28.11.2012 Views

Slides, 3.8 MB

Slides, 3.8 MB

Slides, 3.8 MB

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

International Summer School on Surfaces and Interfaces in Correlated Oxiides, Vancouver, 29 Aug – 01 Sep 2011<br />

Photoelectron spectroscopy of functional oxides:<br />

Heterostructures and buried interfaces<br />

Ralph Claessen (U Würzburg, Germany)<br />

• Photoelectron spectroscopy (PES)<br />

• PES theory in a nutshell<br />

• PES with hard x-rays (HAXPES)<br />

• HAXPES of oxide heterostructures<br />

FOR<br />

1346


Heterostructures of functional oxides<br />

3d transition metal oxides<br />

strong coupling between charge/orbital/spin/lattice<br />

degrees of freedom lead to:<br />

- metal-insulator transitions<br />

- charge and orbital ordering<br />

- local magnetism (ferro, antiferro,…)<br />

- high-temperature superconductivity<br />

- collossal magnetoresistance<br />

- …<br />

Epitaxial heterostructures by <strong>MB</strong>E, PLD<br />

controlled interfaces, additional functionalities:<br />

- strain engineering<br />

- interfacial 2dim electron gas (2DEG)<br />

- electrostatic doping (by polarity or field effect)<br />

- artificial multiferroics<br />

- spin injection<br />

- …


Oxide heterostructures<br />

"The interface is the device"<br />

(H. Kroemer, Nobel lecture 2000)<br />

Want information on:<br />

• chemical composition<br />

• electronic structure<br />

• vertical depth profile<br />

�photoelectron spectroscopy (PES)<br />

with soft and hard x-rays


Photoelectron spectroscopy (PES)


sample<br />

Photoelectron spectroscopy (PES)<br />

spectrum<br />

hν<br />

E kin<br />

E kin = hν – E B - Φ 0<br />

measure kinetic energy<br />

distribution of photoelectrons


sample<br />

Photoelectron spectroscopy (PES)<br />

spectrum<br />

Chemistry (core levels):<br />

→ composition<br />

→ chemical bonding<br />

→ valencies<br />

Electronic structure (valence band):<br />

→ density of states<br />

→ band structure<br />

→ Fermi surface<br />

→ spectral function A < (k,E)


Intensity [a.u.]<br />

Core level spectroscopy: ESCA<br />

Electron Spectroscopy for Chemical Analysis<br />

400<br />

•Cu 2p<br />

•CuO<br />

600<br />

Bi 2Sr 2CaCu 2O 8+δ<br />

800<br />

O 1s<br />

Bi 4d<br />

hν = 1486.6 eV [Al - Kα]<br />

1000<br />

Ca 2p<br />

C 1s<br />

1200<br />

Kinetic Energy [eV]<br />

Bi 4f<br />

Sr 3d<br />

Bi 5d<br />

1400<br />

Intensity [a.u.]<br />

Intensity [a.u.]<br />

1470<br />

Bi 4f 5/2<br />

1310<br />

1320<br />

1480<br />

Bi 4f 7/2<br />

1330<br />

Kinetic Energy [eV]<br />

Fermi level<br />

1490<br />

Kinetic Energy [eV]<br />

1340<br />

1500<br />

courtesy of A.F. Santander-Syro


Core level spectroscopy: Chemical shift and valency<br />

Example: alkali metal doping of TiOCl<br />

Na<br />

valence change:<br />

Ti 3+ (3d 1 ) � Ti 2+ (3d 2 )<br />

doping x (%)<br />

Ti 3+<br />

Ti2p 3/2 (+ Na)<br />

Ti 2+<br />

462 460 458 456 454<br />

binding energy (eV)<br />

Na1s<br />

1080 1075 1070 1065<br />

binding energy (eV)<br />

37%<br />

32%<br />

23%<br />

15%<br />

10%<br />

4%<br />

PRL 106, 056403 (2011)


Valence band spectroscopy<br />

TiOCl<br />

k-integrated spectrum<br />

O 2p / Cl 3p<br />

Ti 3d<br />

PRB 72, 125127 (2005)


Valence band spectroscopy: ARPES<br />

Angle-Resolved PhotoElectron Spectroscopy<br />

� band structure and Fermi surface<br />

emission angle (i.e. momentum)<br />

energy<br />

courtesy T. Deveraux/A. Damascelli


PES instrumentation<br />

• rare gas discharge lamp (


PES theory in a nutshell:<br />

1) Independent electron approximation


PES theory: Independent electrons<br />

Time-dependent perturbation theory<br />

Unperturbed electron system:<br />

one-electron states with energy E<br />

ψ<br />

Perturbation:<br />

classical radiation field with vector potential<br />

� Fermi´s Golden Rule<br />

for the photoinduced transition rate from initial to final states:<br />

� � � 2<br />

ik<br />

⋅r<br />

�<br />

wi→ f ∝ ψ f A0e<br />

⋅ p ψ i δ ( E f − Ei<br />

− hν<br />

)<br />

Hence, the total photoelectron current is:<br />

IPES ( ε ) ∝ ∑ wi→<br />

f δ ( ε − E f )<br />

i,<br />

f<br />

� �<br />

A(<br />

r,<br />

t)<br />

=<br />

�<br />

A<br />

0<br />

e<br />

� �<br />

i(<br />

k ⋅r<br />

−2πνt<br />

)


PES theory: Independent electrons<br />

� � �<br />

wi→ f ∝ f 0<br />

i f i<br />

2<br />

ik<br />

⋅r<br />

�<br />

ψ A e ⋅ p ψ δ ( E − E − hν<br />

)<br />

final state:<br />

inverted LEED state<br />

(eigenstate of semi-infinite crystal)<br />

energy conservation<br />

initial state:<br />

Bloch wave or core level


PES theory: Independent electrons<br />

� � �<br />

wi→ f ∝ f 0<br />

i f i<br />

2<br />

ik<br />

⋅r<br />

�<br />

ψ A e ⋅ p ψ δ ( E − E − hν<br />

)<br />

final state: high-energy Bloch state of infinite crystal,<br />

inverted LEED steps state 2 and 3 incoherently decoupled<br />

(eigenstate of semi-infinite crystal)<br />

One-step model Three-step model<br />

courtesy<br />

A. Damascelli


PES theory: Independent electrons<br />

� � �<br />

wi→ f ∝ f 0<br />

i f i<br />

2<br />

ik<br />

⋅r<br />

�<br />

ψ A e ⋅ p ψ δ ( E − E − hν<br />

)<br />

transition matrix element<br />

If the radiadion field is only weakly modulated on atomic length scales,<br />

(i.e. k >> few Å), the photon momentum can be neglected in<br />

the transition matrix element:<br />

�<br />

λ = 2π<br />

k �<br />

� � � �<br />

ik<br />

⋅r<br />

�<br />

�<br />

f A0e<br />

⋅ p i ≈ f A0<br />

⋅ p i<br />

�<br />

∝ A0<br />

⋅ f<br />

�<br />

er<br />

i<br />

Examples:<br />

hν = 20 eV � λ ≈ 600 Å<br />

hν = 2000 eV � λ ≈ 6 Å<br />

Dipole approximation


PES theory: Independent electrons<br />

Dipole approximation and k-selection rule for Bloch states<br />

momentum conservation:<br />

�<br />

k<br />

f<br />

� � �<br />

= k + G + k<br />

i<br />

� ARPES<br />

photon<br />

only"vertical"<br />

transitions


Transition metal oxides: electronic correlations<br />

oxides of the 3d transition metals: M = Ti, V, … ,Ni, Cu<br />

basic building blocks: MO 6 octahedra (or other ligand shells)<br />

electronic configuration: O 2s 2 p 6 = [Ne]<br />

TM 3d n<br />

cubic perovskites perovskite-like anatas rutile spinel<br />

O 2-<br />

TM X+<br />

quasi-atomic,<br />

strongly localized<br />

� strong intraatomic Coulomb interaction<br />

and breakdown of independent electron approx.


PES theory in a nutshell:<br />

2) Many-body picture


hν<br />

Many-body effects in photoemission<br />

N interacting electrons:<br />

E kin<br />

Photoemission process:<br />

sudden removal of an electron from<br />

N-particle system<br />

"loss" of kinetic energy due to<br />

interaction-related excitation energy<br />

stored in the remaining N-1 electron<br />

system !


Fermi´s Golden Rule for N-particle states:<br />

I( 2<br />

N 0<br />

s<br />

with<br />

Ψ<br />

Ψ<br />

ε ) ∝ ∑ Ψ ˆ<br />

f , s ∆ Ψi,<br />

0 δ ( EN<br />

, s − E , − hν<br />

)<br />

i , 0<br />

f , s<br />

i=<br />

=<br />

Reinterpretation of Fermi´s Golden Rule<br />

=<br />

N,<br />

0<br />

�<br />

k , N<br />

N �<br />

∆ˆ � �<br />

= ∑ A(<br />

ri<br />

) ⋅ pi<br />

1<br />

−1,<br />

s<br />

=<br />

M<br />

if<br />

N-electron ground state of energy E N, 0 ("initial state")<br />

N-electron excited state of energy E N, s, ("final state")<br />

consisting of N-1 electrons in the solid and<br />

a free photoelectron of momentum k and<br />

energy ε<br />

�<br />

c<br />

+<br />

f<br />

c<br />

i<br />

in second quantization with suitable oneelectron<br />

basis<br />

one-particle matrix element


Electron removal spectrum<br />

Fermi´s Golden Rule for N-particle states:<br />

I( 2<br />

N 0<br />

s<br />

ε ) ∝ ∑<br />

Ψ ˆ<br />

f , s ∆ Ψi,<br />

0 δ ( EN<br />

, s − E , − hν<br />

)<br />

I(ε<br />

)<br />

a little bit of math<br />

and a few plausible assumptions<br />

(sudden approximation)<br />

The ARPES signal is directly proportional to the<br />

< 1<br />

single-particle spectral function A ( ω) = − ImG(<br />

ω)<br />

× f ( ω)<br />

probability of removing an electron<br />

at energy ω from the system<br />

π<br />

single-particle<br />

Green´s function


TiOCl<br />

Example: PES of the Mott insulator TiOCl<br />

O 2p / Cl 3p<br />

Ti 3d 1<br />

d 1 → d 0<br />

LHB<br />

U<br />

µ<br />

d 1 → d 2<br />

UHB<br />

spectral function A < (ω) (DMFT)<br />

ω


Photoemission probing depth:<br />

soft and hard x-ray PES


courtesy<br />

A. Damascelli<br />

Inelastic scattering of the photoelectron<br />

Three-step model<br />

Step 2: photoelectron transport to the surface<br />

� inelastic scattering with other electrons<br />

(excitation of e-h-pairs, plasmons)<br />

• generation of secondary electrons<br />

("inelastic background")<br />

intensity intrinsic spectrum<br />

incl. background<br />

E kin


courtesy<br />

A. Damascelli<br />

Inelastic scattering of the photoelectron<br />

Three-step model<br />

Step 2: photoelectron transport to the surface<br />

� inelastic scattering with other electrons<br />

(excitation of e-h-pairs, plasmons)<br />

• generation of secondary electrons<br />

("inelastic background")<br />

• loss of unscattered photoelectron current<br />

⇒ inelastic mean free path λ


Photoemission probing depth<br />

λ(E kin) "universal curve"<br />

"conventional" VUV/XUV-PES:<br />

surface sensitive on<br />

atomic length scale !<br />

hν<br />

λ(E kin)<br />

E kin<br />

hard x-ray PES = HAXPES<br />

soft x-ray PES (SX-PES)<br />

� probing depth (3λ) up to >10 nm<br />

� access to bulk, buried nanostructures, and<br />

interfaces<br />

� depth profiling of thin films


Transition metal oxides: Instability of polar surfaces<br />

Transition metal (TM) oxides form lattice of ionic charges<br />

� Classification of surfaces (Tasker):<br />

- surface charge Q<br />

- electrical dipole moment µ in repeat unit<br />

�<br />

TM X+<br />

µ = 0<br />

�<br />

µ = 0<br />

�<br />

Q = 0<br />

Q ≠ 0<br />

Q<br />

≠ 0<br />

O 2-<br />

O 2-<br />

TM X+<br />

µ ≠ 0<br />

�<br />

P. W. Tasker, J. Phys. C 12, 4977 (1979)


-σ<br />

+σ<br />

-σ<br />

+σ<br />

Transition metal oxides: Instability of polar surfaces<br />

type 3 surfaces are energetically unfavorable:<br />

charge field potential<br />

O 2-<br />

TM X+<br />

"polarization catastrophe"<br />

will be avoided by<br />

atomic/ionic/electronic<br />

surface reconstruction<br />

⇒ surface ≠ bulk


Transition metal oxides: Instability of polar surfaces<br />

Example: Fe 3O 4 (magnetite)<br />

8.2 Å<br />

different reconstructions<br />

of the (111) surface (STM)<br />

PRB 76, 075412 (2007)


Transition metal oxides: Instability of polar surfaces<br />

Example: Fe 3O 4 (magnetite)<br />

VUV-PES<br />

surface-sensitive<br />

Soft X-ray PES<br />

probing depth 2x larger<br />

EPL 70, 789 (2005)


Hˆ<br />

t<br />

kinetic energy,<br />

itinerancy<br />

= −t<br />

Surface effects in Mott-Hubbard-type oxides<br />

+<br />

∑c ∑<br />

iσ<br />

c jσ<br />

+ U ni↓ni<br />

↑<br />

i,<br />

j<br />

, σ<br />

U<br />

local Coulomb energy,<br />

localization<br />

i<br />

U/t<br />

spectral function (DMFT for n=1)


Surface effects in Mott-Hubbard-type oxides<br />

Example: CaVO 3<br />

surface<br />

"bulk"<br />

lower<br />

Hubbard band<br />

A. Sekiyama et al., PRL 2004<br />

quasiparticle<br />

peak<br />

U/t<br />

spectral function (DMFT for n=1)


Surface effects in Mott-Hubbard-type oxides<br />

Example: CaVO 3<br />

surface<br />

"bulk"<br />

lower<br />

Hubbard band<br />

A. Sekiyama et al., PRL 2004<br />

quasiparticle<br />

peak<br />

reduced atomic coordination @ surface:<br />

� stronger electron localization<br />

� smaller effective bandwidth<br />

Wsurf < Wbulk � surface stronger correlated:<br />

U / Wsurf >U / Wbulk


Photoemission probing depth<br />

λ(E kin) "universal curve"<br />

"conventional" VUV/XUV-PES:<br />

surface sensitive on<br />

atomic length scale !<br />

hν<br />

λ(E kin)<br />

E kin<br />

hard x-ray PES = HAXPES<br />

soft x-ray PES (SX-PES)<br />

� probing depth (3λ) up to >10 nm<br />

� access to bulk, buried nanostructures, and<br />

interfaces<br />

� depth profiling of thin films


HAXPES: drawbacks and caveats<br />

Non-negligible photon momentum<br />

hν = 6 keV � λ ≈ 2 Å, k phot ≈ 3 Å -1


HAXPES: drawbacks and caveats<br />

Non-negligible photon momentum<br />

• suppression of direct (k-conserving) transitions<br />

Debye-Waller factor for direct transitions<br />

W<br />

ARPES of W(110) @ hν = 870 eV<br />

Plucinski et al., PRB 78, 035108 (2008)<br />

hν = 6 keV � λ ≈ 2 Å, k phot ≈ 3 Å -1<br />

dir<br />

= exp α<br />

( 2<br />

− k T M )<br />

phot<br />

atom


HAXPES: drawbacks and caveats<br />

Non-negligible photon momentum<br />

• suppression of direct (k-conserving) transitions<br />

• atomic recoil effect<br />

photon-absorbing atom takes up recoil energy<br />

2 2<br />

Ekin = � k phot 2M<br />

at the expense of<br />

photoelectron energy,<br />

depending on atom mass and lattice stiffness<br />

hν = 6 keV � λ ≈ 2 Å, k phot ≈ 3 Å -1<br />

Y. Takata et al., PRB 75, 233404 (2007)


HAXPES: drawbacks and caveats<br />

Non-negligible photon momentum<br />

• suppression of direct (k-conserving) transitions<br />

• atomic recoil effect<br />

• quadrupolar contribution to transition matrix element<br />

� � � � �<br />

ik<br />

⋅r<br />

�<br />

f A e p i f A ( �<br />

ik<br />

r ) �<br />

0<br />

⋅ ≈ 0 1+<br />

⋅ ⋅ p i<br />

hν = 6 keV � λ ≈ 2 Å, k phot ≈ 3 Å -1


HAXPES: drawbacks and caveats<br />

Non-negligible photon momentum<br />

• suppression of direct (k-conserving) transitions<br />

• atomic recoil effect<br />

• quadrupolar contribution to transition matrix element<br />

Low photoemission signal<br />

• cross section for photoemission<br />

• electron analyzer transmission<br />

� need bright x-ray source…<br />

( ) 3 −<br />

σ ∝ hν<br />

−1<br />

t<br />

∝ Ekin<br />

hν = 6 keV � λ ≈ 2 Å, k phot ≈ 3 Å -1


HAXPES set-up @ PETRA III (DESY, Hamburg)<br />

other HAXPES instruments worldwide:<br />

- Spring-8, Japan (>4)<br />

- BESSY, Germany (HIKE)<br />

- ESRF, France (ID-9)<br />

- Soleil, France (under construction)<br />

- Diamond, UK (under construction)<br />

X-rays from<br />

PETRA III<br />

"High-resolution hard x-ray<br />

photoemission for materials<br />

science" (B<strong>MB</strong>F)<br />

• joint project with C. Felser (U<br />

Mainz) and W. Drube (DESY)<br />

• photon energy: 2.5…15 keV<br />

• energy resolution: 30 meV<br />

• linearly/circularly polarized xray<br />

radiation<br />

• commissioned in 2010<br />

• user operation since 2011


HAXPES of oxide heterostructures:<br />

(1) Fe 3O 4/GaAs


Epitaxial growth of Fe 3O 4/GaAs<br />

surface<br />

Fe 3O 4<br />

GaAs<br />

semimetallic ferromagnet<br />

(100% spin polarization @ EF) resistively matched to semiconductor<br />

Datta-Das spin transistor<br />

PRB 79, 233101 (2009)<br />

semiconductor with<br />

large spin diffusion<br />

length<br />

� Fe 3O 4 (magnetite), (RE,Sr)MnO 3, CrO 2, Heusler compounds, …


Epitaxial growth of Fe 3O 4/GaAs<br />

surface<br />

Fe 3O 4<br />

GaAs<br />

PRB 79, 233101 (2009)<br />

<strong>MB</strong>E growth of thin magnetite film:<br />

• epitaxial Fe deposition @ RT<br />

• postoxidation @ 600 - 800K / p(O2) = 10-5 mbar<br />

(10-30 min)<br />

� Fe valency?<br />

� mixed-valent Fe3O4 vs. (Fe2+ )O and (Fe 3+ ) 2O3 ?<br />

� chemical depth profile ?


Valence signatures in Fe 2p spectrum<br />

Fe 2O 3<br />

Fe 3O 4<br />

FeO<br />

Fe<br />

charge transfer satellites<br />

700 705 710 715 720 725 730 735 740 745 750<br />

binding energy (eV)<br />

2p 1/2 2p 3/2<br />

Fe 3+<br />

Fe 2+ /Fe 3+<br />

Fe 2+<br />

Fe 0


Depth profiling of Fe 3O 4/GaAs<br />

surface<br />

Fe 3O 4<br />

GaAs<br />

Fe 2p spectra<br />

PRB 79, 233101 (2009)<br />

interface<br />

surface


Depth profiling of Fe 3O 4/GaAs<br />

Tuning the information depth by variation of<br />

(1) photon energy, or (2) photoelectron escape angle<br />

mean free path<br />

energy<br />

λ eff = λ IMFP cos θ<br />

θ<br />

λ eff


Depth profiling of Fe 3O 4/GaAs<br />

surface<br />

Fe 3O 4<br />

GaAs<br />

Fe 2p spectra<br />

film: mixed-valent Fe 2+/3+<br />

PRB 79, 233101 (2009)<br />

interface<br />

surface<br />

interface: divalent and metallic Fe (O-deficient)


Depth profiling of Fe 3O 4/GaAs<br />

surface<br />

Fe 3O 4<br />

interface<br />

(Fe, FeO x, GaO x, AsO x)<br />

GaAs<br />

PRB 79, 233101 (2009)<br />

Fe 2p spectra As 2p 3/2 spectra<br />

film: mixed-valent Fe 2+/3+<br />

interface: divalent and metallic Fe (O-deficient)<br />

oxidized Ga,As


Validation by electron microscopy<br />

surface<br />

Fe 3O 4<br />

interface<br />

(Fe, FeO x, GaO x, AsO x)<br />

GaAs<br />

TEM<br />

STEM-EELS<br />

J. Verbeeck, H. Tian, and G. van Tendeloo, U Antwerp


Fe 3O 4<br />

ZnO<br />

Fe 3O 4/ZnO: An all-oxide structure<br />

film grown by reactive deposition<br />

in O 2-atmosphere (∼10 -6 mbar)<br />

HAXPES TEM<br />

APL 98, 012512 2011<br />

also PLD-grown contacts: R. Gross et al.


HAXPES of oxide heterostructures:<br />

(2) Interface 2DEG in LaAlO 3/SrTiO 3


LAO/STO heterostructures in a nutshell<br />

• epitaxial growth by PLD<br />

LaAlO 3<br />

∆=5.6eV<br />

SrTiO 3<br />

∆=3.2eV<br />

A. Ohtomo et al., Nature 419, 378 (2004)<br />

S. Thiel et al., Science 313, 1942 (2006)<br />

N. Reyren et al., Science 317, 1196 (2007)


LAO/STO heterostructures in a nutshell<br />

• epitaxial growth by PLD<br />

• both oxides: wide gap insulators<br />

• if LaAlO 3 film thicker than 3 unit cells (uc) :<br />

→ formation of a high-mobility 2DEG<br />

at the interface<br />

conductivity<br />

sheet carrier density (Hall)<br />

LaAlO 3<br />

∆=5.6eV<br />

2DEG<br />

SrTiO 3<br />

∆=3.2eV<br />

A. Ohtomo et al., Nature 419, 378 (2004)<br />

S. Thiel et al., Science 313, 1942 (2006)<br />

N. Reyren et al., Science 317, 1196 (2007)


LAO/STO heterostructures in a nutshell<br />

properties of the 2DEG:<br />

• tunable conductivity by electric gate field<br />

• superconducting below 200 mK<br />

• magnetoresistance<br />

• coexistence of s.c and magnetism /<br />

electronic phase separation<br />

� origin of 2DEG, threshold behavior ?<br />

LaAlO 3<br />

∆=5.6eV<br />

2DEG<br />

SrTiO 3<br />

∆=3.2eV<br />

A. Ohtomo et al., Nature 419, 378 (2004)<br />

S. Thiel et al., Science 313, 1942 (2006)<br />

N. Reyren et al., Science 317, 1196 (2007)


charge:<br />

-1<br />

+1<br />

-1<br />

+1<br />

-1<br />

+1<br />

0<br />

0<br />

0<br />

0<br />

-1/2<br />

+1<br />

-1<br />

∆q = -1/2 +1<br />

-1<br />

+1<br />

-1/2<br />

0<br />

0<br />

0<br />

Polar catastrophe and how to avoid it<br />

AlO 2<br />

LaO<br />

AlO 2<br />

LaO<br />

AlO 2<br />

LaO<br />

TiO2 SrO<br />

TiO2 SrO<br />

AlO 2<br />

LaO<br />

AlO 2<br />

LaO<br />

AlO 2<br />

LaO<br />

TiO2 SrO<br />

TiO2 SrO<br />

Nakagawa et al., Nature Mat. 5, 204 (2006)<br />

electrostatic energy increases<br />

linearly with thickness of<br />

polar film<br />

polar catastrophe<br />

charge reconstruction<br />

electronic or ionic<br />

0.5e - per layer unit cell<br />

� n 2D = 3.5×10 14 cm -2<br />

partial Ti 3d occupation<br />

� Ti 3.5 (d 0.5 ) = Ti 3+ /Ti 4+


HAXPES of LAO/STO heterostructures<br />

2p 1/2<br />

Ti 2p spectrum<br />

Ti 4+<br />

2p 3/2<br />

undoped SrTiO 3: |3d 0 > � Ti 4+<br />

Ti 3+<br />

doped LAO/STO interface: |3d 0 > + |3d 1 > � Ti 3+ /Ti 4+<br />

LaAlO 3<br />

2DEG<br />

SrTiO 3<br />

PRL 102, 176805 (2009)


Dependence on LAO overlayer thickness<br />

Ti 4+<br />

Ti 3+<br />

� interface charge density increases with LAO overlayer thickness<br />

� non-zero Ti d 1 signal already for 2uc sample (?)<br />

Ti 3+<br />

PRL 102, 176805 (2009)


Depth profiling by angle-resolved HAXPES<br />

e -<br />

θ<br />

e -<br />

� 2DEG thickness<br />

d<br />

� sheet carrier density<br />

PRL 102, 176805 (2009)


e -<br />

Quantitative analysis: 2DEG thickness<br />

θ<br />

e -<br />

d<br />

Sample 2 uc 4 uc 5 uc 6 uc<br />

d (uc*) 3 ± 1 1 ± 0.5 6 ± 2 8 ± 2<br />

*lattice constant of STO unit cell (uc) = <strong>3.8</strong> Å<br />

� interface thickness < 3 nm<br />

consistent with<br />

- CT-AFM Basletic et al. (2008)<br />

- TEM-EELS Nakagawa et al. (2006)<br />

- density functional theory Pentcheva et al. (2009)<br />

- 2D superconductivity Reyren et al. (2007)<br />

- ellipsometry Dubroka et al. (2010)<br />

PRL 102, 176805 (2009)


Quantitative analysis: sheet carrier density<br />

Sample 2 uc 4 uc 5 uc 6 uc<br />

n 2D (10 13 cm -2 ) 2.1 3.9 8.1 11.1<br />

el. reconstruction<br />

35<br />

� n 2D > Hall effect data<br />

PRL 102, 176805 (2009)


Ti 3d<br />

photon<br />

in<br />

Ti 2p<br />

PRB 82, 241405(R) (2010)<br />

RIXS on LAO/STO<br />

Ti 3+ (3d 1 )<br />

e g<br />

t 2g<br />

photon<br />

out<br />

RIXS e g-excitation as fct. of # LAO-overlayers


PRB 82, 241405(R) (2010)<br />

Sheet carrier density: HAXPES, RIXS & Hall effect<br />

• n 2D much smaller than<br />

expected for purely electronic<br />

reconstruction (35 x 10 13 cm -2 )<br />

• n 2D higher than Hall effect data<br />

• photo-generated carriers<br />

cannot fully account for<br />

observed excess<br />

• remaining excess due to<br />

additional localized Ti 3d<br />

electrons?<br />

(cf. DFT - Popovic et al., PRL 2008)


LAO/STO: Valence band spectroscopy with HAXPES<br />

O2p-derived<br />

vb states<br />

~3 eV<br />

LaAlO 3<br />

2DEG<br />

SrTiO 3<br />

Ti 3d electrons should be here,<br />

but HAXPES cross-section too small !<br />

(theor. estimate: 10 -4 of O2p emission)


E<br />

Band situation from density-functional theory<br />

STO LAO<br />

CBM<br />

VBM<br />

2DEG<br />

core levels<br />

surface<br />

E F<br />

Yu Lin et al., arXiv 0904.1636 (2009)<br />

Pentcheva and Pickett, PRL 102, 107602 (2009)


E<br />

STO LAO<br />

CBM<br />

VBM<br />

Band situation from density-functional theory<br />

2DEG<br />

core levels<br />

e - surface<br />

E F<br />

e -<br />

holes<br />

@ LAO VBM<br />

interface<br />

electrons<br />

@ STO CBM<br />

Yu Lin et al., arXiv 0904.1636 (2009)<br />

Pentcheva and Pickett, PRL 102, 107602 (2009)


E<br />

STO LAO<br />

CBM<br />

Band situation from density-functional theory<br />

VBM<br />

2DEG<br />

core levels<br />

e - surface<br />

E<br />

E F<br />

e -<br />

holes<br />

@ LAO VBM<br />

electrons<br />

@ STO CBM<br />

Yu Lin et al., arXiv 0904.1636 (2009)<br />

Pentcheva and Pickett, PRL 102, 107602 (2009)


Results from HAXPES<br />

valence band<br />

~3 eV<br />

VBM: ~ 3 eV below E F<br />

Al 1s core level<br />

same width for all samples!


E<br />

band theory versus experiment<br />

STO LAO<br />

CBM<br />

VBM<br />

2DEG<br />

core levels<br />

e - surface<br />

E F<br />

STO LAO<br />

also observed by Segal et al.,<br />

PRB 80, 241107(R) (2009)


Valence band offsets<br />

band alignment<br />

CB<br />

VB<br />

STO LAO STO LAO<br />

type I type II<br />

• VBM LAO above VBM STO<br />

• type II interface<br />

(valence band offset: 0.35 ± 0.1eV)<br />

• confirmed by core level analysis<br />

valence band analysis<br />

0.35eV


DFT band theory:<br />

Photoemission:<br />

Band alignment: A possible scenario<br />

STO LAO<br />

localized hole states<br />

induced by surface<br />

O-vacancies<br />

interface states (itinerant and localized)


HAXPES of oxide heterostructures:<br />

(3) LaVO 3/SrTiO 3 – electrostatic doping of a<br />

Mott a insulator


LaAlO 3<br />

band ins.<br />

∆=5.6eV<br />

q2DEG<br />

SrTiO 3<br />

band ins.<br />

∆=3.2eV<br />

Electrostatic doping of a Mott insulator<br />

LAO/STO<br />

polar<br />

… …<br />

(AlO 2) -<br />

(LaO) +<br />

(TiO 2) 0<br />

(SrO) 0<br />

non-polar<br />

Idea:<br />

replace Al3+ LaVO3 Mott ins.<br />

∆≈1 eV<br />

by<br />

trivalent ??? transition metal<br />

SrTiO<br />

� LaVO3 3<br />

band ins.<br />

∆=3.2eV<br />

LVO/STO<br />

Ohtomo/Hwang, Nature 427, 423 (2004) Hotta et al., PRL 99, 236805 (2007)


LaVO 3<br />

Mott ins.<br />

∆≈1 eV<br />

???<br />

SrTiO 3<br />

band ins.<br />

∆=3.2eV<br />

Electrostatic doping of a Mott insulator<br />

LVO/STO<br />

LaVO 3: - valence configuration V 3+ (d 2 )<br />

- polar oxide<br />

- Mott insulator (∆ LVO


LVO/STO: Sample growth and characterization<br />

RHEED pattern AFM image<br />

RHEED oscillations<br />

pulsed laser deposition<br />

STEM image<br />

interface


LVO/STO: metal-insulator transition in transport<br />

� metal-insulator transition for n-type interface<br />

� p-type interface insulating<br />

� critical thickness: ∼ 9 uc LVO (Hotta et al.: 5 uc)<br />

� high carrier mobility


HAXPES of LVO/STO: V 2p depth profiles<br />

insulating conducting<br />

6 uc LVO<br />

STO<br />

homogeneous<br />

"V 3+ " profile<br />

10 uc LVO<br />

STO<br />

extra electronic<br />

charge on V<br />

near interface


HAXPES of LVO/STO: Ti 2p<br />

no Ti 3+ (d 1 ) signal<br />

possibly some bandbending<br />

on STO side of interface<br />

10 uc LVO<br />

STO<br />

extra electronic<br />

charge on V<br />

near interface


LVO/STO: electronic reconstruction picture


LaVO 3<br />

Mott ins.<br />

∆≈1 eV<br />

"q2DEG"<br />

SrTiO 3<br />

band ins.<br />

∆=3.2eV<br />

Electrostatic doping of a Mott insulator<br />

LaVO 3/SrTiO 3:<br />

• creation of 2D metal states in a<br />

correlated electron system<br />

by interface engeering<br />

• purely electrostatic doping<br />

• no disorder by chemical dopants


Summary<br />

Photoelectron spectroscopy of functional oxides:<br />

Heterostructures and buried interfaces<br />

• Photoelectron spectroscopy (PES)<br />

yields (destruction-free) information on<br />

- chemical composition, valencies, local chemistry<br />

- electronic structure (band structure, spectral function)<br />

• PES with hard x-rays (HAXPES)<br />

- enhanced probing depth giving access to bulk and buried interfaces<br />

- needs high x-ray intensity (� synchrotron radiation)<br />

- caveat: high photon momentum (ARPES difficult, recoil effects)<br />

• Future directions:<br />

- magnetic information with polarized x-rays (XMCD, XMLD) and/or spin detection<br />

- soft x-ray ARPES: band mapping of buried interfaces


Reading<br />

Photoemission:<br />

• S. Hüfner, Photoelectron Spectroscopy – Principles and Applications, 3rd ed. (Berlin,<br />

Springer, 2003)<br />

• A. Damascelli, Angle-resolved photoemission studies of the cuprate superconductors,<br />

Rev. Mod. Phys. 75, 473 (2003)<br />

HAXPES:<br />

• K. Kobayashi: Hard x-ray photoemission spectroscopy,<br />

Nucl. Instr. Meth. Phys. Res. A 601, 32 (2009)<br />

• László Kövér: X-ray photoelectron spectroscopy using hard X-rays,<br />

J. Electron Spectrosc. Rel. Phen. 178-179, 241 (2010)<br />

HAXPES of oxide heterostructures<br />

• R. Claessen et al.: Hard x-ray photoelectron specroscopy of oxide hybrid and<br />

heterostructures: a new method for the study of buried interfaces,<br />

New J. Phys. 11, 125007 (2009)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!