27.11.2012 Views

The stereochemistry of amino acids in the Murchison meteorite

The stereochemistry of amino acids in the Murchison meteorite

The stereochemistry of amino acids in the Murchison meteorite

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Abstract<br />

Precambrian Research 106 (2001) 35–45<br />

Review<br />

<strong>The</strong> <strong>stereochemistry</strong> <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> <strong>the</strong> <strong>Murchison</strong><br />

<strong>meteorite</strong><br />

M.H. Engel a, *, S.A. Macko b<br />

a School <strong>of</strong> Geology & Geophysics, Uni�ersity <strong>of</strong> Oklahoma, Norman, OK 73019, USA<br />

b Department <strong>of</strong> En�ironmental Sciences, Uni�ersity <strong>of</strong> Virg<strong>in</strong>ia, Charlottes�ille, VA 22903, USA<br />

<strong>The</strong> questions <strong>of</strong> how, where and when life orig<strong>in</strong>ated <strong>in</strong> our solar system rema<strong>in</strong> largely unanswered. Some<br />

advances have been made with respect to abiotic syn<strong>the</strong>sis <strong>of</strong> <strong>the</strong> key molecules deemed essential for <strong>the</strong> construction<br />

<strong>of</strong> a liv<strong>in</strong>g cell. In particular, a variety <strong>of</strong> plausible mechanisms have been suggested for <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong>,<br />

<strong>the</strong> build<strong>in</strong>g blocks <strong>of</strong> peptides and prote<strong>in</strong>s. Laboratory simulation experiments result <strong>in</strong> <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> racemic<br />

<strong>am<strong>in</strong>o</strong> <strong>acids</strong>. However, life as we know it is based almost exclusively on L-enantiomers ra<strong>the</strong>r than racemic mixtures<br />

<strong>of</strong> D- andL-enantiomers. A partial solution to this problem may be that <strong>the</strong> L-enantiomer excess essential for life’s<br />

orig<strong>in</strong> on Earth was <strong>in</strong>troduced from elsewhere <strong>in</strong> <strong>the</strong> solar system. For <strong>the</strong> past 20 years we have <strong>in</strong>vestigated <strong>the</strong><br />

<strong>stereochemistry</strong> <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> stones <strong>of</strong> <strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong>. Many <strong>of</strong> <strong>the</strong> common prote<strong>in</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong><br />

<strong>Murchison</strong> are not racemic (L-enantiomer excess) and, based on <strong>the</strong>ir overall distribution and respective stable isotope<br />

compositions, do not appear to be artifacts <strong>of</strong> terrestrial contam<strong>in</strong>ants (i.e. L-<strong>am<strong>in</strong>o</strong> <strong>acids</strong>) <strong>in</strong>troduced subsequent to<br />

impact. We hypo<strong>the</strong>size that comet and <strong>meteorite</strong> impacts dur<strong>in</strong>g <strong>the</strong> early stages <strong>of</strong> Earth’s formation provided at<br />

least some <strong>of</strong> <strong>the</strong> essential components with <strong>the</strong> correct <strong>stereochemistry</strong> for <strong>the</strong> orig<strong>in</strong> <strong>of</strong> life. © 2001 Elsevier Science<br />

B.V. All rights reserved.<br />

Keywords: Am<strong>in</strong>o <strong>acids</strong>; Stable isotopes; <strong>Murchison</strong> <strong>meteorite</strong>; Stereochemistry; Racemization<br />

1. Introduction<br />

For as far back <strong>in</strong> time as <strong>the</strong> terrestrial rock<br />

record extends, it appears that microbial life may<br />

have existed on Earth. Pflug and colleagues (e.g.<br />

Pflug and He<strong>in</strong>z, 1997 and references <strong>the</strong>re<strong>in</strong>)<br />

provided possible microscopic and spectroscopic<br />

* Correspond<strong>in</strong>g author.<br />

0301-9268/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.<br />

PII: S0301-9268(00)00123-6<br />

www.elsevier.com/locate/precamres<br />

evidence for primitive cells <strong>in</strong> banded ironstones<br />

<strong>of</strong> <strong>the</strong> 3.8 Ga old Isua supracrustal belt, southwest<br />

Greenland. <strong>The</strong>se f<strong>in</strong>d<strong>in</strong>gs have been <strong>the</strong><br />

topic <strong>of</strong> some debate, because <strong>am<strong>in</strong>o</strong> <strong>acids</strong> and<br />

hydrocarbons that could be extracted from <strong>the</strong>se<br />

rocks appeared to be modern contam<strong>in</strong>ants (e.g.<br />

Nagy et al., 1981). It should be noted, however,<br />

that stable carbon isotope analyses <strong>of</strong> carbonaceous<br />

materials (e.g. Schidlowski, 1993 and refer-


36<br />

ences <strong>the</strong>re<strong>in</strong>) and, more recently, <strong>of</strong> organic <strong>in</strong>clusions<br />

<strong>in</strong> apatite crystals (Mojzsis et al., 1996;<br />

Nutman et al., 1997), provide evidence that some<br />

<strong>of</strong> <strong>the</strong> carbonaceous material <strong>in</strong> Isua as well as<br />

perhaps <strong>in</strong> slightly older rocks <strong>in</strong> <strong>the</strong> region (Mojzsis<br />

et al., 1996), is possibly <strong>of</strong> ancient biolgical<br />

orig<strong>in</strong>. This is because <strong>the</strong> � 13 C values for <strong>the</strong>se<br />

samples exhibit <strong>the</strong> depletion <strong>in</strong> 13 C that is typical<br />

for most organisms on Earth to this day (Schidlowski,<br />

1993).<br />

If <strong>the</strong> currently known rock record <strong>of</strong> Earth<br />

reflects an essentially un<strong>in</strong>terrupted history <strong>of</strong> biological<br />

activity, serious limitations are placed on<br />

(1) constra<strong>in</strong><strong>in</strong>g an appropriate temporal w<strong>in</strong>dow<br />

for life’s orig<strong>in</strong> on Earth and (2) elucidat<strong>in</strong>g <strong>the</strong><br />

orig<strong>in</strong>s and availability <strong>of</strong> <strong>the</strong> organic compound<br />

<strong>in</strong>ventory that must have preceded life. Debate<br />

cont<strong>in</strong>ues with respect to <strong>the</strong> extent to which <strong>the</strong><br />

Earth’s earliest Archean atmosphere/hydrosphere<br />

was oxidiz<strong>in</strong>g (e.g. Watanabe et al., 1997), which<br />

constra<strong>in</strong>s <strong>the</strong> feasibility <strong>of</strong> terrestrial, abiotic organic<br />

syn<strong>the</strong>sis at <strong>the</strong> air/sea <strong>in</strong>terface. <strong>The</strong> importance<br />

<strong>of</strong> alternative, deep ocean environments<br />

such as hydro<strong>the</strong>rmal vents for abiotic syn<strong>the</strong>sis<br />

<strong>of</strong> organic compounds (e.g. Hennet et al., 1992)<br />

and an assessment <strong>of</strong> <strong>the</strong>ir relative stabilities (e.g.<br />

Shock, 1990; Qian et al., 1993; Helgeson et al.,<br />

1998 and references <strong>the</strong>re<strong>in</strong>) and implications for<br />

life’s orig<strong>in</strong> (e.g. Baross and H<strong>of</strong>fman, 1985; Russell<br />

et al., 1989; Corliss, 1990) cont<strong>in</strong>ue to be<br />

<strong>in</strong>tensely explored. However, hypo<strong>the</strong>ses concern<strong>in</strong>g<br />

abiotic organic syn<strong>the</strong>sis dur<strong>in</strong>g <strong>the</strong> earliest<br />

Archean rema<strong>in</strong> untestable until significantly<br />

older terrestrial sediments or metasediments are<br />

subsequently discovered that predate life. Whilst<br />

remnants <strong>of</strong> 3230 Ma hydro<strong>the</strong>rmal vents have<br />

recently been discovered (de Ronde et al., 1997),<br />

<strong>the</strong>re is no doubt that liv<strong>in</strong>g systems were already<br />

operational by this time. F<strong>in</strong>ally, <strong>in</strong>creas<strong>in</strong>g evidence<br />

that <strong>the</strong> Earth is likely to have experienced<br />

several major episodes <strong>of</strong> impact events dur<strong>in</strong>g <strong>the</strong><br />

first �0.5 Ga <strong>of</strong> its history (Chyba et al., 1990;<br />

Chyba and Sagan, 1992) must to some extent<br />

limit <strong>the</strong> likelihood for survival <strong>of</strong> early life forms<br />

had <strong>the</strong>y evolved dur<strong>in</strong>g this time <strong>in</strong>terval.<br />

Given <strong>the</strong> environmental constra<strong>in</strong>ts and time<br />

constra<strong>in</strong>ts for <strong>the</strong> abiotic syn<strong>the</strong>sis <strong>of</strong> organic<br />

compounds on Earth and <strong>the</strong> prospects for <strong>the</strong>ir<br />

M.H. Engel, S.A. Macko / Precambrian Research 106 (2001) 35–45<br />

subsequent assimilation as a viable cell, it is perhaps<br />

not surpris<strong>in</strong>g that alternative scenarios have<br />

been suggested concern<strong>in</strong>g <strong>the</strong> <strong>in</strong>troduction <strong>of</strong><br />

life’s precursors to Earth (e.g. Chyba et al., 1990;<br />

Chyba and Sagan, 1992; Greenberg, 1997) or life<br />

itself (Wickramas<strong>in</strong>ghe et al., 1997) from extraterrestrial<br />

sources. <strong>The</strong> occurrence <strong>of</strong> remanents <strong>of</strong><br />

past extraterrestrial life and <strong>the</strong>ir <strong>in</strong>troduction to<br />

Earth via impact events also cont<strong>in</strong>ues to be<br />

explored (e.g. McKay et al., 1996). Whilst sources<br />

and modes <strong>of</strong> syn<strong>the</strong>sis rema<strong>in</strong> uncerta<strong>in</strong>, <strong>the</strong>re is<br />

ample evidence for <strong>the</strong> occurrence <strong>of</strong> organic<br />

compounds <strong>in</strong> extraterrestrial materials that have<br />

impacted Earth at various times. In particular, <strong>the</strong><br />

carbonaceous <strong>meteorite</strong>s provide important <strong>in</strong>sights<br />

with respect to <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong><br />

at approximately <strong>the</strong> time <strong>of</strong> formation <strong>of</strong> <strong>the</strong><br />

solar system (Engel et al., 1993; Cron<strong>in</strong> and<br />

Chang, 1993). Organic-rich carbonaceous <strong>meteorite</strong>s<br />

are rare occurrences with few hav<strong>in</strong>g been<br />

collected (�36) at <strong>the</strong> time <strong>of</strong> <strong>the</strong>ir observed falls<br />

(Nagy, 1975). With <strong>the</strong> exception <strong>of</strong> additional<br />

<strong>meteorite</strong>s and micro<strong>meteorite</strong>s (e.g. Maurette,<br />

1998) collected from <strong>the</strong> ice <strong>in</strong> Antarctica, environmental<br />

conditions on <strong>the</strong> dynamic Earth are<br />

not conducive for <strong>the</strong> preservation <strong>of</strong> <strong>meteorite</strong>s<br />

that may have fallen on land <strong>in</strong> <strong>the</strong> geologic past.<br />

<strong>The</strong> fact that anyth<strong>in</strong>g <strong>in</strong>troduced to Earth is<br />

immediately susceptible to contam<strong>in</strong>ation by terrestrial<br />

organic matter presents a formidable challenge<br />

with respect to dist<strong>in</strong>guish<strong>in</strong>g <strong>in</strong>digenous<br />

organic compounds from terrestrial overpr<strong>in</strong>ts.<br />

This is particularly true for compounds such as<br />

<strong>am<strong>in</strong>o</strong> <strong>acids</strong>, that are ubiquitous to liv<strong>in</strong>g systems.<br />

What follows is a summary <strong>of</strong> what is currently<br />

known about <strong>the</strong> distribution and <strong>stereochemistry</strong><br />

<strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> carbonaceous <strong>meteorite</strong>s, focus<strong>in</strong>g<br />

on <strong>the</strong> common <strong>am<strong>in</strong>o</strong> <strong>acids</strong> that are <strong>the</strong><br />

build<strong>in</strong>g blocks <strong>of</strong> peptides and prote<strong>in</strong>s <strong>in</strong> liv<strong>in</strong>g<br />

systems. A hypo<strong>the</strong>sis is discussed for dist<strong>in</strong>guish<strong>in</strong>g<br />

terrestrial vs extraterrestrial <strong>am<strong>in</strong>o</strong> <strong>acids</strong> based<br />

on <strong>the</strong>ir stable isotope compositions.<br />

2. Am<strong>in</strong>o acid distributions<br />

S<strong>in</strong>ce <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> n<strong>in</strong>eteenth century<br />

<strong>the</strong>re have only been approx. 36 observed falls <strong>of</strong>


carbonaceous <strong>meteorite</strong>s for which stones were<br />

collected. In only a few cases were <strong>the</strong> stones<br />

archived for subsequent study. It is <strong>in</strong>terest<strong>in</strong>g to<br />

note that s<strong>in</strong>ce <strong>the</strong> falls <strong>of</strong> Pueblito de Allende<br />

and <strong>Murchison</strong> <strong>in</strong> 1969, no observed falls <strong>of</strong><br />

carbonaceous <strong>meteorite</strong>s have been reported. This<br />

30 year hiatus is <strong>the</strong> longest <strong>in</strong>terval without an<br />

observed fall s<strong>in</strong>ce <strong>the</strong> fall <strong>of</strong> Alais <strong>in</strong> 1806. For<br />

<strong>the</strong> past 39 years, numerous <strong>in</strong>vestigations <strong>of</strong> <strong>the</strong><br />

distributions <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> carbonaceous <strong>meteorite</strong>s<br />

have been undertaken, most <strong>of</strong> which<br />

have <strong>in</strong>dicated <strong>the</strong> presence <strong>of</strong> common prote<strong>in</strong><br />

<strong>am<strong>in</strong>o</strong> <strong>acids</strong>. Caution must be exercised when<br />

attempt<strong>in</strong>g to <strong>in</strong>terpret <strong>the</strong>se data sets, as <strong>the</strong><br />

precautions taken for sample storage have varied<br />

over <strong>the</strong> decades and laboratory protocols for<br />

sample handl<strong>in</strong>g, extraction and analysis have<br />

been substantially modified with <strong>the</strong> passage <strong>of</strong><br />

time. Thus, <strong>the</strong> precision and accuracy <strong>of</strong> <strong>am<strong>in</strong>o</strong><br />

acid abundances <strong>in</strong> <strong>meteorite</strong>s relative to background<br />

impurities (e.g. <strong>in</strong> solvents, <strong>acids</strong> and water<br />

used for sample extractions), <strong>in</strong> particular for<br />

analyses performed prior to 1970, are uncerta<strong>in</strong>.<br />

Urey (1966), Hayes (1967) and Nagy (1975) noted<br />

many <strong>of</strong> <strong>the</strong> challenges encountered when attempt<strong>in</strong>g<br />

<strong>am<strong>in</strong>o</strong> acid analyses at trace levels, and,<br />

subsequent to <strong>the</strong>se reports, attempts were made<br />

(and cont<strong>in</strong>ue to be made) to improve methods<br />

for sample handl<strong>in</strong>g and analysis.<br />

Given <strong>the</strong> antiquity <strong>of</strong> most observed falls <strong>of</strong><br />

carbonaceous <strong>meteorite</strong>s, it is not surpris<strong>in</strong>g that<br />

attention has focused on <strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong><br />

that fell <strong>in</strong> Australia <strong>in</strong> 1969, and on carbonaceous<br />

<strong>meteorite</strong>s that have been recovered from<br />

<strong>the</strong> Antarctic ice sheet over <strong>the</strong> past few decades.<br />

However, <strong>the</strong> prist<strong>in</strong>e nature <strong>of</strong> stones recovered<br />

from Antarctica requires fur<strong>the</strong>r <strong>in</strong>vestigation,<br />

ow<strong>in</strong>g to <strong>the</strong>ir extended residence times and thus<br />

<strong>the</strong> possibility <strong>of</strong> contam<strong>in</strong>ation from <strong>am<strong>in</strong>o</strong> <strong>acids</strong><br />

<strong>in</strong> <strong>the</strong> ice (Engel and Macko, 1997a; Bada et al.,<br />

1998).<br />

As summarized by Shock and Schulte (1990),<br />

<strong>the</strong> relative abundances <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong><br />

<strong>Murchison</strong> <strong>meteorite</strong> stones have been fairly consistent<br />

from laboratory to laboratory. Differences<br />

<strong>in</strong> absolute abundances may <strong>in</strong> part reflect <strong>the</strong><br />

variety <strong>of</strong> extraction procedures and analytical<br />

methods that have been employed (e.g. Shock and<br />

M.H. Engel, S.A. Macko / Precambrian Research 106 (2001) 35–45 37<br />

Schulte, 1990). We have analyzed several<br />

<strong>Murchison</strong> stones, all <strong>of</strong> which were <strong>in</strong>itially<br />

archived at <strong>the</strong> Field Museum, Chicago, IL, USA.<br />

<strong>The</strong> abundances <strong>of</strong> common <strong>am<strong>in</strong>o</strong> acid constituents<br />

<strong>in</strong> <strong>the</strong> acid hydrolyzed water extracts <strong>of</strong><br />

two <strong>of</strong> <strong>the</strong>se stones are shown <strong>in</strong> Table 1. For<br />

comparison, <strong>am<strong>in</strong>o</strong> acid abundances are also<br />

shown for <strong>the</strong> same extract <strong>of</strong> two stones (one <strong>of</strong><br />

which was a portion <strong>of</strong> <strong>the</strong> same stone analyzed<br />

by Engel and Nagy, 1982) reported by Cron<strong>in</strong> and<br />

Pizzarello (1983). <strong>The</strong> distributions <strong>of</strong> <strong>the</strong> common<br />

�-<strong>am<strong>in</strong>o</strong> <strong>acids</strong> are fairly consistent from<br />

stone to stone. <strong>The</strong> distributions <strong>of</strong> common<br />

<strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> unhydrolyzed water extracts <strong>of</strong><br />

<strong>Murchison</strong> stones are also similar, although absolute<br />

abundances are less than <strong>in</strong> <strong>the</strong> hydrolyzed<br />

water extracts (Table 2). An <strong>in</strong>terest<strong>in</strong>g characteristic<br />

<strong>of</strong> <strong>Murchison</strong> is <strong>the</strong> fact that several <strong>am<strong>in</strong>o</strong><br />

<strong>acids</strong> that are common to biological systems are<br />

ei<strong>the</strong>r present <strong>in</strong> trace amounts (e.g. ser<strong>in</strong>e,<br />

threon<strong>in</strong>e) or are below current detection limits<br />

(e.g. tyros<strong>in</strong>e, phenylalan<strong>in</strong>e, methion<strong>in</strong>e, cyste<strong>in</strong>e,<br />

lys<strong>in</strong>e, histid<strong>in</strong>e, arg<strong>in</strong><strong>in</strong>e). <strong>The</strong> absence <strong>of</strong> <strong>the</strong>se<br />

<strong>am<strong>in</strong>o</strong> <strong>acids</strong> supports <strong>the</strong> hypo<strong>the</strong>sis that <strong>the</strong> <strong>in</strong>teriors<br />

<strong>of</strong> <strong>the</strong>se stones have received m<strong>in</strong>imal, if any<br />

<strong>in</strong>put <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> from exogenous sources<br />

subsequent to impact (Engel and Nagy, 1982,<br />

1983).<br />

It is also notable that <strong>the</strong> absolute abundances<br />

<strong>of</strong> several <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> <strong>the</strong> hydrolyzed water<br />

extract <strong>of</strong> <strong>Murchison</strong> appear to have decreased<br />

with <strong>the</strong> passage <strong>of</strong> time subsequent to impact.<br />

This is particularly <strong>the</strong> case with respect to �<strong>am<strong>in</strong>o</strong>isobutyric<br />

acid and isoval<strong>in</strong>e (Table 1), nonprote<strong>in</strong><br />

<strong>am<strong>in</strong>o</strong> <strong>acids</strong> that have rarely been<br />

reported as constituents <strong>of</strong> biological systems, although<br />

<strong>the</strong>y may apparently form from hydanto<strong>in</strong><br />

precursors orig<strong>in</strong>at<strong>in</strong>g from coal gasification (Olson,<br />

1992) and/or <strong>in</strong>dustrial waste (Mita and Shimoyama,<br />

1998). It is presently unknown whe<strong>the</strong>r<br />

<strong>the</strong> apparent decrease <strong>in</strong> absolute abundances <strong>of</strong><br />

�-<strong>am<strong>in</strong>o</strong>isobutyric acid and isoval<strong>in</strong>e are a consequence<br />

<strong>of</strong> <strong>the</strong>ir <strong>in</strong>stability (Cron<strong>in</strong> and Pizzarello,<br />

1983) or, alternatively, reflect <strong>the</strong> possibility that<br />

<strong>am<strong>in</strong>o</strong> acid distributions and abundances actually<br />

vary from stone to stone. However, it appears<br />

that <strong>the</strong> concentrations <strong>of</strong> �-<strong>am<strong>in</strong>o</strong>isobutyric acid<br />

and isoval<strong>in</strong>e have not decreased with <strong>the</strong> passage


38<br />

M.H. Engel, S.A. Macko / Precambrian Research 106 (2001) 35–45<br />

Table 1<br />

Concentrations (nmol g −1 ) <strong>of</strong> pr<strong>in</strong>cipal <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> hydrolyzed water extracts <strong>of</strong> <strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong><br />

Am<strong>in</strong>o acid Engel and Nagy (1982) a Cron<strong>in</strong> and Pizzarello (1983) b Engel and Macko (1997b) c<br />

A B<br />

Common <strong>am<strong>in</strong>o</strong> <strong>acids</strong><br />

Glutamic acid 18.2<br />

15.4 23.5 10.8<br />

Aspartic acid<br />

8.5 4.9 5.1 4.7<br />

n.r. d Prol<strong>in</strong>e 13.5<br />

n.r. n.r.<br />

Glyc<strong>in</strong>e<br />

45.8 43.7 96.0 24.5<br />

�-Alan<strong>in</strong>e 13.1<br />

8.8 15.2 12.8<br />

Leuc<strong>in</strong>e<br />

1.9 �1.8 �3.9 2.5<br />

Sarcos<strong>in</strong>e 4.7<br />

n.r. n.r. n.r.<br />

Alan<strong>in</strong>e<br />

15.3 19.4 43.3 10.4<br />

Val<strong>in</strong>e<br />

Exotic <strong>am<strong>in</strong>o</strong> <strong>acids</strong><br />

8.6<br />

4.7 10.2 n.r.<br />

�-Am<strong>in</strong>oisobutyric acid 107.8 145.3<br />

100.2 20.1<br />

Isoval<strong>in</strong>e 23.6 53.4<br />

27.7 8.0e a Am<strong>in</strong>o acid concentrations determ<strong>in</strong>ed by GC.<br />

b Am<strong>in</strong>o acid concentrations determ<strong>in</strong>ed by HPLC. A: Values for a portion <strong>of</strong> <strong>the</strong> same stone analyzed by Engel and Nagy (1982).<br />

B: Values for a stone from <strong>the</strong> ASU collection.<br />

c Am<strong>in</strong>o acid concentrations determ<strong>in</strong>ed by HPLC.<br />

d4n.r.; not reported.<br />

e Value for isoval<strong>in</strong>e <strong>in</strong>cludes a contribution from val<strong>in</strong>e that co-eluted dur<strong>in</strong>g HPLC analysis.<br />

<strong>of</strong> time <strong>in</strong> <strong>the</strong> unhydrolyzed water extracts <strong>of</strong><br />

<strong>Murchison</strong> (Table 2), imply<strong>in</strong>g that it may be <strong>the</strong><br />

precursors <strong>of</strong> <strong>the</strong>se <strong>am<strong>in</strong>o</strong> <strong>acids</strong> ra<strong>the</strong>r than <strong>the</strong><br />

<strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>the</strong>mselves that are unstable.<br />

To date, <strong>the</strong> only really anomalous <strong>am<strong>in</strong>o</strong> acid<br />

distribution reported for a <strong>Murchison</strong> stone was<br />

one that was archived at <strong>the</strong> Smithsonian Institution<br />

(Cron<strong>in</strong> and Pizzarello, 1983; Shock and<br />

Schulte, 1990). <strong>The</strong> anomalously high levels <strong>of</strong><br />

common prote<strong>in</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> this stone are<br />

assumed to be a consequence <strong>of</strong> terrestrial contam<strong>in</strong>ation.<br />

<strong>The</strong> higher abundances <strong>of</strong> ser<strong>in</strong>e and<br />

Table 2<br />

Concentrations (nmol g −1 ) <strong>of</strong> pr<strong>in</strong>cipal <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> unhydrolyzed water extracts <strong>of</strong> <strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong><br />

Am<strong>in</strong>o acid<br />

Cron<strong>in</strong> (1976a) a Cron<strong>in</strong> (1976b) 2 Silfer (1991) a<br />

Common <strong>am<strong>in</strong>o</strong> <strong>acids</strong><br />

Glutamic acid 3.5 1.9<br />

4.6<br />

Aspartic acid 1.0<br />

1.2<br />

3.9<br />

Glyc<strong>in</strong>e 31.0 25.5<br />

28.1<br />

�-Alan<strong>in</strong>e 6.9<br />

5.7<br />

8.1<br />

Leuc<strong>in</strong>e<br />

0.9<br />

1.2 1.6<br />

Isoleuc<strong>in</strong>e 0.8 1.4<br />

1.8<br />

Alan<strong>in</strong>e<br />

Exotic <strong>am<strong>in</strong>o</strong> <strong>acids</strong><br />

17.1 15.9 12.9<br />

�-Am<strong>in</strong>oisobutyric acid<br />

19.9 15.0<br />

16.0<br />

6.0b 4.6b 7.5b Isoval<strong>in</strong>e<br />

�-Am<strong>in</strong>o-n-butyric acid 5.3<br />

4.6<br />

3.7<br />

a Concentration determ<strong>in</strong>ed by HPLC.<br />

b Concentration <strong>in</strong>cludes contribution from val<strong>in</strong>e that co-eluted dur<strong>in</strong>g analysis.


threon<strong>in</strong>e <strong>in</strong> this stone, common constituents <strong>of</strong><br />

f<strong>in</strong>gerpr<strong>in</strong>ts (Nagy, 1975), <strong>in</strong>dicate <strong>the</strong> possibility<br />

<strong>of</strong> contam<strong>in</strong>ation dur<strong>in</strong>g sample handl<strong>in</strong>g.<br />

3. Am<strong>in</strong>o acid <strong>stereochemistry</strong><br />

<strong>The</strong> conventional wisdom has been that <strong>am<strong>in</strong>o</strong><br />

<strong>acids</strong> <strong>in</strong> extraterrestrial materials were syn<strong>the</strong>sized<br />

via abiotic mechanisms. To <strong>the</strong> best <strong>of</strong> our knowledge,<br />

all laboratory experiments designed to simulate<br />

natural, abiotic syn<strong>the</strong>sis <strong>in</strong> our solar system<br />

have resulted <strong>in</strong> racemic mixtures <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong><br />

(e.g. Khare et al., 1986; Hennet et al., 1992; Engel<br />

et al., 1995). It should be noted, however, that<br />

whilst <strong>the</strong>re have been hundreds <strong>of</strong> abiotic syn<strong>the</strong>ses<br />

attempted s<strong>in</strong>ce <strong>the</strong> <strong>in</strong>itial, pioneer<strong>in</strong>g experiments<br />

<strong>of</strong> Miller (1953), <strong>in</strong> very few <strong>in</strong>stances have<br />

attempts been made to document <strong>the</strong> <strong>stereochemistry</strong><br />

<strong>of</strong> <strong>the</strong> <strong>am<strong>in</strong>o</strong> acid products (e.g. Khare et al.,<br />

1986; Hennet et al., 1992; Engel et al., 1995).<br />

It has generally been assumed that s<strong>in</strong>ce laboratory<br />

simulation experiments result <strong>in</strong> <strong>the</strong> syn<strong>the</strong>sis<br />

<strong>of</strong> racemic <strong>am<strong>in</strong>o</strong> <strong>acids</strong>, <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> extraterrestrial<br />

materials that conta<strong>in</strong> one or more chiral<br />

centers should also be racemic. Any <strong>in</strong>dication <strong>of</strong><br />

an L-enantiomer excess has generally been attributed<br />

to contam<strong>in</strong>ation from <strong>the</strong> modern terrestrial<br />

biosphere (Bada et al., 1983, 1998).<br />

However, as <strong>in</strong> <strong>the</strong> case <strong>of</strong> simulation experiments,<br />

it is important to note that very few chromatograms<br />

have ever been published that<br />

document <strong>the</strong> <strong>stereochemistry</strong> <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong><br />

carbonaceous <strong>meteorite</strong>s (e.g. Kvenvolden et al.,<br />

1970; Engel and Nagy, 1982; Cron<strong>in</strong> and Pizzarello,<br />

1997; Engel and Macko, 1997b).<br />

Kvenvolden et al. (1970) published <strong>the</strong> first gas<br />

chromatogram <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> <strong>the</strong> <strong>Murchison</strong><br />

<strong>meteorite</strong>. <strong>The</strong>y concluded that alan<strong>in</strong>e was approximately<br />

racemic. However, limited column<br />

resolution and <strong>the</strong> lack <strong>of</strong> capability for selected<br />

ion monitor<strong>in</strong>g at that time did not permit <strong>the</strong><br />

comprehensive assessment <strong>of</strong> <strong>the</strong> <strong>stereochemistry</strong><br />

<strong>of</strong> most <strong>of</strong> <strong>the</strong> common <strong>am<strong>in</strong>o</strong> <strong>acids</strong>. Subsequent<br />

to this <strong>in</strong>itial f<strong>in</strong>d<strong>in</strong>g, Engel and Nagy (1982)<br />

reported that whilst alan<strong>in</strong>e was <strong>the</strong> most highly<br />

racemized <strong>am<strong>in</strong>o</strong> acid <strong>in</strong> <strong>the</strong> acid hydrolyzed water<br />

extract <strong>of</strong> <strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong>, <strong>in</strong> was not<br />

M.H. Engel, S.A. Macko / Precambrian Research 106 (2001) 35–45 39<br />

racemic and exhibited an excess <strong>of</strong> <strong>the</strong> L-enantiomer.<br />

<strong>The</strong>y reported that <strong>the</strong> o<strong>the</strong>r common<br />

prote<strong>in</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> were even less racemized.<br />

Whilst Bada et al. (1983) suggested that <strong>the</strong> only<br />

plausible explanation for <strong>the</strong>se results was contam<strong>in</strong>ation,<br />

Engel and Nagy (1983) argued that if<br />

<strong>the</strong> stone had been contam<strong>in</strong>ated by terrestrial<br />

biota, <strong>the</strong>n <strong>the</strong> o<strong>the</strong>r <strong>am<strong>in</strong>o</strong> <strong>acids</strong> that are common<br />

to all liv<strong>in</strong>g systems (e.g. cyste<strong>in</strong>e, methion<strong>in</strong>e,<br />

tyros<strong>in</strong>e, phenylalan<strong>in</strong>e, etc.) should also have<br />

been present. Also, if contam<strong>in</strong>ation was sufficient<br />

to perturb all <strong>of</strong> <strong>the</strong> prote<strong>in</strong> <strong>am<strong>in</strong>o</strong> acid D/L<br />

values, <strong>the</strong>n <strong>the</strong> abundances for <strong>the</strong> common<br />

<strong>am<strong>in</strong>o</strong> <strong>acids</strong> present <strong>in</strong> this stone should not have<br />

been identical to those <strong>of</strong> most o<strong>the</strong>r <strong>Murchison</strong><br />

stones (e.g. Table 1 and Table 2). Fur<strong>the</strong>rmore, it<br />

would be expected that if surficial contam<strong>in</strong>ation<br />

had occurred, this would have been removed by<br />

<strong>the</strong> water extraction process. However, sequential<br />

acid digestion <strong>of</strong> <strong>the</strong> <strong>meteorite</strong> powder subsequent<br />

to water extraction led to <strong>the</strong> recovery <strong>of</strong> <strong>am<strong>in</strong>o</strong><br />

<strong>acids</strong> that were even less racemized (Table 3). Our<br />

previous attempts at cultur<strong>in</strong>g microbial communities<br />

on <strong>Murchison</strong> substrates were s<strong>in</strong>gularly<br />

unsuccessful (Engel and Nagy, 1983). However,<br />

<strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong> fall was 30 years ago<br />

and it is evident that storage protocols for <strong>the</strong><br />

stones have varied. As <strong>in</strong>dicated above, at least<br />

one stone archived at <strong>the</strong> Smithsonian Institution<br />

appears to have been contam<strong>in</strong>ated. More recently,<br />

Steele et al. (1999) have reported bacterial<br />

and fungal contam<strong>in</strong>ants on a small, exterior sample<br />

<strong>of</strong> a <strong>Murchison</strong> stone. Thus, appropriate caution<br />

should be exercised when select<strong>in</strong>g<br />

appropriate stones for future analyses.<br />

More recently, we have determ<strong>in</strong>ed <strong>the</strong> <strong>stereochemistry</strong><br />

for <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> <strong>the</strong> hydrolyzed water<br />

extracts <strong>of</strong> two additional <strong>Murchison</strong> stones, and<br />

our results support <strong>the</strong> <strong>in</strong>itial f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> Engel<br />

and Nagy (1982). All <strong>of</strong> <strong>the</strong> common <strong>am<strong>in</strong>o</strong> <strong>acids</strong><br />

exhibit a moderate to strong excess <strong>of</strong> <strong>the</strong> L-enantiomer<br />

(Table 3). As <strong>in</strong> <strong>the</strong> <strong>in</strong>itial reports <strong>of</strong> Engel<br />

(1980) and Engel and Nagy (1982), mass spectrometry<br />

has been employed to document peak<br />

purities and selected ion monitor<strong>in</strong>g (SIM) has<br />

been used to confirm <strong>the</strong> <strong>am<strong>in</strong>o</strong> acid D/L values<br />

(Engel et al., 1990; Engel and Macko, 1997b).<br />

Pizzarello and Cron<strong>in</strong> (1998) have suggested that


40<br />

M.H. Engel, S.A. Macko / Precambrian Research 106 (2001) 35–45<br />

Table 3<br />

Am<strong>in</strong>o acid D/L values <strong>in</strong> various extracts <strong>of</strong> <strong>Murchison</strong> <strong>meteorite</strong> stones<br />

Am<strong>in</strong>o acid Engel et al., (1990) b<br />

Engel and Nagy (1982) a Engel and Macko (1997b) c<br />

A<br />

B<br />

Alan<strong>in</strong>e 0.60 0.31 0.85 0.50<br />

Glutamic acid 0.30 0.18 0.57 0.30<br />

Aspartic acid<br />

0.30 0.13 0.22<br />

0.20<br />

Prol<strong>in</strong>e 0.3<br />

0.11 N.D. d N.D.<br />

Leuc<strong>in</strong>e 0.17 0.03<br />

N.D.<br />

N.D.<br />

Val<strong>in</strong>e<br />

N.D. N.D. 0.63<br />

N.D.<br />

a A: hydrolyzed water extract; B: acid digestion <strong>of</strong> residual stone that had been previously water extracted.<br />

b Unhydrolyzed water extract.<br />

c Hydrolyzed water extract.<br />

d N.D.: not determ<strong>in</strong>ed.<br />

<strong>the</strong> L-enantiomer excess for one <strong>of</strong> <strong>the</strong> prote<strong>in</strong><br />

<strong>am<strong>in</strong>o</strong> <strong>acids</strong>, i.e. alan<strong>in</strong>e, is a consequence <strong>of</strong><br />

co-elution <strong>of</strong> an exotic component. However, we<br />

have not observed this to be <strong>the</strong> case <strong>in</strong> our<br />

<strong>Murchison</strong> stones, ei<strong>the</strong>r by mass spectrometry<br />

(SIM) or isotopically (see below). Moreover, it<br />

would seem highly improbable that such an explanation<br />

could account for <strong>the</strong> L-excess observed for<br />

all <strong>of</strong> <strong>the</strong> o<strong>the</strong>r prote<strong>in</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> <strong>Murchison</strong>.<br />

This would require co-elutions <strong>of</strong> exotic components<br />

<strong>of</strong> identical mass spectra and stable carbon<br />

and nitrogen isotopic compositions exclusively<br />

with <strong>the</strong> L-enantiomers ra<strong>the</strong>r than <strong>the</strong> D-enantiomers.<br />

For example, selected major ions for<br />

glutamic acid and aspartic acid <strong>in</strong> <strong>the</strong> acid hydrolyzed<br />

water extract <strong>of</strong> <strong>the</strong> <strong>Murchison</strong> stone<br />

most recently analyzed (Engel and Macko, 1997b)<br />

are shown <strong>in</strong> Fig. 1a and 1b. Clearly, both <strong>am<strong>in</strong>o</strong><br />

<strong>acids</strong> exhibit an L-enantiomer excess and, as <strong>in</strong> <strong>the</strong><br />

case <strong>of</strong> our previous f<strong>in</strong>d<strong>in</strong>gs (Engel and Nagy,<br />

1982; Engel et al., 1990; Engel and Macko,<br />

1997b), <strong>the</strong> mass spectrometric methods employed<br />

preclude that this is a consequence <strong>of</strong> co-elution<br />

<strong>of</strong> unknown components with <strong>the</strong> respective Lenantiomers.<br />

All ions unique to glutamic acid<br />

(Fig. 1a) and to aspartic acid (Fig. 1b) provide <strong>the</strong><br />

same D/L values, respectively. Cron<strong>in</strong> and Pizzarello<br />

(1997) have also reported an apparent<br />

L-enantiomer excess for several non-prote<strong>in</strong><br />

<strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> <strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong>.<br />

As discussed above, <strong>the</strong> <strong>am<strong>in</strong>o</strong> acid distributions<br />

<strong>in</strong> <strong>the</strong>se stones argues aga<strong>in</strong>st contam<strong>in</strong>ation<br />

as a likely explanation for this L-enantiomer excess.<br />

However, this <strong>in</strong> itself is not sufficient to<br />

prove beyond all doubt that <strong>the</strong> L-enantiomer<br />

excess is extraterrestrial and orig<strong>in</strong>al to <strong>the</strong> stone.<br />

Given that <strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gs are <strong>the</strong> first <strong>in</strong>dications<br />

<strong>of</strong> extraterrestrial optical activity, a new approach<br />

<strong>in</strong>volv<strong>in</strong>g stable isotope geochemistry at <strong>the</strong><br />

molecular level was developed as an <strong>in</strong>dependent<br />

validation <strong>of</strong> <strong>the</strong> <strong>in</strong>digeneity <strong>of</strong> <strong>the</strong>se compounds.<br />

4. Stable isotope compositions <strong>of</strong> <strong>am<strong>in</strong>o</strong> acid<br />

enantiomers<br />

Engel and Macko (1984, 1986) <strong>in</strong>itially hypo<strong>the</strong>sized<br />

that it should be possible to verify that <strong>the</strong><br />

D- and L-enantiomers <strong>of</strong> an <strong>am<strong>in</strong>o</strong> acid were<br />

derived from a common source by determ<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong>ir respective stable carbon and nitrogen isotope<br />

compositions. Given that abiotic syn<strong>the</strong>sis results<br />

<strong>in</strong> racemic mixtures <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong>, with <strong>the</strong><br />

pathways for D-<strong>am<strong>in</strong>o</strong> acid and L-<strong>am<strong>in</strong>o</strong> acid<br />

syn<strong>the</strong>sis presumably be<strong>in</strong>g <strong>in</strong>dentical, <strong>the</strong> respective<br />

enantiomers <strong>of</strong> an <strong>am<strong>in</strong>o</strong> acid should have <strong>the</strong><br />

same stable isotope compositions. For any systems<br />

<strong>in</strong> which <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong>itially consist <strong>of</strong> an<br />

excess <strong>of</strong> one enantiomer (e.g. almost exclusively<br />

<strong>the</strong> L-enantiomer for biological systems on Earth),<br />

with <strong>the</strong> o<strong>the</strong>r enantiomer subsequently form<strong>in</strong>g<br />

by racemization, <strong>the</strong> respective enantiomers for a<br />

given <strong>am<strong>in</strong>o</strong> acid should be isotopically identical.<br />

This is a result <strong>of</strong> <strong>the</strong> fact that <strong>am<strong>in</strong>o</strong> <strong>acids</strong> reta<strong>in</strong>


M.H. Engel, S.A. Macko / Precambrian Research 106 (2001) 35–45 41<br />

Fig. 1. (a) Selected ions (m/z 152, 180, 198 and 226) <strong>of</strong> glutamic acid <strong>in</strong> <strong>the</strong> hydrolyzed water extract <strong>of</strong> a <strong>Murchison</strong> <strong>meteorite</strong> stone<br />

analyzed by Engel and Macko (1997b). Details <strong>of</strong> <strong>the</strong> analytical methods are reported <strong>in</strong> Engel and Macko (1997b). (b) Selected ions<br />

(m/z 184, 185 and 212) <strong>of</strong> aspartic acid <strong>in</strong> <strong>the</strong> hydrolyzed water extract <strong>of</strong> a <strong>Murchison</strong> <strong>meteorite</strong> stone analyzed by Engel and<br />

Macko (1997b). Details <strong>of</strong> <strong>the</strong> analytical methods are reported <strong>in</strong> Engel and Macko (1997b).


42<br />

<strong>the</strong>ir stable carbon and nitrogen isotopic <strong>in</strong>tegrity<br />

dur<strong>in</strong>g racemization, irrespective <strong>of</strong> whe<strong>the</strong>r <strong>the</strong><br />

<strong>in</strong>itial enantiomer is <strong>of</strong> <strong>the</strong> D- or L-configuration<br />

(Engel and Macko, 1984, 1986). It is well-documented<br />

(e.g. Epste<strong>in</strong> et al., 1987) that <strong>the</strong> bulk<br />

<strong>am<strong>in</strong>o</strong> acid fraction <strong>of</strong> <strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong> is<br />

enriched <strong>in</strong> 13 C and 15 N relative to any known<br />

common biological materials on Earth. <strong>The</strong> foundation<br />

for our <strong>in</strong>vestigations has been that if it<br />

were possible to measure <strong>the</strong> stable carbon and<br />

nitrogen isotope compositions <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual Dand<br />

L-enantiomers <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> <strong>the</strong><br />

<strong>Murchison</strong> <strong>meteorite</strong>, it would be possible to determ<strong>in</strong>e<br />

if <strong>the</strong> L-enantiomer excess was extraterrestrial<br />

<strong>in</strong> orig<strong>in</strong> or a consequence <strong>of</strong> terrestrial<br />

contam<strong>in</strong>ation. If <strong>the</strong> latter were <strong>the</strong> case, it<br />

would be expected that <strong>the</strong> L-enantiomer <strong>of</strong> an<br />

<strong>am<strong>in</strong>o</strong> acid would be depleted <strong>in</strong> 13 C and 15 N<br />

relative to its respective D-enantiomer, ow<strong>in</strong>g to<br />

partial <strong>in</strong>put <strong>of</strong> terrestrial L-<strong>am<strong>in</strong>o</strong> <strong>acids</strong> that were<br />

depleted <strong>in</strong> <strong>the</strong>se heavier isotopes relative to <strong>the</strong><br />

extraterrestrial components.<br />

We have developed methods for <strong>the</strong> direct determ<strong>in</strong>ation<br />

<strong>of</strong> <strong>the</strong> stable carbon and nitrogen<br />

isotope compositions <strong>of</strong> <strong>the</strong> D- andL-enantiomers<br />

<strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> at natural abundance levels us<strong>in</strong>g<br />

Table 4<br />

Stable carbon and nitrogen isotope values <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong><br />

<strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong><br />

Am<strong>in</strong>o acid � 13 C(‰,PDB) a � 15 N(‰,atm N 2) b<br />

�-Am<strong>in</strong>oisobutyric<br />

acid<br />

+5 +184<br />

Isoval<strong>in</strong>e +17<br />

+66<br />

N.D. c<br />

Sarcos<strong>in</strong>e +129<br />

Glyc<strong>in</strong>e +22 +37<br />

�-Alan<strong>in</strong>e N.D. +61<br />

D-Glutamic acid N.D. +60<br />

L-Glutamic acid +6 +58<br />

D-Alan<strong>in</strong>e +27.7<br />

+60<br />

L-Alan<strong>in</strong>e +26.1<br />

+57<br />

L-Leuc<strong>in</strong>e N.D. +60<br />

D,L-Prol<strong>in</strong>e N.D. +50<br />

D,L-Aspartic acid N.D. +61<br />

a 13 � C values are for <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> an unhydrolyzed water<br />

extract (Engel et al., 1990).<br />

b 15 � N values are for <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> a hydrolyzed water<br />

extract (Engel and Macko, 1997b).<br />

c N.D.; not determ<strong>in</strong>ed.<br />

M.H. Engel, S.A. Macko / Precambrian Research 106 (2001) 35–45<br />

gas chromatography/combustion/isotope ratio<br />

mass spectrometry (GC/C/IRMS; Silfer et al.,<br />

1991, 1994; Macko et al., 1997). <strong>The</strong> test <strong>of</strong> our<br />

hypo<strong>the</strong>sis has focused on <strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong>.<br />

Our f<strong>in</strong>d<strong>in</strong>gs confirm an extraterrestrial orig<strong>in</strong><br />

for <strong>the</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong>. All <strong>of</strong> <strong>the</strong> <strong>Murchison</strong> <strong>am<strong>in</strong>o</strong><br />

<strong>acids</strong> analyzed to date are enriched <strong>in</strong> 13 C and 15 N<br />

relative to terrestrial biogenic <strong>am<strong>in</strong>o</strong> <strong>acids</strong> imply<strong>in</strong>g,<br />

as previously suggested (Epste<strong>in</strong> et al., 1987;<br />

Engel et al., 1990; Cron<strong>in</strong> and Chang, 1993; Pizzarello<br />

et al., 1994; Engel and Macko, 1997b),<br />

possible <strong>in</strong>terstellar sources for <strong>the</strong> precursors <strong>of</strong><br />

<strong>the</strong>se compounds. For <strong>am<strong>in</strong>o</strong> <strong>acids</strong> for which <strong>the</strong><br />

respective D- and L-enantiomers could be isotopically<br />

characterized, <strong>the</strong> � 13 Cand� 15 N values were<br />

virtually <strong>in</strong>dist<strong>in</strong>guishible (Table 4), thus provid<strong>in</strong>g<br />

<strong>in</strong>dependent confirmation for <strong>the</strong> <strong>in</strong>digeneity<br />

<strong>of</strong> both stereoisomers.<br />

Can <strong>the</strong> stable isotope compositions <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual<br />

<strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> <strong>Murchison</strong> be used to reconstruct<br />

<strong>the</strong>ir syn<strong>the</strong>tic pathways? In <strong>the</strong>ory, this<br />

should be possible, but it is important to recognize<br />

that <strong>the</strong> field <strong>of</strong> molecular isotope geochemistry<br />

is relatively new and thus data sets for<br />

terrestrial and extraterrestrial organic compounds<br />

are quite limited. In general, <strong>the</strong> stable carbon<br />

isotope compositions <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> formed via<br />

abiotic chemical reactions exhibit an apparent<br />

k<strong>in</strong>etic isotope effect, tend<strong>in</strong>g to become depleted<br />

<strong>in</strong> 13 C with <strong>in</strong>creas<strong>in</strong>g cha<strong>in</strong> length, imply<strong>in</strong>g that<br />

higher molecular weight structures may be form<strong>in</strong>g<br />

from lower molecular weight precursors (e.g.<br />

Engel et al., 1995). <strong>The</strong>re is an <strong>in</strong>dication that <strong>the</strong><br />

<strong>Murchison</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> (Table 4) exhibit this<br />

effect with respect to stable carbon isotope composition.<br />

<strong>The</strong> trend for � 15 N values is, however,<br />

different. �-Am<strong>in</strong>oisobutyric acid is substantially<br />

enriched <strong>in</strong> 15 N, glyc<strong>in</strong>e is depleted, and <strong>the</strong> rema<strong>in</strong><strong>in</strong>g<br />

<strong>am<strong>in</strong>o</strong> <strong>acids</strong> are all, with <strong>the</strong> exception <strong>of</strong><br />

prol<strong>in</strong>e, close to +60‰, imply<strong>in</strong>g a common,<br />

homogenous source (Table 4). Unlike carbon, all<br />

<strong>of</strong> <strong>the</strong> <strong>Murchison</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> analyzed to date<br />

(Table 4) conta<strong>in</strong> only a s<strong>in</strong>gle nitrogen atom. A<br />

k<strong>in</strong>etic isotope effect similar to that observed for<br />

carbon would, <strong>the</strong>refore, not be expected. To <strong>the</strong><br />

best <strong>of</strong> our knowledge, stable nitrogen isotope<br />

values for a series <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> syn<strong>the</strong>sized via<br />

abiotic pathways have not yet been reported.


Thus, it is not possible to say with any certa<strong>in</strong>ty<br />

whe<strong>the</strong>r this <strong>Murchison</strong> data set is consistent for<br />

such pathways or not. What is apparent, however,<br />

is that <strong>the</strong> nitrogen source(s) for �-<strong>am<strong>in</strong>o</strong>isobutyric<br />

acid and sarcos<strong>in</strong>e are dist<strong>in</strong>ct. In addition to<br />

be<strong>in</strong>g a common product <strong>of</strong> abiotic syn<strong>the</strong>sis (Engel<br />

et al., 1995), glyc<strong>in</strong>e is a common product <strong>of</strong><br />

<strong>the</strong> decomposition <strong>of</strong> o<strong>the</strong>r �-<strong>am<strong>in</strong>o</strong> <strong>acids</strong>. <strong>The</strong><br />

more depleted � 15 N value for glyc<strong>in</strong>e <strong>in</strong><br />

<strong>Murchison</strong> (Table 4) may reflect contributions <strong>of</strong><br />

isotopically depleted glyc<strong>in</strong>e result<strong>in</strong>g from k<strong>in</strong>etic<br />

isotope effects associated with <strong>the</strong> decomposition<br />

<strong>of</strong> o<strong>the</strong>r <strong>am<strong>in</strong>o</strong> <strong>acids</strong> subsequent to <strong>the</strong>ir <strong>in</strong>itial<br />

syn<strong>the</strong>sis. Alternatively, perhaps glyc<strong>in</strong>e, a relatively<br />

simple structure, formed <strong>in</strong> <strong>in</strong>terstellar space<br />

from isotopically dist<strong>in</strong>ct precursors prior to <strong>the</strong><br />

syn<strong>the</strong>sis and subsequent diagenesis <strong>of</strong> <strong>the</strong> more<br />

complex <strong>am<strong>in</strong>o</strong> <strong>acids</strong> on <strong>the</strong> parent body <strong>of</strong><br />

<strong>Murchison</strong>. Prelim<strong>in</strong>ary evidence suggests that<br />

glyc<strong>in</strong>e may exist <strong>in</strong> <strong>the</strong> <strong>in</strong>terstellar medium<br />

(Snyder, 1997).<br />

Assum<strong>in</strong>g that <strong>the</strong> L-<strong>am<strong>in</strong>o</strong> acid excess <strong>in</strong><br />

<strong>Murchison</strong> is au<strong>the</strong>ntic, <strong>the</strong> question <strong>of</strong> how this<br />

came to be will not likely be easily resolved.<br />

Whilst laboratory simulations <strong>of</strong> abiotic syn<strong>the</strong>sis<br />

<strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> result <strong>in</strong> racemic mixtures, most<br />

experiments to date have been noth<strong>in</strong>g more than<br />

variations on <strong>the</strong> <strong>the</strong>me <strong>in</strong>itially conceived by<br />

Miller (1953). It could be that extraterrestrial<br />

organic materials, such as those encountered <strong>in</strong><br />

<strong>meteorite</strong>s, form through stereoselective pathways<br />

that have yet to be discovered. Alternatively, it<br />

has been suggested that post-syn<strong>the</strong>tic, diagenetic<br />

phenomena such as <strong>the</strong> exposure <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong><br />

to circularly polarized light emitted by neutron<br />

stars (e.g. Bonner, 1991; Bailey et al., 1998) may<br />

account for <strong>the</strong> preferential enantiomer destruction.<br />

An alternative scenario is that <strong>the</strong><br />

<strong>Murchison</strong> <strong>meteorite</strong> conta<strong>in</strong>s residual compounds<br />

from once liv<strong>in</strong>g systems that have partially<br />

racemized subsequent to death as <strong>the</strong>y do on<br />

Earth. It is possible for <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>of</strong> great<br />

antiquity to be non-racemic. Diagenetic condensation<br />

reactions, even <strong>in</strong> <strong>the</strong> presence <strong>of</strong> water<br />

(which is requisite for racemization), are known<br />

to greatly dim<strong>in</strong>ish and, <strong>in</strong> some cases, actually<br />

stop <strong>the</strong> <strong>am<strong>in</strong>o</strong> acid racemization (Rafalska et al.,<br />

1991). Yet, under such circumstances, <strong>am<strong>in</strong>o</strong> <strong>acids</strong><br />

M.H. Engel, S.A. Macko / Precambrian Research 106 (2001) 35–45 43<br />

sufficiently reta<strong>in</strong> <strong>the</strong>ir structural <strong>in</strong>tegrity to <strong>the</strong><br />

extent that <strong>the</strong>y can be recovered by <strong>the</strong> simple<br />

extraction methods commonly used for <strong>the</strong> analysis<br />

<strong>of</strong> carbonaceous <strong>meteorite</strong>s (Engel et al., 1990;<br />

Engel and Macko, 1997b). Do <strong>the</strong> stable isotope<br />

values for <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> <strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong><br />

reflect <strong>the</strong> range <strong>of</strong> values typically associated<br />

with biosyn<strong>the</strong>tic processes (e.g. Macko et al.,<br />

1987; Engel et al., 1994) on Earth? Unfortunately,<br />

<strong>the</strong> answer to this question awaits <strong>the</strong> acquisition<br />

<strong>of</strong> larger data sets than are presently available.<br />

Certa<strong>in</strong>ly, it can be concluded, however, that <strong>the</strong><br />

start<strong>in</strong>g materials from which <strong>the</strong> <strong>Murchison</strong><br />

<strong>am<strong>in</strong>o</strong> <strong>acids</strong> were syn<strong>the</strong>sized were isotopically<br />

dist<strong>in</strong>ct from those typical <strong>of</strong> Earth.<br />

5. Summary<br />

Interior samples <strong>of</strong> three <strong>Murchison</strong> <strong>meteorite</strong><br />

stones were analyzed for <strong>the</strong>ir <strong>am<strong>in</strong>o</strong> acid distributions,<br />

<strong>stereochemistry</strong> and stable isotope compositions.<br />

All <strong>of</strong> <strong>the</strong> common �-<strong>am<strong>in</strong>o</strong> <strong>acids</strong> are<br />

not racemic, exhibit<strong>in</strong>g an excess <strong>of</strong> <strong>the</strong> L-enantiomer.<br />

<strong>The</strong> absence <strong>of</strong> many <strong>am<strong>in</strong>o</strong> <strong>acids</strong> (e.g.<br />

phenylalan<strong>in</strong>e, tyros<strong>in</strong>e, lys<strong>in</strong>e, histid<strong>in</strong>e, arg<strong>in</strong><strong>in</strong>e,<br />

etc.) that are common prote<strong>in</strong> constituents <strong>of</strong> all<br />

terrestrial liv<strong>in</strong>g systems <strong>in</strong>dicates that <strong>the</strong>se samples<br />

have not been contam<strong>in</strong>ated by microbiota or<br />

handl<strong>in</strong>g. <strong>The</strong> 13 C and 15 N enrichment <strong>of</strong> <strong>the</strong><br />

<strong>Murchison</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> fur<strong>the</strong>r demonstrates <strong>the</strong>ir<br />

extraterrestrial orig<strong>in</strong>s. <strong>The</strong> essentially identical<br />

� 13 C and � 15 N values for <strong>the</strong> D- and L-enantiomers<br />

<strong>of</strong> <strong>in</strong>dividual <strong>am<strong>in</strong>o</strong> <strong>acids</strong> provides an<br />

<strong>in</strong>dependent confirmation <strong>of</strong> <strong>the</strong>ir <strong>in</strong>digeneity. An<br />

explanation for <strong>the</strong> L-enantiomer excess is an<br />

important topic for future research, as <strong>the</strong> answer<br />

to this question may be <strong>the</strong> key as to why all<br />

liv<strong>in</strong>g systems on Earth are based on <strong>the</strong> biosyn<strong>the</strong>sis<br />

<strong>of</strong> prote<strong>in</strong>s conta<strong>in</strong><strong>in</strong>g exclusively L-enantiomers<br />

ra<strong>the</strong>r than D-enantiomers.<br />

Acknowledgements<br />

We thank <strong>the</strong> National Science Foundation<br />

(Geology & Paleontology) for cont<strong>in</strong>ued support<br />

<strong>of</strong> our molecular isotope research. We thank An-


44<br />

dre Brack, Everett K. Gibson Jr., and Frances<br />

Westall for <strong>the</strong>ir helpful comments and suggestions.<br />

This paper is dedicated to <strong>the</strong> memory <strong>of</strong><br />

Bartholomew Nagy, a free spirit and <strong>in</strong>dependent<br />

th<strong>in</strong>ker who was never awed by conventional<br />

wisdom or constra<strong>in</strong>ed by what o<strong>the</strong>r people<br />

thought. He let his data, however unpopular at<br />

times, speak for itself, and we will cont<strong>in</strong>ue to do<br />

<strong>the</strong> same.<br />

References<br />

Bada, J.L., Cron<strong>in</strong>, J.R., Ho, M.-S., Kvenvolden, K.A., Lawless,<br />

G.J., Miller, S.L., et al., 1983. On <strong>the</strong> reported optical<br />

activity <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> <strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong>. Nature<br />

301, 494–496.<br />

Bada, J.L., Glav<strong>in</strong>, D.P., McDonald, G.D., Becker, L., 1998.<br />

A search for endogenous <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> martian <strong>meteorite</strong><br />

ALH84001. Science 279, 362–365.<br />

Bailey, J., Chrysostomou, A., Hough, J.H., Gledhill, T.M.,<br />

McCall, A., Clark, S., et al., 1998. Circular polarization <strong>in</strong><br />

star-formation regions: Implications for biomolecular homochirality.<br />

Science 281, 672–674.<br />

Baross, J.A., H<strong>of</strong>fman, S.E., 1985. Submar<strong>in</strong>e hydro<strong>the</strong>rmal<br />

vents and associated gradient environments as sites for <strong>the</strong><br />

orig<strong>in</strong> and evolution <strong>of</strong> life. Orig<strong>in</strong>s <strong>of</strong> Life 15, 327–345.<br />

Bonner, W.A., 1991. <strong>The</strong> orig<strong>in</strong> and amplification <strong>of</strong><br />

biomolecular chirality. Orig<strong>in</strong>s <strong>of</strong> Life 21, 59–111.<br />

Chyba, C.F., Sagan, C., 1992. Endogenous production, exogenous<br />

delivery and impact-shock syn<strong>the</strong>sis <strong>of</strong> organic<br />

molecules: an <strong>in</strong>ventory for <strong>the</strong> orig<strong>in</strong>s <strong>of</strong> life. Nature 355,<br />

125–132.<br />

Chyba, C.F., Thomas, P.J., Brookshaw, L., Sagan, C., 1990.<br />

Cometary delivery <strong>of</strong> organic molecules to <strong>the</strong> early Earth.<br />

Science 249, 366–373.<br />

Corliss, J.B., 1990. Hot spr<strong>in</strong>gs and <strong>the</strong> orig<strong>in</strong> <strong>of</strong> life. Nature<br />

347, 624.<br />

Cron<strong>in</strong>, J.R., 1976a. Acid-labile <strong>am<strong>in</strong>o</strong> acid precursors <strong>in</strong> <strong>the</strong><br />

<strong>Murchison</strong> <strong>meteorite</strong>. I. Chromatographic fractionation.<br />

Orig<strong>in</strong>s <strong>of</strong> Life 7, 337–342.<br />

Cron<strong>in</strong>, J.R., 1976b. Acid-labile <strong>am<strong>in</strong>o</strong> acid precursors <strong>in</strong> <strong>the</strong><br />

<strong>Murchison</strong> <strong>meteorite</strong>. II. A search for peptides and <strong>am<strong>in</strong>o</strong><br />

acyl amides. Orig<strong>in</strong>s <strong>of</strong> Life 7, 343–348.<br />

Cron<strong>in</strong>, J.R., Pizzarello, S., 1983. Am<strong>in</strong>o <strong>acids</strong> <strong>in</strong> <strong>meteorite</strong>s.<br />

Adv. Space Res. 3, 5–18.<br />

Cron<strong>in</strong>, J.R., Chang, S., 1993. Organic matter <strong>in</strong> <strong>meteorite</strong>s:<br />

Molecular and isotopic analyses <strong>of</strong> <strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong>.<br />

In: Greenberg, J.M., et al. (Eds.), <strong>The</strong> Chemistry <strong>of</strong><br />

Life’s Orig<strong>in</strong>s. Kluwer Academic, <strong>The</strong> Ne<strong>the</strong>rlands, pp.<br />

209–258.<br />

Cron<strong>in</strong>, J.R., Pizzarello, S., 1997. Enantiomeric excesses <strong>in</strong><br />

meteoric <strong>am<strong>in</strong>o</strong> <strong>acids</strong>. Science 275, 951–955.<br />

Engel, M.H., 1980. Ph.D. <strong>The</strong>sis, Univrsity <strong>of</strong> Arizona, Tucson,<br />

AZ.<br />

M.H. Engel, S.A. Macko / Precambrian Research 106 (2001) 35–45<br />

Engel, M.H., Nagy, B., 1982. Distribution and enantiomeric<br />

composition <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> <strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong>.<br />

Nature 296, 837–840.<br />

Engel, M.H., Nagy, B., 1983. Author’s reply. Nature 301,<br />

496–497.<br />

Engel, M.H., Macko, S.A., 1984. <strong>The</strong> separation <strong>of</strong> <strong>am<strong>in</strong>o</strong><br />

acid enantiomers for stable nitrogen and carbon isotope<br />

analyses. Anal. Chem. 56, 2598–2600.<br />

Engel, M.H., Macko, S.A., 1986. Stable isotope evaluation <strong>of</strong><br />

<strong>the</strong> orig<strong>in</strong>s <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> fossils. Nature 323, 531–533.<br />

Engel, M.H., Macko, S.A., 1997a. Stable isotope analysis <strong>of</strong><br />

<strong>am<strong>in</strong>o</strong> acid enantiomers <strong>in</strong> <strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong> at<br />

natural abundance levels. Proc. SPIE 3111, 82–85.<br />

Engel, M.H., Macko, S.A., 1997b. Isotopic evidence for extraterrestrial<br />

non-racemic <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> <strong>the</strong> <strong>Murchison</strong><br />

<strong>meteorite</strong>. Nature 389, 265–268.<br />

Engel, M.H., Macko, S.A., Nagy, B., 1993. <strong>The</strong> organic<br />

geochemistry <strong>of</strong> carbonaceous <strong>meteorite</strong>s: <strong>am<strong>in</strong>o</strong> <strong>acids</strong> and<br />

stable isotopes. In: Engel, M.H., Macko, S.A. (Eds.), Organic<br />

Geochemistry, Pr<strong>in</strong>ciples and Applications. Plenum,<br />

New York, pp. 685–695.<br />

Engel, M.H., Goodfriend, G.A., Qian, Y., Macko, S.A., 1994.<br />

Indigeneity <strong>of</strong> organic matter <strong>in</strong> fossils: A test us<strong>in</strong>g stable<br />

isotope analysis <strong>of</strong> <strong>am<strong>in</strong>o</strong> acid enantiomers <strong>in</strong> fossil mollusc<br />

shells. Proc. Natl. Acad. Sci. USA 91, 10475–10478.<br />

Engel, M.H., Macko, S.A., Qian, Y., Silfer, J.A., 1995. Stable<br />

isotope analysis at <strong>the</strong> molecular level: A new approach for<br />

determ<strong>in</strong><strong>in</strong>g <strong>the</strong> orig<strong>in</strong>s <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> <strong>the</strong> <strong>Murchison</strong><br />

<strong>meteorite</strong>. Adv. Space Res. 15, 99–106.<br />

Engel, M.H., Macko, S.A., Silfer, J.A., 1990. Carbon isotope<br />

composition <strong>of</strong> <strong>in</strong>dividual <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong> <strong>the</strong> <strong>Murchison</strong><br />

<strong>meteorite</strong>. Nature 348, 47–49.<br />

Epste<strong>in</strong>, S., Krishnamurthy, R.V., Cron<strong>in</strong>, J.R., Pizzarello, S.,<br />

Yuen, G.U., 1987. Unusual stable isotope ratios <strong>in</strong> <strong>am<strong>in</strong>o</strong><br />

acid and carboxylic acid extracts from <strong>the</strong> <strong>Murchison</strong><br />

<strong>meteorite</strong>. Nature 326, 477–479.<br />

Greenberg, J.M., 1997. Prebiotic chiral molecules created <strong>in</strong><br />

<strong>in</strong>terstellar dust and preserved <strong>in</strong> comets, comet dust and<br />

<strong>meteorite</strong>s: an exogenous source <strong>of</strong> life’s orig<strong>in</strong>s. Proc.<br />

SPIE 3111, 226–237.<br />

Hayes, J.M., 1967. Organic constituents <strong>of</strong> <strong>meteorite</strong>s — A<br />

review. Geochim. Cosmochim. Acta 31, 1395–1440.<br />

Helgeson, H.C., Owens, C.E., Knox, A.M., Richard, L., 1998.<br />

Calculation <strong>of</strong> <strong>the</strong> standard molal <strong>the</strong>rmodynamic properties<br />

<strong>of</strong> crystall<strong>in</strong>e, liquid, and gas organic molecules at high<br />

temperatures and pressures. Geochim. Cosmochim. Acta<br />

62, 985–1081.<br />

Hennet, R.J.-C., Holm, N.G., Engel, M.H., 1992. Abiotic<br />

syn<strong>the</strong>sis <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> under hydro<strong>the</strong>rmal conditions<br />

and <strong>the</strong> orig<strong>in</strong> <strong>of</strong> life: a perpetual phenomenon? Naturwissenschaften<br />

79, 361–365.<br />

Khare, B.N., Sagan, C., Og<strong>in</strong>o, H., Nagy, B., Er, C., Schram,<br />

K.H., et al., 1986. Am<strong>in</strong>o <strong>acids</strong> derived from Titan thol<strong>in</strong>s.<br />

Icarus 68, 176–184.<br />

Kvenvolden, K.A., Lawless, J., Per<strong>in</strong>g, K., Peterson, E., Flores,<br />

J., Ponnamperuma, C., et al., 1970. Evidence for<br />

extraterrestrial <strong>am<strong>in</strong>o</strong> <strong>acids</strong> and hydrocarbons <strong>in</strong> <strong>the</strong><br />

<strong>Murchison</strong> <strong>meteorite</strong>. Nature 228, 923–926.


Macko, S.A., Estep, M.L.F., Hare, P.E., Hoer<strong>in</strong>g, T.C., 1987.<br />

Isotopic fractionation <strong>of</strong> nitrogen and carbon <strong>in</strong> <strong>the</strong> syn<strong>the</strong>sis<br />

<strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> by microorganisms. Isotope Geosci.<br />

65, 79–92.<br />

Macko, S.A., Uhle, M.E., Engel, M.H., Andrusevich, V.,<br />

1997. Stable nitrogen isotope analysis <strong>of</strong> <strong>am<strong>in</strong>o</strong> acid enantiomers<br />

by gas chromatography/combustion/isotope ratio<br />

mass spectrometry. Anal. Chem. 69, 926–929.<br />

Maurette, M., 1998. Carbonaceous micro<strong>meteorite</strong>s and <strong>the</strong><br />

orig<strong>in</strong> <strong>of</strong> life. Orig<strong>in</strong>s <strong>of</strong> Life and Evolution <strong>of</strong> <strong>the</strong> Biosphere<br />

28, 385–412.<br />

McKay, D.S., Gibson Jr, E.K., Thomas-Keprta, K.L., Vali,<br />

H., Romanek, C.S., Clemett, S.J., et al., 1996. Search for<br />

past life on Mars: possible relic biogenic activity <strong>in</strong> Martian<br />

<strong>meteorite</strong> ALH84001. Science 273, 924–930.<br />

Miller, S.L., 1953. Production <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> under possible<br />

primitive earth conditions. Science 117, 528–529.<br />

Mita, H., Shimoyama, A., 1998. �-Am<strong>in</strong>oisobutyric acid and<br />

isoval<strong>in</strong>e <strong>in</strong> Tokyo Bay sediments. Geochim. Cosmochim.<br />

Acta 62, 47–50.<br />

Mojzsis, S., Arrhenius, G., McKeegan, K.D., Harrison, T.M.,<br />

Nutman, A.P., Friend, C.R.L., 1996. Evidence for life on<br />

Earth before 3,800 million years ago. Nature 385, 55–59.<br />

Nagy, B., 1975. Carbonaceous Meteorites. Elsevier,<br />

Amsterdam.<br />

Nagy, B., Engel, M.H., Zumberge, J.E., Og<strong>in</strong>o, H., Chang,<br />

S.Y., 1981. Orig<strong>in</strong>s <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> and hydrocarbons <strong>in</strong> <strong>the</strong><br />

3,800 MYR old Isua rocks, southwestern Greenland. Nature<br />

289, 53–56.<br />

Nutman, A.P., Mojzsis, S.J., Friend, C.R.L., 1997. Recognition<br />

<strong>of</strong> �3850 Ma water-la<strong>in</strong> sediments <strong>in</strong> West Greenland<br />

and <strong>the</strong>ir significance for <strong>the</strong> early Archaean Earth.<br />

Geochim. Cosmochim. Acta 61, 2475–2484.<br />

Olson, E.S., 1992. Am<strong>in</strong>o <strong>acids</strong> from coal gasification? Nature<br />

357, 202.<br />

Pflug, H.D., He<strong>in</strong>z, B., 1997. Analysis <strong>of</strong> fossil organic nanostructures:<br />

terrestrial and extraterrestrial. Proc. SPIE 3111,<br />

86–97.<br />

Pizzarello, S., Cron<strong>in</strong>, J.R., 1998. Alan<strong>in</strong>e enantiomers <strong>in</strong> <strong>the</strong><br />

<strong>Murchison</strong> <strong>meteorite</strong>. Nature 394, 236.<br />

Pizzarello, S., Feng, X., Epste<strong>in</strong>, S., Cron<strong>in</strong>, J.R., 1994. Isotopic<br />

analyses <strong>of</strong> nitrogeneous compounds from <strong>the</strong><br />

<strong>Murchison</strong> <strong>meteorite</strong>: ammonia, am<strong>in</strong>es, <strong>am<strong>in</strong>o</strong> <strong>acids</strong> and<br />

polar hydrocarbons. Geochim. Cosmochim. Acta 58,<br />

5579–5587.<br />

Qian, Y., Engel, M.H., Macko, S.A., Carpenter, S., Dem<strong>in</strong>g,<br />

J.W., 1993. K<strong>in</strong>etics <strong>of</strong> peptide hydrolysis and <strong>am<strong>in</strong>o</strong> acid<br />

decomposition at high temperature. Geochim. Cosmochim.<br />

Acta 57, 3281–3293.<br />

M.H. Engel, S.A. Macko / Precambrian Research 106 (2001) 35–45 45<br />

.<br />

Rafalska, J.K., Engel, M.H., Lanier, W.P., 1991. Retardation<br />

<strong>of</strong> racemization rates <strong>of</strong> <strong>am<strong>in</strong>o</strong> <strong>acids</strong> <strong>in</strong>corporated <strong>in</strong>to<br />

melanoid<strong>in</strong>s. Geochim. Cosmochim. Acta 55, 3669–<br />

3675.<br />

de Ronde, C.E.J., Channer, D.M., Faure, K., Bray, C.J.,<br />

Spooner, E.T.C., 1997. Fluid chemistry <strong>of</strong> Archean<br />

seafloor hydro<strong>the</strong>rmal vents: implications for <strong>the</strong> composition<br />

<strong>of</strong> circa 3.2 Ga seawater. Geochim. Cosmochim. Acta<br />

61, 4025–4042.<br />

Russell, M.J., Hall, A.J., Turner, D., 1989. In vitro growth <strong>of</strong><br />

iron sulphide chimneys: possible culture chambers for<br />

orig<strong>in</strong>-<strong>of</strong>-life experiments. Terra Res. 1, 238–241.<br />

Schidlowski, M., 1993. <strong>The</strong> <strong>in</strong>itiation <strong>of</strong> biological processes<br />

on Earth: Summaries <strong>of</strong> empirical evidence. In: Engel,<br />

M.H., Macko, S.A. (Eds.), Organic Geochemistry, Pr<strong>in</strong>ciples<br />

and Applications. Plenum, New York, pp. 639–655.<br />

Shock, E.L., 1990. Geochemical constra<strong>in</strong>ts on <strong>the</strong> orig<strong>in</strong> <strong>of</strong><br />

organic compounds <strong>in</strong> hydro<strong>the</strong>rmal systems. Orig<strong>in</strong>s <strong>of</strong><br />

Life 20, 331–367.<br />

Shock, E.L., Schulte, M.D., 1990. Summary and implications<br />

<strong>of</strong> reported <strong>am<strong>in</strong>o</strong> acid concentrations <strong>in</strong> <strong>the</strong> <strong>Murchison</strong><br />

<strong>meteorite</strong>. Geochim. Cosmochim. Acta 54, 3159–3173.<br />

Silfer, J.A., 1991. Ph.D. <strong>The</strong>sis, University <strong>of</strong> Oklahoma, OK.<br />

Silfer, J.A., Engel, M.H., Macko, S.A., Jumeau, E.J., 1991.<br />

Stable carbon isotope analysis <strong>of</strong> <strong>am<strong>in</strong>o</strong> acid enantiomers<br />

by conventional isotope ratio mass spectrometry and comb<strong>in</strong>ed<br />

gas chromatrography/isotope ratio mass spectrometry.<br />

Anal. Chem. 63, 370–374.<br />

Silfer, J.A., Qian, Y., Macko, S.A., Engel, M.H., 1994. Stable<br />

carbon isotope compositions <strong>of</strong> <strong>in</strong>dividual <strong>am<strong>in</strong>o</strong> acid<br />

enantiomers <strong>in</strong> mollusc shell by GC/C/IRMS. Org.<br />

Geochem. 21, 603–609.<br />

Snyder, L.E., 1997. Detection <strong>of</strong> large <strong>in</strong>terstellar molecules<br />

with radio <strong>in</strong>terferometers. Proc. SPIE 3111, 296–304.<br />

Steele, A., Westall, F., McKay, D.S., 1999. Contam<strong>in</strong>ation <strong>of</strong><br />

<strong>the</strong> <strong>Murchison</strong> <strong>meteorite</strong>. In: Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> 30th Lunar<br />

and Planetary Science Conference. LPI Publication,<br />

Houston, TX.<br />

Urey, H.C., 1966. Biological material <strong>in</strong> <strong>meteorite</strong>s: a review.<br />

Science 151, 157–166.<br />

Watanabe, Y., Naraoka, H., Wronkiewicz, D.J., Condie,<br />

K.C., Ohmoto, H., 1997. Carbon, nitrogen, and sulfur<br />

geochemistry <strong>of</strong> Archean and Proterozoic shales from <strong>the</strong><br />

Kaapvaal Craton, South Africa. Geochim. Cosmochim.<br />

Acta 61, 3441–3459.<br />

Wickramas<strong>in</strong>ghe, N.C., Hoyle, F., Wallis, D.H., 1997. Spectroscopic<br />

evidence for panspermia. Proc. SPIE 3111, 282–<br />

295.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!