29.11.2012 Views

The top ten factors in kraft pulp yield - The Kraft Pulping Course

The top ten factors in kraft pulp yield - The Kraft Pulping Course

The top ten factors in kraft pulp yield - The Kraft Pulping Course

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Mart<strong>in</strong> MacLeod<br />

<strong>The</strong> <strong>top</strong> <strong>ten</strong> <strong>factors</strong> <strong>in</strong> <strong>kraft</strong> <strong>pulp</strong> <strong>yield</strong><br />

AbstrAct<br />

<strong>Kraft</strong> <strong>pulp</strong> <strong>yield</strong> depends on a plethora of <strong>factors</strong>:<br />

the nature of the wood and the quality<br />

of the chips, the cook<strong>in</strong>g recipe (especially<br />

the key <strong>in</strong>dependent variables – alkali charge,<br />

sulphidity, temperature, and kappa target),<br />

the <strong>pulp</strong><strong>in</strong>g equipment, and so on. Here, the<br />

<strong>factors</strong> have been assembled <strong>in</strong>to a “<strong>top</strong> <strong>ten</strong>”<br />

list, and are assessed <strong>in</strong> terms of relative<br />

importance, po<strong>ten</strong>tial to <strong>in</strong>fluence <strong>yield</strong> values,<br />

and contribution to practical knowledge<br />

of how <strong>pulp</strong> <strong>yield</strong>s can be improved. the <strong>ten</strong><br />

<strong>factors</strong> can be re-ordered at will, to rank the<br />

magnitude of the <strong>yield</strong> changes they can produce,<br />

for example, or to see which <strong>factors</strong><br />

have the highest po<strong>ten</strong>tial for <strong>yield</strong> improvement<br />

at modest cost.<br />

What are the pr<strong>in</strong>cipal <strong>factors</strong><br />

affect<strong>in</strong>g <strong>pulp</strong> <strong>yield</strong>s <strong>in</strong> <strong>kraft</strong> mills? How<br />

comprehensive is our understand<strong>in</strong>g of<br />

them? Are there practical ways to use exist<strong>in</strong>g<br />

knowledge to improve <strong>yield</strong>s?<br />

To address these questions, here is a Top<br />

Ten list (Fig. 1) of the key <strong>factors</strong> to consider,<br />

followed by brief descriptions of why<br />

each is important, what the size of the <strong>yield</strong><br />

ga<strong>in</strong> might be, and how substantial and reliable<br />

the <strong>in</strong>formation base is. <strong>The</strong> focus is<br />

on practical opportunities for <strong>yield</strong> ga<strong>in</strong>s <strong>in</strong><br />

<strong>kraft</strong> mill operations, ty<strong>in</strong>g them to scientific<br />

knowledge of cause-and-effect relationships.<br />

<strong>The</strong> broad perspective is two-fold: how wood<br />

and chemistry <strong>in</strong>teract <strong>in</strong> the <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g<br />

process, and why uniformity of treatment<br />

(whether chemical or mechanical) matters.<br />

An anthology of papers on the subject of<br />

<strong>kraft</strong> <strong>pulp</strong> <strong>yield</strong> is also available /1/.<br />

<strong>The</strong> <strong>ten</strong> <strong>factors</strong> have been assembled <strong>in</strong><br />

the same order as fibrel<strong>in</strong>es, i.e., from chips<br />

through <strong>pulp</strong><strong>in</strong>g to bleach<strong>in</strong>g. <strong>The</strong> order can<br />

be changed for different purposes, as will be<br />

obvious later when they are ranked for magnitude<br />

of po<strong>ten</strong>tial <strong>yield</strong> ga<strong>in</strong> and also for<br />

what is practical to do at modest cost.<br />

Wood species<br />

Wood, an organic raw material, consists of<br />

polysaccharides (cellulose and hemicelluloses),<br />

lign<strong>in</strong>, and extractives. <strong>The</strong>ir concentrations<br />

vary substantially among commercial<br />

wood species /2,3/: cellulose, approximately<br />

1 Wood<br />

species<br />

( chemical<br />

composition)<br />

2 Wood<br />

anatomy<br />

( proportion<br />

of<br />

fibres)<br />

3 Chip<br />

size<br />

distribution<br />

4 Chip<br />

quality<br />

( other<br />

than<br />

size)<br />

5 Pulp<strong>in</strong>g<br />

chemistry<br />

( conventional)<br />

6 Modified/<br />

advanced<br />

<strong>pulp</strong><strong>in</strong>g<br />

chemistry<br />

7 Mill<br />

digester<br />

systems<br />

8 Beyond<br />

<strong>pulp</strong><strong>in</strong>g<br />

9 Yield/<br />

kappa<br />

relationship<br />

10 Wish<br />

list<br />

Fig. 1. <strong>The</strong>se “<strong>top</strong> <strong>ten</strong>” <strong>factors</strong> <strong>in</strong> <strong>kraft</strong> <strong>pulp</strong><br />

<strong>yield</strong> are addressed <strong>in</strong> terms of their relative<br />

importance, their po<strong>ten</strong>tial magnitude, and their<br />

reliability.<br />

40–50% of wood; hemicelluloses, 25–35%;<br />

lign<strong>in</strong>, 15–30%; extractives, 2–10%. <strong>The</strong><br />

higher the polysaccharide con<strong>ten</strong>t (especially<br />

cellulose) and the lower the amounts of<br />

lign<strong>in</strong> and extractives, the higher will be the<br />

<strong>yield</strong> of <strong>pulp</strong> from wood. Aspen is a lead<strong>in</strong>g<br />

example – with lign<strong>in</strong> con<strong>ten</strong>t of<strong>ten</strong> below<br />

20% and (acetone) extractives below 3%,<br />

it cooks rapidly to the highest bleachablegrade<br />

<strong>kraft</strong> <strong>pulp</strong> <strong>yield</strong> <strong>in</strong> <strong>in</strong>dustrial practice,<br />

typically about 55% at kappa 12. Western<br />

red cedar, with an unusually high extractives<br />

con<strong>ten</strong>t, is at the low end of the spectrum,<br />

provid<strong>in</strong>g a bleachable-grade <strong>pulp</strong> <strong>yield</strong> <strong>in</strong><br />

the low 40s at kappa 30 /4/.<br />

In commercial <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g practice<br />

worldwide, the typical <strong>yield</strong> range<br />

(unbleached <strong>pulp</strong>, <strong>in</strong> percent from wood)<br />

is about mid-40s to mid-50s for<br />

bleachable-grade hardwood <strong>pulp</strong>s,<br />

and about 40–50 with softwoods<br />

(Fig. 2). We can widen the softwood<br />

range to about 60% by <strong>in</strong>clud<strong>in</strong>g<br />

l<strong>in</strong>erboard basestock, the<br />

high-kappa end of the <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g<br />

spectrum. It is also possible to<br />

ex<strong>ten</strong>d the lower limits of these<br />

ranges by <strong>in</strong>vok<strong>in</strong>g the use of sawdust<br />

or f<strong>in</strong>es (or decayed wood of<br />

any particle size).<br />

Surpris<strong>in</strong>gly for a worldwide<br />

<strong>in</strong>dustry which has been <strong>in</strong> bus<strong>in</strong>ess<br />

for many decades, there is<br />

no simple, fast, and cheap way<br />

Pulp Yield from Wood, %<br />

60<br />

55<br />

50<br />

45<br />

40<br />

15<br />

0<br />

<strong>Kraft</strong><br />

20<br />

Pulp<br />

Yie<br />

40<br />

Hardwoods<br />

Softwoods<br />

from<br />

Wood,<br />

%<br />

to determ<strong>in</strong>e the gross chemical composition<br />

of the wood <strong>in</strong> use.<br />

<strong>The</strong> chemical composition of wood is<br />

probably the primary variable <strong>in</strong> <strong>kraft</strong> <strong>pulp</strong><br />

<strong>yield</strong>. Fig. 3 shows normal <strong>yield</strong>s <strong>in</strong> conventional<br />

research-scale <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g of species-pure<br />

chips to bleachable-grade kappa<br />

numbers versus their typical lign<strong>in</strong> con<strong>ten</strong>ts<br />

<strong>in</strong> the wood. This relationship makes reasonable<br />

sense: the higher the lign<strong>in</strong> con<strong>ten</strong>t<br />

– which will be mostly removed <strong>in</strong> <strong>pulp</strong><strong>in</strong>g<br />

– the lower the <strong>pulp</strong> <strong>yield</strong>. It is remarkably<br />

accurate over a <strong>yield</strong> range of 42–55%: Pulp<br />

<strong>yield</strong> = - 0.69[Lign<strong>in</strong>] + 65.8 (r 2 = 0.95).<br />

North American wood species are illustrated<br />

<strong>in</strong> Fig. 3, but major commercial species<br />

elsewhere <strong>in</strong> the world will conform to this<br />

general picture.<br />

Paperi ja Puu – Paper and Timber Vol.89/No. 4/2007<br />

ld<br />

60<br />

80<br />

100<br />

Bleachable-grade<br />

Fig. 2. On a global basis, bleachable-grade <strong>kraft</strong><br />

<strong>pulp</strong> <strong>yield</strong>s from hardwoods and softwoods fall<br />

<strong>in</strong>to these ranges. <strong>The</strong> softwood range can be<br />

ex<strong>ten</strong>ded to 60% by <strong>in</strong>clud<strong>in</strong>g unbleached <strong>kraft</strong><br />

paper and l<strong>in</strong>erboard grades.<br />

At<br />

15<br />

kappa/<br />

HW<br />

or<br />

30<br />

kappa/<br />

SW<br />

Aspen<br />

Birch<br />

20<br />

Beech<br />

Maple<br />

Spruce<br />

Jack<br />

P<strong>in</strong>e<br />

Loblolly<br />

P<strong>in</strong>e<br />

Balsam<br />

Fir<br />

E Larch<br />

E Cedar<br />

E Hemlock<br />

25<br />

30<br />

1<br />

1<br />

35<br />

Lign<strong>in</strong><br />

Con<strong>ten</strong>t<br />

<strong>in</strong><br />

Wood,<br />

%<br />

Fig. 3. <strong>The</strong>re is a l<strong>in</strong>ear relationship between lign<strong>in</strong> con<strong>ten</strong>t of<br />

wood and probable <strong>yield</strong> of bleachable-grade <strong>kraft</strong> <strong>pulp</strong>.


Wood anatomy<br />

<strong>The</strong> physical nature of wood also plays an<br />

important role <strong>in</strong> <strong>yield</strong>. Large differences<br />

exist among wood species, especially <strong>in</strong><br />

percentage of “fibres” (the preferred cell<br />

type for papermak<strong>in</strong>g) versus that of less<br />

desirable cells (e.g., ray parenchyma <strong>in</strong> softwoods,<br />

vessel elements <strong>in</strong> hardwoods) /5/.<br />

This is compounded by large ranges <strong>in</strong> the<br />

pr<strong>in</strong>cipal wood fibre dimensions: length,<br />

diameter, and cell wall thickness /6/. For<br />

example, loblolly p<strong>in</strong>e <strong>kraft</strong> <strong>pulp</strong> fibres<br />

can be five times longer than sugar maple<br />

fibres. Further, there are dimensional differences<br />

between earlywood and latewood,<br />

and between juvenile and mature wood. Of<br />

all of these, only fibre length distribution<br />

is rout<strong>in</strong>ely measured <strong>in</strong> the <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g<br />

world.<br />

From a papermaker’s perspective, a more<br />

appropriate concept might be the <strong>yield</strong> of<br />

papermak<strong>in</strong>g fibres from wood. In this sense,<br />

different wood species offer very different<br />

po<strong>ten</strong>tial <strong>yield</strong>s. If only long, narrow fibres<br />

are sought, for example, then softwoods<br />

have a large advantage over hardwoods, <strong>in</strong><br />

which wood anatomy is much more diverse<br />

(Fig. 4). But by acknowledg<strong>in</strong>g that hardwoods<br />

<strong>in</strong>evitably conta<strong>in</strong> significant<br />

amounts of vessel elements, we can add<br />

them back s<strong>in</strong>ce they are part of the <strong>pulp</strong><br />

<strong>yield</strong>, br<strong>in</strong>g<strong>in</strong>g the hardwood cases much<br />

closer to the softwood ones. Still, there is<br />

a substantial amount of cell material <strong>in</strong> all<br />

woods that is not ideal from a papermak<strong>in</strong>g<br />

standpo<strong>in</strong>t.<br />

We can generalize with the follow<strong>in</strong>g<br />

observations:<br />

• <strong>The</strong> higher the percentage of long, narrow<br />

fibres (as opposed to any other cell<br />

types) <strong>in</strong> the wood raw material, the<br />

more uniform will be the <strong>pulp</strong><strong>in</strong>g, en-<br />

Papermak<strong>in</strong>g<br />

0<br />

20<br />

Fibres<br />

only<br />

Sweetgum<br />

Fibres,<br />

% of<br />

wood<br />

40<br />

Aspen<br />

60<br />

White<br />

birch<br />

80<br />

c<br />

Spruces<br />

D Fir,<br />

P<strong>in</strong>es<br />

Fibres<br />

and<br />

vessel<br />

elements<br />

on<strong>ten</strong>t<br />

100<br />

Fig. 4. If <strong>yield</strong> is def<strong>in</strong>ed on the basis of suitable<br />

papermak<strong>in</strong>g fibres, softwoods have an<br />

advantage due to wood anatomy. Whether vessel<br />

elements are considered “suitable” makes a<br />

large difference <strong>in</strong> the hardwood results.<br />

Paperi ja Puu – Paper and Timber Vol.89/No. 4/2007<br />

2<br />

hanc<strong>in</strong>g the <strong>yield</strong> of <strong>pulp</strong> which is ideal<br />

for papermak<strong>in</strong>g.<br />

• <strong>The</strong> greater the range of wood cell types,<br />

the wider will be the dimensional ranges<br />

of length, width, and cell wall thickness<br />

<strong>in</strong> the raw material before <strong>pulp</strong><strong>in</strong>g, and<br />

hence <strong>in</strong> the <strong>kraft</strong> <strong>pulp</strong> which is produced.<br />

• <strong>The</strong> anatomy of hardwoods is much more<br />

complex and – <strong>in</strong> some papermak<strong>in</strong>g<br />

ways – adverse than that of softwoods.<br />

Chip size distribution<br />

In chip size, two th<strong>in</strong>gs are clear – thickness<br />

is the pr<strong>in</strong>cipal dimension of concern<br />

<strong>in</strong> <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g, and 2–8 mm thick chips<br />

are ideal /7/. Thickness distributions are<br />

rout<strong>in</strong>ely measured <strong>in</strong> chip classifiers, and<br />

modern chip thickness screen<strong>in</strong>g systems <strong>in</strong><br />

mills are capable of controll<strong>in</strong>g the thickness<br />

range reasonably well. Sadly, they of<strong>ten</strong><br />

don’t. Greater precision <strong>in</strong> chip mak<strong>in</strong>g<br />

would help, whether dur<strong>in</strong>g sawmill<strong>in</strong>g<br />

operations or <strong>in</strong> log chipp<strong>in</strong>g. Undersized<br />

“chips”, although they <strong>pulp</strong> rapidly, carry<br />

a substantial <strong>yield</strong> penalty. With oversized<br />

chips, the danger is <strong>in</strong> generat<strong>in</strong>g rejects,<br />

<strong>in</strong>herently a penalty <strong>in</strong> mills produc<strong>in</strong>g<br />

bleachable-grade <strong>pulp</strong> whether the rejects<br />

are re-processed or are removed from the<br />

fibrel<strong>in</strong>e. If small wood particles can go to<br />

a dedicated, separate production l<strong>in</strong>e, and<br />

overthick chips are processed mechanically<br />

to make them more amenable to <strong>pulp</strong><strong>in</strong>g,<br />

significant <strong>yield</strong> ga<strong>in</strong>s can be obta<strong>in</strong>ed when<br />

<strong>pulp</strong><strong>in</strong>g only the properly-sized chips, on the<br />

order of 1–2%.<br />

Fig. 5 illustrates two thickness distributions<br />

of same-species softwood chips on<br />

f<strong>in</strong>al delivery to two <strong>kraft</strong> digesters. <strong>The</strong><br />

mill on the left achieves excellent control<br />

from a chip thickness screen<strong>in</strong>g plant with<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Total<br />

Yield<br />

%<br />

< 2mm<br />

0.<br />

9<br />

Chip<br />

T<br />

2-8mm<br />

43.<br />

7<br />

45.<br />

8<br />

hickness,<br />

% of<br />

> 8mm<br />

1.<br />

2<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

total<br />

mass<br />

< 2mm<br />

5.<br />

7<br />

2-8mm<br />

33.<br />

1<br />

45.<br />

1<br />

disc screens and slicers. From pilot-plant<br />

<strong>pulp</strong><strong>in</strong>g, these chips gave 46% <strong>pulp</strong> <strong>yield</strong><br />

at 25 kappa when only the 2–8 mm fraction<br />

(conta<strong>in</strong><strong>in</strong>g 95% of the total mass) was<br />

cooked. Us<strong>in</strong>g mass fractions and reasonable<br />

assumptions to calculate the fractional <strong>yield</strong>s<br />

shown <strong>in</strong> Fig. 5, the actual total <strong>yield</strong> from<br />

this chip furnish was 45.8%.<br />

<strong>The</strong> older mill on the right had rudimentary<br />

chip screen<strong>in</strong>g and therefore a<br />

much broader thickness distribution. At<br />

25 kappa, the penalties with the undersized<br />

and oversized fractions were more serious,<br />

br<strong>in</strong>g<strong>in</strong>g the total <strong>yield</strong> down to 45.1%.<br />

Note that with significantly less 2–8 mm<br />

material present, its fractional <strong>yield</strong> was <strong>ten</strong><br />

percentage po<strong>in</strong>ts lower.<br />

A <strong>yield</strong> difference of 0.7% may seem<br />

rather small, but at a <strong>pulp</strong> production rate<br />

of 1000 tpd the older mill requires 12,000<br />

t more wood (on an oven-dry basis) annually.<br />

That can easily translate <strong>in</strong>to a cost<br />

<strong>in</strong>crease of a million dollars or more a year.<br />

<strong>The</strong> penalty will be worse when account<strong>in</strong>g<br />

for wasted volume <strong>in</strong> the digester occupied<br />

by overthick chips, higher alkali consumption,<br />

greater knotter rejects recycl<strong>in</strong>g costs,<br />

more shives go<strong>in</strong>g forward, less uniform<br />

<strong>pulp</strong>, and higher bleach<strong>in</strong>g costs.<br />

A chip thickness screen<strong>in</strong>g plant is a<br />

necessary part of a modern <strong>kraft</strong> <strong>pulp</strong> mill.<br />

But simply buy<strong>in</strong>g and <strong>in</strong>stall<strong>in</strong>g such a<br />

plant is not enough – it must also be ma<strong>in</strong>ta<strong>in</strong>ed,<br />

tested periodically, adjusted, and<br />

improved.<br />

Chip quality (other than chip size)<br />

Many <strong>yield</strong>-related considerations fall <strong>in</strong>to<br />

this category. In mixed-species chip furnishes,<br />

the proportions of the species, each<br />

with its own <strong>yield</strong> po<strong>ten</strong>tial, will affect overall<br />

<strong>pulp</strong> <strong>yield</strong>. Moisture con<strong>ten</strong>t can <strong>in</strong>fluence<br />

<strong>yield</strong> values if green wood<br />

(rather than dry wood) is the basis<br />

> 8mm<br />

6.<br />

3<br />

Yield<br />

= 0.<br />

7%<br />

= ~ 12,<br />

000<br />

t/<br />

y more<br />

wood<br />

= ~ $ 1.<br />

2 million/<br />

y<br />

Fig. 5. Maximiz<strong>in</strong>g the 2–8 mm fraction of a chip<br />

thickness distribution can significantly improve<br />

<strong>pulp</strong> <strong>yield</strong>.<br />

3<br />

for calculation; it can also affect the<br />

efficiency of <strong>pulp</strong><strong>in</strong>g if the “recipe”<br />

changes (e.g., an un<strong>in</strong><strong>ten</strong>tional<br />

change <strong>in</strong> alkali charge due to an unseen<br />

change <strong>in</strong> wood moisture might<br />

penalize <strong>pulp</strong> <strong>yield</strong>). Mechanical<br />

damage to wood fibres can make<br />

them more susceptible to chemical<br />

attack dur<strong>in</strong>g <strong>pulp</strong><strong>in</strong>g, lower<strong>in</strong>g<br />

<strong>yield</strong>. Biological decay, bark, or the<br />

presence of biological knots and<br />

overthick chips <strong>in</strong> chip furnishes all<br />

impair <strong>pulp</strong> <strong>yield</strong> relative to fresh,<br />

sound wood of suitable thickness<br />

Any of these <strong>factors</strong> may represent<br />

only a small <strong>yield</strong> penalty; together,<br />

they may reduce <strong>pulp</strong> <strong>yield</strong> by<br />

2–4%.


White<br />

Birch<br />

Screened Yield, %<br />

Components<br />

55<br />

53<br />

51<br />

49<br />

47<br />

45<br />

of<br />

Pulp<br />

Reference<br />

Chips<br />

Yie<br />

PS-AQ<br />

Process<br />

Chemistry<br />

ld<br />

+ 3.<br />

0<br />

+ 1.<br />

5<br />

KRAFT<br />

BASELINE<br />

( Hang<strong>in</strong>g<br />

baskets,<br />

mill<br />

chips)<br />

Ga<strong>in</strong><br />

53.<br />

8<br />

Wood Species<br />

+ 0.<br />

5 . 5<br />

53.<br />

3<br />

Pilot-Plant<br />

Pulp<strong>in</strong>g<br />

Best<br />

Mill<br />

Chips<br />

+ 1.<br />

5<br />

+ 0.<br />

5<br />

Fig. 6. Many aspects of chip quality and <strong>pulp</strong><strong>in</strong>g<br />

practice offer substantial <strong>yield</strong> benefits,<br />

<strong>in</strong>clud<strong>in</strong>g orig<strong>in</strong>al wood quality, removal of<br />

f<strong>in</strong>es and oversized particles, and uniformity of<br />

impregnation and cook<strong>in</strong>g.<br />

Total Yield, %<br />

60<br />

55<br />

50<br />

45<br />

Effect<br />

of<br />

Southern<br />

P<strong>in</strong>e<br />

Alk<br />

EA,<br />

%<br />

15.<br />

0<br />

17.<br />

5<br />

20.<br />

0<br />

ali<br />

20 40<br />

60<br />

80<br />

100<br />

120<br />

Kappa<br />

Number<br />

Charge<br />

on<br />

Pulp<br />

A comprehensive exam<strong>in</strong>ation of <strong>pulp</strong><br />

<strong>yield</strong> with respect to chip quality was part<br />

of hang<strong>in</strong>g basket experiments <strong>in</strong> a mill<br />

trial to implement Paprilox ® polysulphideanthraqu<strong>in</strong>one<br />

<strong>pulp</strong><strong>in</strong>g of hardwood <strong>in</strong><br />

conventional batch digesters at Domtar’s<br />

Espanola, ON, <strong>kraft</strong> mill /8/: Four aspects<br />

were measured (Fig. 6):<br />

• Reference Chips: <strong>The</strong> removal of all bark,<br />

knots, decayed wood, and heartwood<br />

provided ideal chips for <strong>kraft</strong> pilot-plant<br />

<strong>pulp</strong><strong>in</strong>g, account<strong>in</strong>g for a 3% <strong>yield</strong> advantage<br />

over the mill’s normal chips.<br />

<strong>The</strong> reference chips were made from the<br />

stemwood of middle-aged white birch<br />

logs of uniform growth chosen at the<br />

Espanola mill, and their thickness range<br />

was 2–6 mm.<br />

• Best Mill Chips: When only the 2–6 mm<br />

thick fraction of mill chips was used <strong>in</strong><br />

pilot-plant experiments, a 0.5% <strong>yield</strong><br />

ga<strong>in</strong> was measured relative to whole mill<br />

chips, whether <strong>in</strong> <strong>kraft</strong> or PS-AQ <strong>pulp</strong><strong>in</strong>g.<br />

<strong>The</strong> mill chips had an average thickness<br />

classification of 11% < 2 mm, 59%<br />

2-6 mm, and 30% >6 mm. Obviously,<br />

remov<strong>in</strong>g 41% of the raw material is<br />

51.<br />

8<br />

51.<br />

3<br />

48.<br />

3<br />

46.<br />

8<br />

Fig. 7. Alkali charge plays a major role <strong>in</strong> <strong>pulp</strong> <strong>yield</strong><br />

– the higher the charge, the lower the <strong>yield</strong>, due to<br />

<strong>in</strong>creased susceptibility of the polysaccharides to<br />

alkal<strong>in</strong>e degradation.<br />

Total Yield, %<br />

60<br />

55<br />

50<br />

45<br />

Y<br />

Mixed<br />

Hardwoods<br />

+ 5<br />

ield<br />

10 30<br />

50<br />

70<br />

90<br />

110<br />

Kappa<br />

Number<br />

4<br />

EA,<br />

%<br />

15.<br />

0<br />

17.<br />

5<br />

20.<br />

0<br />

5<br />

not a practical th<strong>in</strong>g to do,<br />

but decreas<strong>in</strong>g the overthick<br />

fraction substantially<br />

would help. S<strong>in</strong>ce the trial,<br />

chip thickness screen<strong>in</strong>g and<br />

overthick chip crush<strong>in</strong>g have<br />

been <strong>in</strong>stalled on the hardwood<br />

side at Espanola.<br />

• Pilot-Plant Pulp<strong>in</strong>g: Due<br />

to good chip pre-steam<strong>in</strong>g<br />

practice, ideal temperature<br />

control, and homogeneity of<br />

impregnation and cook<strong>in</strong>g<br />

<strong>in</strong> small research digesters,<br />

greater uniformity of <strong>pulp</strong><strong>in</strong>g<br />

resulted <strong>in</strong> a significant <strong>yield</strong><br />

advantage (1.5%) regardless<br />

of whether reference chips or<br />

mill chips were cooked.<br />

• Wood Species: Species<br />

analysis of basket <strong>pulp</strong>s from<br />

mill “birch” chips showed<br />

that they actually conta<strong>in</strong>ed<br />

24% maple on average.<br />

Tak<strong>in</strong>g maple as one-quarter<br />

of the mass, and assign<strong>in</strong>g<br />

this fraction a 2% <strong>yield</strong><br />

penalty from wood relative to<br />

white birch /4/, a 0.5% <strong>yield</strong><br />

deficit was calculated.<br />

Overall, the four <strong>factors</strong><br />

illustrated here added up to a<br />

po<strong>ten</strong>tial <strong>yield</strong> ga<strong>in</strong> of 5.5%,<br />

whether associated with the<br />

<strong>kraft</strong> basel<strong>in</strong>e <strong>yield</strong> or with<br />

the PS-AQ <strong>yield</strong>. Achiev<strong>in</strong>g best performance<br />

<strong>in</strong> all of these <strong>factors</strong> significantly improves<br />

<strong>pulp</strong> <strong>yield</strong>.<br />

Conventional <strong>pulp</strong><strong>in</strong>g chemistry<br />

Among the primary <strong>in</strong>dependent variables<br />

of <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g, high alkali charge, low<br />

sulfidity, high maximum temperature, and<br />

high lign<strong>in</strong> con<strong>ten</strong>t <strong>in</strong> the wood are the<br />

most dangerous for <strong>in</strong>ferior <strong>yield</strong>, po<strong>ten</strong>tially<br />

reduc<strong>in</strong>g the value by several percentage<br />

po<strong>in</strong>ts. By contrast, the higher the<br />

cellulose-to-hemicellulose ratio <strong>in</strong> the wood,<br />

the better. Lower extractives con<strong>ten</strong>t is also<br />

desirable. Liquor-to-wood ratio can affect<br />

<strong>yield</strong> <strong>in</strong> that it has a strong <strong>in</strong>fluence on<br />

<strong>pulp</strong><strong>in</strong>g rate, and therefore the time dur<strong>in</strong>g<br />

which the polysaccharides (especially<br />

hemicelluloses) are degraded by alkal<strong>in</strong>e<br />

attack. Hardwood lign<strong>in</strong> is chemically different<br />

from softwood lign<strong>in</strong>, and accounts<br />

for part of the reason why hardwoods of<strong>ten</strong><br />

have higher <strong>pulp</strong> <strong>yield</strong>s (and faster delignification<br />

rates).<br />

How the ma<strong>in</strong> <strong>in</strong>dependent variables of<br />

<strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g affect <strong>kraft</strong> <strong>pulp</strong> <strong>yield</strong> is clearly<br />

expla<strong>in</strong>ed <strong>in</strong> Kleppe’s classic paper “<strong>Kraft</strong><br />

Pulp<strong>in</strong>g” /9/. Higher alkali charge decreases<br />

<strong>pulp</strong> <strong>yield</strong> at a given kappa number, all other<br />

<strong>factors</strong> held constant, both with softwoods<br />

and hardwoods (Fig. 7). For every 1% <strong>in</strong>crease<br />

<strong>in</strong> effective alkali charge (NaOH basis)<br />

with softwoods, there is a 0.15% penalty<br />

<strong>in</strong> <strong>yield</strong>. <strong>The</strong> problem is three times worse<br />

with hardwoods, due ma<strong>in</strong>ly to the higher<br />

proportion of hemicelluloses (especially<br />

xylans) and their susceptibility to alkal<strong>in</strong>e<br />

attack.<br />

An <strong>in</strong>dependent example with <strong>kraft</strong><br />

<strong>pulp</strong><strong>in</strong>g of aspen to 15 kappa showed these<br />

results: total <strong>yield</strong> of 55.6% at 11% effective<br />

alkali, 54.4 % <strong>yield</strong> at 13.5% EA, and<br />

52.8% <strong>yield</strong> at 17% EA. Thus, an <strong>in</strong>crease<br />

of 6% effective alkali led to a <strong>yield</strong> loss of<br />

2.7%, just as predicted (i.e., 6 x 0.45%).<br />

Although not particularly important<br />

<strong>in</strong> <strong>in</strong>dustrial <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g (the majority of<br />

which is done at or above 30% sulphidity),<br />

how sulphidity affects <strong>yield</strong> is <strong>in</strong>formative.<br />

Aga<strong>in</strong> from Kleppe /9/, with birch (at a kappa<br />

target of 25), the <strong>yield</strong> plateau at 54%<br />

comes at 30% sulphidity. At 0% sulphidity,<br />

<strong>pulp</strong> <strong>yield</strong> is about 50% <strong>in</strong>stead, a deficit of<br />

4%; note that <strong>pulp</strong><strong>in</strong>g rate is much slower<br />

as well. With p<strong>in</strong>e at 55 kappa number, the<br />

51% <strong>pulp</strong> <strong>yield</strong> plateau is at ~40% sulphid-<br />

56<br />

54<br />

52<br />

50<br />

48<br />

Effect<br />

of<br />

0<br />

2h<br />

3h<br />

20<br />

Sulphi<br />

Paperi ja Puu – Paper and Timber Vol.89/No. 4/2007<br />

3h<br />

10<br />

Effect<br />

of<br />

Sulphidity<br />

T<br />

Total<br />

<strong>yield</strong>,<br />

%<br />

2h<br />

1h<br />

Difference<br />

<strong>in</strong><br />

TY,<br />

%<br />

Ascribed<br />

to<br />

chips<br />

Ascribed<br />

to<br />

EA<br />

30<br />

dity,<br />

%<br />

on<br />

Pulp<br />

Birch<br />

( kappa<br />

25)<br />

1h<br />

40<br />

P<strong>in</strong>e<br />

( kappa<br />

55)<br />

50<br />

Y<br />

emperature<br />

on<br />

Pulp<br />

ield<br />

Fig. 8. Sulphidity has a m<strong>in</strong>or effect, provid<strong>in</strong>g<br />

that it is at the plateau level of 30% or above<br />

(this is true for the majority of <strong>kraft</strong> mills).<br />

Y<br />

5<br />

ield<br />

Digester A Digester<br />

B<br />

45.<br />

4<br />

2.<br />

1<br />

- 0.<br />

3<br />

- 0.<br />

1<br />

Yield Loss<br />

due<br />

to<br />

Tmax,<br />

% 1.<br />

7<br />

43.<br />

3<br />

Fig. 9. Maximum temperature of cook<strong>in</strong>g has a<br />

major effect on <strong>pulp</strong> <strong>yield</strong> – although it speeds<br />

up the delignification rate, it accelerates<br />

polysaccharides degradation even more.<br />

5


ity. At 0% sulphidity, <strong>pulp</strong> <strong>yield</strong> is 48%, a<br />

deficit of 3%. Aga<strong>in</strong>, the <strong>pulp</strong><strong>in</strong>g rate decreases<br />

significantly with lower sulphidity.<br />

In both cases, then, <strong>pulp</strong> <strong>yield</strong> is directly<br />

related to sulphidity, but not <strong>in</strong> a l<strong>in</strong>ear<br />

manner. Sulphidity needs to be at or above<br />

30% for optimum <strong>yield</strong> and rate reasons.<br />

<strong>The</strong> maximum temperature of <strong>pulp</strong><strong>in</strong>g<br />

is also important for <strong>yield</strong>. In the case shown<br />

<strong>in</strong> Fig. 9, two chip furnishes from the same<br />

wood species were be<strong>in</strong>g delivered to two<br />

cont<strong>in</strong>uous digesters. <strong>The</strong>y were <strong>pulp</strong>ed <strong>in</strong><br />

a pilot-plant digester at process conditions<br />

taken from the two mill digesters (A: 18.5%<br />

effective alkali, 163°C maximum; B: 19.1%<br />

EA, 175°C max.). Case A had 86% 2-8 mm<br />

chips and 7% > 8 mm chips; Case B, 79%<br />

2–8 mm chips and 14% > 8 mm chips.<br />

<strong>The</strong> difference <strong>in</strong> total <strong>yield</strong> at kappa<br />

number 30 was 2.1%. When adjusted for<br />

the differences attributable to chip thickness<br />

distribution and applied effective alkali, the<br />

<strong>yield</strong> deficit due to the 12°C higher maximum<br />

temperature <strong>in</strong> Digester B was 1.7%.<br />

Modified <strong>pulp</strong><strong>in</strong>g chemistry<br />

<strong>The</strong> era of modified <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g (orig<strong>in</strong>ally<br />

called ex<strong>ten</strong>ded delignification) which<br />

began <strong>in</strong> the 1980s was founded on chemical<br />

pr<strong>in</strong>ciples <strong>in</strong><strong>ten</strong>ded to make <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g<br />

more selective for delignification over<br />

polysaccharide degradation. Comb<strong>in</strong>ed with<br />

appropriate changes <strong>in</strong> mill digesters, some<br />

<strong>yield</strong> benefits have accrued. Liquor displacement<br />

batch systems can improve <strong>yield</strong> over<br />

conventional batch systems (as measured by<br />

hang<strong>in</strong>g baskets) by 1–2% /10/. Cont<strong>in</strong>uous<br />

digesters with multiple white liquor <strong>in</strong>puts<br />

and black liquor extractions appear to offer<br />

a <strong>yield</strong> advantage – particularly with<br />

hardwoods – of up to 4% /11/. In general,<br />

however, evidence for a universal <strong>yield</strong> benefit<br />

with modified <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g equipment<br />

is scanty.<br />

Modify<strong>in</strong>g <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g with additives<br />

(e.g., anthraqu<strong>in</strong>one, or polysulfide,<br />

or both) can improve <strong>pulp</strong> <strong>yield</strong>s by about<br />

1–3%. <strong>The</strong> research knowledge is ex<strong>ten</strong>sive<br />

and deep /12/, and both additives have been<br />

used for the past 30 years <strong>in</strong> mills scattered<br />

around the world. An obvious advantage<br />

with AQ is that it can work <strong>in</strong> all types of<br />

<strong>kraft</strong> digesters – no equipment changes are<br />

required. To achieve maximum benefits with<br />

AQ, its strategy of use needs to be based<br />

on optimiz<strong>in</strong>g all the key <strong>factors</strong> <strong>in</strong> <strong>kraft</strong><br />

delignification, <strong>in</strong>clud<strong>in</strong>g alkali charge, sulphidity,<br />

and kappa target. Fig. 10 shows an<br />

example /13/.<br />

A recent implementation of PS-AQ<br />

<strong>pulp</strong><strong>in</strong>g of hardwoods demonstrated that<br />

the change from <strong>kraft</strong> resulted <strong>in</strong> a <strong>yield</strong> ga<strong>in</strong><br />

Paperi ja Puu – Paper and Timber Vol.89/No. 4/2007<br />

of about 2% whether measured by<br />

hang<strong>in</strong>g baskets <strong>in</strong> the mill or <strong>in</strong><br />

pilot-plant <strong>pulp</strong><strong>in</strong>g us<strong>in</strong>g the chips<br />

and cook<strong>in</strong>g liquors from the mill<br />

/8/ (see also Fig. 6).<br />

Occasionally, an astonish<strong>in</strong>g<br />

possibility emerges, such as alkali<br />

sulphite-AQ <strong>pulp</strong><strong>in</strong>g /14,15/.<br />

Although not <strong>in</strong> use <strong>in</strong>dustrially<br />

because of its slow delignification<br />

rate and complex chemical<br />

recovery issues, AS-AQ <strong>pulp</strong><strong>in</strong>g<br />

can provide <strong>yield</strong> ga<strong>in</strong>s of 5–10%<br />

(Fig. 11), depend<strong>in</strong>g on the scenario.<br />

No other <strong>in</strong>dustrially-feasible<br />

process chemistry change can<br />

do better.<br />

Mill digester systems<br />

Digester equipment considerations<br />

can have a big <strong>in</strong>fluence on<br />

<strong>yield</strong> <strong>in</strong> <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g. Especially<br />

important are the chip pre-steam<strong>in</strong>g<br />

and liquor impregnation steps.<br />

Advanced batch and cont<strong>in</strong>uous<br />

digesters do an effective job of chip<br />

pre-steam<strong>in</strong>g by provid<strong>in</strong>g enough<br />

contact time with atmospheric<br />

steam (15+ m<strong>in</strong>utes), but most digester<br />

systems have either no deliberate<br />

pre-steam<strong>in</strong>g or not enough,<br />

even when it is a comb<strong>in</strong>ation<br />

of atmospheric and low-pressure<br />

regimes. When air removal and<br />

Mixed<br />

SW<br />

water saturation of the <strong>in</strong>ner void spaces<br />

<strong>in</strong> wood chips are <strong>in</strong>adequate, the result is<br />

a less-than-perfect liquid environment for<br />

<strong>pulp</strong><strong>in</strong>g, lead<strong>in</strong>g to more heterogeneous<br />

delignification and <strong>in</strong>ferior <strong>yield</strong>.<br />

Good impregnation is always a key to<br />

good <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g. It needs to be long<br />

enough (usually 30+ m<strong>in</strong>utes) and at a low<br />

enough temperature (120° ± 5°C) to ensure<br />

that the liquid-phase chemistry is ready to<br />

beg<strong>in</strong> everywhere <strong>in</strong>side the chips when they<br />

are taken to delignification temperature. Fig.<br />

12 illustrates results from <strong>kraft</strong> pilot-plant<br />

experiments on two softwood sawdust furnishes<br />

from a mill operat<strong>in</strong>g M&D digesters<br />

/16/. <strong>The</strong> M&D operations were simulated<br />

by comb<strong>in</strong><strong>in</strong>g the sawdust and cook<strong>in</strong>g liquor<br />

<strong>in</strong> bombs and driv<strong>in</strong>g the temperature<br />

to 185°C as fast as possible (~ 10 m<strong>in</strong>utes).<br />

Even when start<strong>in</strong>g with t<strong>in</strong>y sawdust-sized<br />

wood particles, plenty of rejects were generated.<br />

But when we used conventional <strong>kraft</strong><br />

conditions designed for chips, <strong>in</strong>clud<strong>in</strong>g<br />

a 90-m<strong>in</strong>ute ramp of 1°C/m<strong>in</strong> to cook<strong>in</strong>g<br />

temperature for graceful impregnation,<br />

the rejects decreased by about two-thirds,<br />

mean<strong>in</strong>g that the screened <strong>pulp</strong> <strong>yield</strong> rose<br />

by 2%. This case shows that extreme im-<br />

Yie<br />

AA,<br />

%<br />

AQ,<br />

%<br />

H-factor<br />

ld<br />

Total Yield<br />

Yield,<br />

%<br />

Ga<strong>in</strong><br />

Yield<br />

Ga<strong>in</strong>,<br />

%<br />

with<br />

<strong>Kraft</strong><br />

basel<strong>in</strong>e<br />

30<br />

Kappa<br />

17.<br />

1<br />

0<br />

2350<br />

42.<br />

6<br />

0<br />

Anthraqu<strong>in</strong>one<br />

1 2<br />

Add<br />

AQ<br />

Reduce<br />

H<br />

Fig. 10. Optimal anthraqu<strong>in</strong>one’s effectiveness<br />

as a <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g additive depends on the<br />

strategy of use vis-à-vis other primary variables<br />

such as alkali charge and sulphidity.<br />

Yie<br />

ld<br />

Ga<strong>in</strong><br />

30<br />

17.<br />

1<br />

0.<br />

10<br />

2000<br />

43.<br />

5<br />

0.<br />

9<br />

with<br />

Alkal<strong>in</strong>e<br />

pregnation conditions can carry a significant<br />

<strong>yield</strong> penalty.<br />

Pilot-plant experiments have also shown<br />

that if chips are thoroughly pre-steamed and<br />

impregnation with white liquor is done with<br />

good temperature control, then bulk liquor<br />

circulation through the cook<strong>in</strong>g chip column<br />

<strong>in</strong>side a steam-jacketed 20L digester<br />

is not vital <strong>in</strong> produc<strong>in</strong>g <strong>kraft</strong> <strong>pulp</strong> of high<br />

<strong>yield</strong> and quality. Forced liquor circulation<br />

<strong>in</strong> mill digesters is a means to try to overcome<br />

temperature and chemical concentration<br />

gradients created dur<strong>in</strong>g fill<strong>in</strong>g and<br />

impregnation. It is no surprise that the best<br />

liquor displacement batch digesters have<br />

the lowest measured kappa variability <strong>in</strong>side<br />

them /10/.<br />

<strong>The</strong> era of modified <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g has<br />

fostered longer and slower delignification<br />

<strong>in</strong> cont<strong>in</strong>uous digesters and more effective<br />

impregnation <strong>in</strong> liquor displacement batch<br />

digesters. Both provide an <strong>in</strong>herent advantage<br />

<strong>in</strong> selectivity (although the ma<strong>in</strong> benefit<br />

seems to be better preservation of cellulose<br />

<strong>in</strong>tegrity).<br />

Together, all of these <strong>factors</strong> can improve<br />

<strong>pulp</strong> <strong>yield</strong>s by several percentage po<strong>in</strong>ts.<br />

3<br />

Add<br />

AQ<br />

Reduce<br />

AA<br />

30<br />

15.<br />

8<br />

0.<br />

10<br />

2350<br />

44.<br />

8<br />

2.<br />

2<br />

Sulphite-AQ<br />

S W HW<br />

Yield ga<strong>in</strong><br />

( brownstock)<br />

, %<br />

6 10*<br />

Kappa<br />

number<br />

+ 10<br />

+ 6<br />

Yield<br />

ga<strong>in</strong><br />

( bleached)<br />

, %<br />

Unbleached<br />

brightness<br />

5<br />

6<br />

ga<strong>in</strong>,<br />

% ISO<br />

Bleach<strong>in</strong>g<br />

chemical<br />

20<br />

35<br />

consumption<br />

<strong>in</strong>crease,<br />

% ~ 30<br />

~ 20<br />

* From<br />

aspen:<br />

total<br />

<strong>yield</strong><br />

of<br />

65%<br />

at<br />

kappa<br />

18<br />

a world<br />

record?<br />

Fig. 11. Alkal<strong>in</strong>e sulphite-AQ <strong>pulp</strong><strong>in</strong>g offers<br />

astound<strong>in</strong>g <strong>yield</strong> ga<strong>in</strong>s over <strong>kraft</strong>, but the<br />

process is burdened by slow a delignification<br />

rate and chemical recovery is complex.<br />

6<br />

6


Screen Rejects, %<br />

Pulp Yield, %<br />

Lower<br />

4.<br />

0<br />

3.<br />

5<br />

3.<br />

0<br />

2.<br />

5<br />

2.<br />

0<br />

1.<br />

5<br />

1.<br />

0<br />

0.<br />

5<br />

0<br />

50<br />

48<br />

46<br />

44<br />

42<br />

40<br />

10<br />

R<br />

<strong>Kraft</strong><br />

M&D<br />

Version<br />

ejects<br />

Yield beyond <strong>pulp</strong><strong>in</strong>g<br />

with<br />

Better<br />

Impregnation<br />

+ 2.<br />

0%<br />

SY<br />

A B<br />

Yield/<br />

Kappa<br />

<strong>Kraft</strong><br />

Conventional<br />

Version<br />

Relatio<br />

<strong>The</strong>oretical<br />

( lign<strong>in</strong><br />

only)<br />

LR<br />

for<br />

5 po<strong>in</strong>ts<br />

TY= 0.<br />

06kappa<br />

+ 45.<br />

2 r2=<br />

0.<br />

99<br />

Oxygen<br />

Delignification<br />

LR<br />

for<br />

highest<br />

5 po<strong>in</strong>ts<br />

TY= 0.<br />

09kappa<br />

+ 44.<br />

2 r2=<br />

0.<br />

99<br />

20<br />

<strong>Kraft</strong>-AQ<br />

M&D<br />

Version<br />

Fig. 12. Even with sawdust-sized wood particles,<br />

<strong>in</strong>ferior impregnation conditions lead to<br />

excessive rejects; good pre-steam<strong>in</strong>g and<br />

conventional impregnation significantly reduce<br />

rejects generation, translat<strong>in</strong>g it <strong>in</strong>to higher<br />

<strong>pulp</strong> <strong>yield</strong>.<br />

nship<br />

SW<br />

sawdust<br />

Beyond<br />

Three ma<strong>in</strong> considerations apply here: the<br />

chemical selectivity of oxygen delignification<br />

and chlor<strong>in</strong>e dioxide bleach<strong>in</strong>g, the uniformity<br />

of the fibrous <strong>pulp</strong> pass<strong>in</strong>g through<br />

the chemical operations, and any physical<br />

losses of fibres <strong>in</strong> the progression of operations<br />

along a fibrel<strong>in</strong>e.<br />

<strong>The</strong> <strong>yield</strong> losses accompany<strong>in</strong>g oxygen<br />

delignification and ECF bleach<strong>in</strong>g are much<br />

smaller than those <strong>in</strong> <strong>pulp</strong><strong>in</strong>g, offer<strong>in</strong>g less<br />

opportunity to improve <strong>yield</strong> substantially<br />

by process changes. But at<strong>ten</strong>tion is required<br />

to avoid unnecessary mechanical degradation<br />

of <strong>pulp</strong> fibres through these areas of a<br />

mill’s fibrel<strong>in</strong>e so as not to lose <strong>yield</strong> solely<br />

due to “leakage” of fibrous debris. Also,<br />

any recycles of unacceptable fibrous ma-<br />

7<br />

+ 1.<br />

8%<br />

SY<br />

<strong>Kraft</strong>-AQ<br />

Conventional<br />

Version<br />

Pulp<strong>in</strong>g<br />

<strong>Kraft</strong><br />

Pulp<strong>in</strong>g<br />

LR<br />

for<br />

highest<br />

4 po<strong>in</strong>ts<br />

TY= 0.<br />

23kappa<br />

+ 40.<br />

1 r2=<br />

0.<br />

99<br />

30<br />

Kappa<br />

Number<br />

Fig. 13. <strong>The</strong> <strong>yield</strong>/kappa l<strong>in</strong>es of <strong>kraft</strong><br />

<strong>pulp</strong><strong>in</strong>g, oxygen delignification, and ECF<br />

bleach<strong>in</strong>g have progressively lower slopes,<br />

hence greater selectivity for lign<strong>in</strong> removal<br />

over polysaccharide degradation. <strong>The</strong> <strong>kraft</strong><br />

<strong>pulp</strong><strong>in</strong>g and oxygen delignification l<strong>in</strong>es enter<br />

danger zones below about kappa 20 and 15,<br />

respectively.<br />

8<br />

40<br />

terials need to be m<strong>in</strong>imized<br />

– they are proof of <strong>in</strong>adequate<br />

upstream process conditions,<br />

they add to process<strong>in</strong>g costs,<br />

and they make the <strong>pulp</strong> less<br />

uniform. Common examples<br />

are knotter rejects (especially<br />

from biological knots) be<strong>in</strong>g<br />

recycled to digesters /17/, and<br />

f<strong>in</strong>al screen rejects be<strong>in</strong>g ref<strong>in</strong>ed<br />

and recycled <strong>in</strong> bleachable-grade<br />

mills.<br />

It is <strong>in</strong>structive to exam<strong>in</strong>e<br />

the <strong>yield</strong>/kappa relationships<br />

of <strong>pulp</strong><strong>in</strong>g, oxygen delignification,<br />

and ECF bleach<strong>in</strong>g<br />

together. Fig. 13 provides a<br />

generic softwood case.<br />

For <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g, the slope<br />

of a softwood l<strong>in</strong>e to ~30 kappa<br />

is 0.15 ± ~0.05; for hardwoods<br />

to ~15 kappa, the slope<br />

is the same. Both are straight<br />

l<strong>in</strong>es. With softwoods, the l<strong>in</strong>e<br />

represents the bulk delignification<br />

phase start<strong>in</strong>g from about<br />

100 kappa (the high-<strong>yield</strong> end<br />

of <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g), and is a fact<br />

which can’t be changed easily.<br />

<strong>The</strong> <strong>kraft</strong> case <strong>in</strong> Figure 13<br />

is for a softwood with a <strong>pulp</strong><br />

<strong>yield</strong> of 47% at kappa 30.<br />

With oxygen delignification,<br />

the slope is about 0.10,<br />

and ex<strong>ten</strong>ds down to perhaps kappa 15 before<br />

beg<strong>in</strong>n<strong>in</strong>g a steeper fall /18/. With f<strong>in</strong>al<br />

lign<strong>in</strong> removal, <strong>in</strong> theory the slope is about<br />

0.05; this is chemically close to what ECF<br />

bleach<strong>in</strong>g actually does. In all three cases,<br />

lower slope means better selectivity dur<strong>in</strong>g<br />

lign<strong>in</strong> removal, the right direction for <strong>yield</strong><br />

enhancement.<br />

Several aspects of <strong>yield</strong>/kappa relationships<br />

need to be remembered:<br />

• <strong>The</strong>re are non-l<strong>in</strong>ear consequences<br />

for <strong>yield</strong> when either<br />

<strong>pulp</strong><strong>in</strong>g or oxygen delignification<br />

is taken below its practical<br />

kappa limit where the<br />

selectivity for lign<strong>in</strong> removal<br />

is lost.<br />

• <strong>The</strong> <strong>yield</strong> gap widens <strong>in</strong> favour<br />

of oxygen delignification<br />

over <strong>pulp</strong><strong>in</strong>g as kappa<br />

number decreases.<br />

• Rais<strong>in</strong>g the kappa target of<br />

<strong>pulp</strong><strong>in</strong>g lifts the whole picture<br />

to higher <strong>yield</strong>, notwithstand<strong>in</strong>g<br />

the higher cost of<br />

remov<strong>in</strong>g residual lign<strong>in</strong> later<br />

<strong>in</strong> the process l<strong>in</strong>e.<br />

Pulp Yield, %<br />

50<br />

48<br />

46<br />

44<br />

42<br />

Yield/kappa relationship<br />

<strong>The</strong> typical <strong>yield</strong>/kappa relationship for <strong>kraft</strong><br />

<strong>pulp</strong><strong>in</strong>g (as illustrated <strong>in</strong> Fig. 13) requires<br />

some caveats. <strong>The</strong>re is, of course, a <strong>yield</strong> <strong>in</strong>tercept<br />

which is strongly related to wood species,<br />

chip size, and <strong>pulp</strong><strong>in</strong>g conditions. <strong>The</strong><br />

straight l<strong>in</strong>e represents the bulk delignification<br />

phase, which covers almost the whole<br />

kappa range of commercial <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g<br />

from high-kappa l<strong>in</strong>erboard base stock to<br />

bleachable-grades.<br />

Fig. 14 amplifies the mean<strong>in</strong>g of a specific<br />

<strong>yield</strong>/kappa relationship. This is a<br />

spruce/p<strong>in</strong>e/fir case <strong>in</strong> which pilot-plant<br />

<strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g of 2–8 mm thick chips was<br />

done at five H-<strong>factors</strong> (the highest one was<br />

duplicated). Because the fibre liberation<br />

po<strong>in</strong>t with softwoods is at about kappa 40,<br />

screened <strong>yield</strong> equals total <strong>yield</strong> at all but the<br />

highest kappa level. Three l<strong>in</strong>ear regressions<br />

can be calculated:<br />

• For all six total <strong>yield</strong> values, total <strong>yield</strong> =<br />

0.12(kappa) + 41.3 r 2 = 0.95<br />

• For the highest four <strong>yield</strong>s, total <strong>yield</strong> =<br />

0.11(kappa) + 42.0 r 2 = 0.94<br />

• For the lowest three <strong>yield</strong>s, total <strong>yield</strong> =<br />

0.22(kappa) + 38.9 r 2 = 0.98<br />

This demonstrates that where you s<strong>top</strong><br />

<strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g has a significant effect on <strong>pulp</strong><br />

<strong>yield</strong>. For bleachable grades, the idea is to<br />

aim for the end of the bulk delignification<br />

phase without fall<strong>in</strong>g <strong>in</strong>to the residual phase.<br />

Be<strong>in</strong>g seduced by ever lower kappa numbers<br />

prior to oxygen delignification or bleach<strong>in</strong>g<br />

has its price!<br />

With hardwoods, only bleachable-grade<br />

<strong>pulp</strong> is made, and the entire kappa range is<br />

about 12–18, so there is much less room<br />

for un<strong>in</strong><strong>ten</strong>tional over<strong>pulp</strong><strong>in</strong>g. <strong>The</strong> use of<br />

an excessive alkali charge is the greater risk.<br />

At the low-kappa end, the onset of the<br />

residual delignification phase will beg<strong>in</strong> to<br />

<strong>in</strong>crease the slope rapidly, sacrific<strong>in</strong>g <strong>yield</strong><br />

Slope<br />

of<br />

ield/<br />

Kappa<br />

L<strong>in</strong>e<br />

LR<br />

for<br />

highest<br />

4 po<strong>in</strong>ts<br />

TY= 0.<br />

11kappa<br />

+ 42.<br />

0 r2=<br />

0.<br />

94<br />

LR<br />

for<br />

lowest<br />

3 po<strong>in</strong>ts<br />

TY= 0.<br />

22kappa<br />

+ 38.<br />

9 r2=<br />

0.<br />

98<br />

Paperi ja Puu – Paper and Timber Vol.89/No. 4/2007<br />

Y<br />

Screened<br />

Yield<br />

LR<br />

for<br />

all<br />

6 TY<br />

po<strong>in</strong>ts<br />

TY= 0.<br />

12kappa<br />

+ 41.<br />

3 r2=<br />

0.<br />

95<br />

9<br />

Total<br />

Yield<br />

40<br />

15 25<br />

35<br />

45<br />

55<br />

Kappa<br />

Number<br />

Fig. 14. When a typical <strong>yield</strong>/kappa l<strong>in</strong>e for <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g of<br />

a softwood is separated <strong>in</strong>to parts, it becomes clear that<br />

seek<strong>in</strong>g kappa targets below the high 20s <strong>in</strong>evitably sacrifices<br />

<strong>yield</strong> by enter<strong>in</strong>g the residual delignification phase.


Lign<strong>in</strong>-free<br />

trees<br />

Extractives-free<br />

trees<br />

Hardwoods<br />

Fig. 15. Substantial <strong>yield</strong> improvements would<br />

come from all of these items. While the first<br />

three rema<strong>in</strong> <strong>in</strong>tractable, the last two are<br />

possible today.<br />

despite the further slow decrease <strong>in</strong> kappa<br />

number. Because the residual lign<strong>in</strong> is more<br />

resistant to delignification while the polysaccharides<br />

cont<strong>in</strong>ue to degrade, the selectivity<br />

of <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g becomes progressively worse<br />

– the slope of the l<strong>in</strong>e becomes steeper.<br />

This relationship is a crucial aspect of<br />

every <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g scenario, and it should<br />

be known for every mill operation. Of<strong>ten</strong>,<br />

that is not the case. To obta<strong>in</strong> accurate numbers,<br />

such <strong>in</strong>formation is determ<strong>in</strong>ed <strong>in</strong><br />

research-scale <strong>pulp</strong><strong>in</strong>g. It should be done<br />

rout<strong>in</strong>ely when any significant changes are<br />

made <strong>in</strong> chip furnishes and cook<strong>in</strong>g recipes,<br />

<strong>in</strong>clud<strong>in</strong>g any proposed use of <strong>pulp</strong><strong>in</strong>g<br />

additives.<br />

Wish list<br />

A Short<br />

with<br />

no<br />

vessel<br />

Wish<br />

List<br />

CTS<br />

plants<br />

which<br />

perform<br />

to<br />

( and<br />

receive<br />

regular<br />

audits)<br />

lements<br />

Although <strong>in</strong>dustrial <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g practice<br />

has changed slowly and <strong>in</strong>crementally over<br />

the years, it is always useful to imag<strong>in</strong>e how<br />

it could be made better, and by how much.<br />

Figure 15 lists some possibilities, from the<br />

far-fetched to the practical:<br />

• Lign<strong>in</strong>-free trees: In Factor 1, Fig. 3,<br />

the l<strong>in</strong>ear regression suggests that the<br />

lign<strong>in</strong>-free case has a Y-<strong>in</strong>tercept of 66%,<br />

e<br />

specifications<br />

Practical<br />

work<strong>in</strong>g<br />

knowledge<br />

of<br />

<strong>kraft</strong><br />

<strong>pulp</strong><strong>in</strong>g<br />

chemistry<br />

a qualification<br />

for<br />

digester<br />

operators<br />

Magnitude<br />

of<br />

Change<br />

Wood<br />

species<br />

SW<br />

to<br />

HW<br />

14%<br />

SW<br />

to<br />

SW<br />

8%<br />

HW<br />

to<br />

HW<br />

AS-AQ<br />

vs.<br />

conventional<br />

<strong>kraft</strong><br />

7%<br />

SW<br />

6%<br />

HW<br />

PS-AQ<br />

vs.<br />

conventional<br />

<strong>kraft</strong><br />

10%<br />

SW<br />

3%<br />

HW<br />

3%<br />

A dd<br />

oxygen<br />

delignification<br />

2%<br />

Improve<br />

impregnation<br />

a nd<br />

cook<strong>in</strong>g<br />

uniformity<br />

2%<br />

Paperi ja Puu – Paper and Timber Vol.89/No. 4/2007<br />

1<br />

10<br />

Factors<br />

Fig. 16. When ranked accord<strong>in</strong>g to magnitude of<br />

po<strong>ten</strong>tial <strong>yield</strong> ga<strong>in</strong>, the <strong>top</strong> <strong>ten</strong> <strong>factors</strong> emerge<br />

<strong>in</strong> this order. Very few options offer <strong>in</strong>dividual<br />

ga<strong>in</strong>s above 3%.<br />

6<br />

6<br />

8<br />

7<br />

2<br />

far higher than any <strong>kraft</strong> <strong>pulp</strong> <strong>yield</strong> currently<br />

obta<strong>in</strong>ed commercially.<br />

• Extractives-free trees: <strong>The</strong> same general<br />

argument applies. Because there is no<br />

great bus<strong>in</strong>ess <strong>in</strong> by-products from extractives<br />

any more, it would be nice to<br />

avoid deal<strong>in</strong>g with extractives at all.<br />

• Hardwoods without vessel elements:<br />

<strong>The</strong> wood would be denser, provid<strong>in</strong>g<br />

higher <strong>pulp</strong> <strong>yield</strong> per unit volume of<br />

digester space, and the <strong>pulp</strong> would be<br />

more uniform, allow<strong>in</strong>g improvements<br />

<strong>in</strong> stock ref<strong>in</strong><strong>in</strong>g, papermak<strong>in</strong>g, coat<strong>in</strong>g,<br />

and pr<strong>in</strong>t<strong>in</strong>g.<br />

• Chip thickness screen<strong>in</strong>g: Most CTS<br />

plants don’t come close to their orig<strong>in</strong>al<br />

specifications for segregat<strong>in</strong>g and<br />

controll<strong>in</strong>g chip dimensions, nor work<br />

consis<strong>ten</strong>tly well <strong>in</strong> cold-weather locations.<br />

Overthick chip process<strong>in</strong>g spans<br />

the range from very good to abysmal<br />

/17/.<br />

• Work<strong>in</strong>g knowledge: Tra<strong>in</strong><strong>in</strong>g of digester<br />

operators is not as good as it should be<br />

(especially <strong>in</strong> North America). <strong>The</strong>re<br />

is usually no certification of personal<br />

knowledge of the chemistry of <strong>pulp</strong><strong>in</strong>g,<br />

so digesters <strong>ten</strong>d to be treated foremost<br />

as mechanical entities. Is this satisfactory<br />

for the operation of chemically complex<br />

systems worth upwards of $100 million<br />

that produce <strong>ten</strong>s of billions of dollars<br />

worth of <strong>pulp</strong> per year? Standards are<br />

much stricter <strong>in</strong> many other l<strong>in</strong>es of<br />

work, <strong>in</strong>clud<strong>in</strong>g regular cont<strong>in</strong>u<strong>in</strong>g education<br />

plus re-test<strong>in</strong>g. Why not <strong>in</strong> our<br />

bus<strong>in</strong>ess?<br />

Hav<strong>in</strong>g assembled this Top Ten list for<br />

<strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g <strong>yield</strong>, it is possible to rank<br />

the <strong>factors</strong> <strong>in</strong> a variety of ways. Fig. 16 does<br />

this based on magnitude of <strong>yield</strong> ga<strong>in</strong>. For<br />

example, a bleachable-grade <strong>kraft</strong> sw<strong>in</strong>g<br />

mill could ga<strong>in</strong> 14% go<strong>in</strong>g from the lowest<br />

softwood <strong>yield</strong> to the highest hardwood one<br />

(Figs. 2 and 3). No mill has the wood basket<br />

to do this. But <strong>in</strong> the northern boreal forest<br />

zone, a 7–8% <strong>yield</strong> ga<strong>in</strong> is rout<strong>in</strong>e when<br />

go<strong>in</strong>g from spruces to aspen. <strong>The</strong> same<br />

is true <strong>in</strong> hardwood mills go<strong>in</strong>g from<br />

maples to aspen.<br />

Alkal<strong>in</strong>e sulphite-AQ <strong>pulp</strong><strong>in</strong>g has<br />

been done <strong>in</strong>dustrially, but only briefly<br />

and conf<strong>in</strong>ed to two mills. In the right<br />

circumstances, its use <strong>in</strong> l<strong>in</strong>erboard production<br />

could be <strong>in</strong>terest<strong>in</strong>g from a <strong>yield</strong><br />

perspective. Unfortunately, slow <strong>pulp</strong><strong>in</strong>g<br />

rate and complex chemical recovery are<br />

serious hurdles to overcome.<br />

Most of the opportunities <strong>in</strong> Fig. 16<br />

provide <strong>yield</strong> ga<strong>in</strong>s of 3% or less – not<br />

so excit<strong>in</strong>g, perhaps, but feasible and<br />

operat<strong>in</strong>g <strong>in</strong> some mills. In fact, there<br />

are a lot of opportunities which can deliver<br />

1–3% <strong>yield</strong> ga<strong>in</strong>s: additives such as<br />

anthraqu<strong>in</strong>one and polysulphide, mov<strong>in</strong>g<br />

to advanced modes of digester operation,<br />

oxygen delignification (especially with a<br />

higher kappa target after <strong>pulp</strong><strong>in</strong>g), and close<br />

at<strong>ten</strong>tion to the quality of chips be<strong>in</strong>g fed<br />

to a digester. It is also good to have a strong<br />

command of exist<strong>in</strong>g knowledge and apply<br />

it to the technical details of good <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g<br />

practice.<br />

Enhanced <strong>yield</strong>s can also come from better<br />

chip mak<strong>in</strong>g and dimensional control,<br />

improved pre-steam<strong>in</strong>g and impregnation<br />

practices, cook<strong>in</strong>g at lower temperatures<br />

for longer times wherever possible, m<strong>in</strong>imization<br />

of rejects from <strong>pulp</strong><strong>in</strong>g (and the<br />

re-process<strong>in</strong>g of them), efficient fibre spill<br />

collection, and tight process control of oxygen<br />

delignification and bleach<strong>in</strong>g. Research<br />

demonstrates that impressive, cumulative<br />

<strong>yield</strong> ga<strong>in</strong>s are possible.<br />

F<strong>in</strong>ally, Fig. 17 is an attempt at reality<br />

– what can you do <strong>in</strong> a <strong>kraft</strong> mill to improve<br />

<strong>pulp</strong> <strong>yield</strong> at modest cost with the equipment<br />

you have today? <strong>The</strong> items are listed<br />

<strong>in</strong> order of <strong>in</strong>creas<strong>in</strong>g cost:<br />

• Get out – and stay out – of the residual<br />

delignification phase.<br />

• Make your CTS plant perform to maximize<br />

the 2–8 (or 9 or 10) mm thick<br />

fraction. M<strong>in</strong>imize the f<strong>in</strong>es go<strong>in</strong>g to<br />

<strong>pulp</strong><strong>in</strong>g, and deal effectively with the<br />

(small) fraction of overthick material.<br />

Buy or make chips with a narrower distribution<br />

of thickness.<br />

• Push cont<strong>in</strong>ually to <strong>in</strong>crease your best<br />

species for <strong>yield</strong>. Know the real numbers<br />

by species from R&D work done<br />

on your wood sources.<br />

• Make sure that your alkali charge and<br />

maximum temperature of cook<strong>in</strong>g don’t<br />

creep too high, or your sulfidity too low.<br />

Process creep can occur over the long<br />

term, and current process targets may<br />

lose their connections to the orig<strong>in</strong>al<br />

reasons for change.<br />

Stay<br />

out<br />

of<br />

Get<br />

full<br />

p<br />

residual<br />

d<br />

elignification<br />

phase<br />

erformance<br />

from<br />

CTS<br />

Optimize<br />

for<br />

best<br />

Optimize<br />

<strong>pulp</strong><strong>in</strong>g<br />

Add<br />

AQ<br />

Improve<br />

Practical<br />

To<br />

Do<br />

At<br />

Modest<br />

Cost<br />

p<br />

pecies<br />

<strong>in</strong><br />

a<br />

s<br />

re-steam<strong>in</strong>g,<br />

p<br />

m<br />

lant<br />

ixture<br />

recipe<br />

for<br />

EA,<br />

S,<br />

Tmax<br />

impregnation<br />

regimes<br />

Factors<br />

Fig. 17. When ranked accord<strong>in</strong>g to what is practical<br />

to do at a modest cost, the <strong>top</strong> <strong>ten</strong> <strong>factors</strong> offer<br />

plenty of opportunities for improvement.<br />

1<br />

9<br />

3<br />

5<br />

6<br />

7<br />

2


• Anthraqu<strong>in</strong>one? It is probably the simplest<br />

quick fix for <strong>yield</strong> ga<strong>in</strong> if you can<br />

afford it. Don’t waste it by add<strong>in</strong>g too<br />

much, los<strong>in</strong>g some of it <strong>in</strong> an early black<br />

liquor extraction, or fail<strong>in</strong>g to recognize<br />

trade-offs with other primary <strong>factors</strong><br />

such as alkali charge, sulphidity, and<br />

kappa target.<br />

• Do anyth<strong>in</strong>g you can to improve chip<br />

pre-steam<strong>in</strong>g. Optimize impregnation<br />

by ensur<strong>in</strong>g that the <strong>in</strong>gredients you<br />

put <strong>in</strong> your digester are the best you can<br />

provide. Don’t exceed what the chemistry<br />

can actually do.<br />

• And if the opportunity comes, go to an<br />

advanced batch or cont<strong>in</strong>uous digester<br />

system and advanced oxygen delignification.<br />

Happy <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g!<br />

References<br />

1. <strong>Kraft</strong> Pulp Yield Anthology (CD-ROM), 100 published<br />

papers, 1990–2001, TAPPI, Atlanta, GA.<br />

2. Gullichsen, J.: Fiber L<strong>in</strong>e Operations, <strong>in</strong> Chemical<br />

Pulp<strong>in</strong>g, Volume 6A, Papermak<strong>in</strong>g Science and<br />

Technology, J. Gullichsen and H. Paulapuro, eds.,<br />

TAPPI/F<strong>in</strong>nish Paper Eng<strong>in</strong>eers’ Association, Atlanta/Hels<strong>in</strong>ki,<br />

1999, Chapter 2, p. A27–28.<br />

3. Process Variables, <strong>in</strong> Alkal<strong>in</strong>e Pulp<strong>in</strong>g, Volume 5,<br />

Pulp & Paper Manufacture Series, 3 rd edition,<br />

184x133mm<br />

Grace, T.M., Leopold, B., and Malcolm, E.W.,<br />

eds., Jo<strong>in</strong>t Textbook Committee of the Paper<br />

Industry, CPPA-TAPPI, Montreal/Atlanta, 1989,<br />

Chapter 5, p. 82.<br />

4. MacLeod, J.M.: <strong>Kraft</strong> Pulp<strong>in</strong>g: Connect<strong>in</strong>g <strong>The</strong>ory to<br />

Industrial Practice, Notes of PAPTAC <strong>Kraft</strong> Pulp<strong>in</strong>g<br />

<strong>Course</strong>, Session 1, Po<strong>in</strong>te-Claire, QC, October<br />

23–25, 2006 (Typical Yields of <strong>Kraft</strong> Pulps).<br />

5. Hakkila, P.: Structure and Properties of Wood and<br />

Woody Biomass, Volume 2, Papermak<strong>in</strong>g Science<br />

and Technology, J. Gullichsen and H. Paulapuro,<br />

eds., TAPPI/F<strong>in</strong>nish Paper Eng<strong>in</strong>eers’ Association,<br />

Atlanta/Hels<strong>in</strong>ki, 1998, Chapter 4, p.143.<br />

6. ibid., p.141–150.<br />

7. Process Variables, <strong>in</strong> Alkal<strong>in</strong>e Pulp<strong>in</strong>g, Volume 5,<br />

Pulp & Paper Manufacture Series, 3 rd edition,<br />

Grace, T.M., Leopold, B., and Malcolm, E.W.,<br />

eds., Jo<strong>in</strong>t Textbook Committee of the Paper<br />

Industry, CPPA-TAPPI, Montreal/Atlanta, 1989,<br />

Chapter 5, p. 90–96.<br />

8. MacLeod, J.M., Radiotis, T., Uloth, V.C., Munro,<br />

F.C., Tench, L.: Basket cases IV: Higher <strong>yield</strong> with<br />

Paprilox ® polysulphide-AQ <strong>pulp</strong><strong>in</strong>g of hardwoods,<br />

new Tappi J 1(8):3 (2002).<br />

9. Kleppe, P.J.: <strong>Kraft</strong> Pulp<strong>in</strong>g, Tappi J 53(1):35<br />

(1970).<br />

10. Tikka, P.O., Kovas<strong>in</strong>, K.K.: Displacement vs. conventional<br />

batch <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g: delignification<br />

patterns and <strong>pulp</strong> strength delivery, Paperi ja Puu<br />

72(8):773 (1990).<br />

11. Lebel, D.J.: Cont<strong>in</strong>uous Digester Operations,<br />

Notes of PAPTAC <strong>Kraft</strong> Pulp<strong>in</strong>g <strong>Course</strong>, Session<br />

3, Po<strong>in</strong>te-Claire, QC, October 23-25, 2006 (Lo-<br />

Solids ® Pulp<strong>in</strong>g).<br />

12. Anthraqu<strong>in</strong>one Pulp<strong>in</strong>g: a TAPPI PRESS Anthol-<br />

ogy of Published Papers, G. Goyal, ed., TAPPI,<br />

Atlanta, GA, 1997, 600 pages.<br />

13. MacLeod, J.M.: Improv<strong>in</strong>g <strong>kraft</strong> <strong>pulp</strong> <strong>yield</strong> with<br />

anthraqu<strong>in</strong>one and polysulphide: science and strategy,<br />

2002 <strong>Kraft</strong> Pulp Yield Workshop Prepr<strong>in</strong>ts,<br />

TAPPI, Atlanta, GA, Session 6, Paper 6-1.<br />

14. MacLeod, J.M.: Alkal<strong>in</strong>e Sulphite-Anthraqu<strong>in</strong>one<br />

Pulps from Softwoods, J Pulp Paper Sci 13(2):J44<br />

(1987).<br />

15. MacLeod, J.M.: Alkal<strong>in</strong>e sulphite-anthraqu<strong>in</strong>one<br />

<strong>pulp</strong>s from aspen, Tappi J 69(8):106 (1986).<br />

16. MacLeod, J.M., K<strong>in</strong>gsland, K.A.: <strong>Kraft</strong>-AQ <strong>pulp</strong><strong>in</strong>g<br />

of sawdust, Tappi J 73(1):191 (1990).<br />

17. MacLeod, J.M., Dort, A., Young, J., Smith, D., Kreft,<br />

K., Tremblay, M.-A., Bissette, P.-A.: Crush<strong>in</strong>g: Is<br />

this any way to treat overthick softwood chips for<br />

<strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g? Pulp Paper Can 106(2):44 (2005).<br />

18. Gullichsen, J.: Fibre L<strong>in</strong>e Operations, <strong>in</strong> Chemical<br />

Pulp<strong>in</strong>g, Volume 6A, Papermak<strong>in</strong>g Science and<br />

Technology, J. Gullichsen and H. Paulapuro, eds.,<br />

TAPPI/F<strong>in</strong>nish Paper Eng<strong>in</strong>eers’ Association, Atlanta/Hels<strong>in</strong>ki,<br />

1999, Chapter 2, p. A146.<br />

Mart<strong>in</strong> MacLeod is a teacher, writer, and technical consult-<br />

ant on <strong>kraft</strong> <strong>pulp</strong><strong>in</strong>g. He can be reached at: 150 sawmill<br />

Private, Ottawa, ON K1V 2E1 canada; phone + 1 613 526-<br />

4798; e-mail the.macleods@sympatico.ca. this paper was<br />

adapted from a presentation at the tAPPI Grow<strong>in</strong>g Pulp<br />

Yield from the Ground Up symposium, Atlanta, GA, May<br />

17, 2006.<br />

Paperi ja Puu – Paper and Timber Vol.89/No. 4/2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!