27.11.2012 Views

Characterisation of proteins in epidermal mucus of discus fish ...

Characterisation of proteins in epidermal mucus of discus fish ...

Characterisation of proteins in epidermal mucus of discus fish ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2 K. Chong et al. / Aquaculture xx (2005) xxx-xxx<br />

problems <strong>of</strong> <strong>in</strong>adequate growth and large scaled<br />

mortality occur. Both <strong>discus</strong> parents display<br />

advanced behavior <strong>of</strong> parental care where freeswimm<strong>in</strong>g<br />

larvae feed on <strong>epidermal</strong> <strong>mucus</strong> secretion<br />

produced by both male and female brood. This<br />

natural method is widely utilized <strong>in</strong> <strong>discus</strong> hatcheries<br />

to obta<strong>in</strong> healthier and higher quality fry. However,<br />

extended period <strong>of</strong> larval care by <strong>discus</strong> parents <strong>of</strong>ten<br />

negatively affect their subsequent reproductive performances.<br />

This is due to the stressful nature <strong>of</strong><br />

hav<strong>in</strong>g to constantly replace new <strong>mucus</strong> layer for<br />

protection and osmoregulatory functions. An important<br />

goal <strong>in</strong> <strong>discus</strong> culture is to develop reliable larva<br />

feed that can either completely or partially replace<br />

parental <strong>mucus</strong>. An understand<strong>in</strong>g on the biochemical<br />

composition <strong>of</strong> parental <strong>mucus</strong> will provide<br />

useful <strong>in</strong>sights to aid the development <strong>of</strong> such feed.<br />

In this present paper, we reported a study conducted<br />

to <strong>in</strong>vestigate the prote<strong>in</strong> properties <strong>of</strong> <strong>discus</strong> <strong>fish</strong><br />

<strong>mucus</strong>.<br />

2. Material and methods<br />

2.1. Discus breed<strong>in</strong>g<br />

Broodstock used for experiments were selected<br />

from stock population ma<strong>in</strong>ta<strong>in</strong>ed at Laboratory <strong>of</strong><br />

Fish Biology, Universiti Sa<strong>in</strong>s Malaysia. Parental<br />

<strong>fish</strong>es ready for breed<strong>in</strong>g are easily recognized from<br />

their aggressive territorial behavior. Individual pairs<br />

are separated <strong>in</strong>to breed<strong>in</strong>g tanks (2' x2' x 1.5')<br />

respectively. Successful spawn<strong>in</strong>g will be followed<br />

by a 3-4 days period <strong>of</strong> egg <strong>in</strong>cubation prior to<br />

hatch<strong>in</strong>g. These batches <strong>of</strong> parent-fry were then used<br />

for different types <strong>of</strong> experiments outl<strong>in</strong>ed below. All<br />

parents were fed with frozen bloodworm and wet<br />

paste consist<strong>in</strong>g <strong>of</strong> m<strong>in</strong>ced beef-heart and shrimp<br />

throughout the experimental period.<br />

2.2. Larval bit<strong>in</strong>g rate<br />

Ontogenic feed<strong>in</strong>g behavior <strong>of</strong> <strong>discus</strong> larvae on<br />

parental <strong>mucus</strong> secretion was observed through<br />

determ<strong>in</strong>ation <strong>of</strong> its bit<strong>in</strong>g rate. The numbers <strong>of</strong> bites<br />

per 30 s by larvae on parental <strong>mucus</strong> was recorded<br />

from six randomly selected larvae at selected freeswimm<strong>in</strong>g<br />

days at 1200 hours. For each <strong>in</strong>dividual<br />

larva, a total <strong>of</strong> three counts were carried out.<br />

Comparisons were made between<br />

i. larval feed<strong>in</strong>g solely on <strong>mucus</strong>.<br />

ii. larval feed<strong>in</strong>g on <strong>mucus</strong> with supplementation <strong>of</strong><br />

freshly hatched Artemia nauplii. Counts were carried<br />

out at 1 and 3 h after Artemia supplementation.<br />

2.3. Mucus sampl<strong>in</strong>g<br />

Fish <strong>mucus</strong> was sampled from female parental<br />

<strong>discus</strong> (600-700 g) perform<strong>in</strong>g parental care on day<br />

10-15 <strong>of</strong> free-swimm<strong>in</strong>g larvae. Mucus was also<br />

sampled from juvenile <strong>discus</strong> aged 5-6 months (350­<br />

400 g). Briefly, collection was done through very<br />

gentle scrapp<strong>in</strong>g <strong>of</strong> the dorsal-lateral part <strong>of</strong> body<br />

with clean spatula to stimulate production <strong>of</strong> a fresh<br />

<strong>mucus</strong> layer. A clean glass pipette was used to collect<br />

the <strong>mucus</strong> followed by immediate transfer to clean<br />

glass vials on ice. Sampl<strong>in</strong>g was not done at the<br />

ventral area to avoid possible ur<strong>in</strong>al contam<strong>in</strong>ation.<br />

Collected <strong>mucus</strong> was then centrifuged at 13,200 xg<br />

for 20 m<strong>in</strong> at 4 °C followed by storage <strong>of</strong> supernatant<br />

<strong>in</strong> -70°C prior to analysis.<br />

2.4. Biochemical analysis<br />

2.4.1. Prote<strong>in</strong> content<br />

Mucus prote<strong>in</strong> content was analyzed us<strong>in</strong>g the<br />

Bradford Assay (Bradford, 1976). Briefly, 10 III <strong>of</strong><br />

supernatant for each <strong>mucus</strong> sample was mixed with<br />

200 III <strong>of</strong> the BIORAD® assay kit reagent and<br />

allowed to stand for 15 m<strong>in</strong>. Absorbance value was<br />

recorded at 595 nm followed by determ<strong>in</strong>ation <strong>of</strong><br />

prote<strong>in</strong> concentration from a standard prote<strong>in</strong> concefltration-absorbance<br />

curve.<br />

2.4.2. SDS-PAGE<br />

SDS-PAGE (Laemmli, 1970) was also used to<br />

separate <strong>mucus</strong> prote<strong>in</strong> from both parental and<br />

juvenile stages. Mucus supernatant was mixed<br />

with sample buffer (Tris-HCI 1 M pH 6.8,<br />

glycerol, SDS, bromophenol blue, 2 mercapthoethanol)<br />

at a ratio <strong>of</strong> 4: 1 (v Iv). A total <strong>of</strong> 24 III <strong>of</strong><br />

this mixture correspond<strong>in</strong>g to a prote<strong>in</strong> load<strong>in</strong>g <strong>of</strong><br />

13-18 Ilg was loaded <strong>in</strong>to gels (6.0 x 8.0 em,<br />

thickness 0.75 mm). Electrophoresis was conducted<br />

at 120 V us<strong>in</strong>g the M<strong>in</strong>i Protean IIJ® electrophoresis


system (BIORAD® Laboratories, California) for<br />

approximately 120 m<strong>in</strong>. This was followed by<br />

sta<strong>in</strong><strong>in</strong>g us<strong>in</strong>g Coomassie Brillant Blue R-250 (BIO­<br />

RAD®) dissolved <strong>in</strong> acetic acid, methanol and<br />

distilled water for 120 m<strong>in</strong> followed by overnight<br />

desta<strong>in</strong><strong>in</strong>g <strong>in</strong> a solution <strong>of</strong> methanol, acetic acid and<br />

distilled water. Broad Range (BIORAD®) molecular<br />

weight marker rang<strong>in</strong>g from 14.4 kDa to 200 kDa<br />

was also used for molecular weight estimation. Gels<br />

were analyzed us<strong>in</strong>g the QUANTITY ONE® gel<br />

analysis s<strong>of</strong>tware (BIORAD®). Wet blott<strong>in</strong>g process<br />

was also carried out on SDS gel after completion <strong>of</strong><br />

electrophoresis us<strong>in</strong>g a PVDF membrane on a M<strong>in</strong>i<br />

Trans Blotter (BIORAD®). The band <strong>of</strong> <strong>in</strong>terest was<br />

then excised from the membrane, subjected to<br />

tryps<strong>in</strong> digestion, followed by mass spectrometry<br />

analysis us<strong>in</strong>g the Quadrupole-Time <strong>of</strong> Flight<br />

(MICROMASS Q-TOF®) analysis. Obta<strong>in</strong>ed peptide<br />

mass f<strong>in</strong>gerpr<strong>in</strong>ts were then subjected to database<br />

search us<strong>in</strong>g the MASCOT prote<strong>in</strong> database (Perk<strong>in</strong>s<br />

et aI., 1999).<br />

2.4.3. Free am<strong>in</strong>o acids<br />

Free am<strong>in</strong>o acid content <strong>of</strong> <strong>discus</strong> <strong>mucus</strong> was<br />

analyzed us<strong>in</strong>g the preparation <strong>of</strong> PTC derivatives <strong>of</strong><br />

am<strong>in</strong>o acids us<strong>in</strong>g the procedure described by<br />

Bidl<strong>in</strong>gmeyer et al. (1984). Briefly, stock solutions<br />

<strong>of</strong> each am<strong>in</strong>o acid standard at concentrations <strong>of</strong> 250<br />

Ilmol/ml were prepared <strong>in</strong> distilled water. A total <strong>of</strong> 10<br />

III aliquots <strong>of</strong> the standard am<strong>in</strong>o acid stock solution<br />

was then added to 20 III <strong>of</strong> ethanol-water-TEA<br />

(2: 2 : 1) mixture, prepared fresh daily <strong>in</strong> a small glass<br />

vial and then shaken thoroughly. The mixture was<br />

then dried under vacuum by us<strong>in</strong>g an Edward Model<br />

E2M8 Vacuum pump (Sussex, England).<br />

The derivatization mixture consist<strong>in</strong>g <strong>of</strong> ethanol­<br />

TEA-water-PITC (7: 1: 1: 1) was also prepared fresh<br />

daily. An aliquot <strong>of</strong> 20 III <strong>of</strong> the freshly prepared<br />

derivatization mixture stated above was added to each<br />

dried sample, shaken thoroughly and allowed to stand<br />

at room temperature for 20 m<strong>in</strong>. Excess reagent and<br />

by-products were removed under vacuum. The PTCam<strong>in</strong>o<br />

acids were then stored at - 20°C until use. An<br />

aliquot <strong>of</strong> 200 III <strong>of</strong> trichloroacetic acid, TCA (40%)<br />

was added to an equal volume <strong>of</strong> <strong>mucus</strong> supernatant.<br />

The mixture was shaken thoroughly and then allowed<br />

to <strong>in</strong>cubate at 4 °c for 1 h followed by centrifugation<br />

for 30 m<strong>in</strong> to sediment down the prote<strong>in</strong> precipitate.<br />

K. Chong el al. I Aquaculture xx (2005) xxx-xxx 3<br />

The supernatant, around pH 1, was carefully decanted<br />

<strong>in</strong>to a glass vial and the contents freeze-dtied. This<br />

freeze-dried sample was then reconstituted <strong>in</strong> 20 III <strong>of</strong><br />

distilled water followed by derivatization as described<br />

above. The derivatized samples were then reconstituted<br />

<strong>in</strong> 200 III <strong>of</strong> mobile phase B. As for the blank,<br />

sample was just dissolved <strong>in</strong> 200 III <strong>of</strong>mobile phase B<br />

without derivatization. This is to ensure there are no<br />

ultraviolet absorb<strong>in</strong>g compounds present <strong>in</strong> the<br />

sample, which might <strong>in</strong>terfere <strong>in</strong> the detection <strong>of</strong> free<br />

am<strong>in</strong>o acids <strong>in</strong> the slime.<br />

The HPLC equipment consisted <strong>of</strong> a solvent<br />

delivery system compris<strong>in</strong>g a Gilson Model 305 ma<strong>in</strong><br />

pump (Villiers Ie Bel, France) and a Gilson Model 302<br />

secondary pump, a Gilson Model 802 C manometric<br />

module, a Gilson Model 811B dynamic mixer, Gilson<br />

Model 302 and Model 305 pumps, Rheodyne 7725<br />

<strong>in</strong>jector (Cotati, CA, USA), a 20 f.ll sample loop, a 15<br />

cm x 4.6 mm ID (5 f.lm) Supelcosil LC18 column<br />

(Bellefonte, PA, USA) and guard column thermostated<br />

at 30°C, a Spectra-physics UV2000 ultraviolet<br />

detector (San Jose, CA, USA) and a Shimadzu<br />

<strong>in</strong>tegrator-plotter (Tokyo, Japan). For the elution <strong>of</strong><br />

the PTC am<strong>in</strong>o acids, a gradient pr<strong>of</strong>ile was developed<br />

to optimize a complete separation <strong>of</strong> the PTC<br />

am<strong>in</strong>o acid derivatives. The solvent system consisted<br />

<strong>of</strong> two eluents namely solvent A (acetate buffer, pH<br />

6.35,0.14 M conta<strong>in</strong><strong>in</strong>g 0.5 mUI TEA) and solvent B<br />

(60% acetonitrile <strong>in</strong> water). The total flow rate used<br />

was at 1 mUm<strong>in</strong>. The wash<strong>in</strong>g step at 100% B was<br />

programmed to run for 30 m<strong>in</strong> to wash away any<br />

residual contam<strong>in</strong>ants that could be present <strong>in</strong> the<br />

sample. The system was returned to 100% A for the<br />

next <strong>in</strong>jection.<br />

3. Results<br />

Throughout experimental period, <strong>discus</strong> larvae<br />

showed close contact with parents, feed<strong>in</strong>g on their<br />

<strong>epidermal</strong> <strong>mucus</strong>. Fig. I shows a gradual <strong>in</strong>crease <strong>in</strong><br />

this bit<strong>in</strong>g rate from first free-swimm<strong>in</strong>g day till day<br />

12-15. Bit<strong>in</strong>g rate then decreased gradually as larvae<br />

developed. In the presence <strong>of</strong> Artemia however,<br />

<strong>mucus</strong> bit<strong>in</strong>g rate also dropped at 1 h after supple-'<br />

mentation <strong>of</strong> Artemia as larvae were either still<br />

actively prey<strong>in</strong>g on nauplii or showed decrease <strong>in</strong><br />

feed<strong>in</strong>g due to filled gut. Bit<strong>in</strong>g rate <strong>in</strong>creased


K. Chong et al. / Aquacullllre xx (2005) xu-xxx<br />

Table 1<br />

Peptide fragments positively identified utiliz<strong>in</strong>g the MASCOT search on band Z<br />

Observed Mr (expt) Mr (calcu)<br />

827.41<br />

906.45<br />

973.51<br />

1153.57<br />

1180.54<br />

1200.63<br />

1348.67<br />

1432.74<br />

1443.70<br />

826.40<br />

905.46<br />

972.52<br />

1152.60<br />

1179.58<br />

1199.66<br />

1347.62<br />

1431.77<br />

1442.74<br />

826.42<br />

905.46<br />

972.39<br />

t 152.55<br />

1179.56<br />

1199.65<br />

1347.68<br />

1431.74<br />

1442.70<br />

Peptide<br />

5<br />

FASFIDK<br />

FLEQQNK<br />

QLDGLGNEK<br />

EYQELMNVK<br />

NMQGLVEDFK<br />

IKDLEDALQR<br />

WSLLQDQTITR<br />

VDALQDEINFLR<br />

ANLEAQIAEAEER<br />

I MSFSRTSYTSGGGGGMGGGTISIRRSFTSQSMIAPGSTRMSSGSVRRSGA<br />

51 GFGGGMGMGGGSGGGFSYISSSSAGGYGGGLGAGFGGGMGGGYPITAVTI<br />

101 NQSLLAPLNLEIDPNIQVVRTHEKEQIKTLNNRlMUIJjHvRIII"llIij9M<br />

151 LETKW"'IIUIUiiiij


6 K. Chong et al. / Aquaculture xx (2005) xxx-xxx<br />

the <strong>prote<strong>in</strong>s</strong> show<strong>in</strong>g higher expression <strong>in</strong> parental<br />

<strong>mucus</strong> as a type II <strong>epidermal</strong> kerat<strong>in</strong>.<br />

An <strong>in</strong>crease <strong>in</strong> contact behavior between <strong>discus</strong> fry<br />

and parental <strong>mucus</strong> was observed until the first 12<br />

free-swimm<strong>in</strong>g days before show<strong>in</strong>g a decreas<strong>in</strong>g<br />

trend. This behavior correlates observations recorded<br />

<strong>in</strong> C. citr<strong>in</strong>ellum, another cichlid species utiliz<strong>in</strong>g<br />

<strong>mucus</strong> secretion as larval feed. (Noakes and Barlow,<br />

1973; Schutz and Barlow, 1997). The lower bit<strong>in</strong>g rate<br />

after feed<strong>in</strong>g on Artemia <strong>in</strong>dicates that <strong>in</strong>take <strong>of</strong><br />

parental <strong>mucus</strong> is <strong>in</strong>fluenced by hunger, as reported <strong>in</strong><br />

C. citronellum fries (Schutz and Barlow, 1997). Our<br />

unpublished results shows that early stages <strong>discus</strong><br />

larva requires parental <strong>mucus</strong> to undergo normal<br />

growth as compared to latter stages where exogenous<br />

live feed such as Artemia can be utilized to replace<br />

parental <strong>mucus</strong>. It is also worth not<strong>in</strong>g that unlike C.<br />

citronellum, feed<strong>in</strong>g <strong>of</strong> parental secretion is nonobligatory<br />

<strong>in</strong> <strong>discus</strong> fry where mass mortality have<br />

been reported <strong>in</strong> fry isolated from parents (Hildemann,<br />

1959). Our previous study revealed that a significant<br />

<strong>in</strong>crease <strong>in</strong> the activities <strong>of</strong>all vital digestive enzymes<br />

occurred dur<strong>in</strong>g the 15-20 free-swimm<strong>in</strong>g days <strong>in</strong><br />

<strong>discus</strong> larvae (Chong et aI., 2002). The lack <strong>of</strong> a fully<br />

functional digestion system <strong>in</strong> earlier larval stages<br />

probably expla<strong>in</strong>s the need to rely on parental<br />

mucosal secretion. Furthermore, mucosal secretion is<br />

an effective method to transfer important substances<br />

such as hormones and antibodies to enhance survival<br />

and growth performances <strong>in</strong> develop<strong>in</strong>g larvae (Kishida<br />

and Specker, 2000).<br />

Our study showed higher total prote<strong>in</strong> content <strong>in</strong><br />

parental <strong>mucus</strong> as compared to juveniles. There have<br />

been several reports on changes <strong>in</strong> <strong>fish</strong> <strong>mucus</strong> prote<strong>in</strong><br />

content and composition as results <strong>of</strong> several physiological<br />

related conditions such as maturation, smoltification<br />

and starvation (Saglio and Fauconneau,<br />

1985a; Hem<strong>in</strong>g and Paleczny, 1987; Ottesen and<br />

Olafsen, 1997; Fagan et aI., 2003). Schutz and Barlow<br />

(1997) also reported a fluctuat<strong>in</strong>g trend <strong>in</strong> parental C.<br />

citronellum <strong>mucus</strong> prote<strong>in</strong> content throughout the<br />

larval rais<strong>in</strong>g period. The higher prote<strong>in</strong> content <strong>in</strong><br />

<strong>discus</strong> parental <strong>mucus</strong> obta<strong>in</strong>ed here could directly or<br />

<strong>in</strong>directly relate to larval feed<strong>in</strong>g activities. We do not<br />

rule out the possibility that the <strong>in</strong>creased prote<strong>in</strong><br />

concentration could be due to disruption <strong>of</strong> <strong>epidermal</strong><br />

cells and hence, leak<strong>in</strong>g <strong>of</strong> cellular and plasma<br />

<strong>prote<strong>in</strong>s</strong> <strong>in</strong>to the <strong>mucus</strong>. Consequently, it is also<br />

possible that the stressful condition <strong>of</strong> los<strong>in</strong>g <strong>epidermal</strong><br />

layers <strong>of</strong> <strong>mucus</strong> and cells <strong>in</strong>itiated physiological<br />

stress-related responses that resulted <strong>in</strong> elevated<br />

prote<strong>in</strong> contents. Elsewhere, various stress-related<br />

factors such as handl<strong>in</strong>g, presence <strong>of</strong> abiotic contam<strong>in</strong>ants<br />

and pathogenic <strong>in</strong>fections have reportedly<br />

caused elevation <strong>of</strong> <strong>mucus</strong> prote<strong>in</strong> content (Picker<strong>in</strong>g<br />

and Macey, 1977; Ross et aI., 2000; Lebedva et aI.,<br />

2002). There is still a lack <strong>of</strong> understand<strong>in</strong>g on the<br />

actual regulatory mechanisms <strong>of</strong> <strong>mucus</strong> prote<strong>in</strong><br />

expression under the above-described conditions.<br />

Several studies have also po<strong>in</strong>ted out that such<br />

regulation exists at the transcription level <strong>in</strong>volv<strong>in</strong>g<br />

a widespread family <strong>of</strong> genes (Sakamoto et aI., 2002;<br />

L<strong>in</strong>denstrom et aI., 2003). Prolact<strong>in</strong>, a hormone<br />

known to mediate parental behavior <strong>in</strong> higher<br />

vertebrates have also been reported to <strong>in</strong>duce proliferation<br />

<strong>of</strong> <strong>mucus</strong>-produc<strong>in</strong>g goblet cells for osmoregulatory<br />

control <strong>in</strong> several <strong>fish</strong> species, <strong>in</strong>clud<strong>in</strong>g<br />

<strong>discus</strong> (Blum and Fiedler, 1965; Ogawa, 1970;<br />

Manzon, 2002). Hildemann (1959) reported presence<br />

<strong>of</strong> larger-sized and hypertrophied goblet cells <strong>in</strong><br />

<strong>discus</strong> parent <strong>epidermal</strong> sk<strong>in</strong> as compared to nonparental<br />

<strong>fish</strong> to accommodate <strong>in</strong>creased production <strong>of</strong><br />

<strong>mucus</strong> for larval rear<strong>in</strong>g.<br />

The existence <strong>of</strong> a large number <strong>of</strong> <strong>prote<strong>in</strong>s</strong><br />

separated by molecular weight <strong>in</strong> <strong>discus</strong> <strong>mucus</strong> shown<br />

<strong>in</strong> this study po<strong>in</strong>ts to the importance <strong>of</strong> <strong>discus</strong><br />

<strong>epidermal</strong> <strong>mucus</strong> for a multi-array <strong>of</strong> functions.<br />

Depend<strong>in</strong>g on the orig<strong>in</strong> and function, <strong>mucus</strong> <strong>in</strong><br />

general conta<strong>in</strong>s water, glyco<strong>prote<strong>in</strong>s</strong>, secretory <strong>prote<strong>in</strong>s</strong>,<br />

am<strong>in</strong>o acids, lipids, sloughed epithelial cells and<br />

bacterias (Shephard, 1994). Mass spectrometry analysis<br />

on one <strong>of</strong> the band show<strong>in</strong>g higher expression <strong>in</strong><br />

<strong>discus</strong> parental <strong>mucus</strong> revealed an identity <strong>of</strong> a<br />

<strong>epidermal</strong> type II kerat<strong>in</strong>. Among the major function<br />

for this subfamily <strong>of</strong> kerat<strong>in</strong> is epidermis architecture<br />

and regulation <strong>of</strong><strong>epidermal</strong> cell development (Conrad<br />

et aI., 1998). The detection <strong>of</strong> this structural prote<strong>in</strong> <strong>in</strong><br />

<strong>discus</strong> <strong>mucus</strong> however, rema<strong>in</strong>s unclear. One possible<br />

explanation could be due to leak<strong>in</strong>g <strong>of</strong> cellular and<br />

plasma <strong>prote<strong>in</strong>s</strong> <strong>in</strong> the <strong>mucus</strong> itself due to constant<br />

nipp<strong>in</strong>g by fry. Although not detected here, other<br />

studies have po<strong>in</strong>ted to the existence <strong>of</strong> important<br />

larval growth-related substance <strong>in</strong> parental <strong>mucus</strong>.<br />

Several forms <strong>of</strong>vitellogen<strong>in</strong> were identified <strong>in</strong> <strong>mucus</strong><br />

<strong>of</strong> female tilapia, although their role as source <strong>of</strong><br />

nutrient to develop<strong>in</strong>g fry rema<strong>in</strong>s unconfirmed


(Kishida and Specker, 1994, 2000; Takemura, 1994).<br />

Schutz and Barlow (1997) isolated growth-promot<strong>in</strong>g<br />

prolact<strong>in</strong> and thyroid hormones from <strong>mucus</strong> <strong>of</strong>Midas<br />

cichlid. In tilapia, it has been suggested that transfer <strong>of</strong><br />

antibodies occurs dur<strong>in</strong>g parental feed<strong>in</strong>g <strong>of</strong>larvae via<br />

<strong>mucus</strong> secretion (Mol' and Avtalion, 1990; Takemura<br />

and Takano, 1997).<br />

This present study also demonstrated the presence<br />

<strong>of</strong> various free am<strong>in</strong>o acids <strong>in</strong> <strong>mucus</strong>. In addition to<br />

their role as substrates for prote<strong>in</strong> synthesis, am<strong>in</strong>o<br />

acids are also vital as neurotransmitters and osmoregulators.<br />

All ten <strong>in</strong>dispensable am<strong>in</strong>o acids were<br />

found present <strong>in</strong> both parental and juvenile <strong>mucus</strong> <strong>of</strong><br />

this species. Several <strong>in</strong>dispensable am<strong>in</strong>o acids such<br />

as lys<strong>in</strong>e, isoleuc<strong>in</strong>e and phenylalan<strong>in</strong>e were present at<br />

high levels <strong>in</strong> <strong>discus</strong> <strong>mucus</strong>. Saglio and Fauconneau<br />

(1985b) also reported relatively higher content <strong>of</strong><br />

lys<strong>in</strong>e as compared to other am<strong>in</strong>o acids <strong>in</strong> gold <strong>fish</strong><br />

(Carrasius auratus) <strong>mucus</strong>. In develop<strong>in</strong>g mar<strong>in</strong>e<br />

larvae with immature digestive systems, adsorption <strong>of</strong><br />

free am<strong>in</strong>o acids provides a critical source <strong>of</strong> energy<br />

and nutrient as compared to peptides and <strong>prote<strong>in</strong>s</strong><br />

(Ronnestad et al., 2003). The importance <strong>of</strong> mucosal<br />

free am<strong>in</strong>o acids as source <strong>of</strong> nutrient for <strong>discus</strong> fry<br />

rema<strong>in</strong>s to be studied.<br />

This present study proposed the possible existence<br />

and ability to upregulate vital substances needed by<br />

develop<strong>in</strong>g larvae <strong>in</strong> <strong>discus</strong> parental <strong>mucus</strong>. Efforts to<br />

further isolate and characterize parental <strong>mucus</strong> us<strong>in</strong>g<br />

higher end tools such as 2-D electrophoresis and mass<br />

spectrometry are currently be<strong>in</strong>g undertaken. These<br />

tools will enable better separation <strong>of</strong> <strong>prote<strong>in</strong>s</strong>, to<br />

<strong>in</strong>crease the possibility <strong>of</strong> identify<strong>in</strong>g <strong>prote<strong>in</strong>s</strong> that<br />

may have an important role towards survival and<br />

growth <strong>of</strong> <strong>discus</strong> larvae.<br />

Acknowledgements<br />

We wish to thank the M<strong>in</strong>istry <strong>of</strong> Science,<br />

Technology and Environment <strong>of</strong>Malaysia for fund<strong>in</strong>g<br />

<strong>of</strong> this project under Project No. 09-02-05-1069 EA<br />

001. Appreciation also goes to Malaysian Toray<br />

Scientific Foundation for award <strong>of</strong> a research grant<br />

(2001-2002) to partially fund this work. The assistance<br />

<strong>of</strong> Dr. Shashikant 1. and Ms. Wang X.H. at the<br />

Department <strong>of</strong> Biological Sciences, National University<br />

<strong>of</strong> S<strong>in</strong>gapore are also acknowledged.<br />

K. Chong et al. / AquaculllIre xx (2005) xxx-xxx 7<br />

References<br />

Aranishi, F., Nakane, M., 1997. Epidennal prote<strong>in</strong>ases <strong>in</strong> the<br />

European eel. Physiol. Zool. 70 (5), 563-570.<br />

Bidl<strong>in</strong>gmeyer, BA, Cohen, SA, Tarv<strong>in</strong>, T.L., 1984. Rapid analysis<br />

<strong>of</strong> am<strong>in</strong>o acids us<strong>in</strong>g pre-column derivatisation. J. Chromatogr.<br />

336, 93-104.<br />

Blum, v., Fiedler, K., 1965. Honnonal control <strong>of</strong>some reproductive<br />

behaviour <strong>in</strong> some cichlid <strong>fish</strong>. Gen. Compo Endocr<strong>in</strong>ol. 5,<br />

186-196.<br />

Bradford, M., 1976. A rapid and sensitive method for the<br />

quantification <strong>of</strong> microgram quantities <strong>of</strong> prote<strong>in</strong> utiliz<strong>in</strong>g the<br />

pr<strong>in</strong>ciple <strong>of</strong> prote<strong>in</strong> dye-b<strong>in</strong>d<strong>in</strong>g. Anal. Biochem. 72, 248.<br />

Chong, A., Hashim, R., Lee, L.C., Ali, A., 2002. <strong>Characterisation</strong> <strong>of</strong><br />

protease activity <strong>in</strong> develop<strong>in</strong>g <strong>discus</strong> Symphysodon aeqllifasciata<br />

larva. Aquac. Res. 33, 663-672.<br />

Conrad, M., Lemb, K., Schubert, T., Mnrkl, J., 1998. Biochemical<br />

identification and tissue-specific expression patterns <strong>of</strong><br />

kerat<strong>in</strong>s <strong>in</strong> the zebra<strong>fish</strong> Danio rerio. Cell Tissue Res. 293,<br />

195-205.<br />

Fagan, M.S., O'Byrne-R<strong>in</strong>g, N., Ryan, R., Cotter, D., Whelan, K.,<br />

Mac Evilly, U., 2003. A biochemical study <strong>of</strong><strong>mucus</strong> lysozyme,<br />

<strong>prote<strong>in</strong>s</strong> and plasma thyrox<strong>in</strong>e <strong>of</strong>Atlantic salmon (Salrno salar)<br />

dur<strong>in</strong>g smoltification. Aquaculture 222, 287 - 300.<br />

Handy, R.D., Eddy, F.B., Roma<strong>in</strong>, G., 1989. In vitro evidence for<br />

the ionoregulatory role <strong>of</strong> ra<strong>in</strong>bow trout <strong>mucus</strong> <strong>in</strong> acid, acidJ<br />

alum<strong>in</strong>ium and z<strong>in</strong>c toxicity. 1. Fish BioI. 35,737-747.<br />

Hem<strong>in</strong>g, T.A., Paleczny, E.J., 1987. Compositional changes <strong>in</strong> sk<strong>in</strong><br />

<strong>mucus</strong> and blood serum dur<strong>in</strong>g starvation <strong>of</strong> trout. Aquaculture<br />

66,265-273.<br />

Hildemann, W.H., 1959. A cichlid <strong>fish</strong>, Symphysodon <strong>discus</strong> with<br />

unique nurture habits. Am. Nat. 93, 27-34.<br />

Kishida, M., Specker, J.L., 1994. Vitellogen<strong>in</strong> <strong>in</strong> the surface <strong>mucus</strong><br />

<strong>of</strong>tilapia (Oreochrornis mossarnbiclls): possibility for uptake by<br />

the free-swimm<strong>in</strong>g embryos. J. Exp. ZooI. 268, 258-268.<br />

Kishida, M., Specker, J.L., 2000. Paternal mouthbrood<strong>in</strong>g <strong>in</strong> the<br />

black ch<strong>in</strong>ned tilapia, Sarotherodon melanotheron (Pisces:<br />

cichlidae): changes <strong>in</strong> gonadal steroids and potential for<br />

vitellogen<strong>in</strong> transfer to larvae. Honn. Bo::hav. 37,40-48.<br />

Laemmli, U.K., 1970. Cleavage <strong>of</strong> structural <strong>prote<strong>in</strong>s</strong> dur<strong>in</strong>g<br />

assembly <strong>of</strong> the head <strong>of</strong> bacteriophage T 4 . Nature 227,<br />

680-685.<br />

Lebedva, N., Vosyliene, M.Z., Golovk<strong>in</strong>a, T., 2002. The effect <strong>of</strong><br />

toxic and heliophysical factors on the biochemical parameters <strong>of</strong><br />

the external <strong>mucus</strong> <strong>of</strong> carp (Cypr<strong>in</strong>us carpio L.). Arch. Pol.<br />

Fish. 10,5-14.<br />

L<strong>in</strong>denstrom, T., Buchman, K., Secombes, C.J., 2003. Gyrodactyills<br />

deljav<strong>in</strong>i <strong>in</strong>fection elicits IL-I beta expression <strong>in</strong> ra<strong>in</strong>bow trout<br />

sk<strong>in</strong>. Fish Shell<strong>fish</strong> Immunol. 15, 107-115.<br />

Manzon, L., 2002. The role <strong>of</strong> prolact<strong>in</strong> <strong>in</strong> <strong>fish</strong> osmoregulation: a<br />

review. Gen. Compo Endocr<strong>in</strong>ol. 125,291-310.<br />

Mor, A., Avtalion, R.R., 1990. Transfer <strong>of</strong> antibody activity from<br />

immunized mother to embryos <strong>in</strong> tilapias. J. Fish BioI. 37,<br />

249-255.<br />

Noakes, D.L.G., 1979. Parent-touch<strong>in</strong>g behaviour by young<br />

<strong>fish</strong>es: <strong>in</strong>cidence, function and causation. Environ. BioI. Fish.<br />

4,389-400.


8 K. Chong et al. / Aquaculture xx (2005) xxx-xxx<br />

Noakes, D.L.G., Barlow, G.w., 1973. Ontogeny <strong>of</strong> parent-contact<strong>in</strong>g<br />

behaviour <strong>in</strong> young Cichlasoma citr<strong>in</strong>ellum (Pisces Cichlidae).<br />

Behaviour 46, 221-255.<br />

Ogawa, M., 1970. Effects <strong>of</strong> prolact<strong>in</strong> on the <strong>epidermal</strong> mucous<br />

cells <strong>of</strong> the gold<strong>fish</strong> Carassius auralus L. Can. J. Zoo!. 48,<br />

501-503.<br />

Ottesen, O.H., Olafsen, l.A., 1997. Ontogenetic development and<br />

composition <strong>of</strong> the mucuos cells and the occurrence <strong>of</strong> saccular<br />

cells <strong>in</strong> the epidermis <strong>of</strong> Atlantic halibut. l. Fish Bio!. 50,<br />

620-633.<br />

Perk<strong>in</strong>s, D.N., Papp<strong>in</strong>, D.J., Creasy, D.M., Cottrell, l.S., 1999.<br />

Probability-based prote<strong>in</strong> identification by search<strong>in</strong>g sequence<br />

databases us<strong>in</strong>g mass spectrometry data. Electrophoresis 20<br />

(18),3551-3567.<br />

Picker<strong>in</strong>g, A.D., Macey, D.J., 1977. Structure, histochemistry and<br />

the effect <strong>of</strong> handl<strong>in</strong>g on mucous cells <strong>of</strong> the epidennis <strong>of</strong> the<br />

char SalvelillUs alp<strong>in</strong>us. l. Fish Bio!. 10,505-512.<br />

Ronnestad, 1., Tonheim, S.K., Fyhn, H.J., Rojas-Garcia, c.R.,<br />

Kamisaka, W., Koven, w., F<strong>in</strong>n, R.N., Terjesen, B.F., Barr, Y.,<br />

Conceicao, L.E.C., 2003. The supply <strong>of</strong> am<strong>in</strong>o acids dur<strong>in</strong>g<br />

early feed<strong>in</strong>g stages <strong>of</strong> mar<strong>in</strong>e <strong>fish</strong> larvae: a review <strong>of</strong> recent<br />

f<strong>in</strong>d<strong>in</strong>gs. Aquaculture 227, 147-164.<br />

Ross, N.W., Firth, KJ., Wang, A.P., Burka, J.F., Johnson, S.c.,<br />

2000. Changes <strong>in</strong> hydrolytic enzyme activities <strong>of</strong> na'ive Atlantic<br />

salmon Sa/mo sa/ar sk<strong>in</strong> <strong>mucus</strong> due to <strong>in</strong>fection with the<br />

salmon louse Lepeophtheirlls salmonis and cortisol implantation.<br />

Dis. Aquat. Org. 41, 43-51.<br />

Saglio, P., Fauconneau, B., 1985a. Free am<strong>in</strong>o acid content <strong>in</strong> <strong>fish</strong><br />

sk<strong>in</strong> <strong>mucus</strong> as an <strong>in</strong>dicator <strong>of</strong>starvation: a prelim<strong>in</strong>ary report. 1.<br />

Fish Bio!. 9, 537-541.<br />

Saglio, P., Fauconneau, B., 1985b. Free am<strong>in</strong>o acid content <strong>in</strong> the<br />

sk<strong>in</strong> <strong>mucus</strong> <strong>of</strong> gold<strong>fish</strong>, Carrasius aurallls L.: <strong>in</strong>fluence <strong>of</strong><br />

feed<strong>in</strong>g. Compo Biochem. Physio!. 82A, 67 - 70.<br />

Sakamoto, T., Yasunaga, H., Yokota, S., Ando, M., 2002. Differential<br />

display <strong>of</strong> sk<strong>in</strong> mRNAs regulated environmental conditions<br />

<strong>in</strong> a mudskipper. l. Compo Physio!., B 172,447-453.<br />

Schutz, M.S., Barlow, G.w., 1997. Young <strong>of</strong> the Midas cichlid get<br />

biologically active nonnutrients by eat<strong>in</strong>g <strong>mucus</strong> fonn the<br />

surface <strong>of</strong> their parents. Fish Physio!. Biochem. 16, 11-18.<br />

Shephard, K.L., 1994. Functions for <strong>fish</strong> <strong>mucus</strong>. Rev. Fish Bio!.<br />

Fish. 4, 401-429.<br />

Sundara. R.B., 1962. The extraord<strong>in</strong>ary feed<strong>in</strong>g habits <strong>of</strong>the cat<strong>fish</strong><br />

Mystus aor (Hamilton) and MysIlIs seengha/a (Sykes). Proc.<br />

Nat!. Acad. Sci., India 28, 193-200.<br />

Takemura, A., 1994. Vitellogen<strong>in</strong>-like substance <strong>in</strong> the sk<strong>in</strong> <strong>mucus</strong> <strong>of</strong><br />

tilapia Oreochromis mossambicus. Fish. Sci. 60 (6), 789-790.<br />

Takemura, A., Takano, K., 1997. Transfer <strong>of</strong> maternally-derived<br />

immunoglob<strong>in</strong> (IgM) to larvae <strong>in</strong> tilapia Oreochromis 1IlossambiclIs.<br />

Fish Shell<strong>fish</strong> Immuno!. 7, 355-363.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!