30.11.2012 Views

EPID Dosimetry for IMRT QA - Sun Nuclear

EPID Dosimetry for IMRT QA - Sun Nuclear

EPID Dosimetry for IMRT QA - Sun Nuclear

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>EPID</strong> <strong>Dosimetry</strong> <strong>for</strong> <strong>IMRT</strong> <strong>QA</strong><br />

Karl Rasmussen, Ph.D.<br />

Long Island Radiation Oncology<br />

Garden City, NY


Overview<br />

�� What is <strong>EPID</strong> dosimetry?<br />

�� Methods of <strong>EPID</strong> dosimetry<br />

�� <strong>EPID</strong>ose Algorithm<br />

�� <strong>EPID</strong>ose Physics Modeling<br />

�� Our study<br />

�� Examples


About the speaker<br />

�� Ph.D. in Medical Physics at UW<br />

�� >2 years of clinical <strong>IMRT</strong> <strong>QA</strong> experience<br />

using MapCheck at multiple centers<br />

�� Researched accuracy of <strong>EPID</strong>ose<br />

�� Currently at a center per<strong>for</strong>ming<br />

RapidArc<strong>QA</strong> using <strong>Dosimetry</strong>Check<br />

�� Disclosure<br />

– Not being paid to give this talk (Flight/hotel)<br />

– No financial interest in <strong>EPID</strong>ose or<br />

<strong>Sun</strong><strong>Nuclear</strong>


<strong>EPID</strong> Background<br />

�� <strong>EPID</strong> = Electronic Portal Imaging Device<br />

�� Used <strong>for</strong> 2D digital imaging <strong>for</strong> patient<br />

localization<br />

– kV <strong>EPID</strong><br />

�� On Board Imaging (OBI)<br />

�� Some soft tissue contrast<br />

�� Additional kV generator required<br />

– MV <strong>EPID</strong><br />

�� Portal Imaging<br />

�� Bony anatomy<br />

�� Uses treatment beam <strong>for</strong> imaging<br />

�� Most commercial <strong>EPID</strong> dosimetry solutions<br />

use MV <strong>EPID</strong> only


Current MV <strong>EPID</strong> models<br />

�� Varian – aS500/aS1000<br />

�� Siemens - Optivue<br />

�� Elekta – iViewGT<br />

Party<br />

�� 3 rd Party<br />

– TheraView<br />

– Kodak 2000RT CR Plus<br />

�� Most are standard on new linacs, many<br />

can be retrofitted on older linacs


<strong>EPID</strong> Clinical Application<br />

�� <strong>EPID</strong> Cost > $500,000<br />

�� Used to allow <strong>for</strong> digital imaging of patient localization<br />

– Faster 1 st day setup due to no film development<br />

– Digital record keeping easier than maintaining storage rooms<br />

devoted to patient films<br />

– Helps in transition to paperless charts


Not to scale<br />

How an MV <strong>EPID</strong> works<br />

�� Electrons generated in Cu<br />

plate<br />

�� Cause visible light in<br />

phosphor screen<br />

�� Photodiode measures light<br />

�� Complicated<br />

scatter/backscatter due to<br />

additional layers


How an MV <strong>EPID</strong> works<br />

�� Individual photodiode<br />

signals are sent to X and<br />

Y coordinates<br />

�� Measures charge<br />

collected in multiple 2D<br />

discrete locations<br />

�� Resolution is<br />

approximately 0.7mm


Benefits/limitations of <strong>IMRT</strong> <strong>QA</strong> techniques<br />

Method Efficiency<br />

Film<br />

IC Array<br />

Diode Array<br />

Detector<br />

Resolution<br />

Detector<br />

Density<br />

Measures<br />

Dose<br />

MV <strong>EPID</strong> ? ? ? ? ?<br />

4D


�� Easy Setup<br />

Benefits of <strong>EPID</strong> Based <strong>Dosimetry</strong><br />

– Automatic SSD positioning<br />

– Fixed relative to treatment beam<br />

�� Measurable at any gantry angle<br />

�� Image instantly available<br />

�� High data density and resolution


Problems of <strong>EPID</strong> Based <strong>Dosimetry</strong><br />

�� Fixed location relative to beam prohibits use <strong>for</strong> 4D<br />

<strong>IMRT</strong> <strong>QA</strong><br />

�� Designed <strong>for</strong> imaging, not <strong>QA</strong><br />

– Complicated scatter characteristics<br />

– Not a water phantom<br />

�� Field size response differs between <strong>EPID</strong> and water (S c,p )<br />

�� MLC transmission response differs between <strong>EPID</strong> and water<br />

�� Scatter Kernel <strong>for</strong> generated electrons differs between <strong>EPID</strong><br />

and water<br />

�� Pixel responses vary across the detector<br />

– Charge collected in an <strong>EPID</strong> is not dose


Methods of <strong>EPID</strong> <strong>Dosimetry</strong><br />

�� Varian<br />

�� RIT<br />

�� <strong>Sun</strong> <strong>Nuclear</strong><br />

�� Math Resolutions LLC<br />

All methods are arguably valid


Varian Method – Portal <strong>Dosimetry</strong><br />

�� Acquire MV <strong>EPID</strong><br />

image <strong>for</strong> each<br />

beam<br />

�� TPS calculates a<br />

simulated <strong>EPID</strong><br />

image based on the<br />

expected response<br />

of the <strong>EPID</strong><br />

Image http://www.varian.com


�� TPS calculates a<br />

simulated <strong>EPID</strong><br />

image based on<br />

the expected<br />

response of the<br />

<strong>EPID</strong><br />

Varian Method – Portal <strong>Dosimetry</strong><br />

Right image http://www.wienkav.at/kav/kfj/91033454/physik/images/eval_ws.png


�� Positives<br />

Varian Method – Portal <strong>Dosimetry</strong><br />

– Integrated with Varis/Aria systems<br />

– Fully integrated with rapidarc<br />

– Fast<br />

�� Negatives<br />

– Does not <strong>QA</strong> water-based water based TPS plan directly<br />

�� Not measuring or comparing dose<br />

�� Image to image comparison<br />

�� Creates planar image map based on <strong>EPID</strong> algorithm,<br />

not the water based TPS<br />

�� Possibility of systematic errors between water model and aSi <strong>EPID</strong> <strong>EPID</strong><br />

model<br />

– One vendor solution <strong>for</strong> TPS, <strong>QA</strong>, and delivery may not be best <strong>for</strong> <strong>for</strong><br />

independent second checks


Varian Method – Portal <strong>Dosimetry</strong><br />

�� Does not <strong>QA</strong> water-based water based TPS plan directly<br />

– Not measuring or comparing dose<br />

– Image to image comparison<br />

– Creates planar image map based on <strong>EPID</strong> algorithm, not the<br />

water based TPS<br />

�� Possibility of systematic errors between water model<br />

and aSi <strong>EPID</strong> model<br />

�� One vendor solution <strong>for</strong> TPS, <strong>QA</strong>, and delivery may not<br />

be best <strong>for</strong> independent second checks


RIT Method – RIT113<br />

�� Image is taken with 2cm of solid water<br />

buildup placed directly on the <strong>EPID</strong><br />

�� Image is calibrated using a wedged<br />

field and ION chamber measurements<br />

�� Assumes uni<strong>for</strong>m response across<br />

<strong>EPID</strong><br />

�� This is compared directly to water-<br />

based fluence from original TPS<br />

image http://www.radimage.com/epid/index.php


<strong>Sun</strong><strong>Nuclear</strong> - <strong>EPID</strong>ose<br />

�� <strong>EPID</strong> Image acquired without buildup<br />

�� Algorithm applied to raw <strong>EPID</strong><br />

– Output/FS Correction<br />

– Dose Redistribution kernel<br />

– 2D wide field calibration map<br />

�� Compared to water-based water based TPS-<br />

generated Planar Fluence<br />

�� Fast conversion/analysis process


<strong>EPID</strong>ose Physics Modeling<br />

�� Need to acquire with MapCHECK/<strong>EPID</strong>:<br />

– MLC defined field sizes at 100MU:<br />

�� 1x1<br />

�� 2x2<br />

�� 5x5<br />

�� 10x10<br />

�� 15X15<br />

�� 20X20<br />

�� 25x25<br />

�� 30x30<br />

– 20x20 MLC defined FS at 25, 50, 100, and 200 MU


<strong>EPID</strong>ose Physics Modeling<br />

�� All <strong>EPID</strong> measurements need to be at the same<br />

distance to be used <strong>for</strong> <strong>IMRT</strong> <strong>QA</strong> (140cm)<br />

�� All MapCHECK measurements need to be acquired<br />

at the TPS dose plane distance (100cm) and<br />

depth (5cm)<br />

�� Additional setups can be defined, but must have<br />

separate models (Example: a large H&N field can<br />

be measured in full at a smaller SDD)


Basic<br />

in<strong>for</strong>mation to<br />

allow <strong>for</strong> MLC<br />

type and dose<br />

plane setup<br />

conditions<br />

Used to<br />

geometrically<br />

backproject<br />

acquired image<br />

to desired dose<br />

plane<br />

<strong>EPID</strong>ose Physics Modeling


MLC-based MLC based<br />

correction<br />

<strong>for</strong> field size<br />

response<br />

differences<br />

between<br />

<strong>EPID</strong> and<br />

water<br />

phantom<br />

<strong>EPID</strong>ose - Output/FS Correction


Redistribution<br />

kernel to<br />

simulate wider<br />

electron spread<br />

in water<br />

<strong>EPID</strong><br />

(Not to scale)<br />

Water<br />

<strong>EPID</strong>ose Dose Redistribution kernel


Individual<br />

pixel dose<br />

response<br />

correction<br />

across the<br />

<strong>EPID</strong> field<br />

correlated to<br />

MapCHECK<br />

dose points<br />

<strong>EPID</strong>ose 2D wide field calibration map<br />

>1%<br />

<strong>EPID</strong> response is NOT always uni<strong>for</strong>m across the field


How do you acquire an <strong>EPID</strong> image? (Varian)<br />

�� Move <strong>EPID</strong> to standard SSD (Typically 140<br />

or 145 SSD)<br />

�� Deliver treatment beams (with couch<br />

retracted)<br />

– Aria<br />

– Portal Vision<br />

– AM Maintenance<br />

�� No additional licenses should * be required<br />

from Varian <strong>for</strong> these methods<br />

* I am not employed by either Varian or <strong>Sun</strong> <strong>Nuclear</strong>, so this is not a guarantee.


�� Aria<br />

<strong>EPID</strong>ose Acquisition<br />

– Create verification plan<br />

– Schedule plan in RT chart<br />

– Schedule Integrated Images <strong>for</strong> the fields<br />

– Deliver <strong>EPID</strong><br />

– Export portal images from the ‘review review’ tab<br />

to a DICOM file


�� Portal Vision<br />

<strong>EPID</strong>ose Acquisition<br />

– Prepare Portal Vision:<br />

�� Set up sequence template<br />

�� Set up acquisition template<br />

�� Set up DICOM export<br />

– Collect <strong>EPID</strong> images<br />

�� Create verification plan<br />

�� Treat the plan fields<br />

�� Export the portal images individually


�� AM Maintenance<br />

<strong>EPID</strong>ose Acquisition<br />

– Export MLC Files to MLC workstation<br />

– Manually enter field info in service mode<br />

– Deliver <strong>EPID</strong> image<br />

– Export acquired image


�� Load data (<strong>EPID</strong>s,<br />

MLCs, planar doses)<br />

into MapCHECK<br />

�� Batch calculate<br />

<strong>EPID</strong>ose conversion<br />

(~45 seconds to<br />

convert 7 beams)<br />

�� Compare to TPS planar<br />

dose like MapCHECK<br />

measurements<br />

<strong>EPID</strong>ose Analysis


Prostate - MapCHECK/Pinnacle TPS


Prostate – <strong>EPID</strong>ose/Pinnacle TPS


�� HN diff split<br />

H & N - MapCHECK/Eclipse TPS<br />

124


�� HN diff split<br />

H & N – <strong>EPID</strong>ose/Eclipse TPS<br />

124


<strong>EPID</strong>ose Study<br />

�� 28 <strong>IMRT</strong> patients from 6 centers were used (16 UW patients)<br />

�� Treatment sites included:<br />

– Prostate<br />

– Brain<br />

– Lung<br />

– Head & Neck<br />

�� High (10 & 15MV) and low (6MV) energy beams were used in<br />

treatments<br />

�� Comparison was made with MapCHECK diode array<br />

measurements and <strong>EPID</strong>ose converted dose planes<br />

– Allowed <strong>for</strong> measured to measured dose comparison<br />

– Fields had a uni<strong>for</strong>m shift applied to all measurements from the<br />

same setup


Results<br />

�� Results based on 26,207 points and 188<br />

fields of MapCheck/<strong>EPID</strong>ose comparison:<br />

– 1%/1mmDTA<br />

�� 84.6% ±1.3 1.3 agreement<br />

– 2%/2mmDTA<br />

�� 97.8% ±0.4 0.4 agreement<br />

– 3%/3mm DTA<br />

�� 99.7% ±0.1 0.1 agreement


�� 6MV<br />

Energy (In)Dependence<br />

– 1%/1mmDTA = 84.7% agreement<br />

– 2%/2mmDTA = 97.8% agreement<br />

– 3%/3mm DTA = 99.7% agreement<br />

�� 10MV/15MV<br />

– 1%/1mmDTA = 84.5% agreement<br />

– 2%/2mmDTA = 98.0% agreement<br />

– 3%/3mm DTA = 99.9% agreement


Prostate - MapCHECK/CMS Xio TPS


Prostate - EpiDOSE/CMS Xio TPS<br />

?


Prostate - MapCHECK/EpiDOSE<br />

Might miss small<br />

field errors


Math Resolutions LLC – <strong>Dosimetry</strong> Check<br />

�� <strong>EPID</strong> Image acquired<br />

�� Deconvolves image to primary<br />

fluence<br />

�� Backprojects secondary dose<br />

calculation <strong>for</strong> 3D dose calc (Pencil<br />

beam)<br />

�� Allows <strong>for</strong> single beam or 3D<br />

dose/DVH comparisons using patient<br />

CT<br />

�� Deconvolution/Analysis takes from 1<br />

to 9 hours to complete per patient


�� Example case:<br />

– 45Gy to Rectum<br />

– RapidArc Delivery<br />

– 2 Arcs<br />

– Calc time ~2 hours<br />

<strong>Dosimetry</strong>Check


�� Transverse slice<br />

– Purple is TPS<br />

generated Isodose<br />

– Green is<br />

reconstructed dose<br />

from <strong>EPID</strong> image<br />

– CT is patient- patient<br />

specific<br />

<strong>Dosimetry</strong>Check


�� Coronal slice<br />

– Purple is TPS<br />

generated Isodose<br />

– Green is<br />

reconstructed dose<br />

from <strong>EPID</strong> image<br />

<strong>Dosimetry</strong>Check


Note that a<br />

pencil beam<br />

algorithm<br />

will be less<br />

accurate<br />

than<br />

convolution-<br />

convolution<br />

based<br />

methods<br />

Better at<br />

showing<br />

“ballpark ballpark”<br />

in<strong>for</strong>mation<br />

<strong>Dosimetry</strong>Check


GVH data,<br />

while<br />

interesting,<br />

is new and<br />

common<br />

standards<br />

haven’t haven t been<br />

set<br />

<strong>Dosimetry</strong>Check


Conclusions<br />

�� <strong>EPID</strong>-based <strong>EPID</strong> based <strong>QA</strong> can be a valuable tool<br />

– High Data density<br />

– Easy Setup<br />

�� Many factors need to be considered <strong>for</strong> accurate<br />

comparison to a water based dose plane:<br />

– Water/<strong>EPID</strong> field size responses<br />

– MLC transmission factors<br />

– scatter kernel differences<br />

– individual pixel response variations<br />

�� Multiple methods exist that offer different<br />

benefits and accuracy<br />

– What is best <strong>for</strong> your clinic is ultimately up to you


�� Dr. Wolfgang Tomé Tom<br />

�� Ben Nelms<br />

�� Contributors<br />

– Ben Harris<br />

– Gary Adler<br />

– Shirley Yang<br />

– Bryan Coopey<br />

– David Barbee<br />

– And many others<br />

Acknowledgements

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!