11.07.2015 Views

Bernoulli's lightray solution for the brachistochrone problem from ...

Bernoulli's lightray solution for the brachistochrone problem from ...

Bernoulli's lightray solution for the brachistochrone problem from ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Bernoulli’s <strong>lightray</strong> <strong>solution</strong><strong>for</strong> <strong>the</strong> <strong>brachistochrone</strong> <strong>problem</strong><strong>from</strong> Hamilton’s viewpointHenk BroerJohann Bernoulli Institute <strong>for</strong> Ma<strong>the</strong>matics and Computer ScienceRijksuniversiteit Groningen


Summaryi. Introductionii. Bernoulli’s <strong>solution</strong>iii. Translation into Hamilton’s termsvi. Concluding remarksA study in anachronism...H.H. Goldstine, A History of <strong>the</strong> Calculus of Variations <strong>from</strong> <strong>the</strong> 17th through <strong>the</strong> 19th Century.Studies in <strong>the</strong> History of Ma<strong>the</strong>matics and Physical Sciences 5, Springer 1980J.A. van Maanen, Een Complexe Groo<strong>the</strong>id, leven en werk van Johann Bernoulli. 1667–1748.Epsilon Uitgaven 34 1995D.J. Struik (ed.), A Source Book in Ma<strong>the</strong>matics 1200–1800. Harvard University Press 1969;Princeton University Press 1986


IntroductionJohann Bernoulli (1667 - 1748)‘his’ <strong>brachistochrone</strong> <strong>problem</strong>- Groningen period 1695 – 1705- Acta Eruditorum 1697Opera Johannis Bernoullii. G. Cramer (ed.; 4 delen), Genève 1742


Bernoulli’s <strong>lightray</strong> <strong>solution</strong>Fermat principle of least time <strong>for</strong> light rays optical <strong>solution</strong> in mechanical setting- Discrete approximation in horizontal layerseach layer homogeneous and isotropic refraction index n = 1/v (c = 1)- Fermat principle⇒- inside layer:ray = straight line with velocity v = 1/n- at boundary: Snell’s lawG.W. Leibniz, Nova methodus pro maximis et minimis. Acta Eruditorum 1684. In: D.J. Struik, Asource book in ma<strong>the</strong>matics 1200–1800. Harvard University Press 1969, 271-281


Fermat and Snelln 1 sinα = n 2 sinβProof: Let x = x C indicate position of Ct AC = n 1 |A−C| andt CB = n 2 |C −B|


Fermat and Snell, ctdBy Pythagoras <strong>the</strong>orem:|A−C| = √ x 2 +b 2 , |C −B| =√(a−x) 2 +c 2Differentiatingt AC and t CB w.r.t. x :ddx t AC(x) =ddx t AC(x) = − n 2(a−x)√(a−x) 2 +c 2n 1 x√x 2 +b 2 = n 1 sinα= −n 2 sinβ:ddx (t AC +t CB )(x) = 0 ⇔ n 1 sinα = n 2 sinβ□- locally minimum- globally caustics (think of focal points ellipse)


Bernoulli and Snell- Snell’s law: n j sinα j = n j+1 sinα ′ j- Euclidean geometry: α ′ j = α j+1 Conservation law: n j sinα j = n j+1 sinα j+1just take limits ... inclination α with verticaland conserved quantity nsinα


The cycloid as <strong>brachistochrone</strong>Two conserved quantities as a function ofyS = n(y)sinα(y) (1)E = 1 2 m(v(y))2 +mgy (2)Better look <strong>for</strong> profile α ↦→ (x(α),y(α)) !Theorem.x(α) = x 0 − 14S 2 g (2α−sin(2α))y(α) = y 0 + 14S 2 g cos(2α)Note: E = 1 2 m(v(y 0)) 2 +mgy 0 ,Possible choices: v(y 0 ) = 0 and even y 0 = 0 falling ratev(y) = √ −2gy


A few high school computationsLemma. (abbreviating v ′ = dv/dy)v ′ = − gv(y)andcosα = Sv ′ (y) dydα ,Proof: Differentiate (2) with respect toy and (1) with respect toα□Thusdydαlemma=1Sv ′ (y)cosαlemma= − v(y)Sgvcosα(1)= − 12S 2 gsin(2α) (3)while:dxdα= tanαdydα(3)= − v(y)Sgsinα(1)= − 12S 2 g (1−cos(2α))Integration <strong>the</strong>n gives <strong>the</strong> desired result.Cycloid with radius14S 2 gand rolling angle 2α□


Radius and rolling angleRoll wheel ( radius̺) along ceilingcycloid:x(ϕ) = ̺(ϕ+sinϕ),y(ϕ) = ̺(1−cosϕ)parameterϕcalled rolling angle


Christiaan Huygens (1629-1695)Christiaan Huygens (by Gaspar Netscher)and page <strong>from</strong> Horologium Oscillatorium 1673


Commentary- Challenge in Acta Eruditorum (1697)Many contemporaries published <strong>solution</strong>sNewton’s was anonymous, however,ex ungue leonem cognavi- Isochrony and tautochrony cycloid dynamicsby harmonic oscillationsJ.L. Lagrange, Mécanique Analytique. 4 ed., 2 vols. Gauthier-Villars et fils, Paris, 1888-89


William Rowan Hamilton- Many contributions to ma<strong>the</strong>matics,physics and astronomy ,principle of least actionW.R. Hamilton, Theory of systems of rays. Trans. Roy. Irish Academy 15 (1828), 69-174—, On a general method in dynamics. Phil. Trans. Roy. Soc. Vol. 124 (1834), 247-308; Secondessay on a general method in dynamics. Phil. Trans. Roy. Soc. Vol. 125 (1835), 95-144


Fermat principle revisited- Given curve τ ↦→ q(τ) consider ˙q = dq/dτ anddt = n(q(τ))||˙q(τ)||dτ magic <strong>for</strong>mula- To (locally) minimize ∫ τ 2τ 1n(q(τ))||˙q(τ)||dτ or,ra<strong>the</strong>r and equivalently,I(q) :=∫ τ2τ 112 n2 (q(τ))||˙q(τ)|| 2 dτ- Lagrangian L(q, ˙q) = 1 2 n2 (q)||˙q|| 2(= energy = kinetic energy)


Calculus of variations- If q = (x,y) <strong>the</strong>n Euler–Lagrange equationsddτddτ∂L∂ẋ = ∂L∂x∂L∂ẏ = ∂L∂ynecessary & sufficient <strong>for</strong> local optimality ofI- under small variations ofq,while keeping endpointsq(τ 1 ) andq(τ 2 ) fixed- in current optical setting also minimalL. Euler, Leonhardi Euleri Opera Omnia. 72 vols., Bern 1911-1975J.L. Lagrange, Œuvres. A. Serret and G. Darboux eds., Paris 1867-1892


Hamilton’s canonical <strong>for</strong>malism- Legendre trans<strong>for</strong>mation:R 2 × R 2 → R 2 × R 2 ,(q, ˙q) ↦→ (q,p) with p = n 2 (q)˙q- Hamiltonian H(q,p) = L(q,p/n 2 (q)) = 1n 2 (q) ||p||2Theorem. The <strong>lightray</strong>s are <strong>the</strong> projections of <strong>the</strong><strong>solution</strong>s of <strong>the</strong> canonical equationsto R 2 = {q}˙q j = ∂H∂p j, ṗ j = − ∂H∂q j(j = 1,2)- modern lingo in terms of (co-) tangent bundles


Laws, properties- Energy conservationḢ≡ 0, say H(q,p) = E- q = (x,y) and p x = n 2 (y)ẋ,p y = n 2 (y)ẏH(x,y,p x ,p y ) = 12n 2 (y) (p2 x +p 2 y)- H independent of x (cyclic variable): ṗ x ≡ 0conservation of momentum, sayp x = I- translation symmetry, Noe<strong>the</strong>r principle- conservation ofI √2E(x,y,ẋ,ẏ) = n(y)ẋ√ẋ2+ẏ 2 = n(y)sinα(ẋ,ẏ)(= S <strong>for</strong> Snell, this is familiar !)


Reduction of <strong>the</strong> symmetryTheorem. Given p x = I can reduce to planar systemH I (y,p y ) = 12n 2 (y) p2 y +V I (y) with V I (y) = I22n 2 (y)(effective potential)Reduced system:TakeI ≠ 0ẏ =1n 2 (y) p yṗ y = − n′ (y)n 3 (y) (I2 +p 2 y)


Gravitational refraction indexBack to <strong>brachistochrone</strong> <strong>problem</strong>Gravitational energy 1 2 (v(y))2 +gy = 0 (n(y)) 2 = 1−2gy , <strong>for</strong>y < 0 reduced canonical equationsẏ = −2gyp yṗ y = g(p 2 y +I 2 )Level curve H I (y,p y ) = E has <strong>for</strong>my = − 1 ( ) Eg p 2 y +I 2(4)


Reduced phase-portraitReduced phase-portrait<strong>brachistochrone</strong> <strong>lightray</strong> dynamics


Reconstruction ITime parametrization reduced system,<strong>for</strong> given I ≠ 0 completely determined by E,N- Time parametrizationdτ =dp yg(p 2 y +I 2 ) τ = 1 (gI arctan py)I- Gives parametrization (withp y (0) = 0):p y = Itan(gIτ) (4) y = − EgI 2 cos2 (gIτ) (5)PS: Similar action <strong>for</strong> pendulum system leadsto elliptic integrals ...


Reconstruction IICycloids recovered- I = p x = n 2 (y)ẋ ⇒ẋ =1n 2 (y)(5)I = −2Igy =2EI cos2 (gIτ) = E I (1+cos(2gIτ))- And sox = x 0 + E2gI2(2gIτ +sin(2gIτ))y = − E2gI 2(1+cos(2gIτ))Cycloid radius̺ = E/2gI 2 , rolling angleϕ = 2gIτInclination α = gIτ (proportionality)


Scholium I- Reminds of how Newton ‘principia’ yield <strong>the</strong>Keplerian orbits in central <strong>for</strong>ce field- Nowadays <strong>brachistochrone</strong> <strong>problem</strong> excercise incourse calculus of variations:Look <strong>for</strong> curvey = y(x)arclengthds = √ dx 2 +dy 2 = √ 1+(y ′ ) 2 dxenergy conservation in gravitational fieldso have to optimize... dsdt = √ −2gy


Scholium I: ctd- ... timedt =√1+(y′ ) 2√ −2gy L(y,y ′ ) =√− 1+(y′ ) 22gy- Euler–Lagrange equations ( 1+(y ′ ) 2) y = constantsubstitution of(x,y) = (x(θ),y(θ))again gives cycloid resultV.I. Arnold, Ma<strong>the</strong>matical methods of classical mechanics. GTM 60, Springer 1978, 1989H. Goldstein, Classical mechanics 2nd ed. Addison Wesley 1950, 1980


Scholium II: <strong>lightray</strong>s geodesicsGeorg Friedrich Bernhard Riemann 1826-1866- Riemannian metricG q (˙q 1 , ˙q 2 ) = n 2 (q)〈˙q 1 , ˙q 2 〉,where latter brackets are EuclideannoteL(q, ˙q) = 1 2 G q(˙q, ˙q)- <strong>lightray</strong>s are geodesics of metricGM. Spivak, Differential geometry, Vols. I, II, III. Publish or Perish 1970


Atmospherical optics- blank strip in <strong>the</strong> setting Sun- illusions: fata morgana’s, Nova Zembla phenomenaM.G.J. Minnaert, De Natuurkunde van ’t vrije veld. Vol. 1, Vijfde Editie, ThiemeMeulenhoff1996; The Nature of Light & Colour in <strong>the</strong> Open Air, Dover 1954H.W. Broer, Aardse en hemelse luchtspiegelingen, met Bernoulli,Wegener en Minnaert. To bepublished Epsilon Uitgaven 2013


Arclength cycloidarclengths = s(ϕ) (using Pythagoras):ds = √ dx 2 +dy 2 == √ (dx/dϕ) 2 +(dy/dϕ) 2 dϕ == ̺√2 √ 1+cosϕ dϕ = 2̺cos ϕ 2 dϕ s(ϕ) = 4̺sin ϕ 2


Cycloidal wire profileVertical heighty(ϕ) = 2̺sin 2 ϕ 2 = 18̺(s(ϕ))2 potential energy“V = mgy” : V(s) = mg8̺s2−→ equation of motion beads ′′ = − g4̺s :a harmonic oscillator with ω = √ g/(4̺)Conclusion: cycloid isochronous curve(also tautochronous...)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!