12.07.2015 Views

Species composition, diversity, and abundance of lianas in different ...

Species composition, diversity, and abundance of lianas in different ...

Species composition, diversity, and abundance of lianas in different ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ecol Res (2009) 24: 1361–1370DOI 10.1007/s11284-009-0620-7ORIGINAL ARTICLEChun-m<strong>in</strong>g Yuan Æ Wen-yao Liu Æ C<strong>in</strong>dy Q. TangXiao-shuang Li<strong>Species</strong> <strong>composition</strong>, <strong>diversity</strong>, <strong>and</strong> <strong>abundance</strong> <strong>of</strong> <strong>lianas</strong><strong>in</strong> <strong>different</strong> secondary <strong>and</strong> primary forests <strong>in</strong> a subtropicalmounta<strong>in</strong>ous area, SW Ch<strong>in</strong>aReceived: 25 September 2008 / Accepted: 14 May 2009 / Published onl<strong>in</strong>e: 20 June 2009Ó The Ecological Society <strong>of</strong> Japan 2009Abstract The species <strong>composition</strong>, <strong>diversity</strong>, <strong>and</strong> <strong>abundance</strong><strong>of</strong> <strong>lianas</strong> were studied <strong>in</strong> four secondary forests (a100-year-old forest, a middle-aged forest, <strong>and</strong> twoyounger secondary forests), <strong>and</strong> compared with anundisturbed primary forest <strong>in</strong> the Ailao Mounta<strong>in</strong>s <strong>of</strong>subtropical SW Ch<strong>in</strong>a. The results showed that thespecies <strong>composition</strong> <strong>of</strong> <strong>lianas</strong> differed greatly from thesecondary forests to the primary forest, which exhibitearly <strong>and</strong> late-successional species. The <strong>abundance</strong> <strong>of</strong><strong>lianas</strong> was relatively higher <strong>in</strong> the two younger <strong>and</strong>middle-aged secondary forests than <strong>in</strong> the old-growthsecondary <strong>and</strong> primary forests. However, liana speciesrichness was very limited <strong>in</strong> the four secondary forests ascompared to the primary forest. Root climbers ma<strong>in</strong>lygrew <strong>in</strong> the primary forest, whereas tendril <strong>and</strong> hookclimbers predom<strong>in</strong>ated <strong>in</strong> the four secondary forests,while stem tw<strong>in</strong>ers were common <strong>in</strong> both. The majority<strong>of</strong> <strong>lianas</strong> recorded <strong>in</strong> this study reproduced by animaldispersal, <strong>and</strong> there was no variation <strong>in</strong> dispersal modesacross the five forest types. A step-wise regressionC. Yuan Æ W. Liu (&) Æ X. LiXishuangbanna Tropical Botanical Garden,Ch<strong>in</strong>ese Academy <strong>of</strong> Science, 88 Xuefu Road,650223 Kunm<strong>in</strong>g, Yunnan, People’s Republic <strong>of</strong> Ch<strong>in</strong>aE-mail: liuwy@xtbg.ac.cnTel.: +86-871-5153787Fax: +86-871-5160916C. Yuan Æ X. LiGraduate School <strong>of</strong> the Ch<strong>in</strong>ese Academy <strong>of</strong> Science,100039 Beij<strong>in</strong>g, Ch<strong>in</strong>aC. YuanYunnan Academy <strong>of</strong> Forestry, 650204 Kunm<strong>in</strong>g, Ch<strong>in</strong>aW. LiuSchool <strong>of</strong> Environmental Biology,Curt<strong>in</strong> University <strong>of</strong> Technology,Perth, WA 6845, AustraliaC. Q. TangInstitute <strong>of</strong> Ecology <strong>and</strong> Geobotany,Yunnan University, 650091 Kunm<strong>in</strong>g, Ch<strong>in</strong>ashowed that the <strong>abundance</strong> <strong>of</strong> small <strong>lianas</strong> (dbh


1362<strong>and</strong> Mart<strong>in</strong>ez-Ramos 2002; Reddy <strong>and</strong> Parthasarathy2003; Parthasarathy et al. 2004; DeWalt et al. 2006).Trellis availability <strong>and</strong> tree architecture together <strong>in</strong>fluencethe distribution <strong>of</strong> <strong>lianas</strong> <strong>in</strong> the forests (Putz 1984;Balfour <strong>and</strong> Bond 1993). The <strong>abundance</strong> <strong>and</strong> species<strong>diversity</strong> <strong>of</strong> <strong>lianas</strong> also depend upon several key abioticfactors, <strong>in</strong>clud<strong>in</strong>g total ra<strong>in</strong>fall, seasonality <strong>of</strong> ra<strong>in</strong>fall,soil fertility <strong>and</strong> disturbance (Schnitzer <strong>and</strong> Bongers2002; Schnitzer 2005). Especially, forest disturbance canpromote the proliferation <strong>of</strong> <strong>lianas</strong> because it can<strong>in</strong>crease their establishment opportunity by alter<strong>in</strong>g thelight environments <strong>and</strong> provid<strong>in</strong>g suitable trellises forclimb<strong>in</strong>g (Putz 1984; Schnitzer <strong>and</strong> Bongers 2002). Thisimplies that <strong>lianas</strong> will <strong>in</strong>crease <strong>in</strong> importance withgrow<strong>in</strong>g rates <strong>of</strong> forest disturbance. Currently, thecommunity <strong>of</strong> <strong>lianas</strong> has been well documented, primarily<strong>in</strong> disturbed forests (Uhl et al. 1988; Chittibabu<strong>and</strong> Parthasarathy 2001; Reddy <strong>and</strong> Parthasarathy 2003;Rice et al. 2004) or <strong>in</strong> primary forests (e.g., Putz <strong>and</strong>Chai 1987; Appanah et al. 1993), while contrasts amongthe liana communities <strong>in</strong> secondary <strong>and</strong> primary forestsare rarely studied (DeWalt et al. 2000).DeWalt et al. (2000) analyzed the changes <strong>in</strong> <strong>lianas</strong>pecies <strong>and</strong> density along a forest chronosequence <strong>in</strong>central Panama, <strong>and</strong> found that the density <strong>and</strong> <strong>diversity</strong><strong>of</strong> <strong>lianas</strong> decreased with the progress <strong>of</strong> secondary succession.They supposed that the pattern may be relatedto the <strong>in</strong>creased tree diameter, canopy height, <strong>and</strong>decreased light levels <strong>in</strong> the course <strong>of</strong> forest succession.However, the relationships between <strong>lianas</strong> <strong>and</strong> foreststructural <strong>and</strong> environmental variables are still poorlyunderstood. Greater underst<strong>and</strong><strong>in</strong>g <strong>of</strong> the divergentpatterns <strong>of</strong> <strong>lianas</strong> <strong>in</strong> secondary to primary forests couldfurther our knowledge <strong>of</strong> the dynamics <strong>of</strong> forests.In this study, the major objective is to describe thepatterns <strong>of</strong> liana communities <strong>in</strong> four secondary forests(a 100-year-old forest, a middle-aged forest, <strong>and</strong> twoyounger secondary forests), <strong>and</strong> to compare them withan undisturbed moist evergreen broad-leaved primaryforest <strong>in</strong> the Ailao Mounta<strong>in</strong>s <strong>of</strong> SW Ch<strong>in</strong>a. Specifically,we exam<strong>in</strong>ed: (1) the vary<strong>in</strong>g species <strong>composition</strong> <strong>of</strong><strong>lianas</strong>; (2) the vary<strong>in</strong>g <strong>diversity</strong>, <strong>abundance</strong>, basal area,<strong>and</strong> size-class distribution <strong>of</strong> liana communities; (3) thecontrasts among <strong>different</strong> climb<strong>in</strong>g guilds <strong>and</strong> dispersalmodes <strong>of</strong> <strong>lianas</strong> <strong>in</strong> the five forests. Another objective isto exam<strong>in</strong>e the relationships between <strong>lianas</strong> <strong>and</strong> structural<strong>and</strong> environmental variables <strong>of</strong> the <strong>different</strong> secondary<strong>and</strong> primary forests.MethodsStudy siteThe field study was conducted <strong>in</strong> the Xujiaba region <strong>of</strong>SW Ch<strong>in</strong>a, which is 2,000–2,650 m a.s.l. on the northerncrest <strong>of</strong> the Ailao Mounta<strong>in</strong>s National Nature Reserve(23°35¢–24°44¢N, 100°54¢–100°30¢E; Fig. 1). Located onthe upper parts <strong>of</strong> the Ailao Mounta<strong>in</strong>s, the Xujiabaregion is the ma<strong>in</strong> part <strong>of</strong> the Ailao Mounta<strong>in</strong>s NationalNature Reserve, with an area <strong>of</strong> about 5,100 ha. At theAilao Mounta<strong>in</strong>s Forest Ecosystem Research Station(24°32¢N, 101°01¢E), annual mean precipitation <strong>in</strong> 1991–1995 averaged 1,931.1 mm, <strong>of</strong> which 85.0% occurreddur<strong>in</strong>g the ra<strong>in</strong>y season from May until October. Theaverage monthly temperature was 11.3°C, with averagemonthly m<strong>in</strong>imum <strong>and</strong> maximum temperatures <strong>of</strong> 5.4<strong>and</strong> 16.4°C <strong>in</strong> January <strong>and</strong> July, respectively (Qiu <strong>and</strong>Xie 1998; Fig. 1). Yellow-brown soils are distributed ascont<strong>in</strong>uous belts <strong>in</strong> the study area (Qiu <strong>and</strong> Xie 1998).The predom<strong>in</strong>ant vegetation <strong>in</strong> the region is the midmontanemoist evergreen broad-leaved primary forest(henceforth PF), which accounts for nearly 80% <strong>of</strong> thetotal area (Qiu <strong>and</strong> Xie 1998). The PF consists <strong>of</strong> tropical<strong>and</strong> temperate, some <strong>of</strong> them endemics. Canopyspecies ma<strong>in</strong>ly <strong>in</strong>clude Castanopsis wattii, Lithocarpusxylocarpus, Schima noronhae, L. j<strong>in</strong>gdongensis, <strong>and</strong>Hartia s<strong>in</strong>ensis (Tang et al. 2007). A reservoir constructedsome 100 years ago for rice irrigation onmounta<strong>in</strong>sides occupies the <strong>in</strong>terior <strong>of</strong> Xujiaba. Somesurround<strong>in</strong>g forested areas were cut when the reservoir<strong>and</strong> dam were built. Four secondary forests were formedafter severe disturbances by human. The old-growth oaksecondary forest (henceforth OOS) represents the advancednatural succession after clear-cutt<strong>in</strong>g follow<strong>in</strong>gfires <strong>and</strong> logg<strong>in</strong>g about 100 years ago (Young <strong>and</strong>Herwitz 1995). The middle-aged oak secondary forest(henceforth MOS) around the Xujiaba reservoir developedafter deforestation dur<strong>in</strong>g rebuild<strong>in</strong>g <strong>of</strong> the reservoir<strong>in</strong> the late 1950s (He et al. 2003). Both <strong>of</strong> the oakregrowth forests were ma<strong>in</strong>ly comprised <strong>of</strong> L. j<strong>in</strong>gdongensis<strong>and</strong> L. xylocarpus, but there were significant differences<strong>in</strong> floristics <strong>and</strong> structure (Young et al. 1992;Heet al. 2003). The Populus botanii secondary forest(henceforth PBS) <strong>and</strong> Alnus nepalensis secondary forest(henceforth ANS), patchily distributed at the edges <strong>of</strong>the primary forest, also resulted from repeated cutt<strong>in</strong>g,fires, <strong>and</strong> graz<strong>in</strong>g, but have been well protected s<strong>in</strong>ce thefoundation <strong>of</strong> the nature reserve <strong>in</strong> the late 1980s. ThePBS is ma<strong>in</strong>ly comprised <strong>of</strong> pioneer P. botanii <strong>and</strong>associated with other hardwood species, such as L. xylocarpus,L. j<strong>in</strong>gdongensis <strong>and</strong> L. pachyphyllus, which<strong>in</strong>dicates the successional trend toward the evergreenbroad-leaved forest. The ANS is dom<strong>in</strong>ated by a s<strong>in</strong>glepioneer tree species-A. nepalensis. These two secondaryforests can be described as the first stage <strong>of</strong> thesecondary succession to the oak secondary forest, <strong>and</strong>f<strong>in</strong>ally to the evergreen broad-leaved forest <strong>in</strong> this area(Wang 1983; Qiu <strong>and</strong> Xie 1998).Data collectionThe fieldwork was carried out between April <strong>and</strong> May,2006. Ten 20 · 20 m sample plots, <strong>of</strong> similar topography(valleys or lower slopes), were established <strong>in</strong> each <strong>of</strong>the four secondary <strong>and</strong> primary forests, <strong>and</strong> those <strong>lianas</strong><strong>of</strong> ‡2.0 m <strong>in</strong> length (from the roots) <strong>and</strong> ‡0.5 cm


1363Fig. 1 Location <strong>of</strong> the studyarea on the northern crest <strong>of</strong> theAilao Mounta<strong>in</strong>s NationalNature Reserve, southwesternCh<strong>in</strong>a, <strong>and</strong> climate diagramfrom the Ailao Mounta<strong>in</strong>sForest Ecosystem ResearchStation from 1991 to1995 (Qiu<strong>and</strong> Xie 1998)diameter at breast height (dbh) were counted. Lianaswere def<strong>in</strong>ed as woody climb<strong>in</strong>g plants permanentlyrooted <strong>in</strong> the ground, hemi-epiphytes <strong>and</strong> strangersbe<strong>in</strong>g excluded. We recorded liana species, dbh (1.3 malong the stem from the roots), climb<strong>in</strong>g mechanisms,life forms (i.e., evergreen vs. deciduous), <strong>and</strong> <strong>abundance</strong>.The <strong>abundance</strong> <strong>of</strong> <strong>lianas</strong> was the number <strong>of</strong> <strong>in</strong>dividuals<strong>in</strong> the sampl<strong>in</strong>g plots. An <strong>in</strong>dividual was def<strong>in</strong>ed as an<strong>in</strong>dependent liana (genet) that was not connected aboveground or obviously connected below ground to anyother stem <strong>in</strong>cluded <strong>in</strong> the census (follow<strong>in</strong>g Schnitzeret al. 2000; Gerw<strong>in</strong>g et al. 2006). When it was unclearwhether stems were connected below ground, they weretreated as dist<strong>in</strong>ct <strong>in</strong>dividuals (DeWalt et al. 2000). If as<strong>in</strong>gle liana <strong>in</strong>dividual had multiple vegetative <strong>of</strong>fshoots(ramets) connected to the ma<strong>in</strong> stem, we <strong>in</strong>cluded onlythe largest diameter stem.The <strong>lianas</strong> encountered were categorized as follows:(1) stem tw<strong>in</strong>ers, (2) hook climbers, (3) root climbers,<strong>and</strong> (4) tendril climbers, based on observations <strong>in</strong> thefield <strong>and</strong> with reference to Putz (1984). We assigned adispersal mode to each species accord<strong>in</strong>g to the traits <strong>of</strong>its seeds <strong>and</strong> fruits (Solorzano et al. 2002), either by fieldobservation or by consult<strong>in</strong>g regional floras. In thisstudy, three dispersal types are classified: anemochory(w<strong>in</strong>d-dispersed fruits or seeds with plumose appendagesor scarious w<strong>in</strong>g-like appendages), zoochory (animaldispersedfruits with s<strong>of</strong>t <strong>and</strong> fleshy outer layers or seedswith arils), <strong>and</strong> autochory (active seed dispersal by theplant itself, usually by explosive dehiscence, such asexplosive pods).To describe the structure <strong>of</strong> the forest communities,all stems <strong>in</strong>clud<strong>in</strong>g ma<strong>in</strong> stems <strong>and</strong> sprouts ‡1 cm <strong>in</strong> dbhwere measured for all tree <strong>and</strong> shrub species present <strong>in</strong>each plot, <strong>and</strong> average canopy height <strong>of</strong> each plot wasdeterm<strong>in</strong>ed us<strong>in</strong>g a cl<strong>in</strong>ometer.Altitude <strong>and</strong> degree <strong>of</strong> canopy openness were alsorecorded for each plot. Altitude was the average <strong>of</strong> fivemeasurements taken <strong>in</strong> the same plot, us<strong>in</strong>g an altimeter.Canopy openness was measured us<strong>in</strong>g the Crown Illum<strong>in</strong>ationEllipse Index (CIE value 1.0, 1.5, 2.0, 2.5, 3.0,4.0 <strong>and</strong> 5.0) as described <strong>in</strong> Brown et al. (2000). Five soilcores (8 cm <strong>in</strong> diameter · 15 cm <strong>in</strong> depth) were r<strong>and</strong>omlytaken <strong>in</strong> each plot to assess the soil moisturecontent by the gravimetric method. Soil samples weredried at 105°C to constant weight (dry weight) <strong>in</strong> thelaboratory. Soil moisture content (SM) was expressed aspercentage <strong>of</strong> dry weight: SM = (ww dw)/dw · 100,where ww <strong>and</strong> dw represent the wet <strong>and</strong> dry weight,respectively.Data analysis<strong>Species</strong> <strong>diversity</strong> <strong>in</strong>dices among liana communities<strong>in</strong>clud<strong>in</strong>g the Shannon–Wiener <strong>in</strong>dex, Simpson’s <strong>in</strong>dex,<strong>and</strong> the Pielou evenness <strong>in</strong>dex (Magurran 1988) werecomputed <strong>in</strong> each plot <strong>of</strong> the four secondary <strong>and</strong> primaryforests. The differences <strong>in</strong> <strong>diversity</strong>, <strong>abundance</strong>,basal area, <strong>and</strong> size-class distribution <strong>of</strong> <strong>lianas</strong> <strong>in</strong> <strong>different</strong>forests were tested us<strong>in</strong>g one-way analysis <strong>of</strong>variance (ANOVA) <strong>in</strong> the SPSS version 13.0 (SPSS2004). The differences <strong>of</strong> the number <strong>of</strong> families, species,<strong>and</strong> <strong>in</strong>dividuals among <strong>different</strong> dispersal types weretested by v 2 test.The tree stems <strong>in</strong> the 50 plots were categorized as small(1 cm £ dbh < 8 cm), medium (8 cm £ dbh < 32cm), <strong>and</strong> large (dbh ‡ 32 cm). We analyzed the relativeeffect <strong>of</strong> the <strong>abundance</strong> <strong>of</strong> the three size-classes on liana<strong>abundance</strong> <strong>of</strong> total, small (dbh < 4 cm) <strong>and</strong> large(dbh ‡ 4 cm) size-classes at the same plot by conduct<strong>in</strong>g astepwise regression analysis us<strong>in</strong>g SPSS version 13.0.


1364Canonical correspondence analysis (CCA) was usedto analyze patterns <strong>of</strong> variation <strong>in</strong> liana distribution asdeterm<strong>in</strong>ed by the environmental variables recorded,us<strong>in</strong>g PC-ORD for W<strong>in</strong>dows V.4.01. Liana species withless than five <strong>in</strong>dividuals <strong>in</strong> the 50 sampl<strong>in</strong>g plots wereremoved <strong>in</strong> the CCA analysis.Results<strong>Species</strong> <strong>composition</strong>We recorded a total <strong>of</strong> 1,610 <strong>in</strong>dividual <strong>lianas</strong> ‡0.5 cmdiameter <strong>in</strong> the 50 sample plots, represent<strong>in</strong>g 33 species <strong>in</strong>26 genera <strong>and</strong> 17 families (Table 1). The families show<strong>in</strong>gthe most <strong>diversity</strong> <strong>in</strong> terms <strong>of</strong> the number <strong>of</strong> species werethe Rosaceae (6), Smilacaceae (4), <strong>and</strong> Papilionaceae (4).The most abundant families <strong>in</strong> terms <strong>of</strong> the number <strong>of</strong><strong>in</strong>dividuals was Rosaceae (44.7% <strong>of</strong> the total), followedby Smilacaceae (21.7%). In spite <strong>of</strong> be<strong>in</strong>g a relatively richspecies, Papilionaceae were poorly represented <strong>in</strong> terms <strong>of</strong><strong>in</strong>dividuals (3.3% <strong>of</strong> the total).The species <strong>composition</strong> <strong>of</strong> <strong>lianas</strong> differed greatlyamong the <strong>different</strong> secondary <strong>and</strong> primary forests(Table 1). Fourteen species were recorded <strong>in</strong> only one <strong>of</strong>the five forest sites, <strong>in</strong>clud<strong>in</strong>g Marsdenia tsaiana, Euonymusvagans, Hydrangea anomala, Schizophragma <strong>in</strong>tegrifolium,Gardneria lanceolata, Kadsura cocc<strong>in</strong>ea, <strong>and</strong>Schis<strong>and</strong>ra henryi <strong>in</strong> PF, Aristolochia kunm<strong>in</strong>gsis <strong>in</strong>MOS, Sabia schumanniana <strong>in</strong> PBS, <strong>and</strong> Apios carnea,Pueraria peduncularis, P. lobata, Rubus ellipticus <strong>and</strong>R. idaeus <strong>in</strong> ANS. Just four species occurred <strong>in</strong> all thefive forest sites, <strong>and</strong> other species were represented <strong>in</strong>two (five species), three (seven species), or four (threespecies) forest sites. The commonest families <strong>in</strong> the foursecondary forests, <strong>in</strong> terms <strong>of</strong> number <strong>of</strong> <strong>in</strong>dividuals,were Rosaceae <strong>and</strong> Smilacaceae (51.2–95.3% <strong>of</strong> thetotal), while <strong>in</strong> PF Vitaceae <strong>and</strong> Rosaceae predom<strong>in</strong>ated(56.9% <strong>of</strong> the total). The most abundant species <strong>in</strong> PFwas Parthenocissus himalayana, whereas it was RosaTable 1 List <strong>of</strong> <strong>lianas</strong> <strong>of</strong> dbh ‡0.5 cm <strong>and</strong> height ‡2.0 m as counted <strong>in</strong> 50 sampled plots measur<strong>in</strong>g 20 m · 20 m <strong>in</strong> <strong>different</strong> secondary<strong>and</strong> primary forests <strong>in</strong> the Ailao Mounta<strong>in</strong>sFamily <strong>Species</strong> <strong>Species</strong>codesCT DT LF No.<strong>of</strong> <strong>lianas</strong>Forest typePF OOS MOS PBS ANSAct<strong>in</strong>idiaceae Act<strong>in</strong>idia callosa ACCA ST Z D 39 18 5 16Aristolochiaceae Aristolochia kunm<strong>in</strong>gsis ARKU ST AN E 1 1Asclepiadaceae Marsdenia tsaiana MATS ST AN E 2 2Caprifoliaceae Lonicera japonica LOJA ST Z E 4 2 2Celastraceae Celastrus angulatus CEAN ST Z D 66 8 17 32 3 6Euonymus vagans EUVA RC Z E 13 13Elaeagnaceae Elaeagnus conferta ELCO HC Z E 7 4 3Hydrangeaceae Hydrangea anomala HYAN RC AN D 7 7Schizophragma <strong>in</strong>tegrifolium SCIN RC AN D 5 5Lardizabalaceae Holboellia latifolia HOLA ST Z E 58 6 29 14 9Loganiaceae Gardneria lanceolata GALA ST Z E 2 2Oleaceae Jasm<strong>in</strong>um urophyllum JAUR ST Z E 7 6 1Papilionaceae Millettia dielsiana MIDI ST AU E 38 6 31 1Apios carnea APCA ST AU D 1 1Pueraria peduncularis PUPE ST AU D 10 10Pueraria lobata PULO ST AU D 4 4Rutaceae Zanthoxylum alp<strong>in</strong>um ZAAL HC Z E 9 6 1 1 1Rosaceae Rosa longicuspis ROLO HC Z E 243 27 90 44 30 52Rubus lasiotrichus RULA HC Z D 222 17 205Rubus paniculatus RUPA HC Z E 125 24 8 67 19 7Rubus ellipticus RUEL HC Z D 75 75Rubus idaeus RUID HC Z D 53 53Rubus p<strong>in</strong>faensis RUPI HC Z D 2 1 1Sabiaceae Sabia yunnanensis SAYU ST Z D 66 4 32 30Sabia schumanniana SASC ST Z D 48 48Schis<strong>and</strong>raceae Kadsura cocc<strong>in</strong>ea KACO ST Z E 6 6Schis<strong>and</strong>ra henryi SCHE ST Z D 1 1Smilacaceae Heterosmilax yunnanensis HEYU TC Z E 226 5 20 21 127 53Smilax lebrunii SMLE TC Z E 78 4 5 59 10Heterosmilax ch<strong>in</strong>ensis HECH TC Z E 32 6 12 14Heterosmilax japonica HEJA TC Z E 14 2 11 1Vitaceae Parthenocissus himalayana PAHI RC Z D 130 84 29 17Tetrastigma obtectum TEOB TC Z D 16 8 5 3Total 1610 253 244 332 313 468The species codes correspond to those <strong>in</strong> Fig. 8CT climb<strong>in</strong>g type: ST stem tw<strong>in</strong>ers, TC tendril climbers, HC hook climbers, RC root climbers. DT dispersal type: Z zoochory, ANanemochory, AU autochory. LF life form: E evergreen species, D deciduous species. Forest type: PF primary forest, OOS old-growth oaksecondary forest, MOS middle-aged oak secondary forest, PBS Populus botanii secondary forest, ANS Alnus nepalensis secondary forest


1365longicuspis <strong>in</strong> OOS, Rubus paniculatus <strong>in</strong> MOS, Heterosmilaxyunnanensis <strong>in</strong> PBS, <strong>and</strong> Rubus lasiotrichus <strong>in</strong>ANS (Table 1). The evergreen liana species <strong>in</strong>creasedwith the progress <strong>of</strong> succession, whereas the deciduousspecies varied irregularly (Fig. 2). However, for thenumber <strong>of</strong> families, both evergreen <strong>and</strong> deciduous liana<strong>in</strong>creased with forest succession.<strong>Species</strong> <strong>diversity</strong>The PF was rich <strong>in</strong> liana species, with 23 species <strong>in</strong> 15families, whereas the four secondary forests were poor,rang<strong>in</strong>g from 15 species <strong>in</strong> ten families <strong>in</strong> MOS to tenspecies <strong>in</strong> four families <strong>in</strong> ANS (Table 2). Mean speciesrichness <strong>and</strong> the Shannon <strong>in</strong>dex were significantly higher <strong>in</strong>PF, OOS, <strong>and</strong> MOS than <strong>in</strong> PBS <strong>and</strong> ANS. The Simpson<strong>in</strong>dex, <strong>in</strong> contrast, was higher <strong>in</strong> PBS <strong>and</strong> ANS than <strong>in</strong>either PF or OOS <strong>and</strong> MOS. The Pielou evenness <strong>in</strong>dex waslower <strong>in</strong> PBS <strong>and</strong> ANS than <strong>in</strong> the other three forests.Abundance <strong>and</strong> basal areaLiana <strong>abundance</strong> was higher <strong>in</strong> PBS, ANS, <strong>and</strong> MOSthan <strong>in</strong> PF <strong>and</strong> OOS, <strong>and</strong> the differences betweenPF, OOS, <strong>and</strong> ANS were significant (F 4, 45 = 1.73,P = 0.159). There was strong taxonomic dom<strong>in</strong>ance asone or two top abundant families (Table 1) <strong>and</strong> two orthree top abundant species (Fig. 3) respectively, constituted‡50% <strong>of</strong> total <strong>in</strong>dividuals <strong>in</strong> each <strong>of</strong> the studiedforests. The highest basal area <strong>of</strong> <strong>lianas</strong> was found <strong>in</strong>OOS, <strong>and</strong> there was a significant difference between PF<strong>and</strong> OOS, on the one h<strong>and</strong>, the MOS, PBS, <strong>and</strong> ANS onthe other (Fig. 4).Climb<strong>in</strong>g mechanismIn PF, stem tw<strong>in</strong>ers (ten species) were predom<strong>in</strong>ant,whereas the four secondary forests were ma<strong>in</strong>ly populatedby stem tw<strong>in</strong><strong>in</strong>g, hook climb<strong>in</strong>g, or tendril climb<strong>in</strong>gspecies (Fig. 5a). The PF was dom<strong>in</strong>ated by rootclimbers <strong>in</strong> terms <strong>of</strong> the number <strong>of</strong> <strong>in</strong>dividuals, while thefour secondary forests had mostly hook climbers ortendril climbers (Fig. 5b).Dispersal typeDifferences <strong>of</strong> the number <strong>of</strong> families, species, <strong>and</strong><strong>in</strong>dividuals among <strong>different</strong> dispersal types were significant<strong>in</strong> the study area (families: v 2 =14.59,df =2,P = 0.001; species: v 2 =26.73, df =2, P < 0.001;<strong>in</strong>dividuals: v 2 = 2826.27, df =2, P


1366Fig. 4 Mean basal area <strong>of</strong> <strong>lianas</strong> <strong>in</strong> <strong>different</strong> secondary <strong>and</strong>primary forests <strong>in</strong> the Ailao Mounta<strong>in</strong>s. See Fig. 2 for theabbreviations <strong>of</strong> forest types. Error bars represent 1 st<strong>and</strong>arddeviation (SD)Fig. 3 Dom<strong>in</strong>ant liana species <strong>in</strong> <strong>different</strong> secondary <strong>and</strong> primaryforests <strong>in</strong> the Ailao Mounta<strong>in</strong>s. <strong>Species</strong> <strong>in</strong>cluded <strong>in</strong> each forestcontribute to 50% <strong>of</strong> total <strong>in</strong>dividuals. See Fig. 2 for theabbreviations <strong>of</strong> forest typesmean <strong>abundance</strong> <strong>of</strong> large stems (dbh ‡32 cm) was significantlyhigher <strong>in</strong> PF <strong>and</strong> OOS than <strong>in</strong> the other threesecondary forests (F 4, 45 = 39.18, P < 0.001; Fig. 6a).In MOS, PBS, <strong>and</strong> ANS, nearly all liana diameterswere less than 4 cm <strong>in</strong> dbh, account<strong>in</strong>g, respectively, for93.7, 98.1, <strong>and</strong> 98.5% <strong>of</strong> total <strong>in</strong>dividuals. The <strong>abundance</strong><strong>of</strong> small <strong>lianas</strong>


1367Factors <strong>in</strong>fluenc<strong>in</strong>g the distribution <strong>of</strong> <strong>lianas</strong>Biplot <strong>of</strong> species <strong>and</strong> environmental variables jo<strong>in</strong>tlyreflected the distribution <strong>of</strong> liana species along gradients<strong>of</strong> environmental variables (Fig. 8a). Axes 1 <strong>and</strong> 2 fromthe CCA ord<strong>in</strong>ation expla<strong>in</strong>ed 10.4 <strong>and</strong> 5.5%, respectively,<strong>of</strong> the variance <strong>in</strong> the liana species data (Table 4).Canopy openness had the highest correlations with axis#1, while average canopy height had the highest correlationwith axis #2 (Table 4). Some species <strong>of</strong> Rosaceae<strong>and</strong> Papilionaceae distributed on the left part <strong>of</strong> the firstaxis, which correlated strongly with canopy opennessFig. 6 Diameter-class distributions <strong>of</strong> trees (a) <strong>and</strong> <strong>lianas</strong> (b) <strong>in</strong><strong>different</strong> secondary <strong>and</strong> primary forests <strong>in</strong> the Ailao Mounta<strong>in</strong>s(see Fig. 2 for the abbreviations <strong>of</strong> forest types). Error barsrepresent 1 st<strong>and</strong>ard deviation (SD)(r = 0.926; Fig. 8a). Plot positions on the first twoaxes showed the successional trends from the top-left tobottom-right <strong>in</strong> the biplot (Fig. 8b), which was aresponse to the <strong>in</strong>creas<strong>in</strong>g average canopy height <strong>of</strong> theforest communities, <strong>and</strong> the environmental gradient <strong>of</strong><strong>in</strong>creas<strong>in</strong>g soil moisture <strong>and</strong> decreas<strong>in</strong>g understory lightlevel.DiscussionThis study <strong>in</strong>dicated that there was an obvious difference<strong>in</strong> the species <strong>composition</strong> <strong>of</strong> <strong>lianas</strong> from the secondaryforests to the primary forest <strong>in</strong> the Ailao Mounta<strong>in</strong>s. Incontrast to the study <strong>of</strong> DeWalt et al. (2000) <strong>in</strong> a centralPanamanian lowl<strong>and</strong> forest, we found that some speciesoccurred exclusively <strong>in</strong> the primary forest, whereasothers grow exclusively <strong>in</strong> secondary forests, especially<strong>in</strong> the younger ones. The vary<strong>in</strong>g species <strong>composition</strong> <strong>of</strong><strong>lianas</strong> <strong>in</strong> <strong>different</strong> secondary <strong>and</strong> primary forests demonstratesthat there are wide ecological differencesamong <strong>lianas</strong>, although they are similar <strong>in</strong> growth form<strong>and</strong> generally thought to be light-dem<strong>and</strong><strong>in</strong>g.<strong>Species</strong> richness <strong>of</strong> <strong>lianas</strong> was very limited <strong>in</strong> the foursecondary forests as compared to the primary forest <strong>in</strong>the Ailao Mounta<strong>in</strong>s (Table 2). The simple <strong>composition</strong><strong>of</strong> <strong>lianas</strong> <strong>in</strong> secondary forests possibly resulted from thehomogeneous habitats (e.g., high light <strong>and</strong> dry soils)formed after forest disturbance. The species richness <strong>of</strong><strong>lianas</strong> was highly correlated with that <strong>of</strong> host trees. Thismay <strong>in</strong>dicate that the <strong>diversity</strong> <strong>of</strong> trees <strong>in</strong>fluenced the<strong>diversity</strong> <strong>of</strong> <strong>lianas</strong>, <strong>and</strong> both are controlled by the sameprocess <strong>of</strong> forest succession (Fig. 7). The Shannon–Wiener <strong>in</strong>dex was significantly higher <strong>in</strong> PF, OOS, <strong>and</strong>MOS than <strong>in</strong> PBS <strong>and</strong> ANS, while the Simpson <strong>in</strong>dexfollowed the opposite pattern. The former <strong>diversity</strong><strong>in</strong>dex emphasizes the contribution <strong>of</strong> rare species tospecies <strong>diversity</strong>, <strong>and</strong> the latter emphasizes the contribution<strong>of</strong> the most abundant (dom<strong>in</strong>ant) species(Magurran 1988). The <strong>diversity</strong> pattern <strong>of</strong> <strong>lianas</strong> <strong>in</strong>the studied secondary <strong>and</strong> primary forests <strong>in</strong>dicates thatrare species <strong>of</strong> <strong>lianas</strong> add more to species <strong>diversity</strong> withthe progress <strong>of</strong> forest succession. Although the structuralcharacteristics (e.g., <strong>in</strong> <strong>abundance</strong>, basal area, <strong>and</strong>size-class distribution) <strong>of</strong> the <strong>lianas</strong> <strong>of</strong> OOS are similarto those <strong>of</strong> PF, the floristic <strong>composition</strong> <strong>and</strong> speciesTable 3 Summary statistics from step-wise multiple regressions for liana <strong>abundance</strong> aga<strong>in</strong>st the <strong>abundance</strong> <strong>of</strong> small-, medium- <strong>and</strong> largesizedtree stems <strong>in</strong> the 50 plotsVariables Small trees (1–8 cm) Medium trees(8–32 cm)Large trees (‡32 cm)r P r P r PSmall <strong>lianas</strong> (dbh < 4 cm) 0.231 ns 0.146 ns 0.301 *Large <strong>lianas</strong> (dbh ‡ 4 cm) 0.547 *** 0.537 *** 0.677 ***All size-class <strong>lianas</strong> 0.124 ns 0.068 ns 0.172 nsr is the Pearson’s coefficient, ns no significant correlationP was assigned as: * P < 0.05, *** P < 0.001


1368Fig. 7 The correlation between species richness <strong>of</strong> trees <strong>and</strong> <strong>lianas</strong>on 50 sample plots <strong>in</strong> the Ailao Mounta<strong>in</strong>srichness <strong>of</strong> <strong>lianas</strong> are still significantly <strong>different</strong>. A hundredyears <strong>of</strong> restoration succession is concluded to be <strong>in</strong>sufficienttime for the return <strong>of</strong> most primary liana species.Liana <strong>abundance</strong> was higher <strong>in</strong> MOS, PBS, <strong>and</strong> ANSthan <strong>in</strong> PF <strong>and</strong> OOS. The result was <strong>in</strong> accordance withthe study <strong>of</strong> DeWalt et al. (2000) <strong>in</strong> the central Panamanianlowl<strong>and</strong> forest, where <strong>lianas</strong> were significantlymore abundant <strong>in</strong> younger (20–40 years) than <strong>in</strong> olderforests (>70 years). However, <strong>in</strong> the present study,forest disturbance only greatly <strong>in</strong>creased the <strong>abundance</strong><strong>of</strong> a few species <strong>of</strong> Rosaceae <strong>and</strong> Papilionaceae or species<strong>of</strong> certa<strong>in</strong> climb<strong>in</strong>g guilds (i.e., hook or tendrilclimbers), which possibly were best suited to a habitatcharacterized by high light conditions or many smalltrellises. Furthermore, liana species dom<strong>in</strong>ance wasextremely high (percentage <strong>of</strong> total <strong>lianas</strong> <strong>of</strong> the mostabundant species ranged from 20.2 to 43.8%; Fig. 3) <strong>in</strong>the Ailao Mounta<strong>in</strong>s compared to the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> otherstudies (rang<strong>in</strong>g from 11.0 to 17.0% DeWalt et al. 2000;Mascaro et al. 2004). The proliferation <strong>in</strong> <strong>abundance</strong> <strong>of</strong><strong>lianas</strong> <strong>in</strong> MOS, PBS, <strong>and</strong> ANS took the form <strong>of</strong> an<strong>in</strong>crease <strong>in</strong> small <strong>in</strong>dividuals (dbh < 2 cm), <strong>and</strong> the loss<strong>of</strong> large ones (dbh > 4 cm). As a result, liana basal areawas significantly limited <strong>in</strong> the three secondary forests.The vary<strong>in</strong>g patterns <strong>of</strong> climb<strong>in</strong>g guilds <strong>of</strong> <strong>lianas</strong>support the suggestion that <strong>different</strong> climb<strong>in</strong>g mechanismshave <strong>different</strong> trellis requirements (Putz 1984; Putz<strong>and</strong> Holbrook 1991; Hegarty <strong>and</strong> Caballe 1991; Hegarty1991; Nabe-Nielsen 2001). Root climbers predom<strong>in</strong>ated,<strong>in</strong> terms both <strong>of</strong> species richness <strong>and</strong> <strong>in</strong>dividuals, <strong>in</strong> PF.This is because root climbers can climb without regardto the diameter <strong>of</strong> their supports (Putz 1984; Putz <strong>and</strong>Holbrook 1991). The largest number <strong>of</strong> tendril climbersis found <strong>in</strong> MOS <strong>and</strong> PBS, where many small-diametersupports commonly occur (Fig. 5b). Hegarty <strong>and</strong>Caballe (1991) have po<strong>in</strong>ted out that tendril climbers<strong>and</strong> root climbers are the early <strong>and</strong> late-successionalspecies, respectively. Our f<strong>in</strong>d<strong>in</strong>gs are consistent withtheir suggestions, with the exception <strong>of</strong> ANS whereFig. 8 Ord<strong>in</strong>ation diagrams from the CCA <strong>of</strong> liana species<strong>abundance</strong> data on 50 plots. a <strong>Species</strong> positions on the first twoaxes. Environmental variables: CO, canopy openness; ACH,average canopy height; SM, soil moisture; Altitude was not shown<strong>in</strong> the ord<strong>in</strong>ation diagrams because it was not significantlycorrelated with either <strong>of</strong> the first two axes. The species codes weredef<strong>in</strong>ed <strong>in</strong> Table 1. b Plot positions on the first two axes. Filledcircle, primary forest; open circle, old-growth oak secondary forest;open triangle, middle-aged oak secondary forest; filled triangle,young P. botanii secondary forest; open square, young A. nepalensissecondary foresttendril climbers were relatively sparse because <strong>of</strong> thelack <strong>of</strong> small trellises. Hook climbers were commonlyfound <strong>in</strong> both primary <strong>and</strong> secondary forests, but thespecies <strong>composition</strong> varied, which was determ<strong>in</strong>ed bytheir life history traits (e.g., small short-lived or largelong-lived species).Lianas are more prone to be w<strong>in</strong>d-dispersed than trees,<strong>and</strong> their dispersal types are related to the amount <strong>of</strong>


1369Table 4 Eigenvalues <strong>and</strong> <strong>in</strong>tra-set correlations <strong>of</strong> st<strong>and</strong>ardizedenvironmental variables with the first two axes <strong>of</strong> canonical correspondenceanalysis (CCA)VariablesAxis1 2Eigenvalues 0.615 0.325<strong>Species</strong>–environment correlations 0.871 0.790Variance <strong>in</strong> species data (%) 10.4 5.5Intra-set correlationsAverage canopy height 0.745 0.577Canopy openness 0.926 0.356Soil moisture 0.763 0.039Altitude 0.257 0.155ra<strong>in</strong>fall <strong>in</strong> neotropical forests (Gentry 1991b). However,the majority <strong>of</strong> <strong>lianas</strong> recorded <strong>in</strong> this study were animaldispersed,<strong>and</strong> the prevalent diaspores were drupes, berries,<strong>and</strong> succulent fruits, which provide animals <strong>and</strong> birdswith valuable resources. The low dependence on w<strong>in</strong>ddispersal may be due to the wet climate <strong>of</strong> the study area(Qiu <strong>and</strong> Xie 1998), <strong>and</strong> <strong>in</strong> part to the closed forest <strong>and</strong>generally fewer large treefall gaps (Li et al. 2003).Lianas are to a large extent dependent on trees fortheir support, <strong>and</strong> thus the availability <strong>of</strong> suitably sizedsupport is a major factor controll<strong>in</strong>g the <strong>abundance</strong> <strong>and</strong>distribution <strong>of</strong> <strong>lianas</strong> (Putz <strong>and</strong> Holbrook 1991).Although the ANS is exposed to high light levels, therelatively limited availability <strong>of</strong> small trees (dbh


1370Gerw<strong>in</strong>g JJ, Schnitzer SA, Burnham RJ, Bongers F, Chave J, DeWaltS, Ewango CEN, Foster R, Kenfack D, Mart<strong>in</strong>ez-Ramos M,Parren M, Parthasarathy N, Perez-Salicrup D, Putz FE, ThomasDW (2006) A st<strong>and</strong>ard protocol for liana censuses. Biotropica38(2):256–261. doi:10.1111/j.1744-7429.2006.00134.xHe YT, Li GC, Cao M, Tang Y (2003) Tree species <strong>diversity</strong> <strong>of</strong> asecondary broadleaved forest on Ailao Mounta<strong>in</strong> <strong>in</strong> Yunnan (<strong>in</strong>Ch<strong>in</strong>ese with English abstract). J Trop Subtrop Bot 11(2):104–108Hegarty EE (1991) V<strong>in</strong>e–host <strong>in</strong>teractions. In: Putz FE, MooneyHA (eds) The biology <strong>of</strong> v<strong>in</strong>es. Cambridge University Press,Cambridge, pp 357–375Hegarty EE, Caballe G (1991) Distribution <strong>and</strong> <strong>abundance</strong> <strong>of</strong> v<strong>in</strong>es<strong>in</strong> forest communities. In: Putz FE, Mooney HA (eds) Thebiology <strong>of</strong> v<strong>in</strong>es. Cambridge University Press, Cambridge,pp 313–334Ibarra-Manrıquez G, Martınez-Ramos M (2002) L<strong>and</strong>scape variation<strong>of</strong> liana communities <strong>in</strong> a Neotropical ra<strong>in</strong> forest. PlantEcol 160:91–112. doi:10.1023/A:1015839400578Laurance WF, Perez-Salicrup DR, Delamonica P, Fearnside PM,Angelo SD, Jerozol<strong>in</strong>ski A, Pohl L, Lovejoy TE (2001) Ra<strong>in</strong>forest fragmentation <strong>and</strong> the structure <strong>of</strong> Amazonian lianacommunities. Ecology 82:105–116Li GC, He YT, Han XG (2003) Features <strong>of</strong> gaps <strong>of</strong> middlemounta<strong>in</strong> moist evergreen broad-leaved forest <strong>in</strong> Ailao Mounta<strong>in</strong>(<strong>in</strong> Ch<strong>in</strong>ese with English abstract). Ch<strong>in</strong> J Ecol 22:13–17Magurran AE (1988) Ecological <strong>diversity</strong> <strong>and</strong> its measurement.Pr<strong>in</strong>ceton University Press, New JerseyMascaro J, Schnitzer SA, Carson WP (2004) Liana <strong>diversity</strong>,<strong>abundance</strong>, <strong>and</strong> mortality <strong>in</strong> a tropical wet forest <strong>in</strong> Costa Rica.For Ecol Manage 190:3–14Nabe-Nielsen J (2001) Diversity <strong>and</strong> distribution <strong>of</strong> liana <strong>in</strong> aNeotropical ra<strong>in</strong> forest, Yasuni National Park, Ecuador. J TropEcol 17:1–19. doi:10.1017/S0266467401001018Parthasarathy N, Muthuramkumar S, Reddy MS (2004) Patterns<strong>of</strong> liana <strong>diversity</strong> <strong>in</strong> tropical evergreen forests <strong>of</strong> pen<strong>in</strong>sularIndia. For Ecol Manage 190:15–31Phillips OL, Mart<strong>in</strong>ez RV, Arroyo L, Baker TR, Killeen T, Lewis SL,Malhi Y, Mendoza AM, Neill D, Vargas PN, Alexiades M, CeronC, Di Fiore A, Erw<strong>in</strong> T, Jardim A, Palacios W, Saldias M, V<strong>in</strong>cetiB (2002) Increas<strong>in</strong>g dom<strong>in</strong>ance <strong>of</strong> large <strong>lianas</strong> <strong>in</strong> Amazonianforests. Nature 418:770–774. doi:10.1038/nature00926Putz FE (1984) The natural history <strong>of</strong> <strong>lianas</strong> on Barro ColoradoIsl<strong>and</strong>, Panama. Ecology 65:1713–1724. doi:10.2307/1937767Putz FE, Chai P (1987) Ecological studies on <strong>lianas</strong> <strong>in</strong> Lambir NationalPark, Sarawak, Malaysia. J Ecol 75:523–531. doi:10.2307/2260431Putz FE, Holbrook NM (1991) Biomechanical studies <strong>of</strong> v<strong>in</strong>es. In:Putz FE, Mooney HA (eds) The biology <strong>of</strong> v<strong>in</strong>es. CambridgeUniversity Press, Cambridge, pp 73–97Qiu XZ, Xie SC (1998) Studies on the forest ecosystem <strong>in</strong> AilaoMounta<strong>in</strong>s (<strong>in</strong> Ch<strong>in</strong>ese). Yunnan Science <strong>and</strong> TechnologyPress, Kunm<strong>in</strong>gReddy MS, Parthasarathy N (2003) Liana <strong>diversity</strong> <strong>and</strong> distribution<strong>in</strong> four tropical dry evergreen forests on the Corom<strong>and</strong>elcoast <strong>of</strong> south India. Biodivers Conserv 12:1609–1627. doi:10.1023/A:1023620901624Rice K, Brokaw N, Thompson J (2004) Liana <strong>abundance</strong> <strong>in</strong> aPuerto Rican forest. For Ecol Manage 190:33–41Schnitzer SA (2005) A mechanistic explanation for global patterns<strong>of</strong> liana <strong>abundance</strong> <strong>and</strong> distribution. Am Nat 166:262–276. doi:10.1086/431250Schnitzer SA, Bongers F (2002) The ecology <strong>of</strong> <strong>lianas</strong> <strong>and</strong> their role<strong>in</strong> forests. Trends Ecol Evol 17:223–230. doi:10.1016/S0169-5347(02)02491-6Schnitzer SA, Dall<strong>in</strong>g JW, Carson WP (2000) The impact <strong>of</strong> <strong>lianas</strong>on tree regeneration <strong>in</strong> tropical forest canopy gaps: evidence foran alternative pathway <strong>of</strong> gap-phase regeneration. J Ecol88:655–666. doi:10.1046/j.1365-2745.2000.00489.xSolorzano S, Ibarra-Manriquez G, Oyama K (2002) Liana <strong>diversity</strong><strong>and</strong> reproductive attributes <strong>in</strong> two tropical forests <strong>in</strong> Mexico.Biodivers Conserv 11:197–212. doi:10.1023/A:1014568105221Stevens GC (1987) Lianas as structural parasites: the Burserasimaruba example. Ecology 68:77–81. doi:10.2307/1938806Tang CQ, Li TX, Zhu XH (2007) Structure <strong>and</strong> regenerationdynamics <strong>of</strong> three subtropical midmontane moist evergreenbroad-leaved forests <strong>in</strong> southwestern Ch<strong>in</strong>a, with special referenceto bamboo <strong>in</strong> the forest understories. Can J Res 37:2701–2714. doi:10.1139/X07-101Uhl C, Buschbacher R, Serrão EAS (1988) Ab<strong>and</strong>oned pastures <strong>in</strong>eastern Amazonia. I. Patterns <strong>of</strong> plant succession. J Ecol 76:663–681. doi:10.2307/2260566Wang BR (1983) The dynamic analysis <strong>of</strong> evergreen broad-leavedforest <strong>in</strong> Xujiaba region <strong>of</strong> the Ailao Mounta<strong>in</strong>s. In: Wu CY(ed) Research on Forest Ecosystems on Ailao Mounta<strong>in</strong>s,Yunnan (<strong>in</strong> Ch<strong>in</strong>ese with English abstract). Yunnan Science<strong>and</strong> Technology Press, Kunm<strong>in</strong>g, pp 151–182Young SS, Herwitz SR (1995) Floristic <strong>diversity</strong> <strong>and</strong> co-occurrences<strong>in</strong> a subtropical broad-leaved forest <strong>and</strong> two contrast<strong>in</strong>gregrowth st<strong>and</strong>s <strong>in</strong> central-west Yunnan Prov<strong>in</strong>ce, Ch<strong>in</strong>a.Vegetation 119:1–13Young SS, Carpenter C, Wang ZJ (1992) A study <strong>of</strong> the structure<strong>and</strong> <strong>composition</strong> <strong>of</strong> an old growth <strong>and</strong> secondary broad-leavedforest <strong>in</strong> the Ailao Mounta<strong>in</strong>s <strong>of</strong> Yunnan, Ch<strong>in</strong>a. Mt Res Dev12:269–284. doi:10.2307/3673670Yuan CM, Liu WY, Yang GP (2008) <strong>Species</strong> <strong>composition</strong> <strong>and</strong><strong>diversity</strong> <strong>of</strong> <strong>lianas</strong> <strong>in</strong> forest gaps <strong>of</strong> montane moist evergreenbroadleaved forest <strong>in</strong> Ailao Mts., Yunnan, Ch<strong>in</strong>a (<strong>in</strong> Ch<strong>in</strong>esewith English abstract). J Mt Sci 26:29–35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!