27.11.2012 Views

Daniel de Florian

Daniel de Florian

Daniel de Florian

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Global Analysis of Fragmentation Functions<br />

<strong>Daniel</strong> <strong>de</strong> <strong>Florian</strong><br />

Dpto. <strong>de</strong> Física - FCEyN- UBA<br />

Global Analysis of Polarized Parton Distributions in the RHIC Era<br />

BNL - October 8<br />

in collaboration with M. Stratmann and R. Sassot


Disclaimer<br />

We (TH) can compute observables in pQCD with high precision<br />

But about errors ..hmmmmmmm<br />

1.1 ± 0.1 ± 0.2<br />

1.1<br />

±0.1 ± 0.2<br />

1.1 ± � 0.1 2 + 0.2 2


Fragmentation functions<br />

Represent the probability that a parton hadronizes in h<br />

From TH point of view at the same level of pdfs<br />

Relevant any time a hadron is produced in high energy collisions<br />

e+e- : primary “source”<br />

SIDIS : complement DIS to allow flavor separation<br />

pp collisions: signal and “background” for a lot of physics<br />

Global Fit (DSS) that inclu<strong>de</strong>s all those processes<br />

Heavy Ions<br />

polarized pdfs


In the framework of this workshop:<br />

Fragmentation functions play a very relevant role<br />

Single hadron production in polarized pp collisions great tool to<br />

unveil the gluon distribution : gluons enter at LO<br />

Precise FF nee<strong>de</strong>d to perform pdf extraction<br />

Otherwise: “error” in FF propagates to pdf<br />

Trivial example: if gluon FF too small, the mistake in analysis of pp<br />

collisions will result in a gluon pdfs too large to compensate!


parabola and the 1σ uncertainty in any observable would correspond to ∆χ2 = 1. In or<strong>de</strong>r to account for unexpected<br />

sources of uncertainty, in mo<strong>de</strong>rn unpolarized global analysis it is customary to consi<strong>de</strong>r instead of ∆χ2 = 1 between<br />

a 2% and a 5% variation in χ2 as conservative estimates of the range of uncertainty.<br />

As expected in the i<strong>de</strong>al framework, the <strong>de</strong>pen<strong>de</strong>nce of χ2 on the first moments of u and d resemble a parabola<br />

(Figures 3a and 3b). The KKP curves are shifted upward almost six units relative to those from KRE, due to the<br />

difference in χ2 of their respective best fits. Although this means that the overall goodness of KKP fit is poorer than<br />

KRE, δd and δu seem to be more tightly constrained. The estimates for δd computed with the respective best fits<br />

are close and within the ∆χ2 = 1 range, suggesting something close to the i<strong>de</strong>al situation. However for δu, they only<br />

overlap allowing a variation in ∆χ2 of the or<strong>de</strong>r of a 2%. This is a very good example of how the ∆χ2 Actual example: analysis of polarized pdfs from SIDIS using<br />

= 1 does not<br />

different FF (see Rodolfo’s talk)<br />

seem to apply due to an unaccounted source of uncertainty: the differences between the available sets of fragmentation<br />

functions.<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

x(!u+!u –<br />

)<br />

x(!d+!d –<br />

)<br />

x!u –<br />

10 -2<br />

x Bj<br />

x!u v<br />

x!d v<br />

x!d –<br />

10 -2<br />

x Bj<br />

x!g –<br />

x!s –<br />

KRE (NLO)<br />

KKP (NLO)<br />

unpolarized<br />

KRE " 2<br />

KRE " min +1<br />

KRE " 2<br />

KRE " min +2%<br />

FIG. 4: Parton <strong>de</strong>nsities at Q 2 = 10 GeV 2 , and the uncertainty bands corresponding to ∆χ 2 = 1 and ∆χ 2 = 2%<br />

Using Kretzer or KKP can lead to very<br />

different sea distributions<br />

An interesting thing to notice is that almost all the variation in χ2 comes from the comparison to pSIDIS data.<br />

The partial χ2 value computed only with inclusive data, χ2 pDIS , is almost flat reflecting the fact the pDIS data are<br />

not sensitive to u and d distributions. In Figure 3, we plot χ2 pDIS with an offset of 206 units as a dashed-dotted line.<br />

The situation however changes dramatically when consi<strong>de</strong>ring δs or δg as shown in Figures 3c and 3f, respectively.<br />

In the case of the variation with respect to δs, the profile of χ2 is not at all quadratic, and the distribution is much<br />

more tightly constrained (notice that the scale used for δs is almost four times smaller than the one used for light<br />

sea quarks moments). The χ2 pDIS corresponding to inclusive data is more or less indifferent within an interval around<br />

10 -2<br />

x Bj<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

8<br />

D<strong>de</strong>F, G.Navarro, R.Sassot


on kernels.<br />

The cross sections for the single-inclusive e<br />

e+e- (SIA) single-inclusive annihilation<br />

+ e− annihilation<br />

(SIA) into a specific hadron H,<br />

e + e − → (γ, Z) → H, (6)<br />

at a center-of-mass system (c.m.s.) energy √ s and integrated<br />

over the production angle can be written as<br />

[29, 30]<br />

1 dσ<br />

σtot<br />

H<br />

σ0<br />

= �<br />

dz q ê2 � H<br />

2 F1 (z, Q<br />

q<br />

2 ) + F H L (z, Q2 ) � . (7)<br />

The energy EH of the observed hadron scaled to the beam<br />

energy Q/2 = √ s/2 is <strong>de</strong>noted by z ≡ 2pH · q/Q2 =<br />

2EH/ √ s with Q being the momentum of the intermediate<br />

γ or Z boson.<br />

σtot = �<br />

ê<br />

q<br />

2 q σ0<br />

�<br />

1 + αs(Q2 �<br />

)<br />

(8)<br />

π<br />

is the total cross section for e + e− → hadrons including<br />

its NLO O(αs) correction and σ0 = 4πα2 (Q2 The cross sections for the single-inclusive e<br />

computed<br />

g spacelike<br />

n functions<br />

m-to-large<br />

olution kerr<br />

as z → 0,<br />

ns are cone<br />

splitting<br />

nant, large<br />

art, which<br />

nctions for<br />

perhaps, to<br />

e evolution<br />

le Q0 < Q.<br />

ortional to<br />

nt. While<br />

z behavior<br />

unique way<br />

ce by intronseparably<br />

corrections<br />

r mass cor-<br />

)/s. The<br />

s ofsums hadron in (7) and (8) run over the nf active quark flavors q,<br />

e factoriza- and the êq are the corresponding appropriate electroweak<br />

ation charges func- (see App. A of Ref. [24] for <strong>de</strong>tails).<br />

corrected”<br />

+ e− annihilation<br />

(SIA) into a specific hadron H,<br />

e + e − → (γ, Z) → H, (6)<br />

at a center-of-mass system (c.m.s.) energy √ s and integrated<br />

over the production angle can be written as<br />

[29, 30]<br />

1 dσ<br />

σtot<br />

H<br />

σ0<br />

= �<br />

dz q ê2 � H<br />

2 F1 (z, Q<br />

q<br />

2 ) + F H L (z, Q2 ) � . (7)<br />

The energy EH of the observed hadron scaled to the beam<br />

energy Q/2 = √ s/2 is <strong>de</strong>noted by z ≡ 2pH · q/Q2 =<br />

2EH/ √ s with Q being the momentum of the intermediate<br />

γ or Z boson.<br />

σtot = �<br />

ê<br />

q<br />

2 q σ0<br />

�<br />

1 + αs(Q2 �<br />

)<br />

(8)<br />

π<br />

is the total cross section for e + e− → hadrons including<br />

its NLO O(αs) correction and σ0 = 4πα2 (Q2 )/s. The<br />

sums in (7) and (8) run over the nf active quark flavors q,<br />

and the êq are the corresponding appropriate electroweak<br />

charges (see App. A of Ref. [24] for <strong>de</strong>tails).<br />

To NLO accuracy, the unpolarized “time-like” structure<br />

functions F H 1 and F H L in (7) are given by<br />

H 2 � values of z. On the one hand, the timelike evolution kernels<br />

in (4) <strong>de</strong>velop a strong singular behavior as z → 0,<br />

and, on the other hand, the produced hadrons are consi<strong>de</strong>red<br />

to be massless. More specifically, the splitting<br />

(T )<br />

(T )<br />

functions P gq (z) and P gg (z) have a dominant, large<br />

logarithmic piece � ln<br />

�<br />

� �<br />

2 H 2 H 2 2 z/z in their NLO part, which<br />

ultimately leads to negative fragmentation functions for<br />

z ≪ 1 in the course of the Q2 evolution and, perhaps, to<br />

unphysical, negative cross sections, even if the evolution<br />

starts with positive distributions at some scale Q0 < Q.<br />

At small z, also finite mass corrections proportional to<br />

MH/(sz 2 ) become more and more important. While<br />

there are ways to resum the singular small-z behavior<br />

to all or<strong>de</strong>rs in αs, there is no systematic or unique way<br />

to correct for finite hadron masses, for instance by introducing<br />

some “re-scaled” variable z ′ in SIA. Inseparably<br />

entwined with mass effects are other power corrections<br />

or “dynamical higher twists”.<br />

Anyway, including small-z resummations or mass corrections<br />

in one way or the other in the analysis of hadron<br />

production rates is not compatible with the factorization<br />

theorem and the <strong>de</strong>finition of fragmentation functions<br />

outlined above. “Resummed” or “mass corrected”<br />

fragmentation functions should not be used with fixed or<strong>de</strong>r<br />

expressions for, say, the semi-inclusive <strong>de</strong>ep-inelastic<br />

production of a hadron, eN → e ′ tegrated over the production angle can be<br />

[29, 30]<br />

1 dσ<br />

σtot<br />

HX, discussed in<br />

Sec. II C. Therefore we limit ourselves in our global<br />

analysis to kinematical regions where mass corrections<br />

and the influence of the singular small-z behavior of the<br />

evolution kernels is negligible. It turns out that a cut<br />

z > zmin = 0.05 (0.1) is sufficient for data on pion (kaon)<br />

production.<br />

Finally, conservation of the momentum of the fragmenting<br />

parton f in the hadronization process is summarized<br />

by a sum rule stating that<br />

H<br />

σ0<br />

= �<br />

dz q ê2 � H<br />

2 F1 (z, Q<br />

q<br />

2 ) + F H L (z, Q<br />

The energy EH of the observed hadron scaled t<br />

energy Q/2 = √ s/2 is <strong>de</strong>noted by z ≡ 2pH<br />

2EH/ √ s with Q being the momentum of the<br />

ate γ or Z boson.<br />

σtot = �<br />

ê<br />

q<br />

2 q σ0<br />

�<br />

1 + αs(Q2 �<br />

)<br />

π<br />

is the total cross section for e + e− → hadron<br />

its NLO O(αs) correction and σ0 = 4πα2 (Q<br />

sums in (7) and (8) run over the nf active qua<br />

and the êq are the corresponding appropriate e<br />

charges (see App. A of Ref. [24] for <strong>de</strong>tails).<br />

To NLO accuracy, the unpolarized “timeture<br />

functions F H 1 and F H L in (7) are given b<br />

2F H 1 (z, Q2 ) = �<br />

ê<br />

q<br />

2 �<br />

�DH q q (z, Q 2 ) + D H ¯q<br />

+ αs(Q2 ) � 1<br />

Cq ⊗ (D<br />

2π<br />

H q + DH¯q +C 1 g ⊗ D H �<br />

� 2<br />

g (z, Q ) ,<br />

F H L (z, Q 2 ) = αs(Q2 ) �<br />

ê<br />

2π<br />

q<br />

2 � L<br />

q Cq ⊗ (D H q<br />

+C L g ⊗ D H e<br />

tot q q<br />

h<br />

r The energy EH of the observed hadron scaled to the beam<br />

o energy Q/2 =<br />

n<br />

.<br />

o<br />

e<br />

r<br />

y<br />

-<br />

y<br />

s<br />

rn<br />

-<br />

-<br />

”<br />

ric<br />

n<br />

l<br />

s<br />

e<br />

t<br />

)<br />

-<br />

-<br />

)<br />

� 2<br />

g (z, Q ),<br />

√ s/2 is <strong>de</strong>noted by z ≡ 2pH · q/Q2 =<br />

2EH/ √ s with Q being the momentum of the intermediate<br />

γ or Z boson.<br />

σtot = �<br />

ê<br />

q<br />

2 q σ0<br />

�<br />

1 + αs(Q2 �<br />

)<br />

(8)<br />

π<br />

is the total cross section for e + e− → hadrons including<br />

its NLO O(αs) correction and σ0 = 4πα2 (Q2 )/s. The<br />

sums in (7) and (8) run over the nf active quark flavors q,<br />

and the êq are the corresponding appropriate electroweak<br />

charges (see App. A of Ref. [24] for <strong>de</strong>tails).<br />

To NLO accuracy, the unpolarized “time-like” structure<br />

functions F H 1 and F H L in (7) are given by<br />

2F H 1 (z, Q2 ) = �<br />

ê<br />

q<br />

2 �<br />

�DH q q (z, Q 2 ) + D H ¯q (z, Q2 ) �<br />

+ αs(Q2 ) � 1<br />

Cq ⊗ (D<br />

2π<br />

H q + DH¯q )<br />

+C 1 g ⊗ D H �<br />

� 2<br />

g (z, Q ) , (9)<br />

F H L (z, Q 2 ) = αs(Q2 ) �<br />

ê<br />

2π<br />

q<br />

2 � L<br />

q Cq ⊗ (D H q + D H ¯q )<br />

+C L g ⊗ D H� 2<br />

g (z, Q ), (10)<br />

with ⊗ <strong>de</strong>noting a standard convolution. The relevant<br />

NLO coefficient functions C1,L of the Q evolution and, perhaps, to<br />

cross sections, even if the evolution<br />

distributions at some scale Q0 < Q.<br />

ite mass corrections proportional to<br />

more and more important. While<br />

esum the singular small-z behavior<br />

here is no systematic or unique way<br />

hadron masses, for instance by introled”<br />

variable z<br />

q,g in the MS scheme can be<br />

found in App. A of Ref. [24].<br />

′ in SIA. Inseparably<br />

effects are other power corrections<br />

r twists”.<br />

g small-z resummations or mass coror<br />

the other in the analysis of hadron<br />

not compatible with the factorizahe<br />

<strong>de</strong>finition of fragmentation func-<br />

. “Resummed” or “mass corrected”<br />

ions should not be used with fixed orsay,<br />

the semi-inclusive <strong>de</strong>ep-inelastic<br />

dron, eN → e ′ HX, discussed in<br />

re we limit ourselves in our global<br />

ical regions where mass corrections<br />

the singular small-z behavior of the<br />

negligible. It turns out that a cut<br />

) is sufficient for data on pion (kaon)<br />

tion of the momentum of the fragn<br />

the hadronization process is sumle<br />

stating that<br />

1<br />

dzzD<br />

0<br />

H i (z, Q2 H<br />

2EH/<br />

) = 1, (5)<br />

√ s with Q being the momentum of the intermediate<br />

γ or Z boson.<br />

σtot = �<br />

ê<br />

q<br />

2 q σ0<br />

�<br />

1 + αs(Q2 �<br />

)<br />

(8)<br />

π<br />

is the total cross section for e + e− → hadrons including<br />

its NLO O(αs) correction and σ0 = 4πα2 (Q2 )/s. The<br />

sums in (7) and (8) run over the nf active quark flavors q,<br />

and the êq are the corresponding appropriate electroweak<br />

charges (see App. A of Ref. [24] for <strong>de</strong>tails).<br />

To NLO accuracy, the unpolarized “time-like” structure<br />

functions F H 1 and F H L in (7) are given by<br />

2F H 1 (z, Q2 ) = �<br />

ê<br />

q<br />

2 �<br />

�DH q q (z, Q 2 ) + D H ¯q (z, Q2 ) �<br />

+ αs(Q2 ) � 1<br />

Cq ⊗ (D<br />

2π<br />

H q + DH¯q )<br />

+C 1 g ⊗ D H �<br />

� 2<br />

g (z, Q ) , (9)<br />

F H L (z, Q 2 ) = αs(Q2 ) �<br />

ê<br />

2π<br />

q<br />

2 � L<br />

q Cq ⊗ (D H q + D H ¯q )<br />

+C L g ⊗ D H� 2<br />

g (z, Q ), (10)<br />

with ⊗ <strong>de</strong>noting a standard convolution. The relevant<br />

NLO coefficient functions C1,L At small z, also finite mass corrections proportional to<br />

MH/(sz<br />

q,g in the MS scheme can be<br />

found in App. A of Ref. [24].<br />

2 ) become more and more important. While<br />

there are ways to resum the singular small-z behavior<br />

to all or<strong>de</strong>rs in αs, there is no systematic or unique way<br />

to correct for finite hadron masses, for instance by introducing<br />

some “re-scaled” variable z ′ in SIA. Inseparably<br />

entwined with mass effects are other power corrections<br />

or “dynamical higher twists”.<br />

Anyway, including small-z resummations or mass corrections<br />

in one way or the other in the analysis of hadron<br />

production rates is not compatible with the factorization<br />

theorem and the <strong>de</strong>finition of fragmentation functions<br />

outlined above. “Resummed” or “mass corrected”<br />

fragmentation functions should not be used with fixed or<strong>de</strong>r<br />

expressions for, say, the semi-inclusive <strong>de</strong>ep-inelastic<br />

production of a hadron, eN → e ′ HX, discussed in<br />

Sec. II C. Therefore we limit ourselves in our global<br />

analysis to kinematical regions where mass corrections<br />

and the influence of the singular small-z behavior of the<br />

evolution kernels is negligible. It turns out that a cut<br />

z > zmin = 0.05 (0.1) is sufficient for data on pion (kaon)<br />

production.<br />

Finally, conservation of the momentum of the fragmenting<br />

parton f in the hadronization process is summarized<br />

by a sum rule stating that<br />

�<br />

� 1<br />

dzzD<br />

H 0<br />

H i (z, Q2 σtot =<br />

) = 1, (5)<br />

�<br />

ê<br />

q<br />

2 q σ0<br />

�<br />

1 + αs(Q2 �<br />

)<br />

π<br />

is the total cross section for e + e− → hadrons includi<br />

its NLO O(αs) correction and σ0 = 4πα2 (Q2 )/s. T<br />

sums in (7) and (8) run over the nf active quark flavors<br />

and the êq are the corresponding appropriate electrowe<br />

charges (see App. A of Ref. [24] for <strong>de</strong>tails).<br />

To NLO accuracy, the unpolarized “time-like” stru<br />

ture functions F H 1 and F H L in (7) are given by<br />

2F H 1 (z, Q2 ) = �<br />

ê<br />

q<br />

2 �<br />

�DH q q (z, Q 2 ) + D H ¯q (z, Q2 ) �<br />

+ αs(Q2 ) � 1<br />

Cq ⊗ (D<br />

2π<br />

H q + DH¯q )<br />

+C 1 g ⊗ D H �<br />

� 2<br />

g (z, Q ) ,<br />

F H L (z, Q 2 ) = αs(Q2 ) �<br />

ê<br />

2π<br />

q<br />

2 � L<br />

q Cq ⊗ (D H q + D H ¯q )<br />

+C L g ⊗ D H� 2<br />

g (z, Q ), (1<br />

with ⊗ <strong>de</strong>noting a standard convolution. The releva<br />

NLO coefficient functions C1,L <strong>de</strong>nsities. For instance, the singlet evolution equatio<br />

schematically reads<br />

d<br />

d ln Q<br />

q,g in the MS scheme can<br />

found in App. A of Ref. [24].<br />

2 � D H (z, Q 2 �<br />

) = ˆP (T )<br />

⊗ D� H �<br />

(z, Q 2 ), (2<br />

where<br />

�D H �<br />

H D<br />

≡ Σ<br />

DH �<br />

, D<br />

g<br />

H �<br />

Σ ≡ (D<br />

q<br />

H q + DH¯q ) (3<br />

and<br />

ˆP (T ) pplicability for fragmentation functions<br />

is severely limited to medium-to-large<br />

he one hand, the timelike evolution kerp<br />

a strong singular behavior as z → 0,<br />

r hand, the produced hadrons are conssless.<br />

More specifically, the splitting<br />

(T )<br />

) and P gg (z) have a dominant, large<br />

�Cross ln section <strong>de</strong>pends on two structure functions<br />

At NLO they can be written as<br />

Fragmentation functions <strong>de</strong>pend on both energy fraction (z) and<br />

energy scale : AP evolution<br />

Notice that SIA can only give information on the sum<br />

� �<br />

(T )<br />

(T )<br />

P qq 2nfP gq<br />

≡ 1 (T ) (T ) . (4<br />

P 2nf<br />

qg P gg<br />

2 z/z in their NLO part, which<br />

to negative fragmentation functions for<br />

se of the Q2 evolution and, perhaps, to<br />

ive cross sections, even if the evolution<br />

ve distributions at some scale Q0 < Q.<br />

finite mass corrections proportional to<br />

e more and more important. While<br />

o resum the singular small-z behavior<br />

s, there is no systematic or unique way<br />

te hadron masses, for instance by introscaled”<br />

variable z ′ in SIA. Inseparably<br />

ass effects are other power corrections<br />

gher twists”.<br />

ing small-z resummations or mass cory<br />

or the other in the analysis of hadron<br />

is not compatible with the factorizathe<br />

<strong>de</strong>finition of fragmentation funcove.<br />

“Resummed” or “mass corrected”<br />

ctions should not be used with fixed orr,<br />

say, the semi-inclusive <strong>de</strong>ep-inelastic<br />

hadron, eN → e ′ at a center-of-mass system (c.m.s.) energy<br />

HX, discussed in<br />

efore we limit ourselves in our global<br />

atical regions where mass corrections<br />

√ s and integrated<br />

over the production angle can be written as<br />

[29, 30]<br />

1 dσ<br />

σtot<br />

H<br />

σ0<br />

= �<br />

dz q ê2 � H<br />

2 F1 (z, Q<br />

q<br />

2 ) + F H L (z, Q2 ) � . (7)<br />

The energy EH of the observed hadron scaled to the beam<br />

energy Q/2 = √ s/2 is <strong>de</strong>noted by z ≡ 2pH · q/Q2 =<br />

2EH/ √ s with Q being the momentum of the intermediate<br />

γ or Z boson.<br />

σtot = �<br />

ê<br />

q<br />

2 q σ0<br />

�<br />

1 + αs(Q2 �<br />

)<br />

(8)<br />

π<br />

is the total cross section for e + e− → hadrons including<br />

its NLO O(αs) correction and σ0 = 4πα2 (Q2 )/s. The<br />

sums in (7) and (8) run over the nf active quark flavors q,<br />

and the êq are the corresponding appropriate electroweak<br />

charges (see App. A of Ref. [24] for <strong>de</strong>tails).<br />

To NLO accuracy, the unpolarized “time-like” structure<br />

functions F H 1 and F H L in (7) are given by<br />

2F H 1 (z, Q2 ) = �<br />

ê<br />

q<br />

2 �<br />

�DH q q (z, Q 2 ) + D H ¯q (z, Q2 ) �<br />

+ αs(Q2 ) � 1<br />

Cq ⊗ (D<br />

2π<br />

H q + DH¯q )<br />

�<br />

�<br />

To NLO accuracy, the unpolarized “time-like” struc


Advantages Very precise data from LEP/SLD<br />

Disadvantages<br />

Heavy quark tagged data<br />

Only fragmentation functions enter (clean process)<br />

SIA data dominated by precise LEP/SLD measurements at MZ<br />

weak scale <strong>de</strong>pen<strong>de</strong>nce (bad resolution for g fragmentation)<br />

mostly <strong>de</strong>termine “singlet” distribution (high precision)<br />

Σ = Du + Dū + Dd + D ¯ d + Ds + D¯s + Dc + D¯c + Db + D¯ b<br />

Can not separate<br />

e+e- (SIA) single-inclusive annihilation<br />

not precise at large z (relevant for pp collisions)<br />

D h q (z, Q 2 ) from D h q (z, Q 2 )


Some ansatz nee<strong>de</strong>d if only SIA data used, like “linear suppression”<br />

Recent NLO analyses<br />

D h+<br />

q+q(z, Q 2 ) = D h−<br />

q+q(z, Q 2 )<br />

D h+ +h −<br />

q<br />

CGGRW(1994), BFGW(2000)<br />

BKK(1995), KKP(2000), AKK(2005)<br />

KRE(2000)<br />

HKNS(2007)<br />

(z, Q 2 ) = D h+ +h −<br />

q<br />

(z, Q 2 )<br />

D h+<br />

q (z, Q 2 ) = (1 − z) D h+<br />

q (z, Q 2 )<br />

flavor/charge average<br />

L.Bourhis et al.,<br />

Eur.Phys.J C19 (2001) 89.<br />

S. Albino et al.,<br />

Nuc.Phys.B725 (2005) 206.<br />

S. Kretzer, Phys. Rev.D62 (2000) 0540001.<br />

M. Hirai et al., Phys. Rev.D75 (2007) 094009.<br />

use only SIA: no separation or ad-hoc assumption<br />

And some “reasonable” ansatz about charge separation don’t work well


SIDIS<br />

Advantages : allows flavor/charge separation<br />

larger z<br />

smaller Q2 , improves scale coverage in evolution : Dg<br />

Hermes and Compass kinematics<br />

Disadvantage : would introduce “<strong>de</strong>pen<strong>de</strong>nce” on pdfs (but unpolarized pdfs<br />

very well constrained from DIS in the same kinematical range)<br />

non-perturbative corrections at small Q2 The cross section for the semi-inclusive <strong>de</strong>ep-inelastic<br />

production of a hadron, eN → e<br />

?<br />

′ HX, is proportional to<br />

certain combinations of both the parton distributions of<br />

the nucleon N and the fragmentation functions for the<br />

hadron H. It can be written in factorized form in a way<br />

very similar to the fully inclusive DIS case [24, 29–31]:<br />

dσH =<br />

dx dy dzH<br />

2 πα2<br />

Q2 � 2 (1 + (1 − y) )<br />

2 F<br />

y<br />

H 1 (x, zH, Q 2 )<br />

+ 2(1 − y)<br />

F<br />

y<br />

H L (x, zH, Q 2 �<br />

) , (11)<br />

with x and y <strong>de</strong>noting the usual DIS scaling variables<br />

(Q2 = sxy), and where [29, 30] zH ≡ pH · pN/pN · q<br />

with an obvious notation of the four-momenta, and with<br />

−q2 ≡ Q2 . Strictly speaking, Eq. (11) and the variable<br />

zH only apply to hadron production in the current<br />

fragmentation region. This is usually ensured by a cut<br />

xF > 0 on the Feynman-variable representing the fractional<br />

longitudinal c.m.s. momentum. If necessary, target<br />

fragmentation could be accounted for by transforming to<br />

the variable [31, 32] zH → z ≡ EH<br />

EN (1−x) , the energies EH,<br />

EN <strong>de</strong>fined in the c.m.s. frame of the nucleon and the virtual<br />

photon, and by introducing the so-called “fracture<br />

functions” [32].<br />

The structure functions F H 1 and F H L in (11) are given<br />

at NLO by<br />

2F H 1 (x, zH, Q 2 ) = �<br />

e<br />

q,q<br />

2 �<br />

q q(x, Q 2 )D H q (zH, Q 2 )<br />

+ αs(Q2 �<br />

)<br />

q ⊗ C<br />

2π<br />

1 qq ⊗ D H D. Hadron-Hadron Collisions<br />

The single-inclusive production of a hadron H at high<br />

transverse momentum pT in hadron-hadron collisions is<br />

also amenable to QCD perturbation theory. Up to corrections<br />

suppressed by inverse powers of pT , the differential<br />

cross section can be written in factorized form as [25, 33]<br />

d<br />

EH<br />

q<br />

3σ dp3 =<br />

H<br />

�<br />

fa ⊗ fb ⊗ dˆσ<br />

a,b,c<br />

c ab ⊗ DH c , (14)<br />

where the sum is over all contributing partonic channels<br />

a + b → c + X, with dˆσ c ab the associated partonic cross<br />

section. dˆσ c ab can be expan<strong>de</strong>d as a power series in the<br />

strong coupling αs and the O(α3 certain combinations of both the parton distributions of<br />

the nucleon N and the fragmentation functions for the<br />

hadron H. It can be written in factorized form in a way<br />

very similar to the fully inclusive DIS case [24, 29–31]:<br />

dσ<br />

s) NLO corrections are<br />

available [25, 33]. As always, the factorized structure (14)<br />

forces one to introduce into the calculation scales of the<br />

or<strong>de</strong>r of the hard scale in the reaction – but not specified<br />

further by the theory – that separate the short- and longdistance<br />

contributions. We have suppressed the explicit<br />

<strong>de</strong>pen<strong>de</strong>nce on these renormalization and factorization<br />

scales in Eq. (14), for <strong>de</strong>tails, see, e.g., Ref. [25].<br />

In studies and quantitative analyzes of hadronic cross<br />

sections, NLO corrections are of particular importance<br />

and generally indispensable in or<strong>de</strong>r to arrive at a firm<br />

theoretical prediction for (14). Since NLO corrections<br />

are known to be significant, LO approximations usually<br />

significantly un<strong>de</strong>rshoot the available data. In addition,<br />

hadronic reactions suffer from much enhanced theoretical<br />

uncertainties than the reactions <strong>de</strong>scribed above due to<br />

the presence of more non-perturbative, scale <strong>de</strong>pen<strong>de</strong>nt<br />

functions. The <strong>de</strong>pen<strong>de</strong>nce on the unphysical factoriza-<br />

H<br />

=<br />

dx dy dzH<br />

2 πα2<br />

Q2 � 2 (1 + (1 − y) )<br />

2 F<br />

y<br />

H 1 (x, zH, Q 2 )<br />

+ 2(1 − y)<br />

F<br />

y<br />

H L (x, zH, Q 2 �<br />

) , (11)<br />

with x and y <strong>de</strong>noting the usual DIS scaling variables<br />

(Q2 = sxy), and where [29, 30] zH ≡ pH · pN/pN · q<br />

with an obvious notation of the four-momenta, and with<br />

−q2 ≡ Q2 . Strictly speaking, Eq. (11) and the variable<br />

zH only apply to hadron production in the current<br />

fragmentation region. This is usually ensured by a cut<br />

xF > 0 on the Feynman-variable representing the fractional<br />

longitudinal c.m.s. momentum. If necessary, target<br />

fragmentation could be accounted for by transforming to<br />

the variable [31, 32] zH → z ≡ EH<br />

EN (1−x) , the energies EH,<br />

EN <strong>de</strong>fined in the c.m.s. frame of the nucleon and the virtual<br />

photon, and by introducing the so-called “fracture<br />

functions” [32].<br />

The structure functions F H 1 and F H L in (11) are given<br />

at NLO by<br />

2F H 1 (x, zH, Q 2 ) = �<br />

e<br />

q,q<br />

2 �<br />

q q(x, Q 2 )D H q (zH, Q 2 )<br />

+ αs(Q2 �<br />

)<br />

q ⊗ C<br />

2π<br />

1 qq ⊗ D H q<br />

+q ⊗ C 1 gq ⊗ D H The single-inclusiv<br />

transverse momentum<br />

also amenable to QCD<br />

tions suppressed by in<br />

cross section can be w<br />

d<br />

EH<br />

g<br />

� �<br />

3σ dp3 =<br />

H<br />

where the sum is ove<br />

a + b → c + X, with<br />

section. dˆσ c tional longitudinal c.m.s. momentum. If necessary, target<br />

fragmentation could be accounted for by transforming to<br />

Distributions the in variable x and z[31,<br />

32] zH → z ≡<br />

ab can be<br />

strong coupling αs a<br />

available [25, 33]. As<br />

forces one to introdu<br />

or<strong>de</strong>r of the hard scal<br />

further by the theory<br />

distance contribution<br />

<strong>de</strong>pen<strong>de</strong>nce on these<br />

scales in Eq. (14), for<br />

In studies and qua<br />

sections, NLO correc<br />

and generally indispe<br />

theoretical prediction<br />

are known to be sign<br />

significantly un<strong>de</strong>rsho<br />

hadronic reactions su<br />

uncertainties than th<br />

the presence of more<br />

functions. The <strong>de</strong>pen<br />

tion and renormaliza<br />

and quantified at NL<br />

As will be discus<br />

EH<br />

EN (1−x) , the energies EH,<br />

EN <strong>de</strong>fined in the c.m.s. frame of the nucleon and the virtual<br />

photon, and by introducing the so-called “fracture<br />

functions” [32].<br />

The structure functions F H 1 and F H L in (11) are given<br />

at NLO by<br />

2F H 1 (x, zH, Q 2 ) = �<br />

e<br />

q,q<br />

2 �<br />

q q(x, Q 2 )D H q (zH, Q 2 )<br />

+ αs(Q2 �<br />

)<br />

q ⊗ C<br />

2π<br />

1 qq ⊗ D H q<br />

+q ⊗ C 1 gq ⊗ D H g<br />

+g ⊗ C 1 qg ⊗ DH �<br />

q (x, zH, Q 2 �<br />

) ,(12)<br />

F H L (x, zH, Q 2 ) = αs(Q2 ) �<br />

e<br />

2π<br />

q,q<br />

2 �<br />

q q ⊗ C L qq ⊗ D H q<br />

+q ⊗ C L gq ⊗ DH g<br />

+g ⊗ C L qg ⊗ D H �<br />

q (x, zH, Q 2 further by the theor<br />

distance contributio<br />

<strong>de</strong>pen<strong>de</strong>nce on thes<br />

scales in Eq. (14), fo<br />

In studies and qu<br />

sections, NLO corre<br />

and generally indisp<br />

theoretical predictio<br />

are known to be sig<br />

significantly un<strong>de</strong>rsh<br />

hadronic reactions s<br />

uncertainties than t<br />

the presence of mor<br />

functions. The <strong>de</strong>p<br />

tion and renormaliz<br />

and quantified at N<br />

As will be disc<br />

hadronic cross sectio<br />

tion functions is the<br />

fragmentation funct<br />

gX processes for h<br />

transverse momenta<br />

tion at very high z.<br />

and K<br />

), (13)<br />

± provi<strong>de</strong> add<br />

aration of the DH i .<br />

“effective charge”<br />

at LO<br />

xF > 0 on the Feynman-variable representing the frac-<br />

}<br />

or<strong>de</strong>r of the hard sca


Transverse momentum distribution<br />

hard scale<br />

Hadron-Hadron collisions<br />

Advantages : allows flavor/charge separation form hadron measurements<br />

several subprocesses<br />

much larger z<br />

large contribution from Dg<br />

analysis of data allows to have FF that work at RHIC and<br />

can be used in polarized/heavy ion collisions!<br />

Disadvantage : Problems for fixed target experiments, use only colli<strong>de</strong>rs<br />

Otherwise Threshold resummation nee<strong>de</strong>d (not in first approach)<br />

larger TH uncertainty (scale <strong>de</strong>pen<strong>de</strong>nce)<br />

D<strong>de</strong>F, W.Vogelsang


Global FIT<br />

Advantages : Constrain FF with almost all available data<br />

Check of pQCD framework<br />

Precise <strong>de</strong>termination of distributions and estimation of<br />

uncertainties<br />

Disadvantage : more work required !<br />

Feasible if Mellin technique used (Marco’s talk)<br />

Tension between different observables requires careful analysis<br />

Complicated observables:<br />

without simple NLO interpretation<br />

involving MC<br />

“averaged” bins<br />

large scale <strong>de</strong>pen<strong>de</strong>nce<br />

Weights


fragmentation functions for<br />

LO and NLO global fits available<br />

DSS global analysis<br />

π + , π − , π 0 , K + , K − , K 0 , K 0 , p, p, n, n, h + , h −<br />

SIA data inclu<strong>de</strong>s: TPC, TASSO, SLD, ALEPH, DELPHI, OPAL +<br />

“flavor” tag<br />

SIDIS data from : HERMES, EMC<br />

pp data from : PHENIX, STAR, BRAHMS, CDF, UA1, UA2<br />

Checks with other data sets: STAR, pT distributions at HERA (H1)<br />

Estimation of uncertainties using Lagrange multipliers<br />

residual<br />

h + = π + + K + + p + res +


nt of experimental<br />

Technical <strong>de</strong>tails<br />

D H i (z, Q 2 0) = Ni z αi βi (1 − z) � � δi 1 + γi(1 − z)<br />

Q 2 0 = 1 GeV 2<br />

u, d, s, g<br />

Q 2 0 = m 2 Flexible parametrization<br />

ALYSIS<br />

to-large z. Accordingly, additional power terms in z, emphasizing<br />

the small z region, have little or no impact on<br />

at initial scale<br />

ls of our analysis. the fit and are not pursued further. The initial scale µ0<br />

e of parametriza- for the Q<br />

t of experimental<br />

Q c, b<br />

wewith <strong>de</strong>termine the<br />

inimization. αs andWe ΛQCD from MRST<br />

f Mellin moments<br />

the cross sections<br />

how we assess unntation<br />

Try to avoid<br />

functions<br />

Isospin symmetry assumptions<br />

r technique.<br />

on functions are<br />

] and have cho-<br />

2-evolution is taken to be µ0 = 1 GeV in our<br />

analysis.<br />

Since the initial fragmentation functions (15) at scale<br />

µ0 should not involve more free parameters than can be<br />

extracted from data, we have to impose, however, certain<br />

relations upon the individual fragmentation functions<br />

for pions and kaons. We have checked in each case<br />

that relaxing these assumptions in<strong>de</strong>ed does not significantly<br />

improve the χ2 of the fit of presently available<br />

data to warrant any additional parameters. In <strong>de</strong>tail, for<br />

{u, ū, d, ¯ d} → π + we impose isospin symmetry for the<br />

sea fragmentation functions, i.e.,<br />

D π+<br />

ū = D π+<br />

of experimental<br />

e <strong>de</strong>termine the<br />

nimization. We<br />

Mellin moments<br />

e cross sections<br />

w we assess untation<br />

functions<br />

technique.<br />

n functions are<br />

and have choiz<br />

d , (16)<br />

but we allow for slightly different normalizations in the<br />

αi βi (1 − z) to<br />

e µ0 for the Q2- A cross section<br />

ion on D π+ +π −<br />

q+¯q<br />

t assumptions it<br />

“valence” from<br />

r instance, Dπ+ analysis.<br />

Since the initial fragmentation functions (15) at scale<br />

µ0 should not involve more free parameters than can be<br />

extracted from data, we have to impose, however, certain<br />

relations upon the individual fragmentation functions<br />

for pions and kaons. We have checked in each case<br />

that relaxing these assumptions in<strong>de</strong>ed does not significantly<br />

improve the χ<br />

u<br />

erious limitation<br />

2 of the fit of presently available<br />

data to warrant any additional parameters. In <strong>de</strong>tail, for<br />

{u, ū, d, ¯ d} → π + we impose isospin symmetry for the<br />

sea fragmentation functions, i.e.,<br />

D π+<br />

ū = D π+<br />

d , (16)<br />

but we allow for slightly different normalizations in the<br />

q + ¯q sum:<br />

D π+<br />

d+ ¯ d = NDπ+ u+ū . (17)<br />

For strange quarks it is assumed that<br />

D π+<br />

s = D π+<br />

¯s = N ′ D π+<br />

ū<br />

(18)<br />

with N ′ we <strong>de</strong>termine the<br />

inimization. We<br />

f Mellin moments<br />

the cross sections<br />

how we assess unentation<br />

functions<br />

er technique.<br />

ion functions are<br />

0] and have cho-<br />

Niz<br />

in<strong>de</strong>pen<strong>de</strong>nt of z.<br />

αi βi (1 − z) to<br />

ale µ0 for the Q2- SIA cross section<br />

ation on D π+ +π −<br />

q+¯q<br />

ut assumptions it<br />

or “valence” from<br />

for instance, Dπ+ Since the initial fragmentation functions (15) at scale<br />

µ0 should not involve more free parameters than can be<br />

extracted from data, we have to impose, however, certain<br />

relations upon the individual fragmentation functions<br />

for pions and kaons. We have checked in each case<br />

that relaxing these assumptions in<strong>de</strong>ed does not significantly<br />

improve the χ<br />

u<br />

serious limitation<br />

tained fragmenta-<br />

2 of the fit of presently available<br />

data to warrant any additional parameters. In <strong>de</strong>tail, for<br />

{u, ū, d, ¯ d} → π + we impose isospin symmetry for the<br />

sea fragmentation functions, i.e.,<br />

D π+<br />

ū = D π+<br />

d , (16)<br />

but we allow for slightly different normalizations in the<br />

q + ¯q sum:<br />

D π+<br />

d+ ¯ d = NDπ+ u+ū . (17)<br />

For strange quarks it is assumed that<br />

D π+<br />

s = D π+<br />

¯s = N ′ D π+<br />

ū<br />

(18)<br />

with N ′ in<strong>de</strong>pen<strong>de</strong>nt of z.<br />

It is worth noticing that assuming N = N ′ f the SIA cross section<br />

nformation on D<br />

= 1 [7, 10]<br />

in Eqs. (17) and (18), respectively, SIA data alone allow<br />

π+ +π −<br />

q+¯q<br />

Without assumptions it<br />

ored” or “valence” from<br />

tion, for instance, Dπ+ u<br />

is is a serious limitation<br />

the obtained fragmentacompare<br />

to a wealth of<br />

charged pions and kaons<br />

ollisions [21]. In Ref. [7]<br />

Dπ+ u = (1 − z) was as-<br />

This was later shown to<br />

ed pion multiplicities in<br />

a LO combined analysis<br />

so Fig. 4 and discussions<br />

<strong>de</strong>termine for the first<br />

unctions for quark and<br />

ll as gluons from data.<br />

ental information from<br />

on scattering data, we<br />

input distribution than<br />

i [1 + γi(1 − z) δi<br />

For strange quarks it is assumed that<br />

D<br />

]<br />

,<br />

π+<br />

s = D π+<br />

¯s = N ′ D π+<br />

ū<br />

(18)<br />

with N ′ in<strong>de</strong>pen<strong>de</strong>nt of z.<br />

It is worth noticing that assuming N = N ′ = 1 [7, 10]<br />

in Eqs. (17) and (18), respectively, SIA data alone allow<br />

to distinguish between favored and unfavored fragmentation<br />

functions in principle. We shall scrutinize the compatibility<br />

of these assumptions with SIDIS and hadronic<br />

scattering data in Sec. IV F. At any rate, their impact<br />

on the assessment of uncertainties of fragmentation functions<br />

is highly non trivial.<br />

For charged kaons we fit DK+ u+ū and DK+ s+¯s in<strong>de</strong>pen<strong>de</strong>ntly<br />

to account for the phenomenological expectation that the<br />

formation of secondary s¯s pairs, which is required to form<br />

a |K + 〉 = |u¯s〉 from a u but not from an ¯s quark, should<br />

be suppressed. In<strong>de</strong>ed, we find from our fit, see Sec.<br />

IV below, that DK+ s+¯s > DK+ u+ū in line with that expectation.<br />

For the unfavored fragmentation the data are<br />

unable to discriminate between flavors and, consequently,<br />

we assume that all distributions have the same functional<br />

form:<br />

D K+<br />

ū = D K+<br />

s = D K+<br />

d = D K+<br />

Normalizations for different experiments (if not inclu<strong>de</strong>d in syst.)<br />

Allowing for possible breaking<br />

of SU(3) of sea and SU(2) in<br />

favored distributions<br />

unless data can not discriminate<br />

for unfavored fragmentations<br />

¯d . (19)<br />

are to a wealth of<br />

D d+ ¯ d = ND u+ū . (17)<br />


Some plots<br />

SIA: still works very well<br />

within the global fit<br />

Large errors at z>0.5<br />

“inclusive”<br />

heavy quark tagged<br />

✓ extrapolation to smaller z<br />

10 4<br />

10 3<br />

10 2<br />

10<br />

1<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 3<br />

10 2<br />

10<br />

1<br />

10 -1<br />

10 -2<br />

10 3<br />

10 2<br />

10<br />

10 -1<br />

1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

z>0.05 (0.1 for Kaons/Protons)<br />

not<br />

fitted<br />

not<br />

fitted<br />

THIS FIT<br />

KRE<br />

AKK<br />

10 -1<br />

1 d! "<br />

! tot dz charm<br />

1 d! "<br />

THIS FIT<br />

KRE<br />

AKK<br />

! tot dz bottom<br />

10 -1<br />

1 d! "<br />

! tot dz<br />

(× 0.1)<br />

(× 0.1)<br />

(× 10)<br />

(× 100)<br />

(× 0.01)<br />

(× 10)<br />

(× 10)<br />

z<br />

z<br />

1<br />

1<br />

TPC<br />

SLD<br />

ALEPH<br />

DELPHI<br />

OPAL<br />

10 -1<br />

TPC (charm)<br />

SLD (charm)<br />

TPC (bottom)<br />

SLD (bottom)<br />

DELPHI (bottom)<br />

10 -1<br />

z<br />

z<br />

1<br />

1<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-0.2<br />

-0.4<br />

0<br />

0.6<br />

0.4<br />

0.2<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

0.5<br />

0<br />

-0.5<br />

0.5<br />

0<br />

-0.5<br />

0.5<br />

0<br />

-0.5<br />

0.5<br />

0<br />

-0.5<br />

0.5<br />

0<br />

-0.5<br />

(data - theory)/theory<br />

(data - theory)/theory


SIDIS<br />

ad-hoc charge separation<br />

from Kretzer fails<br />

large z covered<br />

1<br />

10 -1<br />

1<br />

10 -1<br />

1/NDIS dN " /dzdQ 2<br />

+<br />

THIS FIT<br />

KRE<br />

1/NDIS dN " /dzdQ 2<br />

-<br />

not fitted<br />

Q 2 [GeV]<br />

Hermes<br />

z - bin<br />

0.25 - 0.35<br />

0.35 - 0.45<br />

0.45 - 0.60<br />

0.60 - 0.75<br />

z - bin<br />

0.25 - 0.35<br />

0.35 - 0.45<br />

0.45 - 0.60<br />

0.60 - 0.75<br />

1 10<br />

" +<br />

0.25 ! z ! 0.35<br />

1 10<br />

" -<br />

Q 2 [GeV]<br />

0.35 ! z ! 0.45<br />

0.45 ! z ! 0.60<br />

0.60 ! z ! 0.75<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

(data - theory)/theory


10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -8<br />

10 -9<br />

0.5<br />

0<br />

-0.5<br />

THIS FIT<br />

KRE<br />

AKK<br />

scale uncertainty<br />

d 3 ! "<br />

dp 3 E [mb / GeV 2 0<br />

]<br />

PHENIX data<br />

(preliminary)<br />

(data - theory)/theory<br />

0 5 10 15 20<br />

Neutral pions at Phenix<br />

pp data<br />

p T [GeV]<br />

1<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

d 3 ! "<br />

dp 3<br />

E [mb / GeV 2 +<br />

]<br />

THIS FIT<br />

KRE<br />

scale uncertainty<br />

BRAHMS data<br />

# = 2.95<br />

1 2 3 4 1 2 3 4 5<br />

p T [GeV]<br />

µF = µR = pT<br />

d 3 ! "<br />

dp 3<br />

E [mb / GeV 2 -<br />

]<br />

(data - theory)/theory<br />

BRAHMS data<br />

# = 2.95<br />

Charged pions (at large z)<br />

p T [GeV]


1<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

0.5<br />

0<br />

-0.5<br />

THIS FIT<br />

KRE<br />

AKK<br />

E<br />

scale uncertainty<br />

(data - theory)/theory<br />

d 3 ! K<br />

dp 3<br />

[mb / GeV 2 ]<br />

1 2 3 4 5<br />

0<br />

S<br />

STAR data<br />

p T [GeV]<br />

pp data<br />

Kaons Protons<br />

1<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

1<br />

0.5<br />

0<br />

-0.5<br />

E<br />

d 3 ! p<br />

dp 3<br />

THIS FIT<br />

HKNS<br />

scale uncertainty<br />

[mb / GeV 2 ]<br />

STAR data<br />

1 2 3 4 5 6 7 1 2 3 4 5 6 7<br />

p T [GeV]<br />

E<br />

d 3 ! p<br />

dp 3<br />

(data - theory)/theory<br />

[mb / GeV 2 ]<br />

STAR data<br />

p T [GeV]<br />

Good agreement with all RHIC data and visible differences with other sets


Typically<br />

Large χ from a few isolated data points (small z in SIA, and some SIDIS and pp)<br />

2<br />

very precise SIA<br />

Also tension between experiments (like Delphi at large z)<br />

χ 2<br />

χ 2 /dof ∼ 2<br />

grows (~25%) for LO fits : mostly from pp data<br />

where NLO corrections are very large<br />

Pions + kaons + protons almost saturate charged hadrons:<br />

residual only sizable for HQ


1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

2<br />

1.5<br />

1<br />

0.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

+<br />

zD ! zDi (z)<br />

Q 2 = 10 GeV 2<br />

10 -1<br />

u + u<br />

u<br />

s + s<br />

Distributions (pions)<br />

1<br />

zD ! zDi (z)<br />

Q 2 = 10 GeV 2<br />

THIS FIT / KRE THIS FIT / KRE<br />

D "<br />

THIS FIT / AKK<br />

z<br />

+<br />

THIS FIT / AKK<br />

10 -1<br />

Large differences visible in the gluon at large z : explains pp<br />

gluon<br />

c + c<br />

Large differences in unfavored distributions : explains SIDIS and pp<br />

For pions u fragmentation smaller than AKK : required by SIDIS and<br />

compensated in SIA by larger s<br />

Similar singlet<br />

z<br />

1<br />

10<br />

1<br />

10<br />

1<br />

10<br />

1<br />

10 -1<br />

10 -2<br />

1<br />

0.5<br />

0<br />

-0.5<br />

large rapidity at STAR<br />

THIS FIT<br />

KRE<br />

AKK<br />

scale uncertainty<br />

(data - theory)/theory<br />

d 3 ! "<br />

dp 3 E [µb / GeV 2 0<br />

]<br />

STAR data<br />

#$% = 3.3<br />

#$% = 3.8<br />

-1<br />

1 2 3 4<br />

p T [GeV]


0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

3<br />

2<br />

1<br />

3<br />

2<br />

1<br />

0<br />

10 -1<br />

u + u<br />

u<br />

s + s<br />

THIS FIT / KRE<br />

D !<br />

Distributions (Kaons)<br />

THIS FIT / AKK<br />

+<br />

zD K zDi (z)<br />

Q 2 = 10 GeV 2<br />

z<br />

1<br />

gluon<br />

c + c<br />

THIS FIT / KRE<br />

THIS FIT / AKK<br />

10 -1<br />

Smaller u required by SIDIS<br />

VERY different gluon by pp<br />

+<br />

zD K zDi (z)<br />

Q 2 = 10 GeV 2<br />

Similar singlet (larger dominant s)<br />

_<br />

Issues for K- (s and u in proton at large x)<br />

z<br />

1<br />

10<br />

1<br />

10<br />

1<br />

1<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

0.5<br />

0<br />

-0.5<br />

THIS FIT<br />

KRE<br />

AKK<br />

E<br />

scale uncertainty<br />

(data - theory)/theory<br />

d 3 ! K<br />

dp 3<br />

[mb / GeV 2 ]<br />

1 2 3 4 5<br />

1 +<br />

0.25 ! z ! 0.35<br />

10 -1<br />

1<br />

10 -1<br />

10 -2<br />

1/N DIS dN K /dzdQ 2<br />

THIS FIT<br />

KRE<br />

1/NDIS dN K /dzdQ 2<br />

-<br />

not fitted<br />

Q 2 [GeV]<br />

z - bin<br />

0.25 - 0.35<br />

0.35 - 0.45<br />

0.45 - 0.60<br />

z - bin<br />

0.25 - 0.35<br />

0.35 - 0.45<br />

0.45 - 0.60<br />

1 10<br />

0<br />

S<br />

K +<br />

0.35 ! z ! 0.45<br />

0.45 ! z ! 0.60<br />

STAR data<br />

Q 2 [GeV]<br />

p T [GeV]<br />

K -<br />

1 10<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

(data - theory)/theory


0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

2<br />

1.5<br />

1<br />

0.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

zD p zDi (z)<br />

THIS FIT / HKNS<br />

10 -1<br />

D !<br />

THIS FIT / AKK<br />

D !<br />

Distributions (protons)<br />

u + u<br />

u * 2<br />

s + s<br />

Q 2 = M 2<br />

Q 2 = MZ z<br />

1<br />

THIS FIT / HKNS<br />

THIS FIT / AKK<br />

10 -1<br />

gluon<br />

c + c<br />

b + b<br />

z<br />

Differences with HKNS also sizeable : gluons, unfavored and large z (pp)<br />

1<br />

10<br />

1<br />

10<br />

1<br />

1<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

1<br />

0.5<br />

0<br />

-0.5<br />

E<br />

d 3 ! p<br />

dp 3<br />

THIS FIT<br />

HKNS<br />

scale uncertainty<br />

[mb / GeV 2 ]<br />

STAR data<br />

1 2 3 4 5 6 7 1 2 3 4 5 6 7<br />

p T [GeV]<br />

E<br />

d 3 ! p<br />

dp 3<br />

(data - theory)/theory<br />

Similar singlet, but large diff. between HKNS and AKK (using same data)<br />

In general differences look much larger than for pdf fits :<br />

comparison between GLOBAL fits<br />

To “estimate” uncertainties using different sets (like MRST vs CTEQ),<br />

more global fits nee<strong>de</strong>d<br />

[mb / GeV 2 ]<br />

STAR data<br />

p T [GeV]


Uncertainties<br />

Use Lagrange multipliers technique to estimate uncertainties (from exp.<br />

errors) on some observables<br />

∆χ 2 n<br />

Φ(λi, {aj}) = χ 2 ({aj}) + �<br />

i<br />

λi Oi({aj})<br />

See how fit <strong>de</strong>teriorates when FFs forced to give different prediction for Oi<br />

should be parabolic if data set can <strong>de</strong>termine the observable<br />

(otherwise monotonic o flat)<br />

We study truncated moments:<br />

� 1<br />

0.2<br />

z D H i (z, Q = 5 GeV) dz


# 2<br />

# 2<br />

860<br />

855<br />

850<br />

845<br />

860<br />

855<br />

850<br />

845<br />

"+<br />

! g<br />

"+<br />

! u+u –<br />

! u – "+<br />

"+<br />

! c+c –<br />

0.9 1 1.1 0.9 1 1.1<br />

!/! 0<br />

!/! 0<br />

u < 5%<br />

s ~ 10 %<br />

∆χ 2 = 15(∼ 2%)<br />

"+<br />

! s+s –<br />

"+<br />

! –<br />

b+b<br />

0.9 1<br />

!/! 0<br />

1.1<br />

dominated by z~0.2<br />

Uncertainties<br />

#$ 2<br />

#$ i<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

"+<br />

! u+u –<br />

0.98 1 1.02<br />

#$ 2<br />

#$ TOTAL<br />

#$ 2<br />

#$ e+e-<br />

#$ 2<br />

#$ HERMES<br />

#$ 2<br />

#$ OPAL<br />

#$ PHENIX<br />

2<br />

#$ STAR<br />

2<br />

#$ BRAHMS<br />

2<br />

Tension<br />

Individual profiles<br />

!/! 0<br />

"+<br />

! g<br />

"+<br />

! s+s –<br />

0.9 1 1.1<br />

Complementarity<br />

Constrained parabola as a result of global fit<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

Precision<br />

RHIC


Conclusions<br />

FFs are a fundamental tool to <strong>de</strong>scribe HEP observables within pQCD<br />

NLO (and LO) fragmentation functions from a global fit: electronpositron,<br />

lepton-nucleon and hadron-hadron scattering<br />

Charge and flavor separation from data (no ad-hoc assumptions)<br />

For this workshop: ffs work in the kinematic range relevant for<br />

polarized pdfs extraction: RHIC, Hermes, Compass<br />

First “global” fit fully <strong>de</strong>veloped using Mellin techniques : it can be done!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!