strong>g scarce resources <strong>in</strong> the best possible (optimal) way. A scarce resource is a resource whichis available <strong>in</strong> limited quantities and can also be an output that must be supplied to customers. Inl<strong>in</strong>ear programs such limitations are stated as constra<strong>in</strong>ts.L<strong>in</strong>ear programm<strong>in</strong>g problems can be formulated <strong>in</strong> either m<strong>in</strong>imiz<strong>in</strong>g or maximiz<strong>in</strong>g form. <strong>The</strong>mathematical function to be optimized subjected to constra<strong>in</strong>ts is called the ‘objective function’ and3


can represent, for <strong>in</strong>stance, a cost m<strong>in</strong>imization or profit maximization behaviour. In either case, theorig<strong>in</strong>ally formulated problem is called the ‘primal program’. For every primal program there is arelated unique ‘dual program’ which <strong>in</strong>volves the same data, provides useful <strong>in</strong>formation forsensitivity analyses, enhances the understand<strong>in</strong>g of the orig<strong>in</strong>al model, and allows <strong>in</strong>creased <strong>in</strong>sights<strong>in</strong>to the <strong>in</strong>terpretation of problem solution.Duality is an extremely im<strong>port</strong>ant <strong>concept</strong> <strong>in</strong> mathematical programm<strong>in</strong>g. Whenever one solves al<strong>in</strong>ear programm<strong>in</strong>g model, he or she implicitly solves two problems: the primal resourceallocation problem, and the dual resource valuation or pric<strong>in</strong>g problem. <strong>The</strong> ma<strong>in</strong> relationshipsexist<strong>in</strong>g between a primal model and its dual can be summarized as follows (see, for <strong>in</strong>stance,Jensen and Bard, 2003, and Thompson and Thore, 1992):- If the primal problem has a m<strong>in</strong>imiz<strong>in</strong>g objective then the dual problem has a maximiz<strong>in</strong>gobjective and vice versa.- When the primal model has n variables and m constra<strong>in</strong>ts, the dual model has m variablesand n constra<strong>in</strong>ts.- For every primal constra<strong>in</strong>t, there is a dual variable. <strong>The</strong> coefficients of dual variables <strong>in</strong>dual objective function are the right hand side of the correspond<strong>in</strong>g primal constra<strong>in</strong>ts.- For every primal variable, there is a dual constra<strong>in</strong>t. <strong>The</strong> right hand sides of dual constra<strong>in</strong>tsare the coefficients of the correspond<strong>in</strong>g primal variables <strong>in</strong> primal objective function.- <strong>The</strong> constra<strong>in</strong>t coefficient matrix of the dual is the transpose of the constra<strong>in</strong>t coefficientmatrix of the primal.- All variables <strong>in</strong> the primal problem are restricted to be nonnegative. As for the dualproblem, the sign of the dual variable correspond<strong>in</strong>g to a right way primal constra<strong>in</strong>t isnonnegative whereas the sign of the dual variable of a wrong way primal constra<strong>in</strong>t isnonpositive; the dual variable of an equality primal constra<strong>in</strong>t is unconstra<strong>in</strong>ed 2 .- <strong>The</strong> dual of a dual is the primal problem.In addition, a primal problem and its dual also share relationships <strong>in</strong> their solution, and it isalways possible to obta<strong>in</strong> primal solution from dual solution and vice versa.<strong>The</strong> l<strong>in</strong>ear formulation of a programm<strong>in</strong>g model provides an evaluation of the scarcity ofresources by means of ‘shadow prices’ or ‘dual variables’. Each constra<strong>in</strong>t <strong>in</strong> the primal problemhas an associated shadow price which can be <strong>in</strong>terpreted as the marg<strong>in</strong>al value of the resourcesrepresented by the coefficient <strong>in</strong> the right hand side of the constra<strong>in</strong>t. It is the amount by which theoptimal value of the primal objective function would change per allowable unit variation <strong>in</strong> the righthand side of the correspond<strong>in</strong>g constra<strong>in</strong>t, all other parameters held as constant. To sum up, shadowprices or dual variables <strong>in</strong>dicate how much one would be will<strong>in</strong>g to pay for additional units of givenlimited resources, thus represent<strong>in</strong>g the marg<strong>in</strong>al utility of relax<strong>in</strong>g the correspond<strong>in</strong>g primalconstra<strong>in</strong>ts or equivalently the marg<strong>in</strong>al cost of strengthen<strong>in</strong>g the constra<strong>in</strong>ts.Apart from the constra<strong>in</strong>ts, also all variables of a primal programm<strong>in</strong>g problem have what isknown as a marg<strong>in</strong>al or imputed value. This value is called the ‘reduced cost’ for each variable. <strong>The</strong>variables <strong>in</strong>cluded <strong>in</strong> the optimal solution of a problem automatically have a reduced cost of zero.Instead, the reduced cost for any variable not <strong>in</strong>cluded <strong>in</strong>to the f<strong>in</strong>al solution can be <strong>in</strong>terpreted asthe penalty one would pay to force the variable <strong>in</strong>to the solution. In a m<strong>in</strong>imiz<strong>in</strong>g model, theoptimal solution would <strong>in</strong>crease by the amount of the penalty. In a maximiz<strong>in</strong>g problem, thesolution would decrease. In general, if a primal variable is non-basic, the value of its reduced costcoefficient is the value of the slack/surplus variable 3 of the correspond<strong>in</strong>g dual constra<strong>in</strong>t. If a dual2 When the objective function of a l<strong>in</strong>ear program is m<strong>in</strong>imiz<strong>in</strong>g, greater or equal to <strong>in</strong>equalities ( ≥)are “right way<strong>in</strong>equalities” and less than or equal to ( ≤ ) <strong>in</strong>equalities are “wrong way <strong>in</strong>equalities”. For a maximiz<strong>in</strong>g objective, ≤are right way <strong>in</strong>equalities and ≥ are wrong way <strong>in</strong>equalities (Thompson and Thore, 1992; Thore and Iannone, 2005).3 Slack and surplus variables respectively convert ≤ and ≥ <strong>in</strong>equalities to equalities. <strong>The</strong>se quantities are zero forthose constra<strong>in</strong>ts that are satisfied exactly.4


variable is non-basic, the value of its reduced cost coefficient is the value of the slack/surplusvariable of the correspond<strong>in</strong>g primal constra<strong>in</strong>t.<strong>The</strong> primal and dual programs of a l<strong>in</strong>ear programm<strong>in</strong>g model are tied together accord<strong>in</strong>g to theso called ‘complementary slackness conditions’. In particular, complementary slackness is therelationship between slack and/or surplus variables <strong>in</strong> the primal problem and the op<strong>port</strong>unity costs<strong>in</strong> the dual. For <strong>in</strong>stance, if a primal resource has positive slack, it is not b<strong>in</strong>d<strong>in</strong>g on the optimalsolution. Mak<strong>in</strong>g more of this resource available will not improve the optimal value of the objectivefunction. At the same time, because all of the resource is not be<strong>in</strong>g used, it has a dual price of zero.If one uses more of it, he or she does not sacrifice any utility from another use. If, on the other hand,the resource has zero slack, it is called a ‘b<strong>in</strong>d<strong>in</strong>g constra<strong>in</strong>t’. All of the resource is be<strong>in</strong>g used, andmak<strong>in</strong>g more of it available will improve the optimal value of the objective function. However, itwill have a positive op<strong>port</strong>unity cost because the additional units will have to be taken from someother use.Compared with other programm<strong>in</strong>g model types, l<strong>in</strong>ear models are by far the easiest to solve.Optimal values of primal and dual variables, <strong>in</strong>clud<strong>in</strong>g reduced costs, are given by moderncomputer programs as part of the optimal solution. Large-scale computer codes are widely availablefor most ma<strong>in</strong>frames and workstations as well as for microcomputers, with only limited restrictions.3. <strong>The</strong> <strong>in</strong>ter<strong>port</strong> model: a stylized formulation<strong>The</strong> <strong>in</strong>ter<strong>port</strong> model is an <strong>in</strong>ventory theoretic and capacitated l<strong>in</strong>ear programm<strong>in</strong>g model optimiz<strong>in</strong>gthe road and rail distribution of full and empty conta<strong>in</strong>ers over an <strong>in</strong>land network encompass<strong>in</strong>gsea<strong>port</strong>s, <strong>in</strong>ter<strong>port</strong>s and other locations.This section presents a stylized formulation of the primal and dual programs of the <strong>in</strong>ward<strong>in</strong>ter<strong>port</strong> model <strong>in</strong>corporat<strong>in</strong>g trans<strong>port</strong> external costs. Such example covers all the features of reallife <strong>port</strong> h<strong>in</strong>terland conta<strong>in</strong>er network problems that can be <strong>in</strong>vestigated by means of empiricalapplications of the model.3.1 Stylized <strong>port</strong> h<strong>in</strong>terland conta<strong>in</strong>er distribution network and problem descriptionFigure 1 firstly illustrates a hypothetical first tier regional node <strong>in</strong>frastructure system for conta<strong>in</strong>ertraffic. This system comprises a s<strong>in</strong>gle sea<strong>port</strong> represented by node 1, and a s<strong>in</strong>gle <strong>in</strong>ter<strong>port</strong>featur<strong>in</strong>g the two ‘virtual nodes’ 2 and 3 that are supposed to have an identical geographicallocation but <strong>in</strong>volve <strong>in</strong> part different <strong>in</strong>ter<strong>port</strong> process<strong>in</strong>g activities. F<strong>in</strong>ally, there are three otherregional and extra-regional <strong>in</strong>land locations, that are the nodes 4, 5, 6, of which only 4 and 5 have arailway term<strong>in</strong>al.<strong>The</strong> sea<strong>port</strong> node 1 is the orig<strong>in</strong> node of this small network, while nodes 2, 4, 5 and 6 are thedest<strong>in</strong>ation nodes. <strong>The</strong>re is one <strong>in</strong>flux <strong>in</strong>to the network: the supply of im<strong>port</strong>ed conta<strong>in</strong>ers at node 1.<strong>The</strong>re are four effluxes: the demands at nodes 2, 4, 5 and 6 for conta<strong>in</strong>ers discharged at the sea<strong>port</strong>.Nodes 2, 4 and 5 are also <strong>in</strong>termediate nodes enabl<strong>in</strong>g the multimodal transhipment of conta<strong>in</strong>erstrans<strong>port</strong>ed from the sea<strong>port</strong> to dest<strong>in</strong>ation. Node 3 is a pure <strong>in</strong>termediate multimodal transhipmentnode because it does not feature a conta<strong>in</strong>er demand; it is supposed to also perform a customsfunction and it is connected to the sea<strong>port</strong> by railway only for conta<strong>in</strong>er transfers under theresponsibility of shipp<strong>in</strong>g l<strong>in</strong>es (carrier haulage) and without any accompany<strong>in</strong>g <strong>in</strong>land customstransit document 4 . In general, node 3 is employed only for the handl<strong>in</strong>g of full conta<strong>in</strong>ers. Bothvirtual nodes 2 and 3 have the same outbound multimodal connections.4 In compliance with the customs regulations currently <strong>in</strong> force <strong>in</strong> Italy, only the railway trans<strong>port</strong> permits the necessaryconditions of fiscal safety related to the <strong>in</strong>land haulage without any accompany<strong>in</strong>g <strong>in</strong>land transit document forconta<strong>in</strong>erized cargoes that have not been nationalized yet through customs clearance. Of course, the hypotheticalnetwork shown <strong>in</strong> Figure 1 can be easily expanded to take also account of other <strong>in</strong>land <strong>logistics</strong> solutions such as thosebased on <strong>in</strong>land waterway trans<strong>port</strong>, as well as those arranged under the customs license of maritime term<strong>in</strong>alcompanies.5


LEGENDSea<strong>port</strong>Virtual <strong>in</strong>ter<strong>port</strong> node without customs function4Virtual <strong>in</strong>ter<strong>port</strong> node with customs functionInland location with railway term<strong>in</strong>alInland location served only by truck235Conta<strong>in</strong>er <strong>in</strong>fluxConta<strong>in</strong>er effluxRoad connectionRailway connection16Figure 1 Stylized multimodal <strong>port</strong> h<strong>in</strong>terland <strong>logistics</strong> network with virtual <strong>in</strong>ter<strong>port</strong> nodesAs for the railway l<strong>in</strong>ks represented <strong>in</strong> Figure 1, the sea<strong>port</strong> node 1 is connected to the node 4 andto the nodes 2 and 3. Node 3 is reachable from the sea<strong>port</strong> node by railway carrier haulage only andexclusively for the forward<strong>in</strong>g of customs bonded full conta<strong>in</strong>ers. Nodes 2 and 3 are also l<strong>in</strong>ked tothe nodes 4 and 5.Each railway service available <strong>in</strong> real life at the <strong>in</strong>ter<strong>port</strong> is represented by the correspond<strong>in</strong>gspecific rail connections simultaneously available at each virtual <strong>in</strong>ter<strong>port</strong> node. In particular, therail service from the sea<strong>port</strong> to the <strong>in</strong>ter<strong>port</strong> is supposed to simultaneously carry conta<strong>in</strong>ers fromnode 1 to node 2 and from node 1 to node 3. In the same way, the rail service from the <strong>in</strong>ter<strong>port</strong> tothe node 4 simultaneously carries conta<strong>in</strong>ers from node 2 to node 4 and from node 3 to node 4. Andso on.As for the road l<strong>in</strong>ks, node 1 is connected to all the other nodes of the network, exclud<strong>in</strong>g thevirtual node 3. Both virtual nodes 2 and 3 are l<strong>in</strong>ked by road to all the other <strong>in</strong>land locations of thenetwork; furthermore, road trans<strong>port</strong> at a zero generalized cost is admitted from virtual node 3 tovirtual node 2 to meet the conta<strong>in</strong>er demand of im<strong>port</strong><strong>in</strong>g operators located <strong>in</strong> the <strong>in</strong>ter<strong>port</strong>. F<strong>in</strong>ally,the other <strong>in</strong>land nodes hav<strong>in</strong>g a railway term<strong>in</strong>al are connected by truck to some <strong>in</strong>land locationsthat are directly l<strong>in</strong>ked with the regional sea<strong>port</strong>-<strong>in</strong>ter<strong>port</strong> system. In particular, node 4 can also beemployed as <strong>in</strong>termediate node to serve node 5, while node 5 can also be employed as <strong>in</strong>termediatenode to serve nodes 4 and 6.In practice, at the <strong>in</strong>land nodes served by railway it is assumed the possibility to performmultimodal transhipment operations for various O/D comb<strong>in</strong>ations, that is for traffic relations fromthe supply<strong>in</strong>g sea<strong>port</strong> to the <strong>in</strong>land f<strong>in</strong>al demand<strong>in</strong>g nodes. More specifically, at the extra-regionalnodes served by railway it is assumed the possibility to perform only rail-to-truck and truck-to-trucktranshipment operations, while at the <strong>in</strong>ter<strong>port</strong> it is also assumed the possibility of railway-torailwayand truck-to-railway transhipment operations.<strong>The</strong> stylized network <strong>in</strong> Figure 1 is assumed to be typified by relatively small <strong>in</strong>land locationsfeatur<strong>in</strong>g a railway term<strong>in</strong>al (<strong>in</strong>clud<strong>in</strong>g the <strong>in</strong>ter<strong>port</strong> location). Similarly to the other nodes of thenetwork, also the <strong>in</strong>land locations served by railway are assumed as centroid areas <strong>in</strong> which thetraffic of demanded conta<strong>in</strong>ers term<strong>in</strong>ates. Given this configuration of the network, <strong>in</strong>tra-zonal posthaulage activities at these locations are assumed to serve negligible (very short) distances. Hence, atthe moment, such activities are omitted from the modell<strong>in</strong>g entirely.To sum up, once an im<strong>port</strong>ed full conta<strong>in</strong>er has been cleared by customs at node 1, it can bedirectly sent to one of the demand locations 2, 4, 5 and 6. Alternatively, it can be sent to dest<strong>in</strong>ationby transit<strong>in</strong>g through one or more <strong>in</strong>termediate transhipment nodes (exclud<strong>in</strong>g the virtual <strong>in</strong>ter<strong>port</strong>node 3 with customs function). A similar forward<strong>in</strong>g scheme applies to empty conta<strong>in</strong>ers.6


But there is also another possibility for the distribution of full conta<strong>in</strong>ers. Rather than be<strong>in</strong>gcleared by customs at node 1, a full conta<strong>in</strong>er may be shipped by bonded and sealed railtrans<strong>port</strong>ation from node 1 to node 3, which virtually represents the customs clear<strong>in</strong>g facilitylocated at the <strong>in</strong>ter<strong>port</strong> <strong>in</strong> the h<strong>in</strong>terland. Once cleared here, the conta<strong>in</strong>er may be transferred to itsf<strong>in</strong>al demand location. Of course, empty conta<strong>in</strong>ers do not require customs clearance before be<strong>in</strong>greleased from <strong>in</strong>termodal nodes.<strong>The</strong> splitt<strong>in</strong>g of a s<strong>in</strong>gle <strong>in</strong>ter<strong>port</strong> facility <strong>in</strong>to two separate virtual nodes enables the formulationof a standard l<strong>in</strong>ear programm<strong>in</strong>g model for the entire network, thus avoid<strong>in</strong>g explicit 0-1programm<strong>in</strong>g features to handle the decisions of where to carry out the customs clearance andstorage operations for full conta<strong>in</strong>ers.3.2 <strong>The</strong> primal programm<strong>in</strong>g modelAs presented here, the primal program of the <strong>in</strong>ter<strong>port</strong> model m<strong>in</strong>imizes the total socialgeneralized logistic cost for <strong>port</strong> h<strong>in</strong>terland multimodal distribution of im<strong>port</strong>ed full and emptyconta<strong>in</strong>ers (<strong>in</strong>ward <strong>in</strong>ter<strong>port</strong> model), subjected to flow balance constra<strong>in</strong>ts at all nodes, nonnegativityconstra<strong>in</strong>ts on endogenous variables, and capacity constra<strong>in</strong>ts on all rail connections. <strong>The</strong>model also features a road supply sub-model for the quantification of road trans<strong>port</strong> times atnational scale accord<strong>in</strong>g to the Road Code regulations.<strong>The</strong> <strong>in</strong>ter<strong>port</strong> model solves for the optimal <strong>in</strong>land rout<strong>in</strong>g of maritime conta<strong>in</strong>ers discharged atone or more sea<strong>port</strong>s. This task <strong>in</strong>cludes f<strong>in</strong>d<strong>in</strong>g the detailed quantities of standardized load<strong>in</strong>g unitsto be shipped from sea<strong>port</strong>s, the trans<strong>port</strong>ation modal choice along each <strong>in</strong>land l<strong>in</strong>k, and the detailedpathway through the system chosen, <strong>in</strong>clud<strong>in</strong>g the possibility of multimodal transhipmentoperations at one or more regional <strong>in</strong>ter<strong>port</strong>s and at other <strong>in</strong>termediate <strong>in</strong>land nodes featur<strong>in</strong>g arailway term<strong>in</strong>al.<strong>The</strong> model also determ<strong>in</strong>es whether shippers will choose to have their conta<strong>in</strong>erized consignmentscontrolled and cleared by customs directly at the sea<strong>port</strong>s, or whether they will prefer to complywith customs formalities at the <strong>in</strong>ter<strong>port</strong>s. By means of parameters represent<strong>in</strong>g dwell times, free ofcharge storage times, handl<strong>in</strong>g charges, demurrage charges, probabilities and costs of customscontrols, the <strong>in</strong>ter<strong>port</strong> model simulates <strong>in</strong> detail the conta<strong>in</strong>er release operations and their associatedpric<strong>in</strong>g mechanisms at sea<strong>port</strong> and <strong>in</strong>ter<strong>port</strong> term<strong>in</strong>als 5 , <strong>in</strong>clud<strong>in</strong>g the possibility of relocat<strong>in</strong>gstorage and customs operations from the sea<strong>port</strong>s to the <strong>in</strong>ter<strong>port</strong>s (i.e. the <strong>extended</strong> <strong>gateway</strong><strong>concept</strong>). In this respect, the model allows for spell<strong>in</strong>g out various arrangements of customs checkson full conta<strong>in</strong>ers (automated computerized controls, documentary control, X-ray scann<strong>in</strong>g controls,and physical <strong>in</strong>spections).<strong>The</strong> primal equilibrium solution of the model can be broken down <strong>in</strong>to merchant flows and carrierflows, represent<strong>in</strong>g <strong>in</strong> any case the optimum of a hypothetical shipper operat<strong>in</strong>g the entire network.In the common fashion, the overall solution for this economic agent can be shown to co<strong>in</strong>cide withthe decentralized solutions of <strong>in</strong>dividual programs for each participat<strong>in</strong>g logistic agent who shipsconta<strong>in</strong>ers through the network.All model’s elements are for one plann<strong>in</strong>g period (which <strong>in</strong> the empirical applications hascorresponded to an operational year), and are assumed not to vary dur<strong>in</strong>g the plann<strong>in</strong>g horizon. <strong>The</strong>notations used <strong>in</strong> the model are shown below.5 Term<strong>in</strong>al operators offer conta<strong>in</strong>er storage services to decouple the successive steps <strong>in</strong> the trans<strong>port</strong> cha<strong>in</strong> and theynormally provide a limited amount of free of charge storage time which should allow for the customers to arrangecustoms formalities and other authorities to do their required clearances. Storage rates after free time (demurragecharges) are charged by term<strong>in</strong>al companies to optimize the yard productivity, m<strong>in</strong>imiz<strong>in</strong>g the conta<strong>in</strong>er dwell timedepend<strong>in</strong>g on deliberate supply cha<strong>in</strong> management strategies of us<strong>in</strong>g term<strong>in</strong>als as low cost warehouses. Also customsand adm<strong>in</strong>istrative procedures may add substantially to the dwell time, and therefore to the direct and <strong>in</strong>direct costs forshippers. In some cases, shippers endeavour to have all necessary conta<strong>in</strong>ers checked with<strong>in</strong> free storage time providedby term<strong>in</strong>al companies, with this typically be<strong>in</strong>g not achieved for 100 per cent of conta<strong>in</strong>er volumes and determ<strong>in</strong><strong>in</strong>gsignificant generalized costs to be borne.7


Indices:I: set of all nodes of the network = { 1, 2, 3, 4, 5,6 }L (I): set of all <strong>in</strong>termodal nodes of the regional <strong>logistics</strong> system = { 1, 2,3 }N (L): set of <strong>in</strong>termodal nodes of the regional <strong>logistics</strong> system exclud<strong>in</strong>g virtual <strong>in</strong>ter<strong>port</strong> nodes with1,2customs function = { }O (L): set of <strong>in</strong>termodal nodes of the regional <strong>logistics</strong> system exclud<strong>in</strong>g virtual <strong>in</strong>ter<strong>port</strong> nodes1,3without customs function = { }P (O): set of sea<strong>port</strong> nodes of the regional <strong>logistics</strong> system = { 1 }Q (N): set of virtual <strong>in</strong>ter<strong>port</strong> nodes without customs function = { 2 }D (O): set of virtual <strong>in</strong>ter<strong>port</strong> nodes with customs function = { 3 }Z (I): set of all <strong>in</strong>land locations demand<strong>in</strong>g conta<strong>in</strong>ers = { 2, 4, 5,6 }E (Z): set of <strong>in</strong>land locations (exclud<strong>in</strong>g <strong>in</strong>ter<strong>port</strong>s) demand<strong>in</strong>g conta<strong>in</strong>ers = { 4, 5,6 }R (Z): set of <strong>in</strong>land locations without rail term<strong>in</strong>al and demand<strong>in</strong>g conta<strong>in</strong>ers = { 6 }H (I): set of <strong>in</strong>land locations perform<strong>in</strong>g an <strong>in</strong>termediate multimodal transhipment function:2, 3, 4,5{ }T: set of conta<strong>in</strong>er types = { full,empty }M: set of admitted <strong>in</strong>land trans<strong>port</strong>ation modes = { rail,truck }Road_Type: set of road l<strong>in</strong>ear <strong>in</strong>frastructure types = { motorway,other roads }A: set of one-way railway services = { 1_(2+3) , 1_4, ( 2+3 )_4,(2+3)_5}Customs: set of all customs control types = { AC, DC, PI,SC}6Customs2 (Customs): set of customs control types which do not entail additional direct customsAC,DCcosts = { }Customs3 (Customs): set of customs control types entail<strong>in</strong>g additional direct customs costs =PI,SC{ }Parameters:⎡Demand t pi⎤ : vector of demands specified <strong>in</strong> number of conta<strong>in</strong>ers of type t ∈ T (measured <strong>in</strong>⎣ ⎦TEU) by orig<strong>in</strong>-dest<strong>in</strong>ation pair (that is from each sea<strong>port</strong> node p ∈ P towards each node i ∈ I )⎡road _ typeRoad _ dist ij⎤ : vector of kilometer lengths of road l<strong>in</strong>ear <strong>in</strong>frastructure⎣⎦road _ type ∈ Road _ type between nodes i ∈ I and j ∈ I⎡⎣Tot _ road _ distij⎤⎦: vector of kilometer lengths of total road l<strong>in</strong>ear <strong>in</strong>frastructure between nodesroad _ typei ∈ I and j ∈ I , that are given as Tot _ road _ distij= ∑ Road _ distijroad _ type∈Road _ Type⎡road _ typeRoad _ speed ⎤ : vector of admitted average speeds (expressed <strong>in</strong> km/h) of trans<strong>port</strong> by⎣⎦truck over road l<strong>in</strong>ear <strong>in</strong>frastructure road _ type ∈ Road _ type6 AC stands for Automated Computerized Control, DC for Documentary Control, PI for Physical Inspection, and SC forX-ray Scann<strong>in</strong>g.8


⎡Road _ driv _ time ⎤⎣ij : vector of admitted driv<strong>in</strong>g times (expressed <strong>in</strong> number of hours) for⎦trans<strong>port</strong> by truck between nodes i ∈ I and j ∈ I , that are calculated asRoad _ driv _ time⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ Road _ speed ⎟ ⎜ Road _ speed⎟⎝ ⎠ ⎝ ⎠motorway∈Road _ Type other roads∈Road _ TypeRoad _ distijRoad _ distijij = +motorway∈Road _ Type other roads∈Road _ Type⎡Rests_ time ⎤⎣ij : vector of times for rests (expressed <strong>in</strong> number of hours) prescribed by Road⎦regulations for trans<strong>port</strong> by truck between nodes i ∈ I and j ∈ I⎡Stops_ time ⎤⎣ij : vector of times for stops (expressed <strong>in</strong> number of hours) prescribed by Road⎦regulations for trans<strong>port</strong> by truck between nodes i ∈ I and j ∈ I⎡⎣Rail _ distij⎤⎦: vector of kilometer lengths of rail l<strong>in</strong>ear <strong>in</strong>frastructure between nodes i ∈ I and j ∈ I⎡tRail _ time ij⎤ : vector of times for railway trans<strong>port</strong> of conta<strong>in</strong>ers of type t ∈ T between nodes⎣ ⎦full Ti ∈ I and j ∈ I , where Rail _ time ∈ empty∈Tfull∈Tij is given, while Rail _ timeij= Rail _ timeijfor allempty∈Tempty∈Ti,j ≠ d ∈ D ⊆ I , and Rail _ time i∈I , d∈D= Rail _ time d∈D,i∈I= 0 (virtual <strong>in</strong>ter<strong>port</strong> nodes d ∈ D canonly receive and forward full conta<strong>in</strong>ers)⎡tmTot _ trans<strong>port</strong> _ time ij⎤ : vector of total travel times (expressed <strong>in</strong> number of hours) for trans<strong>port</strong>⎣⎦of conta<strong>in</strong>ers of type t ∈ T by mode m ∈ M between nodes i ∈ I and j ∈ I , wheret,rail MijTot _ trans<strong>port</strong> _ time ∈ = Rail _ time , andtijt,truck Mij ∈ = ij + ij +ijTot _ trans<strong>port</strong> _ time Road _ driv _ time Rests _ time Stops _ time⎡tmTrans<strong>port</strong> _ fare ij⎤ : vector of unit prices (measured <strong>in</strong> Euros/TEU) for trans<strong>port</strong> of conta<strong>in</strong>ers of⎣⎦type t ∈ T by mode m ∈ M between nodes i ∈ I and j ∈ I⎡tmGas _ cost ⎤ : vector of external unit costs (<strong>in</strong> Euros/TEU-km) for emissions of greenhouse gases⎣⎦deriv<strong>in</strong>g from trans<strong>port</strong> of conta<strong>in</strong>ers of type t ∈ T by mode m ∈ M⎡tmAir _ cost ⎤ : vector of external unit costs (<strong>in</strong> Euros/TEU-km) of air pollution deriv<strong>in</strong>g from⎣ ⎦trans<strong>port</strong> of conta<strong>in</strong>ers of type t ∈ T by mode m ∈ M⎡tmNoise _ cost ⎤ : vector of external unit costs (<strong>in</strong> Euros/TEU-km) of noise deriv<strong>in</strong>g from trans<strong>port</strong>⎣⎦of conta<strong>in</strong>ers of type t ∈ T by mode m ∈ M⎡tmAccident _ cost ⎤ : vector of external unit costs (<strong>in</strong> Euros/TEU-km) of accidents deriv<strong>in</strong>g from⎣⎦trans<strong>port</strong> of conta<strong>in</strong>ers of type t ∈ T by mode m ∈ M⎡tmCongestion _ cost ⎤ : vector of external unit costs (<strong>in</strong> Euros/TEU-km) of congestion deriv<strong>in</strong>g⎣⎦from trans<strong>port</strong> of conta<strong>in</strong>ers of type t ∈ T by mode m ∈ M⎡tmTot _ extern _ cost ij⎤ : vector of total external unit costs (<strong>in</strong> Euros/TEU) deriv<strong>in</strong>g from trans<strong>port</strong> of⎣⎦conta<strong>in</strong>ers of type t ∈ T by mode m ∈ M between nodes i ∈ I and j ∈ I , where9


Tot _ extern _ costwhile Tot _ extern _ cost ijt,rail ∈ M=Annual_rate: scalar represent<strong>in</strong>g the annual op<strong>port</strong>unity and economic-technical depreciation costrate of conta<strong>in</strong>erized cargoesIm<strong>port</strong> _ value : scalar represent<strong>in</strong>g the average unit customs declared value (expressed <strong>in</strong>[ ]t,truck∈Mij=⎛t, truck∈Mt,truck∈MGas _ cost + Air _ cost + ⎞⎜⎟t, truck∈Mt,truck∈M= ⎜ Noise _ cost + Accident _ cost + ⎟⋅Tot _ road _ distij;⎜t,truck∈M+ Congestion _ cost⎟⎝⎠⎛t, rail∈Mt,rail∈MGas _ cost + Air _ cost + ⎞⎜⎟t, rail∈Mt,rail∈M= ⎜ Noise _ cost + Accident _ cost + ⎟⋅Rail _ dist⎜t,rail∈M+ Congestion _ cost⎟⎝⎠Euros/TEU) of conta<strong>in</strong>erized im<strong>port</strong> cargoes disembarked at the regional sea<strong>port</strong> systemLeas_cost: scalar represent<strong>in</strong>g the conta<strong>in</strong>er leas<strong>in</strong>g unit charge per day (expressed <strong>in</strong>Euros/TEU/day)⎡ full∈T , mc ij⎤ : vector of total social generalized unit costs (<strong>in</strong> Euros/TEU) for trans<strong>port</strong> of conta<strong>in</strong>ers⎣ ⎦of type full ∈ T by mode m ∈ M between nodes i ∈ I and j ∈ I , that are calculated asfull∈T , m full∈T , m full∈T , mij _ ij _ _ ijc = Trans<strong>port</strong> fare + Tot extern cost +ij⎧⎡⎛Annual _ rate ⎞⎤⎫⎜⋅ Im<strong>port</strong> _ value ⎟ + Leas_cost ⎪⎢365⎥full∈T , m ⎪+⎝⎠⎨⎢⎥ ⋅Tot _ trans<strong>port</strong> _ timeij⎬⎪⎢24⎥⎪⎪⎢⎥⎩⎣⎦⎪⎭where the first two terms are respectively the direct trans<strong>port</strong> cost and the total trans<strong>port</strong> externalcost (<strong>in</strong> Euros/TEU), while the third term is the time related cost dur<strong>in</strong>g trans<strong>port</strong> operations (i.e. thesum of <strong>in</strong>-transit <strong>in</strong>ventory hold<strong>in</strong>g cost and conta<strong>in</strong>er leas<strong>in</strong>g cost, <strong>in</strong> Euros/TEU)⎡ empty∈T , mc ij⎤ : vector of total social generalized unit trans<strong>port</strong> costs (<strong>in</strong> Euros/TEU) for conta<strong>in</strong>ers⎣ ⎦of type empty ∈Tby mode m∈ M between nodes i ∈ I and j ∈ I , that are calculated asempty∈T , m empty∈T , m empty∈T , mij _ ij _ _ ijc = Trans<strong>port</strong> fare + Tot extern cost +⎛ Leas_costempty∈T , m ⎞+ ⎜ ⋅Tot _ trans<strong>port</strong> _ timeij⎟⎝ 24⎠where the first two terms are respectively the direct trans<strong>port</strong> cost and the total trans<strong>port</strong> externalcost (<strong>in</strong> Euros/TEU), while the third term is the time related cost dur<strong>in</strong>g trans<strong>port</strong> operations (i.e.conta<strong>in</strong>er leas<strong>in</strong>g cost, <strong>in</strong> Euros/TEU)⎡DwTime_ empty ⎤⎣n : vector of unit dwell times (expressed <strong>in</strong> number of days/TEU) for empty⎦conta<strong>in</strong>ers at node n ∈ N10


⎡customs,mDwTime _ full _ <strong>port</strong> p⎤ : vector of unit <strong>port</strong> dwell times (expressed <strong>in</strong> number of⎣⎦days/TEU) for full conta<strong>in</strong>ers submitted to customs control type customs ∈Customsat sea<strong>port</strong>node p ∈ P , and leav<strong>in</strong>g the same node by trans<strong>port</strong> mode m ∈ M⎡DwTime _ full _ <strong>port</strong> _ CB ⎤⎣p : vector of unit <strong>port</strong> dwell times (expressed <strong>in</strong> number of days/TEU)⎦for full conta<strong>in</strong>ers to be cleared at the <strong>in</strong>ter<strong>port</strong> and leav<strong>in</strong>g the sea<strong>port</strong> node p ∈ P by railwaycarrier haulage under customs bond (without any accompany<strong>in</strong>g <strong>in</strong>land customs transit document)⎡DwTime _ full _ <strong>in</strong>ter<strong>port</strong> _ Aqm ⎤ : vector of unit <strong>in</strong>ter<strong>port</strong> dwell times (expressed <strong>in</strong> number of⎣⎦days/TEU) for full conta<strong>in</strong>ers already cleared by customs at the sea<strong>port</strong> node and leav<strong>in</strong>g the virtual<strong>in</strong>ter<strong>port</strong> node q ∈Qby trans<strong>port</strong> mode m ∈ M⎡customs,mDwTime _ full _ <strong>in</strong>ter<strong>port</strong> ⎤⎣d: vector of unit <strong>in</strong>ter<strong>port</strong> dwell times (expressed <strong>in</strong> number of⎦days/TEU) for full conta<strong>in</strong>ers submitted to customs control type customs ∈Customsat virtual<strong>in</strong>ter<strong>port</strong> node d ∈ D , and leav<strong>in</strong>g the same node by trans<strong>port</strong> mode m ∈ M⎡customsRatio _ <strong>port</strong> p⎤ : vector of ratios (%) of disembarked full conta<strong>in</strong>ers submitted to customs⎣⎦control type customs ∈Customsbefore to be cleared at sea<strong>port</strong> node p ∈ P⎡customsRatio _ <strong>in</strong>ter<strong>port</strong> dp⎤ : vector of ratios (%) of full conta<strong>in</strong>ers arriv<strong>in</strong>g at virtual <strong>in</strong>ter<strong>port</strong> node⎣⎦d ∈ D from sea<strong>port</strong> node p ∈ P by rail under customs bond (without any accompany<strong>in</strong>g <strong>in</strong>landcustoms transit document) and to be submitted to customs control type customs ∈ Customs , thatcustomsdpcustomspare given by Ratio _ <strong>in</strong>ter<strong>port</strong> = Ratio _ <strong>port</strong> for all d ∈ D⎡Wa _ DwTime _ full _ <strong>port</strong> m p⎤ : vector of weighted average unit <strong>port</strong> dwell times (measured <strong>in</strong>⎣⎦number of days/TEU) of full conta<strong>in</strong>ers cleared by customs at sea<strong>port</strong> node p ∈ P and leav<strong>in</strong>g thesame node by trans<strong>port</strong> mode m ∈ M , that are given by∑,( )m customs m customsp p pcustoms∈CustomsWa _ DwTime _ full _ <strong>port</strong> = DwTime _ full _ <strong>port</strong> ⋅ Ratio _ <strong>port</strong>⎡Wa _ DwTime _ full _ <strong>in</strong>ter<strong>port</strong> m pd⎤ : vector of weighted average unit <strong>in</strong>ter<strong>port</strong> dwell times⎣⎦(measured <strong>in</strong> number of days/TEU) of full conta<strong>in</strong>ers arriv<strong>in</strong>g <strong>in</strong> virtual <strong>in</strong>ter<strong>port</strong> node d ∈ D byrailway carrier haulage under customs bond from sea<strong>port</strong> node p ∈ P , cleared by customs at thesame node d ∈ D , and leav<strong>in</strong>g by trans<strong>port</strong> mode m ∈ M , that are given byWa _ DwTime _ full _ <strong>in</strong>ter<strong>port</strong>∑customs∈Customsmpd =customs m customs,( DwTime _ full _ <strong>in</strong>ter<strong>port</strong>dRatio _ <strong>in</strong>ter<strong>port</strong>dp)= ⋅⎡Free_ time ⎤⎣l : vector of free of charge conta<strong>in</strong>er storage unit times (measured <strong>in</strong> number of⎦days/TEU) at node l ∈ L⎡tDemurrCharge l⎤ : vector of demurrage unit charges (measured <strong>in</strong> Euros/TEU) for conta<strong>in</strong>ers of⎣⎦type t ∈Tat node l ∈ L⎡tHandlCharge l⎤ : vector of conta<strong>in</strong>er handl<strong>in</strong>g unit charges (measured <strong>in</strong> Euros/TEU) for⎣⎦conta<strong>in</strong>ers of type t ∈Tat nodel ∈ L11


⎡customs3Additional _ customs _ charge o⎤ : vector of additional customs unit charges (expressed <strong>in</strong>⎣⎦Euros/TEU) for full conta<strong>in</strong>ers submitted to customs control type customs3∈Customs3at nodeo∈O⎡customs2,mPort _ dir _ cost1 p⎤ : vector of direct unit costs (expressed <strong>in</strong> Euros/TEU) for handl<strong>in</strong>g⎣⎦and storage of full conta<strong>in</strong>ers submitted to customs control type customs2 ∈Customs2at sea<strong>port</strong>node p ∈ P , and leav<strong>in</strong>g the same node by trans<strong>port</strong> mode m ∈ M , that are calculated asPort _ dir _ cost1customs2,mp=,( _ _ _ )⎧⎡customs2 m full∈T full∈TDwTime full <strong>port</strong> p − Free timep ⋅ DemurrCharge ⎤p + HandlCharge⎪⎣⎦p⎪customs2,m= ⎨if DwTime _ full _ <strong>port</strong> p > Free _ timep⎪full∈Tcustoms2,m⎪HandlChargep if DwTime _ full _ <strong>port</strong> p ≤ Free _ timep⎩where ⎡customs2,mfull∈T( DwTime _ full _ <strong>port</strong> p − Free _ timep ) ⋅ DemurrCharge ⎤⎣p is the unit cost of⎦full Tconta<strong>in</strong>er storage (Euros/TEU), and HandlCharge ∈p is the unit charge for conta<strong>in</strong>er handl<strong>in</strong>g(Euros/TEU).⎡customs3,mPort _ dir _ cost2 p⎤ : vector of direct unit costs (expressed <strong>in</strong> Euros/TEU) for handl<strong>in</strong>g,⎣⎦storage, and customs control of full conta<strong>in</strong>ers submitted to customs control typecustoms3 ∈Customs3at sea<strong>port</strong> node p ∈ P , and leav<strong>in</strong>g the same node by trans<strong>port</strong> modem ∈ M , that are calculated asPort _ dir _ cost2customs3,mp=,( _ _ _ )⎧⎡customs3 m full∈T full∈TDwTime full <strong>port</strong> p − Free timep ⋅ DemurrCharge ⎤p + HandlChargep+⎪⎣⎦⎪customs3⎪+Additional _ customs _ chargep⎪customs3,m= ⎨if DwTime _ full _ <strong>port</strong> p > Free _ timep⎪full∈Tcustoms3⎪HandlChargep+ Additional _ customs _ chargep⎪customs3,mif DwTime _ full _ <strong>port</strong> p ≤ Free _ time p⎪⎪⎩⎡customs2,mInter<strong>port</strong> _ dir _ cost1 ⎤⎣d: vector of direct unit costs (expressed <strong>in</strong> Euros/TEU) for⎦handl<strong>in</strong>g and storage of full conta<strong>in</strong>ers submitted to customs control type customs2 ∈Customs2atvirtual <strong>in</strong>ter<strong>port</strong> node d ∈ D , and leav<strong>in</strong>g the same node by trans<strong>port</strong> mode, that are calculated asInter<strong>port</strong> _ dir _ cost1customs2,mdcustoms2,m( _ _d_ d )=⎧⎡full∈TDwTime full <strong>in</strong>ter<strong>port</strong> − Free time ⋅ DemurrCharge ⎤d+⎪⎣⎦⎪full∈Tcustoms2,m= ⎨+ HandlChargedif DwTime _ full _ <strong>in</strong>ter<strong>port</strong>d> Free _ time⎪full∈Tcustoms2,m⎪HandlChargedif DwTime _ full _ <strong>in</strong>ter<strong>port</strong>d≤ Free _ time⎩dd12


where ⎡customs2,m( _ _d− _ d )DwTime full <strong>in</strong>ter<strong>port</strong> Free time ⋅⎣DemurrChargefull∈Td⎤ is conta<strong>in</strong>er⎦full Tstorage cost, and HandlCharge ∈dis conta<strong>in</strong>er handl<strong>in</strong>g charge⎡customs3,mInter<strong>port</strong> _ dir _ cost2 ⎤⎣d: vector of direct unit costs (expressed <strong>in</strong> Euros/TEU) for⎦handl<strong>in</strong>g storage, and customs control of full conta<strong>in</strong>ers submitted to customs control typecustoms3 ∈Customs3at virtual <strong>in</strong>ter<strong>port</strong> node d ∈ D , and leav<strong>in</strong>g the same node by trans<strong>port</strong>mode m ∈ M , that are calculated asInter<strong>port</strong> _ dir _ cost2customs3,mdcustoms3,m( _ _d_ d )=⎧⎡full∈TDwTime full <strong>in</strong>ter<strong>port</strong> − Free time ⋅ DemurrCharge ⎤d+⎪⎣⎦⎪full∈Tcustoms3⎪+ HandlCharged+ Additional _ customs _ charged⎪customs3,m= ⎨if DwTime _ full _ <strong>in</strong>ter<strong>port</strong>d> Free _ time⎪full∈Tcustoms3⎪HandlCharged+ Additional _ customs _ charged⎪customs3,mif DwTime _ full _ <strong>in</strong>ter<strong>port</strong> ≤ Free _ time⎪⎩⎡ f n⎤ : vector of total generalized unit costs (<strong>in</strong> Euros/TEU) of release operations for empty⎣ ⎦conta<strong>in</strong>ers at <strong>in</strong>termodal node n ∈ N , that are calculated as⎧⎡empty∈T( DwTime _ emptyn − Free _ timen ) ⋅ DemurrCharge ⎤n +⎪⎣⎦⎪empty∈T⎪+ HandlChargen+ ( Leas_rate⋅DwTime _ empty n)⎪fn= ⎨if DwTime_emptyn- Free_time n > 0⎪empty∈T⎪HandlChargen+ ( Leas_rate⋅DwTime _ empty n)⎪⎪if DwTime_emptyn- Free_time n ≤ 0⎩where ⎡empty∈Tempty∈T( DwTime _ emptyn − Free _ timen ) ⋅ DemurrCharge ⎤n + HandlCharge⎣⎦n isterm<strong>in</strong>al operation cost, and ( Leas_rate ⋅ DwTime _ empty n ) is conta<strong>in</strong>er leas<strong>in</strong>g cost⎡g m p⎤ : vector of weighted average total generalized unit <strong>port</strong> costs (<strong>in</strong> Euros/TEU) of the release⎣ ⎦operations for full conta<strong>in</strong>ers cleared by customs at sea<strong>port</strong> node p ∈ P and leav<strong>in</strong>g the same nodeby trans<strong>port</strong> mode m ∈ M , that are calculated asm ⎡⎛Annual _ rate⎞m ⎤g p = ⎢⎜⋅ Im<strong>port</strong> _ value⎟⋅ Wa _ DwTime _ full _ <strong>port</strong> p +365⎥⎣⎝⎠⎦m( Leas _ cost Wa _ DwTime _ full _ <strong>port</strong> p )customs2,mcustoms2∑ ( Port _ dir _ cost1pRatio _ <strong>port</strong> p )+ ⋅ ++ ⋅ +customs2∈Customs2customs3,mcustoms3∑ ( Port _ dir _ cost2pRatio _ <strong>port</strong>p )customs3∈Customs3+ ⋅ddd13


where⎡⎛Annual _ rate ⎞⎢⎜⋅ Im<strong>port</strong> _ value ⎟⋅Wa _ DwTime _ full _ <strong>port</strong>⎣⎝365⎠⎤⎥ is weighted average <strong>in</strong>-⎦transit <strong>in</strong>ventory hold<strong>in</strong>g cost, ( Leas _ cost Wa _ DwTime _ full _ <strong>port</strong> m p )conta<strong>in</strong>er leas<strong>in</strong>g cost, and∑customs2∈Customs2customs3∈Customs3( _ _ customs2,m_ customs2Port dir cost1p⋅ Ratio <strong>port</strong> p ) +( _ _ customs3,m_ customs3Port dir cost2pRatio <strong>port</strong> p )mp⋅ is weighted average+ ∑ ⋅is weighted average handl<strong>in</strong>g,storage and customs control cost⎡k p⎤ : vector of total generalized unit <strong>port</strong> costs (<strong>in</strong> Euros/TEU) of the release operations for full⎣ ⎦conta<strong>in</strong>ers leav<strong>in</strong>g the sea<strong>port</strong> node p ∈ P by railway carrier haulage under customs bond (withoutany accompany<strong>in</strong>g <strong>in</strong>land customs transit document) towards the virtual <strong>in</strong>ter<strong>port</strong> node withcustoms function, that are calculated askp( DwTime _ full _ <strong>port</strong> _ CBp Free _ timep ) DemurrChargepfull∈THandlChargep( Leas _ cost DwTime _ full _ <strong>port</strong> _ CBp)⎧⎡full∈T− ⋅ ⎤ +⎪⎣⎦⎪⎪+ + ⋅ +⎪⎪ ⎡⎛Annual _ rate ⎞⎤⎪+ ⎢⎜⋅ Im<strong>port</strong> _ value ⎟⋅DwTime _ full _ <strong>port</strong> _ CB p365⎥⎣⎝⎠⎦⎪= ⎨if DwTime _ full _ <strong>port</strong> _ CBp> Free _ timep⎪full∈T⎪HandlChargep+ ( Leas _ cost ⋅ DwTime _ full _ <strong>port</strong> _ CBp) +⎪⎪ ⎡⎛Annual _ rate ⎞⎤⎪+ ⎢⎜⋅ Im<strong>port</strong> _ value ⎟⋅DwTime _ full _ <strong>port</strong> _ CB p365⎥⎪ ⎣⎝⎠⎦⎪if DwTime _ full _ <strong>port</strong> _ CBp≤ Free _ time⎪p⎩⎡ ms q⎤ : vector of total generalized unit <strong>in</strong>ter<strong>port</strong> costs (<strong>in</strong> Euros/TEU) of the release operations for⎣ ⎦full conta<strong>in</strong>ers already cleared by customs <strong>in</strong> the sea<strong>port</strong> node and leav<strong>in</strong>g the virtual <strong>in</strong>ter<strong>port</strong> nodeq ∈ Q by trans<strong>port</strong> mode m ∈ M , that are calculated assmqmfull∈T( DwTime _ full _ <strong>in</strong>ter<strong>port</strong> _ Aq − Free _ timeq ) ⋅ DemurrCharge ⎤q +⎦full∈TmHandlChargeq( Leas _ cost Wa _ DwTime _ full _ <strong>in</strong>ter<strong>port</strong> _ Aq)⎧⎡⎪⎣⎪⎪+ + ⋅ +⎪⎪ ⎡⎛Annual _ rate ⎞Im<strong>port</strong>m ⎤⎪+ ⎢⎜⋅ _ value ⎟⋅DwTime _ full _ <strong>in</strong>ter<strong>port</strong> _ A q365⎥⎣⎝⎠⎦⎪mq= ⎨if DwTime _ full _ <strong>in</strong>ter<strong>port</strong> _ Aq> Free _ time⎪full∈Tm⎪HandlChargeq+ ( Leas _ cost ⋅ DwTime _ full _ <strong>in</strong>ter<strong>port</strong> _ Aq) +⎪⎪ ⎡⎛Annual _ rate ⎞Im<strong>port</strong>m ⎤⎪+ ⎢⎜⋅ _ value ⎟⋅DwTime _ full _ <strong>in</strong>ter<strong>port</strong> _ A q365⎥⎪ ⎣⎝⎠⎦⎪mif DwTime _ full _ <strong>in</strong>ter<strong>port</strong> _ A ≤ Free _ time⎪⎩qq14


⎡u m pd⎤ : vector of weighted average total generalized unit <strong>in</strong>ter<strong>port</strong> costs (<strong>in</strong> Euros/TEU) of the⎣ ⎦release operations for full conta<strong>in</strong>ers arriv<strong>in</strong>g to virtual <strong>in</strong>ter<strong>port</strong> node d ∈ D from sea<strong>port</strong>node p ∈ P by railway carrier haulage under customs bond (without any accompany<strong>in</strong>g <strong>in</strong>landcustoms transit document), and subsequently leav<strong>in</strong>g the same virtual <strong>in</strong>ter<strong>port</strong> node by trans<strong>port</strong>mode m ∈ M after customs clearance, that are calculated asm ⎡⎛Annual _ rate⎞m ⎤u pd = ⎢⎜⋅ Im<strong>port</strong> _ value⎟⋅ Wa _ DwTime _ full _ <strong>in</strong>ter<strong>port</strong> pd +365⎥⎣⎝⎠⎦m( Leas _ cost Wa _ DwTime _ full _ <strong>in</strong>ter<strong>port</strong> pd )customs2,mcustoms2∑ ( Inter<strong>port</strong> _ dir _ cost1dRatio _ <strong>in</strong>ter<strong>port</strong>dp)+ ⋅ ++ ⋅ ++customs2∈Customs2∑customs3∈Customs3customs3, mcustoms3( Inter<strong>port</strong> _ dir _ cost2d⋅ Ratio _ <strong>in</strong>ter<strong>port</strong>dp)⎡WKNOTR1DIR a⎤⎣⎦ : vector of maximal numbers of one-way weekly tra<strong>in</strong>s operated by railwayservice a ∈ A⎡MXNOTEU1TR a⎤⎣⎦ : vector of maximal numbers of conta<strong>in</strong>ers (expressed <strong>in</strong> TEU) per one-waytrip by railway service a ∈ AOPWEEKYEAR: scalar represent<strong>in</strong>g the number of railway operational weeks <strong>in</strong> a year⎡b a⎤⎣ ⎦ : vector of maximal numbers of conta<strong>in</strong>ers (<strong>in</strong> TEU) that can be trans<strong>port</strong>ed by one-wayrailway service a ∈ A , that are calculated asba = OPWEEKYEAR ⋅WKNOTR1DIRa ⋅ MXNOTEU1TRaEndogenous variables:tm⎡⎣x ij⎤⎦: vector of <strong>in</strong>land shipments of conta<strong>in</strong>ers of type t ∈ T (measured <strong>in</strong> TEU) disembarked atthe sea<strong>port</strong> 1∈ P and forwarded between nodes i ∈ I and j ∈ I by trans<strong>port</strong> mode m ∈ M<strong>The</strong> stylized primal <strong>in</strong>ward <strong>in</strong>ter<strong>port</strong> problem <strong>in</strong>corporat<strong>in</strong>g trans<strong>port</strong> external costs reads:m<strong>in</strong> W =tm tm empty∈T , mm full∈T , m( cij xij ) ( fn xni ) ( g p xpz)∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑= ⋅ + ⋅ + ⋅ +t∈T m∈M i∈I j∈I m∈M n∈N i∈I m∈M p∈P z∈Z∑ ∑full∈T , rail∈M m full∈T , m( k p xpd) ∑ ∑ ∑ ( sq xqe)+ ⋅ + ⋅ +p∈P d∈Dm∈M q∈Q e∈E⎡ truck∈Mfull∈T , truck∈Mrail∈Mfull∈T , rail∈M∑ ⎢∑( u1∈P, d xdz) ∑ ( u1∈P,d xde)d∈D z∈Z e∈E+ ⋅ + ⋅⎣⎤⎥⎦(1)subject to:∑ ∑tmt− xpi≥ −Demand1∈P , pfor all t ∈T and p ∈ P(2)i∈I m∈Mtm tm t∑ ∑ ih ∑ ∑ hi 1∈P hm∈M i∈Im∈M i∈Ix − x ≥ Demand , for all t ∈T and h ∈ H(3)15


∑ ∑m∈M i∈I∑t∈T∑t∈T∑t∈T∑t∈Ttmijtmtxir≥ Demand1∈P , rfor all t ∈T and r ∈ R(4)t, rail∈Mt,rail∈M( 1∈P 2∈Q 1∈P 3∈D)xx,+ x,≤ b1_(2+3) ∈A(5)t,rail∈M1∈P 4∈Z,≤ b1_4 ∈A(6)t, rail∈Mt,rail∈M( 2∈Q 4∈Z 3∈D 4∈Z)t, rail∈Mt,rail∈M( 2∈Q 5∈Z 3∈D 5∈Z)x,+ x,≤ b(2+3)_4 ∈A(7)x,+ x,≤ b(2+3)_5 ∈A(8)x ≥ 0 for all t ∈T, m ∈ M , and i, j ∈ I (9)tmxij= 0 if Trans<strong>port</strong> _ fareij= 0for all t ∈T, m ∈ M and i, j ∈ I (10)xfull∈T , truck∈M3∈D 2∈Q≥,0 (11)<strong>The</strong> sets Q and D represent virtual <strong>in</strong>ter<strong>port</strong> nodes. A full conta<strong>in</strong>er arriv<strong>in</strong>g at a sea<strong>port</strong>node p ∈ P can either be cleared by the customs right away, <strong>in</strong> which case it can proceed to an<strong>in</strong>land demand<strong>in</strong>g location z ∈ Z , <strong>in</strong>clud<strong>in</strong>g virtual <strong>in</strong>ter<strong>port</strong> nodes without customs function( q ∈Q ⊆ Z ). Or it can have its customs clearance delayed, <strong>in</strong> which case it has to proceed byrailway to a virtual <strong>in</strong>ter<strong>port</strong> node with customs function d ∈ D . In this manner, shippers may avoidcostly delays <strong>in</strong> sea<strong>port</strong> await<strong>in</strong>g access to customs clearance.<strong>The</strong> railway services to/from the <strong>in</strong>ter<strong>port</strong> <strong>in</strong>clude the connections to/from each of the twocorrespond<strong>in</strong>g virtual nodes. For <strong>in</strong>stance, the rail service from the sea<strong>port</strong> node 1 to the <strong>in</strong>ter<strong>port</strong> issymbolically represented by ‘1_(2+3)’, which means that such service carries conta<strong>in</strong>ers from node1 to node 2 and node 3, simultaneously. In the same manner, the rail service from the <strong>in</strong>ter<strong>port</strong> tothe location 5 is symbolically represented by ‘(2+3)_5’, which means that such service carriesconta<strong>in</strong>ers simultaneously from node 2 to node 5 and from node 3 to node 5.<strong>The</strong> demand specified by ‘orig<strong>in</strong> node-orig<strong>in</strong> node’ pair (i.e. Demand for all t ∈T and p ∈ P )<strong>in</strong>dicates the total conta<strong>in</strong>er supply available at the specific <strong>port</strong> node p ∈ P , and is entered <strong>in</strong> themodel with the m<strong>in</strong>us sign <strong>in</strong> order to write the flow conservation constra<strong>in</strong>t (2) with a ≥ sign.<strong>The</strong> critical cost items explicitly taken <strong>in</strong>to account by the model are:- conta<strong>in</strong>er handl<strong>in</strong>g costs;- conta<strong>in</strong>er storage costs, <strong>in</strong> function both of the demurrage charge and of the dwell timeexceed<strong>in</strong>g the free time provided by term<strong>in</strong>al companies at sea<strong>port</strong>s and <strong>in</strong>ter<strong>port</strong>s;- additional direct costs for physical <strong>in</strong>spection and X-ray scanner control by customs atsea<strong>port</strong>s and <strong>in</strong>ter<strong>port</strong>s;- <strong>in</strong>-transit <strong>in</strong>ventory hold<strong>in</strong>g costs, <strong>in</strong> function of the customs declared value of cargoes, thetime duration of distribution operations, and a reference <strong>in</strong>terest rate reflect<strong>in</strong>g both theop<strong>port</strong>unity cost of the capital tied <strong>in</strong> conta<strong>in</strong>erized goods and the economic-technicaldepreciation costs of the same goods;- conta<strong>in</strong>er leas<strong>in</strong>g costs, <strong>in</strong> function both of a conta<strong>in</strong>er leas<strong>in</strong>g charge and of the timeduration of distribution operations;- <strong>in</strong>ternal trans<strong>port</strong> costs;- external trans<strong>port</strong> costs (climate change, air and nose pollution, accidents, congestion).In the objective function (1) such cost items are compressed <strong>in</strong>to aggregated parameters (c, f, g, k,s, and u). Furthermore, the <strong>in</strong>ternal costs of trans<strong>port</strong> either by road or railway toward generic nodes<strong>in</strong>clude the term<strong>in</strong>al operation costs related to the offload<strong>in</strong>g of the conta<strong>in</strong>er from the vehicle at thetpptm16


end of the trip. <strong>The</strong> <strong>in</strong>ternal costs of road trans<strong>port</strong> from <strong>in</strong>land nodes featur<strong>in</strong>g a railway term<strong>in</strong>al(exclud<strong>in</strong>g the <strong>in</strong>ter<strong>port</strong> nodes) to demand nodes not so equipped comprise the costs of term<strong>in</strong>aloperations both at the departure and at the arrival.Total travel times by road over admitted l<strong>in</strong>ks are equal to the driv<strong>in</strong>g time both on motorwaysand on other road types plus the time for rests and stops prescribed by Road regulations. Roaddriv<strong>in</strong>g times are computed by assum<strong>in</strong>g two different admitted truck’s average speeds overmotorways and other road types. <strong>The</strong> number and time duration of rests and stops need to becalculated as a function of the driv<strong>in</strong>g time 7 . As for total travel times by rail over admitted l<strong>in</strong>ks,these are <strong>in</strong>stead purely exogenous.<strong>The</strong> weighted average total generalized unit <strong>port</strong> and <strong>in</strong>ter<strong>port</strong> costs of release operations forcleared full conta<strong>in</strong>ers (i.e. the g and u parameters) are computed by tak<strong>in</strong>g <strong>in</strong>to consideration bothdirect costs (for term<strong>in</strong>al and customs operations) 8 and time-related <strong>in</strong>direct costs (for <strong>in</strong>ventoryhold<strong>in</strong>g and conta<strong>in</strong>er leas<strong>in</strong>g), accord<strong>in</strong>g to the different probabilities observed <strong>in</strong> the sea<strong>port</strong> p forthe different types of customs control 9 .<strong>The</strong> capacity limits of railway services (i.e. the b parameters) are computed by tak<strong>in</strong>g <strong>in</strong>toaccount: i) the number of railway operational weeks <strong>in</strong> the plann<strong>in</strong>g period, ii) the number ofweekly tra<strong>in</strong>s operated by each service a ∈ A , and iii) the maximal number of conta<strong>in</strong>ers per trip ofthe same service.<strong>The</strong> objective function (1) denotes the total social generalized logistic cost for the distribution ofim<strong>port</strong>ed full and empty conta<strong>in</strong>ers throughout the <strong>port</strong> h<strong>in</strong>terland network. <strong>The</strong> first term representsthe total social cost for rail and road trans<strong>port</strong>ation over the network. <strong>The</strong> second term <strong>in</strong>dicates thetotal release cost for empty conta<strong>in</strong>ers at sea<strong>port</strong> and <strong>in</strong>ter<strong>port</strong> nodes. <strong>The</strong> third term denotes thetotal release cost for full conta<strong>in</strong>ers cleared by customs at the sea<strong>port</strong> and leav<strong>in</strong>g by road andrailway. <strong>The</strong> fourth term <strong>in</strong>dicates the total release cost for full conta<strong>in</strong>ers leav<strong>in</strong>g the sea<strong>port</strong> byrailway under customs bond on behalf of shipp<strong>in</strong>g l<strong>in</strong>es and without any accompany<strong>in</strong>g <strong>in</strong>landcustoms transit document. <strong>The</strong> conta<strong>in</strong>ers will be subsequently cleared by customs at the <strong>in</strong>ter<strong>port</strong>s.<strong>The</strong> fifth term of the function is the total release cost for full conta<strong>in</strong>ers already cleared <strong>in</strong> thesea<strong>port</strong>, enter<strong>in</strong>g the <strong>in</strong>ter<strong>port</strong>s, and leav<strong>in</strong>g the same <strong>in</strong>ter<strong>port</strong>s by road and railway. F<strong>in</strong>ally, thesixth term represents the total release cost for full conta<strong>in</strong>ers cleared by customs at the <strong>in</strong>ter<strong>port</strong>s,and leav<strong>in</strong>g the same <strong>in</strong>ter<strong>port</strong>s by road and railwayFlow conservation at the orig<strong>in</strong> node requires that the supply at the node must suffice to cover theflows leav<strong>in</strong>g the same node (constra<strong>in</strong>t (2)). For <strong>in</strong>termediate nodes the balanc<strong>in</strong>g conditions statethat the flow enter<strong>in</strong>g each node must suffice to cover the flows leav<strong>in</strong>g it (constra<strong>in</strong>ts representedby (3)). F<strong>in</strong>ally, for each dest<strong>in</strong>ation node, the deliveries forthcom<strong>in</strong>g at the node must suffice tocover demand (constra<strong>in</strong>ts represented by (4)).Capacity constra<strong>in</strong>ts of the railway connections are (5)-(8). <strong>The</strong> limit of each connectiontowards/from the <strong>in</strong>ter<strong>port</strong> jo<strong>in</strong>tly considers the railway services towards/from each of the twocorrespond<strong>in</strong>g virtual nodes (<strong>in</strong> (5), (7), (8)).Non-negativity constra<strong>in</strong>ts on the primal endogenous variables are represented by (9). <strong>The</strong>y statethat the variables cannot assume negative values. In addition, the conditions represented by (10) set7 See, for <strong>in</strong>stance, the computational procedure employed by Aponte et al. (2009) with regard to freight trans<strong>port</strong> onItalian roads.8 <strong>The</strong> term<strong>in</strong>al pric<strong>in</strong>g structure at sea<strong>port</strong>s and <strong>in</strong>ter<strong>port</strong>s can be much more articulated and diversified than thatmodelled <strong>in</strong> the primal program presented above. Demurrage fees are usually charged by term<strong>in</strong>al operators on aslid<strong>in</strong>g scale. In addition, such charges may generally vary among different term<strong>in</strong>als located <strong>in</strong> the same sea<strong>port</strong> or<strong>in</strong>ter<strong>port</strong>, and also accord<strong>in</strong>g to specific agreements among service providers and customers (i.e. term<strong>in</strong>al companies,shipp<strong>in</strong>g l<strong>in</strong>es and shippers). <strong>The</strong> <strong>in</strong>ter<strong>port</strong> model may easily simulate whatever type of term<strong>in</strong>al pric<strong>in</strong>g structure.9 For simplification and illustrative purposes, <strong>in</strong> the <strong>in</strong>ter<strong>port</strong> model it is assumed that all the conta<strong>in</strong>er transit<strong>in</strong>gthrough the sea<strong>port</strong>s of the <strong>in</strong>vestigated regional logistic system carry legitimate cargoes, and therefore succeed <strong>in</strong>positively pass<strong>in</strong>g the customs controls. Moreover, the model does not take <strong>in</strong>to consideration the payment of customsduties related to the traded goods’ value.17


to zero all variables <strong>in</strong>volv<strong>in</strong>g non-exist<strong>in</strong>g l<strong>in</strong>ks of the logistic network 10 . F<strong>in</strong>ally, the constra<strong>in</strong>t(11) permits one-way road trans<strong>port</strong> with a nil generalized cost for full conta<strong>in</strong>ers between the twovirtual <strong>in</strong>ter<strong>port</strong> nodes, that is the road trans<strong>port</strong> between 3∈ D and 2 ∈ Q .3.3 <strong>The</strong> dual programm<strong>in</strong>g modelWhen a direct programm<strong>in</strong>g problem is one of cost m<strong>in</strong>imization, the dual program is one ofmaximiz<strong>in</strong>g value. <strong>The</strong> dual program of the <strong>in</strong>ter<strong>port</strong> model maximizes the total net appreciation ofconta<strong>in</strong>er flows’ shadow value cumulat<strong>in</strong>g <strong>in</strong> the network, while also <strong>in</strong>clud<strong>in</strong>g the shadow value ofrail services’ capacity constra<strong>in</strong>ts. <strong>The</strong> problem is subjected to the conditions that the valueappreciation created along each and every l<strong>in</strong>k be exhausted by its costs; <strong>in</strong> addition, there are bothnon-negativity and non-positivity constra<strong>in</strong>ts on endogenous variables.In the primal <strong>in</strong>ter<strong>port</strong> problem there is a given supply of full and empty conta<strong>in</strong>ers at eachsea<strong>port</strong>, and a given demand at each <strong>in</strong>land location (exclud<strong>in</strong>g the virtual <strong>in</strong>ter<strong>port</strong> nodes withcustoms function); furthermore, there are <strong>in</strong>termediate transhipment nodes (also <strong>in</strong>clud<strong>in</strong>g all virtual<strong>in</strong>ter<strong>port</strong> nodes) and capacity limits of railway services. Accord<strong>in</strong>gly, <strong>in</strong> the dual <strong>in</strong>ter<strong>port</strong> problem,there are shadow prices for each type of traffic flows (i.e. flows of full and empty conta<strong>in</strong>ers)implied at the nodes of the <strong>in</strong>vestigated network. <strong>The</strong>se dual variables measure the value or worthof relax<strong>in</strong>g the correspond<strong>in</strong>g flow conservation constra<strong>in</strong>ts by one unit, and they can be arranged astthe vector ⎡ ⎤ for all t ∈ T and i ∈ I.Also, the dual problem features shadow prices of railwayv i⎣ ⎦capacity constra<strong>in</strong>ts. <strong>The</strong>se parameters can be arranged as the vector [ ] ascc for all a ∈ A,and are<strong>in</strong>terpreted as imputed costs assessed on conta<strong>in</strong>er shipments along the concerned rail services.<strong>The</strong> dual <strong>in</strong>ward <strong>in</strong>ter<strong>port</strong> problem reads:max Z =( v t t ) ( t t) ( ) p Demand pp + v i Demand pi scc a b a(12)∑ ∑ ∑ ∑ ∑ ∑− ⋅ ⋅ + ⋅p∈P t∈T i≠ p∈I p∈P t∈T a∈Asubject to:full∈Tfull∈Tfull∈T , truck∈M1∈P z 1∈P , ztruck∈M1∈P−v + v ≤ c + g for all z ∈ Z(13)full∈T full∈T full∈T , rail∈M rail∈M1∈P 2∈Q 1_(2+3) ∈A≤1∈P , 2∈Q1∈P−v + v + scc c + g(14)full∈T full∈T full∈T , rail∈M1∈P 3∈D 1_(2+3) ∈A≤1∈P , 3∈D−v + v + scc c + k(15)1∈Pfull∈T full∈T full∈T , rail∈M rail∈M1∈P 4∈E1_4∈A ≤1∈P , 4∈E1∈P−v + v + scc c + g(16)full∈Tfull∈Tfull∈T , truck∈M2∈Q e 2∈Q , etruck∈M2∈Q−v + v ≤ c + s for all e ∈ E(17)full∈T full∈T full∈T , rail∈M rail∈M2∈Q 4∈E(2+3)_4∈A≤2∈Q , 4∈E2∈Q−v + v + scc c + s(18)full∈T full∈T full∈T , rail∈M rail∈M2∈Q 5∈E(2+3)_5∈A ≤2∈Q , 5∈E2∈Q−v + v + scc c + s(19)full∈Tfull∈Tfull∈T , truck∈M3∈D z 3∈D,ztruck∈M3∈D−v + v ≤ c + u for all z ∈ Z(20)full∈T full∈T full∈T , rail∈M rail∈M3∈D 4∈E(2+3)_4∈A≤3∈D,4∈E3∈D−v + v + scc c + u(21)10 Similarly to all the large-scale network models, also the <strong>in</strong>ter<strong>port</strong> model uses a sparse data structure, that is a structurebased on data matrices with relatively few non-zero entries. It seems appropriate to remember and highlight the fact that(road and/or railway) connections are not allowed between some nodes of the network <strong>in</strong>vestigated by the model.<strong>The</strong>refore, a value equal to zero has to be assigned to the spatial, temporal and economic attributes of forbidden l<strong>in</strong>ks,and appropriate constra<strong>in</strong>ts have to be formulated accord<strong>in</strong>gly.18


full∈T full∈T full∈T , rail∈M rail∈M3∈D 5∈E(2+3)_5∈A ≤3∈D,5∈E3∈D−v + v + scc c + u(22)full∈Tfull∈Tfull∈T , truck∈Me e'ee'−v + v ≤ c for all e = 4,5 ∈ Efull∈T full∈T full∈T , truck∈M5∈E 6∈E ≤5∈E , 6∈Eand e' = 5,4 ∈ E(23)−v + v c(24)empty∈Tempty∈Tempty∈T , truck∈M1∈P z1∈P , z−v + v ≤ c + f for all z ∈ Z(25)1∈Pempty∈T empty∈T empty∈T , rail∈M1∈P 2∈Q 1_(2+3) ∈A≤1∈P , 2∈Q−v + v + scc c + f(26)empty∈T empty∈T empty∈T , rail∈M1∈P 4∈E1_4∈A ≤1∈P , 4∈E1∈P−v + v + scc c + f(27)empty∈Tempty∈Tempty∈T , truck∈M2∈Q e2∈Q , e−v + v ≤ c + f for all e ∈ E(28)2∈Qempty∈T empty∈T empty∈T , rail∈M2∈Q 4∈E(2+3)_4∈A≤2∈Q , 4∈E1∈P−v + v + scc c + f(29)empty∈T empty∈T empty∈T , rail∈M2∈Q 5∈E(2+3)_5∈A≤2∈Q , 5∈E−v + v + scc c + f(30)empty∈Tempty∈Tempty∈T , truck∈Me e'ee'2∈Q2∈Q−v + v ≤ c for all e = 4,5 ∈ Eempty∈T empty∈T empty∈T , truck∈M5∈E 6∈E ≤5∈E , 6∈Eand e' = 5,4 ∈ E(31)−v + v c(32)tiv ≥ 0 for all i ∈ I and t ∈T(33)scc ≤ 0 for all a ∈ A(34)aIn the dual objective function (12), the total shadow cost the conta<strong>in</strong>er flows enter<strong>in</strong>g the networktt∑ ∑ v ⋅ Demand . <strong>The</strong> total shadow value of the conta<strong>in</strong>er flows leav<strong>in</strong>g out the f<strong>in</strong>alis ( ppp )p∈P t∈Tttdest<strong>in</strong>ations is ∑ ∑ ∑ ( vi⋅ Demandpi )∑ ( scc ⋅b).a∈Aaai≠ p∈I p∈P t∈T. <strong>The</strong> total shadow value of rail capacity <strong>in</strong> the network isFurthermore, there are the dual constra<strong>in</strong>ts represented by (13)-(32). <strong>The</strong>re is one dual constra<strong>in</strong>tfor each and every modal l<strong>in</strong>k <strong>in</strong> the network. It states an im<strong>port</strong>ant pr<strong>in</strong>ciple that is referred to as‘exhaustion of value’. Along any positive road flow <strong>in</strong> the network, the <strong>in</strong>crease <strong>in</strong> shadow value(that is the difference between the shadow price at dest<strong>in</strong>ation v j and the shadow cost at orig<strong>in</strong> v i )must be exactly exhausted by the total social unit logistic cost of the shipment. Instead, along anypositive rail flow <strong>in</strong> the network, the imputed appreciation -v i + v j along the rail l<strong>in</strong>k plus theshadow price of the capacity limit must be exactly exhausted by the total social unit logistic cost ofthe shipment. That is, all cumulat<strong>in</strong>g values must have a source that can be accounted for. No freevalue can arise.Consider for example the road l<strong>in</strong>k for the transfer of conta<strong>in</strong>ers from node 1 to node 2 <strong>in</strong> Figurefull1. <strong>The</strong> shadow cost of the flow at node 1 is v ; the shadow price of the flow at node 2 is vexhaustion of value condition then states1full full full,truck truck1+2 12+1full,truck truck12+1full2. <strong>The</strong>−v v ≤ c g , i.e. the dual price at node 2cannot exceed the dual price at node 1 plus the unit logistic cost c g . Actually, if there isa positive road trans<strong>port</strong>ation flow along the l<strong>in</strong>k, the shadow price at node 2 must equal the shadowprice at node 1 plus the logistic cost. A hypothetical logistic agent shipp<strong>in</strong>g conta<strong>in</strong>ers from node 1to node 2 will then break exactly even. But there is also the possibility that the shadow value atnode 2 falls short of the shadow cost at node 1 plus the the logistic cost. In that case, the shipperwould suffer an imputed loss and the shipment is not worth his while. No road shipment will take19


place. In general, optimality requires nonnegative shipments’ reduced costs equall<strong>in</strong>g the slackvalues <strong>in</strong> exhaustion of value constra<strong>in</strong>ts.<strong>The</strong> additional dual constra<strong>in</strong>ts represented by (33) impose that the shadow prices of the trafficflows implied at the nodes of the network have to be nonnegative. What this means is that theshipped conta<strong>in</strong>er at some nodes may be ‘scarce’, i.e. commands a positive shadow price. Or theconta<strong>in</strong>er may be a ‘free good’, <strong>in</strong> which case the shadow price is zero. This happens if there is abuildup of unwanted conta<strong>in</strong>er <strong>in</strong>ventory at the node, so that an excess availability is created. <strong>The</strong>ultimate dual constra<strong>in</strong>ts represented by (34) requires that shadow prices of railway capacityconstra<strong>in</strong>ts have to be nonpositive.F<strong>in</strong>ally, the optimal value of the dual objective function (12) is unique and equals the optimalvalue of the primal function (1). Here one encounters the pr<strong>in</strong>ciple of exhaustion of value aga<strong>in</strong>.<strong>The</strong> total <strong>in</strong>crease <strong>in</strong> shadow value over the network equals the total social logistic cost of <strong>port</strong>h<strong>in</strong>terland conta<strong>in</strong>er distribution. This is the ‘fundamental theorem of duality’ <strong>in</strong> l<strong>in</strong>earprogramm<strong>in</strong>g: the optimal value of the direct problem equals the optimal value of the dual problem.3.4 Primal and dual complementary slackness conditions of the <strong>in</strong>ter<strong>port</strong> model<strong>The</strong> primal and dual programs of the <strong>in</strong>ter<strong>port</strong> model are tied to each other accord<strong>in</strong>gcomplement<strong>in</strong>g properties which can be stated <strong>in</strong> the form of the follow<strong>in</strong>g six propositions ofcomplementary slackness, to be held at the po<strong>in</strong>t of optimum:i) If it turns out that there are excess deliveries of conta<strong>in</strong>er flow at any node, the shadow priceat that node vanishes. <strong>The</strong> trans<strong>port</strong>ed conta<strong>in</strong>er is then a free good at the node.ii) But if the conta<strong>in</strong>er at the node is scarce, i.e. if it commands a positive shadow price, thenoutflow from the node exactly equals the total <strong>in</strong>flow <strong>in</strong>to the node.iii) If a rail l<strong>in</strong>k has surplus capacity, then the imputed surcharge assessed on shipments alongsuch l<strong>in</strong>k is zero which makes unused trans<strong>port</strong>ation capacity on that route a free good.iv) But if all the capacity on a rail l<strong>in</strong>k is used, then the imputed surcharge assessed onshipments along such l<strong>in</strong>k is less then zero, that is there is a surcharge on the use of the l<strong>in</strong>k.If the shadow value appreciation of conta<strong>in</strong>er shipments along a l<strong>in</strong>k <strong>in</strong> the network (plus theshadow price of l<strong>in</strong>k capacity constra<strong>in</strong>t, if applicable) falls short of the total social unitlogistic cost, the flow along this l<strong>in</strong>k is zero. A hypothetical shipper would suffer a unit lossso he withdraws.v) But if a positive flow occurs along the l<strong>in</strong>k, then the appreciation of shadow value ofconta<strong>in</strong>er shipments (plus the shadow price of capacity constra<strong>in</strong>t, if applicable) mustexactly equal the unit cost. A hypothetical shipper f<strong>in</strong>ds that his costs are exactly covered.<strong>The</strong>se complementary slackness conditions connect pairs of optimal basic feasible solution of theprimal and dual programs of the model.Optimal dual variables v* are associated to b<strong>in</strong>d<strong>in</strong>g flow conservation constra<strong>in</strong>ts of the primalproblem. Hence, it is required that at the optimum of the <strong>in</strong>ter<strong>port</strong> problem they satisfy thefollow<strong>in</strong>g primal complementary slackness conditions (35)-(38) conta<strong>in</strong><strong>in</strong>g the propositions i) andii) listed above:tm* t t* ⎛tm* t ⎞− ∑ ∑ xpi + Demand1∈P, p ≥ 0 and vp ⋅⎜− ∑ ∑ xpi + Demand1∈P , p ⎟ = 0m∈M i∈I⎝ m∈M i∈I⎠for all t ∈T and p ∈ P(35)∑ ∑∑ ∑tm* tm*txih xhi Demand1∈P , hm∈M i∈Im∈M i∈I− − ≥ 0 andt* ⎛tm* tm*t ⎞vh ⋅⎜∑ ∑ xih − ∑ ∑ xhi −Demand1∈P,h ⎟ = 0 for all t ∈T and h ∈ H(36)⎝ m∈M i∈Im∈M i∈I⎠20


tm* t t* ⎛tm*t ⎞∑ ∑ xir −Demand1∈P, r ≥ 0 and vr ⋅⎜∑ ∑ xir −Demand1∈P,r ⎟ = 0m∈M i∈I⎝ m∈M i∈I⎠for all t ∈T and r ∈ R(37)t*iv ≥ 0 for all t ∈T and i ∈ I(38)Because of the railway capacity constra<strong>in</strong>ts <strong>in</strong> the primal program, at the optimum of the problemthe follow<strong>in</strong>g complementary slackness conditions (39)-(43) conta<strong>in</strong><strong>in</strong>g the propositions iii) and iv)listed above must be satisfied as well:∑t∈Tt, rail∈M* t,rail∈M*( 1∈P , 2∈Q 1∈P , 3∈D)x + x − b ≤ 0 and1_(2+3) ∈A, ∈ , ∈( 1∈P , 2∈Q 1∈P , 3∈D)* ⎡ t rail M* t rail M*⎤scc1_(2+3) ∈A⋅ ⎢∑ x + x − b1_(2+3) ∈A⎥ = 0(39)⎣t∈T⎦∑t∈T∑t∈Tt, rail∈M* * ⎛ t,rail∈M*⎞x1 ∈P, 4∈Z − b1_4∈ A ≤ 0 and scc1_4∈ A ⋅⎜∑ x1 ∈P,4∈Z− b1_4∈A ⎟ = 0 (40)⎝ t∈T⎠t, rail∈M* t,rail∈M*( 2∈Q , 4∈Z 3∈D , 4∈Z)x + x − b ≤ 0 and(2+3)_4∈A, ∈ , ∈( 2∈Q , 4∈Z 3∈D , 4∈Z)* ⎡ t rail M* t rail M*⎤scc(2+3)_4∈A ⋅ ⎢∑ x + x − b(2+3)_4 ∈A⎥ = 0(41)⎣t∈T⎦∑t∈Tt, rail∈M* t,rail∈M*( 2∈Q , 5∈Z 3∈D , 5∈Z)x + x − b ≤ 0 and(2+3)_5∈A, ∈ , ∈( 2∈Q , 5∈Z 3∈D , 5∈Z)* ⎡ t rail M* t rail M*⎤scc(2+3)_5∈A ⋅ ⎢∑ x + x − b(2+3)_5 ∈A⎥ = 0(42)⎣t∈T⎦*ascc ≤ 0 for all a ∈ A(43)F<strong>in</strong>ally, there are the follow<strong>in</strong>g ‘dual complementary slackness conditions’ (44)-(64) to hold at thepo<strong>in</strong>t of optimum and which conta<strong>in</strong> the propositions v) and vi) listed above:full∈T , truck∈M truck∈M full∈T*full∈T*1∈P , z 1∈P 1∈Pzc + g + v - v ≥ 0 andtruck∈M full∈T*( 1∈P z )full∈T , truck∈M* full∈T , truck∈M full∈T*1∈P , z 1∈P , z 1∈Px ⋅ c + g + v - v = 0 for all z ∈ Z (44)full∈T , rail∈M rail∈M full∈T* full∈T**1∈P , 2∈Q 1∈P 1∈P 2∈Q1_(2+3) ∈Ac + g + v -v -scc≥ 0 and⋅( )full∈T , rail∈M* full∈T , rail∈M rail∈M full∈T* full∈T**1∈P , 2∈Q 1∈P , 2∈Q+ 1∈P+ v1 ∈P v2 ∈Qscc1_(2+3) ∈Ax c gfull∈T , rail∈M full∈T* full∈T* *1∈P , 3∈D 1∈P 1∈P 3∈D1_(2+3) ∈Afull∈T , rail∈M* full∈T , rail∈M full∈T* full∈T* *1∈P , 3∈D ⋅1∈P , 3∈D + 1∈P+1∈Pv3 ∈Dscc1_(2+3) ∈A- - = 0 (45)c + k + v -v -scc≥ 0 and( )x c k vfull∈T , rail∈M rail∈M full∈T* full∈T**1∈P , 4∈E 1∈P 1∈P4∈E1_4∈Afull∈T , rail∈M* full∈T , rail∈M rail∈M1∈P , 4∈E 1∈P , 4∈E+ 1∈P- - = 0 (46)c + g + v -v -scc≥ 0 andfull∈T* full∈T**⋅( + v 1 ∈ Pv 4 ∈ Escc 1_4 ∈ A )x c g- - = 0 (47)21


full∈T , truck∈M truck∈M full∈T*full∈T*2∈Q , e 2∈Q 2∈Qec + s + v - v ≥ 0 andtruck∈M full∈T*( 2∈Q e )full∈T , truck∈M* full∈T , truck∈M full∈T*2∈Q , e 2∈Q , e 2∈Qx ⋅ c + s + v - v = 0 for all e ∈ E (48)full∈T , rail∈M rail∈M full∈T* full∈T**2∈Q , 4∈E 2∈Q 2∈Q4∈E(2+3)_4∈Ac + s + v -v -scc≥ 0 and⋅( )full∈T , rail∈M* full∈T , rail∈M rail∈M full∈T* full∈T**2∈Q , 4∈E 2∈Q , 4∈E+ 2∈Q+ v2 ∈Qv4∈Escc(2+3)_4∈Ax c sfull∈T , rail∈M rail∈M full∈T* full∈T**2∈Q , 5∈E 2∈Q 2∈Q5∈E(2+3)_5∈Afull∈T , rail∈M* full∈T , rail∈M rail∈M2∈Q , 5∈E 2∈Q , 5∈E+ 2∈Q- - = 0 (49)c + s + v -v -scc≥ 0 andfull∈T* full∈T**⋅( + v 2 ∈ Qv 5 ∈ E scc (2+3)_5 ∈ A )x c sfull∈T , truck∈M truck∈M full∈T*full∈T*3∈D , z 3∈D 3∈Dztruck∈M full∈T*( 3∈D z )full∈T , truck∈M* full∈T , truck∈M full∈T*3∈D, z 3∈D , z 3∈D- - = 0 (50)c + u + v - v ≥ 0 andx ⋅ c + u + v - v = 0 for all z ∈ Z (51)full∈T , rail∈M rail∈M full∈T* full∈T**3∈D , 4∈E 3∈D 3∈D4∈E(2+3)_4∈Ac + u + v -v -scc≥ 0 andfull∈T* full∈T**⋅( + v 3 ∈ Dv 4 ∈ Escc (2+3)_4 ∈ A )full∈T , rail∈M* full∈T , rail∈M rail∈M3∈D, 4∈E 3∈D , 4∈E+ 3∈Dx c ufull∈T , rail∈M rail∈M full∈T* full∈T**3∈D , 5∈E 3∈D 3∈D5∈E(2+3)_5∈Afull∈T , rail∈M* full∈T , rail∈M rail∈M3∈D, 5∈E 3∈D , 5∈E+ 3∈D- - = 0 (52)c + u + v -v -scc≥ 0 andfull∈T* full∈T**⋅( + v 3 ∈ Dv 5 ∈ Escc (2+3)_5 ∈ A )x c ufull∈T , truck∈M full∈T*full∈T*ee'e e'- - = 0 (53)c + v -v≥ 0 andfull∈T , truck∈M* full∈T , truck∈M full∈T*full∈T*xee '⋅ ( cee '+ ve-ve' )= 0 for all e = 4, 5 ∈ E and e' = 5, 4 ∈ E (54)full∈T , truck∈M full∈T* full∈T*5∈E , 6∈E 5∈E6∈Ec + v -v≥ 0 andxfull∈T* full∈T*⋅( + v5 ∈E v6∈E )full∈T , truck∈M*full∈T , truck∈M5∈E , 6∈E c5 ∈E,6∈Eempty∈T , truck∈M empty∈T* empty∈T*1∈P , z 1∈P 1∈Pz( 1∈P z )empty∈T , truck∈M* empty∈T , truck∈M empty∈T* empty∈T*1∈P , z 1∈P , z 1∈P- = 0 (55)c + f + v - v ≥ 0 andx ⋅ c + f + v - v = 0 for all z ∈ Z (56)empty∈T , rail∈M empty∈T* empty∈T* *1∈P , 2∈Q 1∈P 1∈P 2∈Q1_(2+3) ∈Ac + f + v -v -scc≥ 0 and( )empty∈T , rail∈M* empty∈T , rail∈M em1∈P , 2∈Q ⋅1∈P , 2∈Q + 1∈P+pty ∈ T* empty ∈ T* *1∈Pv 2 ∈ Qscc 1_(2+3) ∈ Ax c f vempty∈T , rail∈M empty∈T* empty∈T* *1∈P , 4∈E 1∈P 1∈P4∈E1_4∈Aempty∈T , rail∈M* empty∈T , rail∈M empty∈T* empty∈T* *1∈P , 4∈E ⋅1∈P , 4∈E + 1∈P+1∈Pv4 ∈Escc1_4∈A- - = 0 (57)c + f + v -v -scc≥ 0 and( )x c f vempty∈T , truck∈M empty∈T* empty∈T*2∈Q , e 2∈Q 2∈Qe( 2∈Q e )full∈T , truck∈M* empty∈T , truck∈M empty∈T* empty∈T*2∈Q , e 2∈Q , e 2∈Q- - = 0 (58)c + f + v - v ≥ 0 andx ⋅ c + f + v - v = 0 for all e ∈ E (59)empty∈T , rail∈M rail∈M empty∈T* empty∈T**2∈Q , 4∈E 2∈Q 2∈Q4∈E(2+3)_4∈Ac + f + v -v -scc≥ 0 andempty∈T* empty∈T* *⋅( + v2 ∈Qv4∈Escc(2+3)_4∈A )empty∈T , rail∈M* empty∈T , rail∈M rail∈M2∈Q , 4∈E 2∈Q , 4∈E+ 2∈Qx c fempty∈T , rail∈M rail∈M empty∈T* empty∈T**2∈Q , 5∈E 2∈Q 2∈Q5∈E(2+3)_5∈Aempty∈T , rail∈M* empty∈T , rail∈M rail∈M2∈Q , 5∈E 2∈Q , 5∈E+ 2∈Q- - = 0 (60)c + f + v -v -scc≥ 0 andempty∈T* empty∈T* *⋅( + v 2 ∈ Qv 5 ∈ E scc (2+3)_5 ∈ A )x c f- - = 0 (61)22


empty∈T , truck∈M empty∈T*empty∈T*ee'ee'c + v -v≥ 0 andempty∈T , truck∈M* empty∈T , truck∈M empty∈T*empty∈T*xee '⋅ ( cee' + ve-ve' )= 0for all e = 4, 5 ∈ E and e' = 5, 4 ∈ E(62)empty∈T , truck∈M empty∈T* empty∈T*5∈E , 6∈E 5∈E6∈Ec + v -v≥ 0 and( empty ∈ T* empty ∈ T*5∈E v6∈E )empty∈T , truck∈M*empty∈T , truck∈M5∈E , 6∈E 5∈E , 6∈Ex ⋅ c + vtm*ij- = 0 (63)x ≥ 0 for all t ∈T, m ∈ M and i, j ∈ I(64)<strong>The</strong> set of disequations <strong>in</strong> (35)-(37) and (39)-(42) are simply the constra<strong>in</strong>ts of the direct program.<strong>The</strong> set of disequations <strong>in</strong> (44)-(63) are simply the constra<strong>in</strong>ts of the dual program. As for the<strong>in</strong>terpretation of the set of equalities <strong>in</strong> (35)-(37), (39)-(42) and (44)-(63), it can be noticed that iftwo numbers A and B satisfy AB = 0 and A, B ≥ 0 then the follow<strong>in</strong>g conclusion can be drawn: (i) ifA > 0 then B =0, and (ii) if B > 0 then A= 0.3.5 Data-boxes<strong>The</strong> primal and dual programs of the stylized <strong>in</strong>ter<strong>port</strong> problem can be spelled out <strong>in</strong> more detailand simultaneously seen by writ<strong>in</strong>g the so-called ‘data-boxes’. In particular, it can be drawn onedata-box for analyz<strong>in</strong>g all road and rail traffic of full conta<strong>in</strong>ers supplied at the sea<strong>port</strong> node 1 (Tab.1) and another one for analyz<strong>in</strong>g all road and rail traffic of empty conta<strong>in</strong>ers supplied at the samenode 1 (Tab.2). In addition, it can be drawn a third data-box for all rail traffic of full and emptyconta<strong>in</strong>ers supplied at the sea<strong>port</strong> (Tab. 3).<strong>The</strong> top row of each data-box shown <strong>in</strong> Tables 1-2 lists the unknowns of the primal problem, i.e.the x variables. Instead, the entries <strong>in</strong> the first column of each data-box <strong>in</strong> Tables 1-2 are unknownsof the dual problem, i.e. the v variables.<strong>The</strong> bottom row of each data-box provided <strong>in</strong> Tables 1-2 lists the unit total social logistic costs of<strong>port</strong> h<strong>in</strong>terland conta<strong>in</strong>er distribution. Read<strong>in</strong>g the top row and the bottom row together for eachdata-box, they form the m<strong>in</strong>imand (1) of the primal programm<strong>in</strong>g problem.<strong>The</strong> ma<strong>in</strong> body of each data-box <strong>in</strong> Tables 1-2 consists of the ‘node-l<strong>in</strong>k <strong>in</strong>cidence matrix’ of thenetwork, which completely describes the physical layout of the multimodal network. It has onecolumn for each permitted l<strong>in</strong>k and one row for each node. <strong>The</strong>re are exactly two non-zero entries<strong>in</strong> each column: -1 at the orig<strong>in</strong>at<strong>in</strong>g node of the l<strong>in</strong>k and +1 at the dest<strong>in</strong>ation node. Totally, thereare twenty one columns and six rows form<strong>in</strong>g the node-l<strong>in</strong>k <strong>in</strong>cidence matrix of the data-box for fullconta<strong>in</strong>ers, whereas there are fourteen columns and six rows form<strong>in</strong>g the <strong>in</strong>cidence matrix of thedata-box for empty conta<strong>in</strong>ers.Read<strong>in</strong>g the top row and the <strong>in</strong>cidence matrix together <strong>in</strong> each data-box (Tabb. 1-2), they form theleft-hand sides appear<strong>in</strong>g <strong>in</strong> the flow conservation constra<strong>in</strong>ts (2)-(4) for each type of traffic (fulland empty conta<strong>in</strong>ers) <strong>in</strong> the primal program. <strong>The</strong> last column of each data-box lists the vector ofconta<strong>in</strong>er supplies and demands specified by O/D pairs, i.e. the right-hand sides appear<strong>in</strong>g <strong>in</strong> flowconservation constra<strong>in</strong>ts. Together, the first seven rows (exclud<strong>in</strong>g the elements of the first column)<strong>in</strong> each data-box shown by Tables 1-2 exhibit the entire flow conservation constra<strong>in</strong>t set for eachtype of conta<strong>in</strong>er traffic. In this respect, there are twelve conservation of flows constra<strong>in</strong>ts allfull∈T , mempty∈T , mtogether, six constra<strong>in</strong>ts for the x ij variables and six for the x ij variables for alli,j ∈ I and m ∈ M.<strong>The</strong> representation of the <strong>in</strong>ter<strong>port</strong> problem by means of the data-boxes provided <strong>in</strong> Tables 1-2does not take <strong>in</strong>to consideration the capacity limits on railway l<strong>in</strong>ks represented by disequations (5)-(8) <strong>in</strong> the primal program. This is due to the fact that such constra<strong>in</strong>ts represent a k<strong>in</strong>d of ‘coupl<strong>in</strong>gconditions’ ty<strong>in</strong>g the shipments of full and empty conta<strong>in</strong>ers together.23


However, the railway capacity conditions of the <strong>in</strong>ter<strong>port</strong> problem and their correspond<strong>in</strong>g dualprices are represented <strong>in</strong> the data-box shown <strong>in</strong> Table 3. <strong>The</strong> first column of this table lists the scct,rail∈Mvariables. Instead, the entries <strong>in</strong> the top row are unknowns of the primal program, i.e. the x ijvariables for all i,j ∈ I and t ∈ T.<strong>The</strong> ma<strong>in</strong> body of the data-box <strong>in</strong> Table 3 consists of the ‘rail service-rail l<strong>in</strong>k <strong>in</strong>cidence matrix’.This matrix has one row for each rail service a ∈ A and one column for each permitted rail l<strong>in</strong>k.<strong>The</strong>re is exactly one non-zero entry <strong>in</strong> each column: +1 at the rail service whose orig<strong>in</strong>at<strong>in</strong>g node isalso the orig<strong>in</strong>at<strong>in</strong>g node of the l<strong>in</strong>k. Totally, there are eleven columns and four rows form<strong>in</strong>g therail service-rail l<strong>in</strong>k <strong>in</strong>cidence matrix of the stylized <strong>in</strong>ter<strong>port</strong> problem.Read<strong>in</strong>g the top row and the rail <strong>in</strong>cidence matrix together <strong>in</strong> the data-box provided <strong>in</strong> Table 3,they form the left-hand sides appear<strong>in</strong>g <strong>in</strong> the capacity constra<strong>in</strong>ts (5)-(8) <strong>in</strong> the primal program.<strong>The</strong> last column of the data-box lists the right-hand sides appear<strong>in</strong>g <strong>in</strong> such primal constra<strong>in</strong>ts.Together, the first five rows of the matrix (exclud<strong>in</strong>g the elements of the first column) exhibit theentire capacity constra<strong>in</strong>t set of the primal program. In particular, there are two capacitated railservices from the sea<strong>port</strong> node 1, and two capacitated rail services from the <strong>in</strong>ter<strong>port</strong> facilityfeatur<strong>in</strong>g the two virtual nodes 2 and 3.<strong>The</strong> difference between the total shadow value of conta<strong>in</strong>er effluxes and the total shadow cost ofconta<strong>in</strong>er <strong>in</strong>flux <strong>in</strong> the maximand (12) of the dual problem can be read off by consider<strong>in</strong>g the firstand last column together for each data-box shown <strong>in</strong> Tables 1-2. In addition, the total shadow valueof rail capacity can be read off by consider<strong>in</strong>g together the the first and last column of the data-boxshown <strong>in</strong> Table 3.Dual constra<strong>in</strong>ts correspond<strong>in</strong>g to road shipments and belong<strong>in</strong>g to the set of constra<strong>in</strong>ts (13)-(32)can be read off by consider<strong>in</strong>g together the first column and each of its follow<strong>in</strong>g columnscorrespond<strong>in</strong>g to road l<strong>in</strong>ks up to the next to last column, read one by one <strong>in</strong> each data-box provided<strong>in</strong> Tables 1-2. Instead, dual constra<strong>in</strong>ts correspond<strong>in</strong>g to rail shipments (and belong<strong>in</strong>g to the sameset of constra<strong>in</strong>ts (13)-(32)) can be read off by consider<strong>in</strong>g together the first columns and each of itsfollow<strong>in</strong>g columns correspond<strong>in</strong>g to rail l<strong>in</strong>ks up to the next to last columns, read one by onesimultaneously <strong>in</strong> each data-box shown by Tables 1-2 and <strong>in</strong> the data-box shown by Table 3.<strong>The</strong> next to last row of each data-box shown <strong>in</strong> Tables 1-2 exhibits the signs of all dualconstra<strong>in</strong>ts. <strong>The</strong>se depend both on the signs of constra<strong>in</strong>ts on primal endogenous variables and onthe type of optimand.<strong>The</strong> data boxes also give a useful mnemonic for writ<strong>in</strong>g the primal and dual complementaryslackness conditions. In particular, such conditions can be read off <strong>in</strong> the same manner of primaland dual constra<strong>in</strong>ts. F<strong>in</strong>ally, it has to be noted that the <strong>in</strong>cidence matrices of all data-boxes <strong>in</strong>Tables 1-3 conta<strong>in</strong> the left-hand side coefficients of primal constra<strong>in</strong>ts, whereas their transposesconta<strong>in</strong> the left-hand side coefficients of dual constra<strong>in</strong>ts.24


Table 1 Data-box for all multimodal traffic of full conta<strong>in</strong>ersfull1full2full3full4full5xfull,rail12xfull,truck12xfull,rail13xfull,rail14xfull,truck14full,truckx …15v -1 -1 -1 -1 -1 -1 …v 1 1 0 0 0 0 …v 0 0 1 0 0 0 …v 0 0 0 1 1 0 …v 0 0 0 0 0 1 …fullv60 0 0 0 0 0 …≤ ≤ ≤ ≤ ≤ ≤ …full,rail12rail1( c + g )full,truck12truck1( c + g )full,rail13( c + k )1full,rail14rail1( c + g )full,truck14truck1( c + g )full,truck truck15+ g1…( c)Table 1 (cont<strong>in</strong>ued)…xfull,truck16xfull,rail24xfull,truck24xfull,rail25xfull,truck25full,truckx …26… -1 0 0 0 0 0 …… 0 -1 -1 -1 -1 -1 …… 0 0 0 0 0 0 …… 0 1 1 0 0 0 …… 0 0 0 1 1 0 …… 1 0 0 0 0 1 …… ≤ ≤ ≤ ≤ ≤ ≤ …… full,truckc16truck1( + g )full,rail24rail2( c + s )full,truck24truck2( c + s )full,rail25rail2( c + s )full,truck25truck2( c + s )full,truck truck26+ s2…( c)25


Table 1 (cont<strong>in</strong>ued)…xfull,truck32xfull,rail34xfull,truck34xfull,rail35xfull,truck35full,truckx …36… 0 0 0 0 0 0 …… 1 0 0 0 0 0 …… -1 -1 -1 -1 -1 -1 …… 0 1 1 0 0 0 …… 0 0 0 1 1 0 …… 0 0 0 0 0 1 …… ≤ ≤ ≤ ≤ ≤ ≤ …… full,truckc32truck3( + u )full,rail34rail3( c + u )full,truck34truck3( c + u )full,rail35rail3( c + u )full,truck35truck3( c + u )full,truck truck36+ u3…( c)Table 1 (cont<strong>in</strong>ued)…xfull,truck45xfull,truck54xfull,truck56… 0 0 0… 0 0 0… 0 0 0… -1 1 0… 1 -1 -1… 0 0 1… ≤ ≤ ≤…full,truckc45( )full,truck54( c )full,truck56( c )full≥ − Demand 11full≥ Demand 12full≥ Demand 13full≥ Demand 14full≥ Demand 15full≥ Demand 1626


Table 2 Data-box for all multimodal traffic of empty conta<strong>in</strong>ersempty1empty2empty3empty4empty5xempty,rail12xempty,truck12xempty,rail14xempty,truck14xempty,truck15empty,truckx …16v -1 -1 -1 -1 -1 -1 …v 1 1 1 1 0 0 …v 0 0 0 0 0 0 …v 0 0 0 0 0 0 …v 0 0 0 0 1 0 …emptyv60 0 0 0 0 1 …≤ ≤ ≤ ≤ ≤ ≤ …empty,rail12( c + f )1empty,truck12( c + f )1empty,rail14( c + f )1empty,truck14( c + f )1empty,truck15( c + f )1empty,truck16+ f1…( c)Table 2 (cont<strong>in</strong>ued)…xempty,rail24xempty,truck24xempty,rail25xempty,truck25xempty,truck26empty,truckx …45… 0 0 0 0 0 0 …… -1 -1 -1 -1 -1 0 …… 0 0 0 0 0 0 …… 1 1 0 0 0 -1 …… 0 0 1 1 0 1 …… 0 0 0 0 1 0 …… ≤ ≤ ≤ ≤ ≤ ≤ ……empty,railc24( + f )2empty,truck24( c + f )2empty,rail25( c + f )2empty,truck25( c + f )2empty,truck26( c + f )2empty,truckc …45( )27


Table 2 (cont<strong>in</strong>ued)…………………xempty,truck54xempty,truck560 00 00 01 0-1 -10 1… ≤ ≤… empty,truckc54( )empty,truck56( c )≥ − Demand 11≥ Demand 12≥ Demand 13≥ Demand 14emptyemptyemptyemptyempty≥ Demand 15empty≥ Demand 16Table 3 Data-box for all rail traffic of full and empty conta<strong>in</strong>ers1_(2+3)xfull,rail12xempty,rail12xfull,rail13xfull,rail14xempty,rail14full,railx24 …scc 1 1 1 0 0 0…scc 1_4 0 0 0 1 1 0…scc (2+3)_4 0 0 0 0 0 1…scc (2+3)_5 0 0 0 0 0 0…28


Table 3 (cont<strong>in</strong>ued)…xempty,rail24xfull,rail25xempty,rail25xfull,rail34xfull,rail35…0 0 0 0 0 ≤ b1_(2+3)…0 0 0 0 0 ≤ b1_4…1 0 0 1 0 ≤ b(2+3)_4…0 1 1 0 1 ≤ b(2+3)_529


4. ConclusionsOptimization of <strong>port</strong> h<strong>in</strong>terland conta<strong>in</strong>er <strong>logistics</strong> is crucial to meet ris<strong>in</strong>g <strong>in</strong>ternational tradedemand and the challenges related to susta<strong>in</strong>able development. Inefficient h<strong>in</strong>terland connectionsunderm<strong>in</strong>e the competitiveness both of sea<strong>port</strong>s and of the wider regional <strong>logistics</strong> and productivesystems the sea<strong>port</strong>s belong to.<strong>The</strong> <strong>extended</strong> <strong>gateway</strong> <strong>concept</strong> is ga<strong>in</strong><strong>in</strong>g more and more momentum as a bus<strong>in</strong>ess network<strong>in</strong>novation based on the possibility of duplicat<strong>in</strong>g and/or complement<strong>in</strong>g some conta<strong>in</strong>er sea<strong>port</strong>activities at h<strong>in</strong>terland <strong>in</strong>termodal facilities called dry <strong>port</strong>s (or <strong>in</strong>ter<strong>port</strong>s). If properly implemented<strong>in</strong> <strong>port</strong> h<strong>in</strong>terland network systems, <strong>extended</strong> <strong>gateway</strong>s can relieve sea<strong>port</strong> congestion phenomena,promote the shift of standardized load<strong>in</strong>g units from road-only trans<strong>port</strong> to susta<strong>in</strong>able <strong>in</strong>landtrans<strong>port</strong> solutions, and stimulate <strong>in</strong>tegrated freight <strong>logistics</strong> operations <strong>in</strong>land, thus reduc<strong>in</strong>g the<strong>in</strong>ternal and external costs of supply cha<strong>in</strong>s and promot<strong>in</strong>g regional economic growth.This paper has illustrated the <strong>in</strong>ter<strong>port</strong> model as a mathematical programm<strong>in</strong>g tool for theeconomic analysis and strategic plann<strong>in</strong>g of such k<strong>in</strong>d of <strong>in</strong>novation. <strong>The</strong> primal and dualformulations and <strong>in</strong>terpretations of a stylized version of the model optimiz<strong>in</strong>g the distribution ofim<strong>port</strong> conta<strong>in</strong>ers through a hypothetical <strong>in</strong>tegrated regional sea<strong>port</strong>-<strong>in</strong>ter<strong>port</strong> network system undera susta<strong>in</strong>able <strong>logistics</strong> perspective have been provided, <strong>in</strong>clud<strong>in</strong>g complementary slackness relationsand the model representation by means of data-boxes.Shipp<strong>in</strong>g l<strong>in</strong>es and freight forwarders could employ the model for evaluat<strong>in</strong>g criticalities andop<strong>port</strong>unities related to their <strong>port</strong> h<strong>in</strong>terland distribution systems. Sea<strong>port</strong>s, <strong>in</strong>ter<strong>port</strong>s, <strong>in</strong>termodalmarket<strong>in</strong>g companies and <strong>in</strong>land carriers could evaluate the system-wide effects of economic andlogistic type deriv<strong>in</strong>g from their decisions and/or from the decisions of their competitors.Government agencies could evaluate the <strong>in</strong>frastructural and territorial impacts related to variations<strong>in</strong> traffic flows, as well as the impacts on traffic flows due to <strong>in</strong>frastructure <strong>in</strong>vestment decisions,new regulations, and policies provid<strong>in</strong>g f<strong>in</strong>ancial grants to improve services. In this latter case, themodel could be empirically applied to assess public policy measures provid<strong>in</strong>g for <strong>in</strong>centives to<strong>in</strong>termodal trans<strong>port</strong> services based on the total external cost sav<strong>in</strong>g deriv<strong>in</strong>g from shift<strong>in</strong>gconta<strong>in</strong>ers from road only trans<strong>port</strong>. By this way it will be possible to sup<strong>port</strong> the implementationof well suit pric<strong>in</strong>g systems tak<strong>in</strong>g care of a better spread of traffic and a more fair division betweendifferent modes of trans<strong>port</strong>, and to resolve, at least <strong>in</strong> part, a number of bottlenecks <strong>in</strong> theh<strong>in</strong>terland connections of some sea<strong>port</strong>s.<strong>The</strong> <strong>in</strong>ter<strong>port</strong> model can be a useful tool to evaluate possible changes <strong>in</strong> h<strong>in</strong>terland contestabilityaris<strong>in</strong>g from different policy scenarios concern<strong>in</strong>g the sea-land <strong>in</strong>termodal <strong>logistics</strong> system ofmultiple regions <strong>in</strong> a country, as well as that of an entire country or even a group of countries. Anexample could be the so called “ARA region” (Amsterdam-Rotterdam-Antwerp) <strong>in</strong> NorthernEurope. A successful real case of <strong>extended</strong> <strong>gateway</strong> <strong>logistics</strong> <strong>in</strong> Europe is represented by the systemof term<strong>in</strong>als and services arranged by Europe Conta<strong>in</strong>er Term<strong>in</strong>als (ECT) to serve the h<strong>in</strong>terlandtraffic of conta<strong>in</strong>ers transit<strong>in</strong>g through the <strong>port</strong> of Rotterdam, <strong>in</strong> the Netherlands. At the moment,ECT operates three deep-sea term<strong>in</strong>als <strong>in</strong> Rotterdam plus various h<strong>in</strong>terland term<strong>in</strong>als at strategiclocations throughout the Netherlands, Belgium and Germany, cover<strong>in</strong>g substantial parts of WesternEurope and <strong>in</strong>troduc<strong>in</strong>g im<strong>port</strong>ant <strong>in</strong>novations <strong>in</strong> <strong>port</strong> h<strong>in</strong>terland conta<strong>in</strong>er distribution such as theterm<strong>in</strong>al operator haulage <strong>concept</strong>, and the cross-border <strong>extended</strong> <strong>gateway</strong> <strong>concept</strong> at a trans-European level.As for possible empirical applications of the model to <strong>in</strong>vestigate <strong>port</strong> h<strong>in</strong>terland conta<strong>in</strong>er<strong>logistics</strong> issues <strong>in</strong> Italy, these could concern the evaluation of public and private <strong>in</strong>itiatives aimed at<strong>in</strong>tegrat<strong>in</strong>g the operations of different actors, as already demonstrated by Iannone and Thore (2010)with regards to <strong>in</strong>land conta<strong>in</strong>er operations at the Campanian regional <strong>logistics</strong> system. On the otherhand, conta<strong>in</strong>er sea<strong>port</strong>s and <strong>in</strong>land freight centres are nowadays part of territorial <strong>logistics</strong> systemsand complex supply cha<strong>in</strong>s, and there is competition between <strong>in</strong>tegrated networks rather thanbetween s<strong>in</strong>gle hubs and between s<strong>in</strong>gle operators. Indeed, the practical implementation of the<strong>extended</strong> <strong>gateway</strong> <strong>concept</strong> with<strong>in</strong> a territorial <strong>logistics</strong> system requires cooperation and <strong>in</strong>tegration30


among a number of players, <strong>in</strong>clud<strong>in</strong>g sea<strong>port</strong>s, <strong>in</strong>ter<strong>port</strong>s, shipp<strong>in</strong>g l<strong>in</strong>es, <strong>in</strong>land <strong>in</strong>termodalcarriers, customs, and so on.In Italy, there are not examples of shipp<strong>in</strong>g l<strong>in</strong>es <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> <strong>in</strong>ter<strong>port</strong>s, and also maritimeterm<strong>in</strong>al companies and freight forwarders are still reluctant to engage clear long term partnershipwith <strong>in</strong>ter<strong>port</strong>s <strong>in</strong> the fear of core activities shift to other operators. Only 14 <strong>in</strong>ter<strong>port</strong>s have an onsitecustoms office, and <strong>in</strong> some cases the <strong>in</strong>termodal term<strong>in</strong>al operat<strong>in</strong>g companies have not yetbeen authorized at operat<strong>in</strong>g a so-called ‘A3 area’, that is a bonded zone for the handl<strong>in</strong>g andstorage of <strong>in</strong>ternational conta<strong>in</strong>erized cargoes that need to be exam<strong>in</strong>ed and cleared by customs. Inaddition, by virtue of an ancient customs regime still <strong>in</strong> force, the <strong>port</strong>-<strong>in</strong>ter<strong>port</strong> rail connections canbe employed only for merchant traffics if operated by private rail traction providers. Port-<strong>in</strong>ter<strong>port</strong>conta<strong>in</strong>er forward<strong>in</strong>g solutions arranged by shipp<strong>in</strong>g l<strong>in</strong>es accord<strong>in</strong>g to the <strong>extended</strong> <strong>gateway</strong><strong>concept</strong> (i.e. without the need for customs transit documentation) are possible only where railservices provided by the Italian State-owned rail carrier are available (for <strong>in</strong>stance between thesea<strong>port</strong> of Genoa <strong>in</strong> Liguria region and the <strong>in</strong>ter<strong>port</strong> of Rivalta Scrivia <strong>in</strong> Piedmont region).‘Trenitalia’ is the <strong>in</strong>cumbent rail traction provider belong<strong>in</strong>g to the State-owned rail hold<strong>in</strong>g FSGroup (‘Gruppo Ferrovie dello Stato’) and the only rail company authorized to operate servicesunder facilitated conditions for customs bonded conta<strong>in</strong>ers travell<strong>in</strong>g under steamship bills of lad<strong>in</strong>gfrom and to the Italian sea<strong>port</strong>s. At the moment, Trenitalia has ceased to operate conta<strong>in</strong>er railservices between some Italian sea<strong>port</strong>s and <strong>in</strong>ter<strong>port</strong>s (such as for <strong>in</strong>stance <strong>in</strong> the Campania region)ma<strong>in</strong>ly due to severe f<strong>in</strong>ancial problems that are br<strong>in</strong>g<strong>in</strong>g to a reorganization of the cargo divisionof the company. Possible future successful implementations of <strong>extended</strong> <strong>gateway</strong> systems <strong>in</strong> Italyshould therefore also imply greater liberalization and further regulatory changes for rail tractionservice provision <strong>in</strong> <strong>port</strong> h<strong>in</strong>terland conta<strong>in</strong>er markets.As for some limitations of the current formulation of the <strong>in</strong>ter<strong>port</strong> model, a major abstraction <strong>in</strong>l<strong>in</strong>ear programm<strong>in</strong>g is that the objective function and the constra<strong>in</strong>ts are formulated by summ<strong>in</strong>g<strong>in</strong>dividual terms that are pro<strong>port</strong>ional to the values of variables. <strong>The</strong>re are many real-wordproblems, however, <strong>in</strong> which non l<strong>in</strong>earities are present. For <strong>in</strong>stance, there might be economies ofscale that allow one to reduce costs as volume of activities <strong>in</strong>creases. Piecewise l<strong>in</strong>ear functions cantherefore be used to represent economies of scale <strong>in</strong> logistic costs associated with concentratedflows.Furthermore, the determ<strong>in</strong>istic assumption <strong>in</strong> the <strong>in</strong>ter<strong>port</strong> model has been designed to keep theanalysis at a basic level, recogniz<strong>in</strong>g that most real problems conta<strong>in</strong>s determ<strong>in</strong>istic elements aswell as random parameters with accompany<strong>in</strong>g probability distributions. For <strong>in</strong>stance, term<strong>in</strong>al andcustoms operations and delays could be modelled by us<strong>in</strong>g queu<strong>in</strong>g theory, dynamic programm<strong>in</strong>gand stochastic programm<strong>in</strong>g.A specific aspect that would deserve attention is the modell<strong>in</strong>g of reliability, <strong>in</strong>clud<strong>in</strong>g safetystocks and their associated costs. Shippers or consignees may not be <strong>in</strong>terested <strong>in</strong> fast deliveries,and yet a delay with respect to an expected delivery time may produce a great damage, sometimeseven a far greater damage than what should have been borne to obta<strong>in</strong> a timely delivery by us<strong>in</strong>g amore expensive trans<strong>port</strong> solution. When <strong>in</strong>vestigat<strong>in</strong>g such cases, the valuation fundamentallydepends on the value of goods and the needs of the consignees. In this respect, it is not an easy taskobta<strong>in</strong><strong>in</strong>g detailed data on stated or revealed preferences of the consignees.As from bus<strong>in</strong>ess <strong>logistics</strong> literature, buffer <strong>in</strong>ventories can be calculated based essentially on: i)the customer service level, ii) the uncerta<strong>in</strong>ty <strong>in</strong> shipment lead time, and iii) the demand forecasterror. Hence, the transit time of trans<strong>port</strong> services is only a part of the total lead time of shipments.<strong>The</strong> ma<strong>in</strong> challenge <strong>in</strong> <strong>port</strong> h<strong>in</strong>terland conta<strong>in</strong>er <strong>logistics</strong> modell<strong>in</strong>g seems to be that of calculat<strong>in</strong>gthe unit safety stock costs at dest<strong>in</strong>ation <strong>in</strong> relation to the movements of full conta<strong>in</strong>ers trans<strong>port</strong>edsimultaneously by different and alternative trans<strong>port</strong> solutions featur<strong>in</strong>g different lead times. In thecurrently available literature on conta<strong>in</strong>er network optimization, safety stock costs are calculatedonly relat<strong>in</strong>g to the deliveries of total batches of conta<strong>in</strong>ers by s<strong>in</strong>gle trans<strong>port</strong> solutions (Jula andLeachman, 2011; Leachman, 2008); this means that each dest<strong>in</strong>ation is supposed to be served by a31


s<strong>in</strong>gle trans<strong>port</strong> solution only. In our op<strong>in</strong>ion, a good start<strong>in</strong>g po<strong>in</strong>t for more realisticapproximations of safety <strong>in</strong>ventories are the analytical results achieved by Boute and Van Mieghem(2011) and Combes (2011). <strong>The</strong>se contributions show how to estimate the safety stock for a s<strong>in</strong>glegood that is sourced from two locations (“dual sourc<strong>in</strong>g”) or by us<strong>in</strong>g simultaneously differenttrans<strong>port</strong> solutions.F<strong>in</strong>ally, negative environmental and social impacts of distribution operations (e.g. atmosphericemissions) are currently entered <strong>in</strong>to the model only <strong>in</strong> monetary terms, but they can be formulatedand taken <strong>in</strong>to account also <strong>in</strong> physical terms. Multi-objective modell<strong>in</strong>g techniques are particularlysuitable for decision problems <strong>in</strong>volv<strong>in</strong>g trade-offs among conflict<strong>in</strong>g goals such as thesimultaneous m<strong>in</strong>imization of <strong>in</strong>ternal <strong>logistics</strong> costs and physical environmental impacts of <strong>port</strong>h<strong>in</strong>terlandconta<strong>in</strong>er distribution. Multiple non-dom<strong>in</strong>ated or “Pareto-optimal” solutions of themodel can be obta<strong>in</strong>ed by apply<strong>in</strong>g the augmented ε-constra<strong>in</strong>t method (AUGMECON), first<strong>in</strong>troduced by Mavrotas (2009).ReferencesAponte, D., Iannone, F. and Papola, A. (2009), ‘A Schedule-based Methodology Proposal for SeaMotorways Feasibility Evaluation’, In N.H.M.Wilson and A. Nuzzolo (eds), Schedule-BasedModell<strong>in</strong>g of Trans<strong>port</strong>ation Networks. <strong>The</strong>ory and Applications, Operations Research/ComputerScience Interfaces Series, 46, New York: Spr<strong>in</strong>ger, 251-266.Bontekon<strong>in</strong>g, Y.M., Macharis, C and Trip J.J. (2004), ‘Is a new applied trans<strong>port</strong>ation research fieldemerg<strong>in</strong>g? A review of <strong>in</strong>termodal rail-truck freight trans<strong>port</strong> literature’, Trans<strong>port</strong>ationResearch Part A, 38 (1), 1-34.Boute, R.N. and Van Mieghem, J.A. (2011), ‘Global Dual Sourc<strong>in</strong>g and Order Smooth<strong>in</strong>g’, mimeo,available at http://www.kellogg.northwestern.edu/faculty/vanmieghem/articles.htm.Caris, A., Macharis, C. and Janssens, G.K. (2008), ‘Plann<strong>in</strong>g Problems <strong>in</strong> Intermodal FreightTrans<strong>port</strong>: Accomplishments and Prospects’, Trans<strong>port</strong>ation Plann<strong>in</strong>g and Technology, 31 (3),277-302.Combes, F. (2011), ‘Inventory theory and mode choice <strong>in</strong> freight trans<strong>port</strong>: the case of thesimultaneous use of two trans<strong>port</strong> modes on one shipper-receiver relationship’, EuropeanTrans<strong>port</strong> Conference 2011 Proceed<strong>in</strong>gs, 10-12 October, Glasgow, Scotland, UK.Cra<strong>in</strong>ic, T.G. and Kim, K.H. (2007), ‘Intermodal Trans<strong>port</strong>ation’, In C. Barnhart and G. La<strong>port</strong>e(eds), Trans<strong>port</strong>ation, Handbooks <strong>in</strong> Operations Research and Management Science, North-Holland, Amsterdam, 467–537.Cull<strong>in</strong>ane, K. and Wilmsmeier, G. (2011), “<strong>The</strong> contribution of the dry <strong>port</strong> <strong>concept</strong> to theextension of <strong>port</strong> life cycles”, In: J.W. Böse (ed), Handbook of Term<strong>in</strong>al Plann<strong>in</strong>g, New York:Spr<strong>in</strong>ger, 359-379.Danielis, R. (2006), ‘Il Tras<strong>port</strong>o Intermodale Ferroviario: Quale Ruolo per l’Analisi Economica?’,In G. Polidori, E. Musso and E. Marcucci (eds), I Tras<strong>port</strong>i e l’Europa. Politiche, Infrastrutture eConcorrenza, FrancoAngeli, Milan, 159-171.Harrison, R. (2007), ‘International Trade, Trans<strong>port</strong>ation Corridors, and Inland Ports: Op<strong>port</strong>unitiesfor Canada’, paper presented at the Canada’s Asia-Pacific Gateway and Corridor Initiative -International Conference, CTS – Center for Trans<strong>port</strong>ation Studies, University of BritishColumbia, Vancouver, May.Hayut, Y. (1980), ‘Inland conta<strong>in</strong>er term<strong>in</strong>al - function and rationale’, Maritime Policy &Management, 7 (4), 283-289.Iannone, F. and Thore, S. (2010) ‘An economic <strong>logistics</strong> model for the multimodal <strong>in</strong>landdistribution of maritime conta<strong>in</strong>ers’, International Journal of Trans<strong>port</strong> Economics, 37 (3), 281-326.Iannone, F., Thore, S. and Forte, E. (2007), ‘Inland Conta<strong>in</strong>er Logistics and Inter<strong>port</strong>s. Goals andFeatures of an Ongo<strong>in</strong>g Applied Research’, In G. Borruso, E. Forte and E. Musso (2009) (eds),32


Economia dei Tras<strong>port</strong>i e Logistica Economica:Ricerca per l’Innovazione e Politiche diGovernance, Naples: Giordano Editore, 385-414.Jaržemskis, A. and Vasiliauskas, A.V. (2007), ‘Research on dry <strong>port</strong> <strong>concept</strong> as <strong>in</strong>termodal node’,Trans<strong>port</strong>, 22 (3), 207-213.Jensen, P.A. and Bard, J.F. (2003), Operations Research: Models and Methods, New York: JohnWiley & Sons.Jula, P., Leachman, R.C. (2011), ‘A supply-cha<strong>in</strong> optimization model of the allocation ofconta<strong>in</strong>erized im<strong>port</strong>s from Asia to the United States’, Trans<strong>port</strong>ation Research Part E, 47 (5),609-622.Kirkland, C. (2007), ‘Assess<strong>in</strong>g Potential for Inland Port Success’, paper presented at the Canada’sAsia-Pacific Gateway and Corridor Initiative - International Conference, CTS – Center forTrans<strong>port</strong>ation Studies, University of British Columbia, Vancouver, Canada, May.Leachman, R. (2008), ‘Port and modal allocation of waterborne conta<strong>in</strong>erized im<strong>port</strong>s from Asia tothe United States’,Trans<strong>port</strong>ation Research E, 44 (2), 313-331.Leitner, S. J. and Harrison, R. (2001), ‘<strong>The</strong> identification and classification of <strong>in</strong>land <strong>port</strong>s’,Research Re<strong>port</strong> Number 0-4083-1, Center for Trans<strong>port</strong>ation Research, Bureau of Eng<strong>in</strong>eer<strong>in</strong>gResearch, <strong>The</strong> University of Texas at Aust<strong>in</strong>.Leveque, P. and Roso, V. (2002), ‘Dry Port Concept for Sea<strong>port</strong> Inland Access with IntermodalSolutions’, Masters <strong>The</strong>sis, Department of Logistics and Trans<strong>port</strong>ation, Chalmers University ofTechnology.Macharis, C. and Bontekon<strong>in</strong>g, Y.M. (2004), ‘Op<strong>port</strong>unities for OR <strong>in</strong> <strong>in</strong>termodal freight trans<strong>port</strong>research: a Review’, European Journal of Operational Research, 153 (2), 400-416.Mavrotas, G. (2009), ‘Effective implementation of the ε-constra<strong>in</strong>t method <strong>in</strong> Multi-ObjectiveMathematical Programm<strong>in</strong>g problems’, Applied Mathematics and Computation, 213 (2), 455-465.Rodrigue, J.-P., Debrie, J., Fremont, A. and Gouvernal, E. (2010), ‘Functions and Actors of InlandPorts: European and North American Dynamics’, Journal of Trans<strong>port</strong> Geography, 18 (4), 519-529.Rodrigue, J.-P. and Notteboom, T. (2009), ‘<strong>The</strong> Term<strong>in</strong>alization of Supply Cha<strong>in</strong>s: Reassess<strong>in</strong>g theRole of Term<strong>in</strong>als <strong>in</strong> Port / H<strong>in</strong>terland Logistical Relationships’, Maritime Policy &Management, 36 (2), 165-183.Roso, V. (2008), ‘Factors <strong>in</strong>fluenc<strong>in</strong>g implementation of a dry <strong>port</strong>’, International Journal ofPhysical Distribution & Logistics Management, 38 (10), 782-798.Roso, V. and Lumsden, K. (2010), ‘A review of dry <strong>port</strong>s’, <strong>in</strong> Maritime Economics & Logistics, 12(2), 196-213.Schwarz F. (2008), ‘Intermodal freight network modell<strong>in</strong>g’, In R. Kon<strong>in</strong>gs, H. Priemus and P.Nijkamp (eds), <strong>The</strong> Future of Intermodal Freight Trans<strong>port</strong>. Operations, Design and Policy,Edward Elgar, Cheltenham, UK, and Northampton, MA, USA, 206-222.Thompson, G.L. and Thore, S. (1992) Computational Economics: Economic Modell<strong>in</strong>g withOptimization Software. San Francisco: <strong>The</strong> Scientific Press.Thore, S. (2007), ‘Some Thoughts on the Past and the Future of Economic Logistics’, In G.Borruso, E. Forte E. and E. Musso (2009) (eds), Economia dei Tras<strong>port</strong>i e LogisticaEconomica: Ricerca per l’Innovazione e Politiche di Governance, Naples: Giordano Editore,24-26.Thore, S. and Iannone, F. (2005), ‘<strong>The</strong> hub-and-spoke model. A tutorial’, mimeo, Carvoeiro,Portugal, August, available at http://www.stenthore.<strong>in</strong>fo/computational.htm.UNCTAD (1982), Multimodal Trans<strong>port</strong> and Conta<strong>in</strong>erisation (TD/B/C.4/238/Supplement 1, PartFive: Ports and Conta<strong>in</strong>er Depots), Geneva.UNCTAD (1991), Handbook on the Management and Operation of Dry Ports, United Nations,Geneva.33


Veenstra, A. and Zuidwijk, R. (2010), ‘<strong>The</strong> future of sea<strong>port</strong> h<strong>in</strong>terland networks’, In L. Kroon , R.Zuidwijk and T. Li (eds), Liber Amicorum Jo van Nunen, D<strong>in</strong>alog and RSM-ErasmusUniversity of Rotterdam, 205-215.34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!