12.07.2015 Views

Alkane cracking in zeolites - CRM2

Alkane cracking in zeolites - CRM2

Alkane cracking in zeolites - CRM2

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Outl<strong>in</strong>e◦ Haag-Dassau <strong>crack<strong>in</strong>g</strong> mechanismLessons to draw from experimental results<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Outl<strong>in</strong>e◦ Haag-Dassau <strong>crack<strong>in</strong>g</strong> mechanismLessons to draw from experimental results◦ <strong>Alkane</strong> physisorption on <strong>zeolites</strong><strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Outl<strong>in</strong>e◦ Haag-Dassau <strong>crack<strong>in</strong>g</strong> mechanismLessons to draw from experimental results◦ <strong>Alkane</strong> physisorption on <strong>zeolites</strong>Why is it important?<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Outl<strong>in</strong>e◦ Haag-Dassau <strong>crack<strong>in</strong>g</strong> mechanismLessons to draw from experimental results◦ <strong>Alkane</strong> physisorption on <strong>zeolites</strong>Why is it important?◦ Transition structures<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Outl<strong>in</strong>e◦ Haag-Dassau <strong>crack<strong>in</strong>g</strong> mechanismLessons to draw from experimental results◦ <strong>Alkane</strong> physisorption on <strong>zeolites</strong>Why is it important?◦ Transition structuresOverview of some ab <strong>in</strong>itio results<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


CarbocationsRRalkaniumionCRRH++H CRRRR<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


CarbocationsRRalkaniumionCRRH++H CRRRRcarbeniumionRCCR+HHC+CRRRRRR<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


CarbocationsRRalkaniumionCRRH++H CRRRRcarbeniumionRCCR+HHC+CRRRRRR<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


<strong>Alkane</strong> species <strong>in</strong> <strong>zeolites</strong>R–Halkane<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


<strong>Alkane</strong> species <strong>in</strong> <strong>zeolites</strong>R–Halkanebifunctionalalkene<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


<strong>Alkane</strong> species <strong>in</strong> <strong>zeolites</strong>R–Halkanebifunctionalalkene+ H+Brønsted acidRcarbenium<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


<strong>Alkane</strong> species <strong>in</strong> <strong>zeolites</strong>R–Halkane+ H+ RH+2Brønsted acidalkaniumbifunctionalalkene+ H+Brønsted acidR+carbenium<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


<strong>Alkane</strong> species <strong>in</strong> <strong>zeolites</strong>R–Halkane+ H+ RH+2Brønsted acidalkaniumbifunctional−R’H / H 2alkene+ H+Brønsted acidR+carbenium<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


<strong>Alkane</strong> species <strong>in</strong> <strong>zeolites</strong>R–Halkane+ H+ RH+2Brønsted acidalkaniumbifunctionalLewisacid−H−R’H / H 2alkene+ H+Brønsted acidR+carbenium<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


<strong>Alkane</strong> species <strong>in</strong> <strong>zeolites</strong>R–Halkane+ H+ RH+2Brønsted acidalkaniumbifunctionalLewisacid−H−R’H / H 2alkene+ H+Brønsted acidR+carbenium<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Crack<strong>in</strong>g mechanisms<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Crack<strong>in</strong>g mechanismsBimolecular<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Crack<strong>in</strong>g mechanismsBimolecularRHR 1 H+R 1R+beta-scissionalkene<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Crack<strong>in</strong>g mechanismsBimolecularRHR 1 H+R 1R+beta-scissionalkene◦ <strong>in</strong> mono- and bifunctional catalysts<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Crack<strong>in</strong>g mechanismsBimolecularRHR 1 H+R 1R+beta-scissionalkene◦ <strong>in</strong> mono- and bifunctional catalysts◦ β-scission cha<strong>in</strong> carrier<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Crack<strong>in</strong>g mechanismsBimolecularRHR 1 H+R 1R+beta-scissionalkene◦ <strong>in</strong> mono- and bifunctional catalysts◦ β-scission cha<strong>in</strong> carrier◦ does not work <strong>in</strong> constra<strong>in</strong>edenvironment<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Crack<strong>in</strong>g mechanismsBimolecularRHR 1 H+R 1R+beta-scissionalkene◦ <strong>in</strong> mono- and bifunctional catalysts◦ β-scission cha<strong>in</strong> carrier◦ does not work <strong>in</strong> constra<strong>in</strong>edenvironment<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Crack<strong>in</strong>g mechanismsBimolecularMonomolecularRHR 1 HRHR 1 H+RH 2+R 1R+H ++R 2beta-scissiondesorptionalkenealkene◦ <strong>in</strong> mono- and bifunctional catalysts◦ β-scission cha<strong>in</strong> carrier◦ does not work <strong>in</strong> constra<strong>in</strong>edenvironment<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Crack<strong>in</strong>g mechanismsBimolecularMonomolecularRHR 1 HRHR 1 H+RH 2+R 1R+H ++R 2beta-scissiondesorptionalkene◦ <strong>in</strong> mono- and bifunctional catalystsalkene◦ <strong>in</strong> monofunctional catalysts◦ β-scission cha<strong>in</strong> carrier◦ does not work <strong>in</strong> constra<strong>in</strong>edenvironment<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Crack<strong>in</strong>g mechanismsBimolecularMonomolecularRHR 1 HRHR 1 H+RH 2+R 1R+H ++R 2beta-scissiondesorptionalkene◦ <strong>in</strong> mono- and bifunctional catalysts◦ β-scission cha<strong>in</strong> carrieralkene◦ <strong>in</strong> monofunctional catalysts◦ <strong>crack<strong>in</strong>g</strong> or dehydrogenation◦ does not work <strong>in</strong> constra<strong>in</strong>edenvironment<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Crack<strong>in</strong>g mechanismsBimolecularMonomolecularRHR 1 HRHR 1 H+RH 2+R 1R+H ++R 2beta-scissiondesorptionalkene◦ <strong>in</strong> mono- and bifunctional catalysts◦ β-scission cha<strong>in</strong> carrier◦ does not work <strong>in</strong> constra<strong>in</strong>edenvironmentalkene◦ <strong>in</strong> monofunctional catalysts◦ <strong>crack<strong>in</strong>g</strong> or dehydrogenation◦ at high T, medium-pore <strong>zeolites</strong>(ZSM-5)<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Monomolecular <strong>crack<strong>in</strong>g</strong> (Haag-Dessau) mechanismHH+H 3 CCCH 3CH 3<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Monomolecular <strong>crack<strong>in</strong>g</strong> (Haag-Dessau) mechanismHH+H 3 CCCH 3CH 3HH-exchangeH 3 CCCH 3CH 3 + H +<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Monomolecular <strong>crack<strong>in</strong>g</strong> (Haag-Dessau) mechanismdehydrogenationH 3 CCH 3C + + H 2CH 3HH+H 3 CCCH 3CH 3HH-exchangeH 3 CCCH 3CH 3 + H +<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Monomolecular <strong>crack<strong>in</strong>g</strong> (Haag-Dessau) mechanismCH 3dehydrogenationH 3 CC + + H 2CH 3HH 3 CCHCH 3CH 3+<strong>crack<strong>in</strong>g</strong>H 3 CHC +CH 3+ CH 4HH-exchangeH 3 CCCH 3CH 3 + H +<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Monomolecular <strong>crack<strong>in</strong>g</strong> (Haag-Dessau) mechanismCH 3dehydrogenationH 3 CC + + H 2CH 3HH 3 CCHCH 3CH 3+<strong>crack<strong>in</strong>g</strong>H 3 CHC +CH 3+ CH 4HH-exchangeH 3 CCCH 3CH 3 + H +<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of propane on HZSM-5Proton attacks on the central carbon atom:Kwaak, Schachtler, Haag, J. Catal. 149 (1994) 465.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of propane on HZSM-5Proton attacks on the central carbon atom:CH 3CH 3CHHKwaak, Schachtler, Haag, J. Catal. 149 (1994) 465.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of propane on HZSM-5Proton attacks on the central carbon atom:CH 3HCH 3+CHHKwaak, Schachtler, Haag, J. Catal. 149 (1994) 465.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of propane on HZSM-5Proton attacks on the central carbon atom:CH 3HCH 3+CHHH 2 + C 3 H 637%Kwaak, Schachtler, Haag, J. Catal. 149 (1994) 465.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of propane on HZSM-5Proton attacks on the central carbon atom:CH 3HCH 3+CHHH 2 + C 3 H 637%CH 4 + C 2 H 463%Kwaak, Schachtler, Haag, J. Catal. 149 (1994) 465.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of propane on HZSM-5Proton attacks on the central carbon atom:CH 3HCH 3+CHHH 2 + C 3 H 6 CH 4 + C 2 H 437%63%Almost statistical cleavage of the alkanium ion.Kwaak, Schachtler, Haag, J. Catal. 149 (1994) 465.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of i-butane on HZSM-5Proton attacks the tertiary carbon atom:CH 3CH 3CH 3+CHHOno, Kanae, J. Chem. Soc. Faraday Trans. 87 (1991) 663.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of i-butane on HZSM-5Proton attacks the tertiary carbon atom:CH 3CH 3CH 3+CHHH 2 + C 4 H 833%Ono, Kanae, J. Chem. Soc. Faraday Trans. 87 (1991) 663.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of i-butane on HZSM-5Proton attacks the tertiary carbon atom:CH 3CH 3CH 3+CHHH 2 + C 4 H 833%CH 4 + C 3 H 667%Ono, Kanae, J. Chem. Soc. Faraday Trans. 87 (1991) 663.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of i-butane on HZSM-5Proton attacks the tertiary carbon atom:CH 3CH 3CH 3+CHHH 2 + C 4 H 833%CH 4 + C 3 H 667%Propene and methane formation is more prevalent than isobutene production.Ono, Kanae, J. Chem. Soc. Faraday Trans. 87 (1991) 663.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of n-butane on HZSM-5Proton can attack on three different types of bonds:H H H HHCC C CHHHHHKranilla, Haag, Gates, J. Catal. 135 (1992) 115.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of n-butane on HZSM-5Proton can attack on three different types of bonds:H H H HHCC C CHHHHHC 2 H 6 + C 2 H 417% 15%Kranilla, Haag, Gates, J. Catal. 135 (1992) 115.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of n-butane on HZSM-5Proton can attack on three different types of bonds:H H H HHCC C CHHHHHCH 4 + C 3 H 2C 2 H 6 + C 2 H 420%17%17% 15%Kranilla, Haag, Gates, J. Catal. 135 (1992) 115.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of n-butane on HZSM-5Proton can attack on three different types of bonds:H H H HHCC C CHHHHHCH 4 + C 3 H 2 C 2 H 6 + C 2 H 4 H 2 + C 4 H 820%17%17% 15%15% 17%Kranilla, Haag, Gates, J. Catal. 135 (1992) 115.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of n-butane on HZSM-5Proton can attack on three different types of bonds:H H H HHCC C CHHHHHCH 4 + C 3 H 2 C 2 H 6 + C 2 H 4 H 2 + C 4 H 820%17%17% 15%15% 17%In spite of different number of equivalent bonds, each product is formed withthe same probability.Kranilla, Haag, Gates, J. Catal. 135 (1992) 115.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Product distribution of n-butane on HZSM-5Proton can attack on three different types of bonds:H H H HHCC C CHHHHHCH 4 + C 3 H 2 C 2 H 6 + C 2 H 4 H 2 + C 4 H 820%17%17% 15%15% 17%In spite of different number of equivalent bonds, each product is formed withthe same probability.Larger activation entropy for external bonds compensatesfor the smaller activation energy for <strong>in</strong>ternal bonds.Kranilla, Haag, Gates, J. Catal. 135 (1992) 115.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Monomolecular <strong>crack<strong>in</strong>g</strong> mechanism: open questions◦ Activation energy?<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Monomolecular <strong>crack<strong>in</strong>g</strong> mechanism: open questions◦ Activation energy?◦ Nature of the transition structure(s)?<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Monomolecular <strong>crack<strong>in</strong>g</strong> mechanism: open questions◦ Activation energy?◦ Nature of the transition structure(s)?◦ Multiple reaction channels?<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Monomolecular <strong>crack<strong>in</strong>g</strong> mechanism: open questions◦ Activation energy?◦ Nature of the transition structure(s)?◦ Multiple reaction channels?◦ Effect of zeolite framework?<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Monomolecular <strong>crack<strong>in</strong>g</strong> mechanism: open questions◦ Activation energy?◦ Nature of the transition structure(s)?◦ Multiple reaction channels?◦ Effect of zeolite framework?◦ Alternative mechanisms?<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Activation energiestransition structureEappZeOH + C Hn2n+2E adsE trueZeOH...C Hn 2n+2Experimental (apparent) activation energies should be corrected by adsorptionenergies to obta<strong>in</strong> <strong>in</strong>tr<strong>in</strong>sic (true) activation energies.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-hexane <strong>crack<strong>in</strong>g</strong>Apparent activation energies <strong>in</strong> different catalystsCatalystH-ZSM-5H-MORH-USYCDHYBabitz et al. Appl. Catal. A 179 (1999) 71.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-hexane <strong>crack<strong>in</strong>g</strong>Apparent activation energies <strong>in</strong> different catalystsCatalystE ‡ appH-ZSM-5 149±8H-MOR 157±9H-USY 177±9CDHY 186±9Babitz et al. Appl. Catal. A 179 (1999) 71.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-hexane <strong>crack<strong>in</strong>g</strong>Apparent activation energies <strong>in</strong> different catalystsCatalyst E ‡ app ∆H adsH-ZSM-5 149±8 −86±6H-MOR 157±9 −69±3H-USY 177±9 −50±3CDHY 186±9 −50±3Babitz et al. Appl. Catal. A 179 (1999) 71.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-hexane <strong>crack<strong>in</strong>g</strong>Apparent activation energies <strong>in</strong> different catalystsCatalyst E ‡ app ∆H ads E ‡ trueH-ZSM-5 149±8 −86±6 235±14H-MOR 157±9 −69±3 226±12H-USY 177±9 −50±3 227±12CDHY 186±9 −50±3 236±12Babitz et al. Appl. Catal. A 179 (1999) 71.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-hexane <strong>crack<strong>in</strong>g</strong>Apparent activation energies <strong>in</strong> different catalystsCatalyst E ‡ app ∆H ads E ‡ trueH-ZSM-5 149±8 −86±6 235±14H-MOR 157±9 −69±3 226±12H-USY 177±9 −50±3 227±12CDHY 186±9 −50±3 236±12Differences <strong>in</strong> apparent activation energies are due to adsorption energies!Babitz et al. Appl. Catal. A 179 (1999) 71.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-hexane <strong>crack<strong>in</strong>g</strong>Apparent activation energies <strong>in</strong> different catalystsCatalyst E ‡ app ∆H ads E ‡ trueH-ZSM-5 149±8 −86±6 235±14H-MOR 157±9 −69±3 226±12H-USY 177±9 −50±3 227±12CDHY 186±9 −50±3 236±12Differences <strong>in</strong> apparent activation energies are due to adsorption energies!◦ <strong>in</strong>tr<strong>in</strong>sic activation energy <strong>in</strong>sensitive to acid strengthBabitz et al. Appl. Catal. A 179 (1999) 71.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-hexane <strong>crack<strong>in</strong>g</strong>Apparent activation energies <strong>in</strong> different catalystsCatalyst E ‡ app ∆H ads E ‡ trueH-ZSM-5 149±8 −86±6 235±14H-MOR 157±9 −69±3 226±12H-USY 177±9 −50±3 227±12CDHY 186±9 −50±3 236±12Differences <strong>in</strong> apparent activation energies are due to adsorption energies!◦ <strong>in</strong>tr<strong>in</strong>sic activation energy <strong>in</strong>sensitive to acid strength◦ acid strengths of these <strong>zeolites</strong> are identicalBabitz et al. Appl. Catal. A 179 (1999) 71.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-hexane <strong>crack<strong>in</strong>g</strong>Apparent activation energies <strong>in</strong> different catalystsCatalyst E ‡ app ∆H ads E ‡ trueH-ZSM-5 149±8 −86±6 235±14H-MOR 157±9 −69±3 226±12H-USY 177±9 −50±3 227±12CDHY 186±9 −50±3 236±12Differences <strong>in</strong> apparent activation energies are due to adsorption energies!◦ <strong>in</strong>tr<strong>in</strong>sic activation energy <strong>in</strong>sensitive to acid strength◦ acid strengths of these <strong>zeolites</strong> are identicalBabitz et al. Appl. Catal. A 179 (1999) 71.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-alkane <strong>crack<strong>in</strong>g</strong> <strong>in</strong> H-ZSM-5True activation energies seem to be <strong>in</strong>dependent of the cha<strong>in</strong> lengthalkanepropanen-butanen-pentanen-hexaneNarbeshuber, V<strong>in</strong>ek, Lercher J. Catal. A 157 (1995) 338.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-alkane <strong>crack<strong>in</strong>g</strong> <strong>in</strong> H-ZSM-5True activation energies seem to be <strong>in</strong>dependent of the cha<strong>in</strong> lengthalkane E ‡ app ∆H ads E ‡ truepropane 155 −43 198n-butane 135 −62 197n-pentane 120 −74 194n-hexane 105 −92 197Narbeshuber, V<strong>in</strong>ek, Lercher J. Catal. A 157 (1995) 338.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-alkane <strong>crack<strong>in</strong>g</strong> <strong>in</strong> H-ZSM-5True activation energies seem to be <strong>in</strong>dependent of the cha<strong>in</strong> lengthalkane E ‡ app ∆H ads E ‡ true ∆H ads E ‡ truepropane 155 −43 198 -40 195n-butane 135 −62 197 -50 185n-pentane 120 −74 194 -60 180n-hexane 105 −92 197 -71 176unless one uses another set of adsorption energies...Narbeshuber, V<strong>in</strong>ek, Lercher J. Catal. A 157 (1995) 338.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-alkane <strong>crack<strong>in</strong>g</strong> <strong>in</strong> H-ZSM-5True activation energies seem to be <strong>in</strong>dependent of the cha<strong>in</strong> lengthalkane E ‡ app ∆H ads E ‡ true ∆H ads E ‡ truepropane 155 −43 198 -40 195n-butane 135 −62 197 -50 185n-pentane 120 −74 194 -60 180n-hexane 105 −92 197 -71 176unless one uses another set of adsorption energies...Narbeshuber, V<strong>in</strong>ek, Lercher J. Catal. A 157 (1995) 338.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-alkane <strong>crack<strong>in</strong>g</strong> <strong>in</strong> H-ZSM-5True activation energies seem to be <strong>in</strong>dependent of the cha<strong>in</strong> lengthalkane E ‡ app ∆H ads E ‡ true ∆H ads E ‡ truepropane 155 −43 198 -40 195n-butane 135 −62 197 -50 185n-pentane 120 −74 194 -60 180n-hexane 105 −92 197 -71 176unless one uses another set of adsorption energies...Narbeshuber, V<strong>in</strong>ek, Lercher J. Catal. A 157 (1995) 338.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Exprimental n-alkane adsorption energies0-20Eads (kJ/mol)-40-60-80-100-120-1400 2 4 6 8 10cha<strong>in</strong> lengthVlugt, Krishna, Smit J. Phys. Chem. B 103 (1999) 1102.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


VASP calculations◦ DFT with PW91 gradient corrections<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


VASP calculations◦ DFT with PW91 gradient corrections◦ Ultrasoft pseudopotentials for C,H and O<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


VASP calculations◦ DFT with PW91 gradient corrections◦ Ultrasoft pseudopotentials for C,H and O◦ Cutoff energy 400 eV<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


VASP calculations◦ DFT with PW91 gradient corrections◦ Ultrasoft pseudopotentials for C,H and O◦ Cutoff energy 400 eV◦ Structural optimizations (residual forces < 0.02 )<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


VASP calculations◦ DFT with PW91 gradient corrections◦ Ultrasoft pseudopotentials for C,H and O◦ Cutoff energy 400 eV◦ Structural optimizations (residual forces < 0.02 )◦ Transition states optimized by us<strong>in</strong>g QMPot (Sierka & Sauer) as externaloptimizer<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


VASP calculations◦ DFT with PW91 gradient corrections◦ Ultrasoft pseudopotentials for C,H and O◦ Cutoff energy 400 eV◦ Structural optimizations (residual forces < 0.02 )◦ Transition states optimized by us<strong>in</strong>g QMPot (Sierka & Sauer) as externaloptimizer◦ Order of critical po<strong>in</strong>ts verified by the calculation of Hessian<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Transition states <strong>in</strong> chabazite optimized by VASPbond C 2 H 6 C 3 H 8 n-C 4 H a 10n-C 4 H b 10i-C 4 H 10CCCCHHOAlO(a) primary C–C bond(b) secondary C–C bond<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Transition states <strong>in</strong> chabazite optimized by VASPbond C 2 H 6 C 3 H 8 n-C 4 H a 10n-C 4 H b 10i-C 4 H 10H1–O 2.97 2.62 3.01 3.25 2.94CCCCHHOAlO(a) primary C–C bond(b) secondary C–C bond<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Transition states <strong>in</strong> chabazite optimized by VASPCCCCbond C 2 H 6 C 3 H 8 n-C 4 H a 10n-C 4 H b 10i-C 4 H 10H1–O 2.97 2.62 3.01 3.25 2.94H1–C1 1.23 1.20 1.20 1.25 1.14H1–C2 1.25 1.32 1.33 1.27 1.58C1-C2 1.96 2.08 2.12 2.47 2.47HHOAlO(a) primary C–C bond(b) secondary C–C bond<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Transition states <strong>in</strong> chabazite optimized by VASPCCHCHCbond C 2 H 6 C 3 H 8 n-C 4 H a 10n-C 4 H b 10i-C 4 H 10H1–O 2.97 2.62 3.01 3.25 2.94H1–C1 1.23 1.20 1.20 1.25 1.14H1–C2 1.25 1.32 1.33 1.27 1.58C1-C2 1.96 2.08 2.12 2.47 2.47H2–C2 1.09 1.11 1.10 1.10 1.10H2–O’ 2.23 2.14 3.44 2.31 2.79OAlO(a) primary C–C bond(b) secondary C–C bond<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Transition states <strong>in</strong> chabazite optimized by VASPCCHCHCbond C 2 H 6 C 3 H 8 n-C 4 H a 10n-C 4 H b 10i-C 4 H 10H1–O 2.97 2.62 3.01 3.25 2.94H1–C1 1.23 1.20 1.20 1.25 1.14H1–C2 1.25 1.32 1.33 1.27 1.58C1-C2 1.96 2.08 2.12 2.47 2.47H2–C2 1.09 1.11 1.10 1.10 1.10H2–O’ 2.23 2.14 3.44 2.31 2.79Al–O 1.74 1.74 1.74 1.73 1.73Al–O’ 1.73 1.74 1.72 1.73 1.73OAlO(a) primary C–C bond(b) secondary C–C bond<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Transition states <strong>in</strong> chabazite optimized by VASPCCHOAlCHOCbond C 2 H 6 C 3 H 8 n-C 4 H a 10n-C 4 H b 10i-C 4 H 10H1–O 2.97 2.62 3.01 3.25 2.94H1–C1 1.23 1.20 1.20 1.25 1.14H1–C2 1.25 1.32 1.33 1.27 1.58C1-C2 1.96 2.08 2.12 2.47 2.47H2–C2 1.09 1.11 1.10 1.10 1.10H2–O’ 2.23 2.14 3.44 2.31 2.79Al–O 1.74 1.74 1.74 1.73 1.73Al–O’ 1.73 1.74 1.72 1.73 1.73E ‡ true,theor215 180 185 155 150∆E ads 30 40 50 50 48E ‡ app,theor185 140 135 105 102(a) primary C–C bond(b) secondary C–C bond<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Transition states <strong>in</strong> chabazite optimized by VASPCCHOAlCHOCbond C 2 H 6 C 3 H 8 n-C 4 H a 10n-C 4 H b 10i-C 4 H 10H1–O 2.97 2.62 3.01 3.25 2.94H1–C1 1.23 1.20 1.20 1.25 1.14H1–C2 1.25 1.32 1.33 1.27 1.58C1-C2 1.96 2.08 2.12 2.47 2.47H2–C2 1.09 1.11 1.10 1.10 1.10H2–O’ 2.23 2.14 3.44 2.31 2.79Al–O 1.74 1.74 1.74 1.73 1.73Al–O’ 1.73 1.74 1.72 1.73 1.73E ‡ true,theor215 180 185 155 150∆E ads 30 40 50 50 48E ‡ app,theor185 140 135 105 102E ‡ app,exp160 130 150 135 120(a) primary C–C bond(b) secondary C–C bond<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Ethane <strong>crack<strong>in</strong>g</strong>T5 cluster calculations at MP2/6-31G(d) and BLYP/6-31G(d) levelBarrier <strong>in</strong> kJ/molMP2/6-31G(d) 308.6ZPE -8.4thermal effects -4.6long range effects -60.7total 226.5experimental 190-200Zygmunt, Curtiss, Zapol and Iton, J. Phys., Chem. B 104 (2000) 1944.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Ethane <strong>crack<strong>in</strong>g</strong>215 kJ/mol(195 kJ/mol)75 kJ/mol<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Propane <strong>crack<strong>in</strong>g</strong><strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Propane <strong>crack<strong>in</strong>g</strong>180 kJ/mol<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Propane <strong>crack<strong>in</strong>g</strong>180 kJ/mol(190 kJ/mol)<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Propane <strong>crack<strong>in</strong>g</strong>180 kJ/mol(190 kJ/mol) 65 kJ/mol<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Isobutane dehydrogenationT5 cluster B3LYP/6-31G** and T3 cluster B3LYP/6-311** calculationsMilas and Nascimento Chem. Phys. Lett. 338 (2001) 67<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Isobutane dehydrogenationT5 cluster B3LYP/6-31G** and T3 cluster B3LYP/6-311** calculationsCarbocation collapses directly, without alkoxide formationActivation energy: 223.5 kJ/mol (exp.: 172±6 kJ/mol)Milas and Nascimento Chem. Phys. Lett. 338 (2001) 67<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Isobutane dehydrogenation∆E ‡ true(theor) = 190 kJ/mol∆E ‡ true(exp) = 172 kJ/mol<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Isobutane dehydrogenation: carbenium <strong>in</strong>termediate<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Isobutane <strong>crack<strong>in</strong>g</strong><strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Isobutane <strong>crack<strong>in</strong>g</strong><strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Isobutane <strong>crack<strong>in</strong>g</strong>∆E ‡ true(theor) = 150 kJ/mol∆E ‡ true(exp) = 170 kJ/mol<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-butane: experimental activation energiesE ads = -62 kJ/molNarbeshuber, V<strong>in</strong>ek, Lercher J. Catal. A 157 (1995) 338.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-butane: experimental activation energies80 kJ/molE ads = -62 kJ/molH/D exchangeNarbeshuber, V<strong>in</strong>ek, Lercher J. Catal. A 157 (1995) 338.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-butane: experimental activation energies115 kJ/mol80 kJ/molE ads = -62 kJ/molH/D exchangedehydrogenationNarbeshuber, V<strong>in</strong>ek, Lercher J. Catal. A 157 (1995) 338.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


n-butane: experimental activation energies115 kJ/mol135 kJ/mol80 kJ/mol<strong>crack<strong>in</strong>g</strong>E ads = -62 kJ/molH/D exchangedehydrogenationNarbeshuber, V<strong>in</strong>ek, Lercher J. Catal. A 157 (1995) 338.<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Crack<strong>in</strong>g of n-butane: attack on primary C-C bond<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Crack<strong>in</strong>g of n-butane: attack on primary C-C bond<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Crack<strong>in</strong>g of n-butane: attack on primary C-C bond∆E ‡ true(theor) = 185 kJ/mol∆E ‡ true(exp) = 200 kJ/mol<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Crack<strong>in</strong>g of n-butane: attack on secondary C-C bond∆E ‡ true(theor) = 155 kJ/mol∆E ‡ true(exp) = 185 kJ/mol<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Conclusions◦ reasonable agreement with available activation energy data<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Conclusions◦ reasonable agreement with available activation energy data◦ reliable determ<strong>in</strong>ation of adsorption energies would be needed (dispersionforces)<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Conclusions◦ reasonable agreement with available activation energy data◦ reliable determ<strong>in</strong>ation of adsorption energies would be needed (dispersionforces)◦ complete mapp<strong>in</strong>g of multiple reaction pathways<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Conclusions◦ reasonable agreement with available activation energy data◦ reliable determ<strong>in</strong>ation of adsorption energies would be needed (dispersionforces)◦ complete mapp<strong>in</strong>g of multiple reaction pathways◦ future calculations on “true” catalysts (QM/MM methods)<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán


Conclusions◦ reasonable agreement with available activation energy data◦ reliable determ<strong>in</strong>ation of adsorption energies would be needed (dispersionforces)◦ complete mapp<strong>in</strong>g of multiple reaction pathways◦ future calculations on “true” catalysts (QM/MM methods)<strong>Alkane</strong> <strong>crack<strong>in</strong>g</strong> <strong>in</strong> <strong>zeolites</strong> ◭ ◮ János Ángyán

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!