30.11.2012 Views

GA-en.pdf

GA-en.pdf

GA-en.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Geometric Algebra (<strong>GA</strong>)<br />

Werner B<strong>en</strong>ger, 2007<br />

CCT@LSU SciViz<br />

1


Abstract<br />

• Geometric Algebra (<strong>GA</strong>) d<strong>en</strong>otes the re-discovery and geometrical interpretation of<br />

the Clifford algebra applied to real fields. Hereby the so-called „geometrical product“<br />

allows to expand linear algebra (as used in vector calculus in 3D) by an invertible<br />

operation to multiply and divide vectors. In two dim<strong>en</strong>ions, the geometric algebra can<br />

be interpreted as the algebra of complex numbers. In ext<strong>en</strong>ds in a natural way into<br />

three dim<strong>en</strong>sions and corresponds to the well-known quaternions there, which are<br />

widely used to describe rotations in 3D as an alternative superior to matrix calculus.<br />

However, in contrast to quaternions, <strong>GA</strong> comes with a direct geometrical<br />

interpretation of the respective operations and allows a much finer differ<strong>en</strong>tation<br />

among the involved objects than is achieveable via quaternions. Moreover, the<br />

formalism of <strong>GA</strong> is indep<strong>en</strong>d<strong>en</strong>t from the dim<strong>en</strong>sion of space. For instance, rotations<br />

and reflections of objects of arbitrary dim<strong>en</strong>sions can be easily described intuitively<br />

and g<strong>en</strong>eric in spaces of arbitrary higher dim<strong>en</strong>sions.<br />

• Due to the elegance of the <strong>GA</strong> and its wide applicabililty it is sometimes d<strong>en</strong>oted as a<br />

new „fundam<strong>en</strong>tal language of mathematics“. Its unified formalism covers domains<br />

such as differ<strong>en</strong>tial geometry (relativity theory), quantum mechanics, robotics and last<br />

but not least computer graphics in a natural way.<br />

• This talk will pres<strong>en</strong>t the basics of Geometric Algebra and specifically emphasizes on<br />

the visualization of its elem<strong>en</strong>tary operations. Furthermore, the pot<strong>en</strong>tial of <strong>GA</strong> will be<br />

demonstrated via usage in various application domains.<br />

2


Motivation of <strong>GA</strong><br />

• Unification of many domains: quantum<br />

mechanics, computer graphics, g<strong>en</strong>eral relativity,<br />

robotics…<br />

• Completing algebraic operations on vectors<br />

• Unified concept for geometry and algebra<br />

• Superior formalism for rotations in arbitrary<br />

dim<strong>en</strong>sions<br />

• Explicit geometrical interpretation of the<br />

involved objects and operations on them<br />

3


Definition: “Algebra”<br />

• Vector space V over field K with<br />

multiplication “ ”<br />

• Null-elem<strong>en</strong>t, One-elem<strong>en</strong>t, Inverse<br />

• Commutative? a b = b a<br />

• Associative? (a b) c = a (b c)<br />

• Division algebra?<br />

• a≠0 a -1 such that a a -1 = 1 = a -1 a<br />

• Alternatively: a b=0 � a=0 or b=0<br />

4


Historical Roots<br />

• Complex Plane (Gauss ~1800)<br />

• Real/Imaginary part: a+ib where i 2 = -1<br />

• Associative, commutative division-algebra<br />

• Polar repres<strong>en</strong>tation: r e i = r ( cos + i sin )<br />

• Multiplication corresponds to rotation in the plane<br />

i<br />

cos<br />

sin<br />

5


Historical Roots, II<br />

William Rowan Hamilton (1805-65)<br />

inv<strong>en</strong>ts Quaternions (1844):<br />

– G<strong>en</strong>eralization of complex numbers:<br />

• 4 compon<strong>en</strong>ts, non commutative: ab ba<br />

(in g<strong>en</strong>eral)<br />

• Basic idea: ii=jj=kk= ijk = -1<br />

• Alternative to younger vector- and matrix<br />

algebra (Josiah Willard Gibbs, 1839-1903)<br />

• p=(p,p), q=(q,q), p q=(pq - p q , pq + pq<br />

+ p q)<br />

• rotation in R 3 are around axis of the vector<br />

compon<strong>en</strong>t: v’ = q v q -1<br />

6


Historical Roots, III<br />

• Construction by Cayley-Dickson<br />

(a,b)(c,d) = (ac-d *b, *a d+cb)<br />

– hypercomplex numbers:<br />

• octaves/octonions (8 compon<strong>en</strong>ts)<br />

• sed<strong>en</strong>ions/hexadekanions (16 compon<strong>en</strong>ts)<br />

• …<br />

– increm<strong>en</strong>tal loss of<br />

• commutativity (quaternions,…)<br />

• associativity (octonions,…)<br />

• division algebra (sed<strong>en</strong>ions,…)<br />

7


R<strong>en</strong>aissance of the <strong>GA</strong><br />

1878: Clifford introduces “geometric algebra”, but dies at age 34<br />

� superseded by Gibb’s vector calculus<br />

1920er: R<strong>en</strong>aissance in quantum mechanics (Pauli, Dirac)<br />

algebra on complex fields<br />

no geometrical interpretation<br />

1966-2005 David Hest<strong>en</strong>es (Arizona State University) revives the<br />

geometrical interpretation<br />

1997: Gravitation theory using <strong>GA</strong> (Las<strong>en</strong>by, Doran, Gull; Cambridge)<br />

2001: Geometric Algebra at SIGGRAPH (L. Dorst, S. Mann)<br />

8


Geometry and Vectors<br />

• Geometric interpretation of a vector<br />

– Directed line segm<strong>en</strong>t or tang<strong>en</strong>t<br />

• Vector-algebra in Euclidean Geometry or T p(M)<br />

• Addition / subtraction of vectors a+b<br />

• Multiplication / division by scalars a<br />

• Multiplication / Division of vectors??<br />

Multiplication of vectors<br />

10


Complete Vector-algebra?<br />

• Invertible product of vectors?<br />

• What means vector-division “a/b” ?<br />

• ab=C � b=a -1 C<br />

• Note: C not necessarily a vector!<br />

• Inner product (not associative): a b � Skalar<br />

– Not invertible<br />

e.g. a b =0 with a≠0, b≠0 but orthogonal<br />

• Outer product (associative): a b � Bivektor<br />

– G<strong>en</strong>eralized cross-product from 3D: a b<br />

– Not invertible<br />

e.g. a b =0 with a≠0, b≠0 but parallel<br />

Multiplikation von Vector<strong>en</strong><br />

11


Bivector a b<br />

Describes the plane spun by a and b,<br />

sign is ori<strong>en</strong>tation<br />

a b<br />

b a = -a b<br />

Defined in arbitrary dim<strong>en</strong>sions, anti-symmetric (� not commutative),<br />

associative, distributive, spans a vector space, does not require additional<br />

structures<br />

Multiplikation von Vektor<strong>en</strong><br />

12


Constructing Bivectors<br />

No unique determination of the g<strong>en</strong>erating vectors possible<br />

a b = (a+λb) b<br />

b b =0<br />

Basis-elem<strong>en</strong>t<br />

|a| |b| sin<br />

=<br />

Multiplikation von Vektor<strong>en</strong><br />

=<br />

a+λb<br />

b<br />

13


Bivectors in R 3<br />

• 3 Basis-elem<strong>en</strong>ts<br />

e x e y, e y e z, e z e x<br />

• G<strong>en</strong>eralization: e x e y e z is a volume<br />

Multiplikation von Vektor<strong>en</strong><br />

14


Vectorspace of Bivectors<br />

Linear combinations possible<br />

e.g.: e x e y, e z e x<br />

Multiplikation von Vektor<strong>en</strong><br />

15


Coordinate repres<strong>en</strong>tation<br />

of “ ”-product in R 3<br />

• G<strong>en</strong>eric Bivector:<br />

A = A xy e x e y + A yz e y e z + A zx e z e x<br />

• (a xe x + a ye y + a ze z) (b xe x + b ye y + b ze z)=<br />

a xe x b xe x + a xe x b ye y + a xe x b ze z +<br />

a ye y b xe x + a ye y b ye y + a ye y b ze z +<br />

a ze z b xe x + a ze z b ye y + a ze z b ze z =<br />

(a xb y - a yb x)e xy+(a yb z-a zb y)e yz+(a xb za<br />

zb x)e xz<br />

Multiplikation von Vektor<strong>en</strong><br />

16


Inner product a b<br />

• Describes projections<br />

a b = |a| |b| cos = b a<br />

Symmetric (commutative), requires quadratic form (Metric) as additional<br />

structure, not associative (a b) c a (b c)<br />

Multiplikation von Vektor<strong>en</strong><br />

17


Comparing the products<br />

• Inner product<br />

– Not associative<br />

• (a b) c ≠ a (b c)<br />

– Commutative<br />

• a b = b a<br />

– Not invertible<br />

– Yields a scalar<br />

• Outer product<br />

– Associative<br />

• (a b) c= a (b c)<br />

– Not commutative<br />

• a b ≠ b a<br />

– Not invertible<br />

– Yields a bivector<br />

18


Geometric Product<br />

1. Requirem<strong>en</strong>ts and definition<br />

2. Structure of the operands<br />

3. Calculus using GP<br />

4. Rotations using GP<br />

Das Geometrische Produkt<br />

19


Requirem<strong>en</strong>ts to GP<br />

• For elem<strong>en</strong>ts A,B,C of a vector<br />

space with quadratic form Q(v)<br />

[i.e. a metric g(u,v) = Q(u+v) - Q(u) – Q(v)]<br />

we require:<br />

1. Associative: (AB)C = A(BC)<br />

2. Left-distributive: A(B+C) = AB+AC<br />

3. Right-distributive: (B+C)A= BA+CA<br />

4. Scalar product: A 2 = Q(A) = |A| 2<br />

Das Geometrische Produkt<br />

20


Properties of the GP<br />

• Right-angled triangle<br />

|a+b| 2 = |a| 2 +|b| 2<br />

(A+B)(A+B) = AA+BA+AB+BB = A 2 + B 2<br />

�AB = -BA for A B = 0 anti-symm if orthogonal<br />

• However: not purely anti-symmetric<br />

|AB| 2 =|A| 2 |B| 2 for A B = 0 (i.e. A,B parallel: B= A)<br />

Das Geometrische Produkt<br />

21


Geometric Product<br />

• William Kingdon Clifford (1845-79):<br />

• Combine inner and outer product to defined<br />

the geometric product AB (1878):<br />

AB := A B A B<br />

• Result is not a vector, but the sum of a<br />

scalar + bivector!<br />

• Operates on “multivectors”<br />

• Subset of the t<strong>en</strong>soralgebra<br />

• Geometric Product is invertible!<br />

Das Geometrische Produkt<br />

22


Multi-vector compon<strong>en</strong>ts<br />

• R 2 : A = A 0 + A 1 e 0 + A 2 e 1 + A 3 e 0 e 1<br />

• R 3 : A =<br />

+<br />

A1 e0 +<br />

A 0<br />

+ A 2 e 1 + A 3 e 2<br />

A 4 e 0 e 1+A 5 e 1 e 2+A 6 e 0 e 2<br />

+<br />

A 7 e 0 e 1 e 2<br />

Struktur von Multivektor<strong>en</strong><br />

2.7819…<br />

+ +<br />

+<br />

+ +<br />

+<br />

+<br />

23


Structure of Multi-vectors<br />

Linear combination of anti-symmetric basis elem<strong>en</strong>ts<br />

2 n compon<strong>en</strong>ts<br />

0D 1 Scalar<br />

1D 1 Scalar, 1 Vector<br />

2D 1 Scalar, 2 Vectors, 1 Bivector<br />

3D 1 Scalar, 3 Vectors, 3 Bivectors, 1 Volume<br />

4D 1 Scalar, 4 Vectors, 6 Bivectors, 4 Volume, 1 Hyper-volume<br />

5D …<br />

Struktur von Multivektor<strong>en</strong><br />

24


Inversion<br />

• Giv<strong>en</strong> vectors a,b:<br />

a b = ½ (ab + ba) symmetric part<br />

a b = ½ (ab - ba) anti-symmetric part<br />

a b = -(a b) (e x e y e z) Dual in 3D<br />

Rechn<strong>en</strong> mit Multivektor<strong>en</strong><br />

25


Reflection at a Vector<br />

• Unit vector n, arbitrary vector v<br />

Vector v projected to n: v ║=(v n) n<br />

Reflected vector w = v ┴ – v ║ = v – 2v ║<br />

thus w = v – 2(v n) n<br />

with GP w = v – 2[½(vn+nv) ] n = v – vnn<br />

– nvn<br />

� w = -nvn<br />

Rechn<strong>en</strong> mit Multivektor<strong>en</strong><br />

26


Rotations<br />

1. Id<strong>en</strong>tification with Quaternions<br />

2. Rotation in 2D<br />

3. Rotation in nD<br />

4. Rotation of arbitrary Multivectors in<br />

nD<br />

Rotation<br />

27


Geometrical Quadrate<br />

Consider (AB) 2 of Bivector-basis elem<strong>en</strong>t<br />

where |A|=1, |B|=1, A B = 0<br />

� AB=A B=-BA<br />

(AB) 2 = (AB) (AB) = -(AB) (BA)=-A(BB) A= -1<br />

Rotation<br />

Basiselem<strong>en</strong>t<br />

28


Quaternion Algebra<br />

• 2D: complex numbers<br />

• i:= e xe y, i 2 = -1<br />

• 3D: quaternions<br />

• i:= e x e y= e xe y, j:= e y e z = e ye z,<br />

k:=e x e z=e xe z<br />

• i 2 = -1, j 2 = -1 , k 2 = -1<br />

• ijk = (e xe y)(e ye z)(e xe z) = -1<br />

• 4D: Biquaternions (complex<br />

quaternions, spacetime algebra)<br />

Rotation<br />

29


Rotation and <strong>GA</strong><br />

Right-multiplication of Vectors by Bivectors<br />

e x i = e x (e xe y) = (e xe x ) e y= e y<br />

e y i = e y(e xe y)=-e y(e ye x)= -e x<br />

Rotation<br />

=<br />

=<br />

30


G<strong>en</strong>eric Rotation in 2D<br />

• Multiple Rotation<br />

e x i i = (e x i) i = e y i = -e x = -1 e x<br />

• Arbitrary vector<br />

A = A x e x + A y e y<br />

A i = A x e x i + A y e y i = A x e y - A y e x<br />

• Rotation by arbitrary angle:<br />

�A cos + A i sin ≡ “A e i ”<br />

rotates vector A by angle in plane i<br />

Inverse rotation: Ai = -iA : � -<br />

� A e i = e -i A<br />

Rotation<br />

31


Rotor in 2D<br />

• Rotor<br />

R := e i = cos + i sin mit i² = -1<br />

A e i = e -i A = e -i /2 A e i/2 = R A R -1<br />

With R=e -i /2 “Rotor”<br />

R -1 =e i /2 “inverse Rotor”<br />

A R -2 = R 2 A = R A R -1<br />

• Product of rotors is multiple rotation<br />

R=ABCD, R -1 =DCBA is “reverse” R<br />

Rotation<br />

32


Rotor in nD<br />

• Rotor in plane U, Vektor v:<br />

R = cos + sin U U² = -1<br />

Expect: Rv or vR -1 or R v R -1<br />

• Problem: With arbitrary vector v there<br />

would be a tri-vector compon<strong>en</strong>t:<br />

Rv = v cos + sin (U v + U v )<br />

iff U v ≠ 0 ( v not coplanar with U)<br />

Rotation<br />

33


Rotation in nD<br />

Consider: R v R -1 mit v =v ┴ + v ║ :<br />

– We have: U v ┴ = 0 d.h. Uv ┴ =U v ┴<br />

=u 1 u 2 v ┴= - u 1 v ┴ u 2= v ┴ u 1 u 2= v ┴ U =v ┴U<br />

i.e. v ┴ commutes with U, thus also R<br />

R v R -1 = R v ┴ R -1 + R v ║ R -1<br />

R v ┴ R -1 =(cos + sin U) v ┴ (cos - sin U)<br />

= v ┴(cos² - sin² U²) = v ┴<br />

R v R-1 = v┴ + e U v║ e- U = v┴ + v║ e-2 U<br />

Rotation<br />

34


Rotation as multiple reflection<br />

• Alternative Interpretation:<br />

– Reflect vector v by vector n, th<strong>en</strong> by vector m:<br />

• v � - nvn � m nvn m = mn v nm<br />

• Operation mn is Scalar+Bivector (Rotor!)<br />

• Rotor: R = mn<br />

• Inverse Rotor: R -1 = nm<br />

• Theorem: Rotation is consecutive<br />

reflection on two corresponding vectors<br />

with the rotation angle equal to twice the<br />

angle betwe<strong>en</strong> these vectors<br />

Rotation<br />

35


Applications<br />

Crystallography<br />

Differ<strong>en</strong>tial Geometry<br />

Maxwell Equations<br />

Quantum Mechanics<br />

Relativity<br />

36


Describing Symmetries<br />

• Multiple reflections by r 1,r 2,r 3, … are<br />

consecutive products of vectors:<br />

– r 3r 2r 1 v r 1r 2r 3 (not possible w. quaternions)<br />

• Symmetry groups in molecules and<br />

crystals can be characterized by<br />

– three unit vectors a,b,c<br />

– Integer triple {p,q,r}<br />

– where (ab) p = (bc) q = (ca) r = -1<br />

e.g.: Methane (Tetrahedron) {3,3,3},<br />

B<strong>en</strong>z<strong>en</strong>e {6,2,2}<br />

37


Differ<strong>en</strong>tial Geometry<br />

Derivative operator:<br />

:= eμ μ with μ= / xμ , eμe = μ<br />

Applicable to arbitrary multi-vectors<br />

E.G.: with v a vector field:<br />

v = v + v<br />

where v Gradi<strong>en</strong>t (Scalar)<br />

and v Curl (Bivector)<br />

38


Maxwell in 3D<br />

– Faraday-Field: F = E + B<br />

:=e xe ye z<br />

– Curr<strong>en</strong>t d<strong>en</strong>sity: J = - j<br />

– Maxwell-Equation: F/ t + F = J<br />

F = E + B = E + E + B + B<br />

Scalar : E =<br />

Vector : E / t + B = -j<br />

Bivector: B / t + E = 0<br />

Pseudoscalar: B = 0<br />

39


Cl 3(R) & Spinors<br />

• <strong>GA</strong> in 3D can be repres<strong>en</strong>ted via Pauli-matrices:<br />

(<br />

0 1<br />

) (<br />

0 -i<br />

) (<br />

1 0<br />

)<br />

x =<br />

1 0<br />

y = z =<br />

+i 0<br />

0 -1<br />

• 4 complex numbers � 8 compon<strong>en</strong>ts = 2 3<br />

• Basis-vectors {e x,e y,e z} with GP provide same algebraic<br />

properties as Pauli-matrices { x, y, z}<br />

• Pauli-Spinor (2 complex numbers, 4 compon<strong>en</strong>ts),<br />

due to *= real, can be writt<strong>en</strong> as<br />

= ½ e B<br />

thus is a Rotor (ev<strong>en</strong> multi-vector: 1 Scalar, 3 bivector-compon<strong>en</strong>t),<br />

i.e. is the “operation” to stretch and rotate � describes<br />

interaction (of an elem<strong>en</strong>tary particle) with a magnetic field<br />

40


Spacetime Algebra (STA)<br />

• <strong>GA</strong> in 4D with Minkowski-Metric (+,-,-,-)<br />

• Chose orthogonal Basis { 0, 1, 2, 3}<br />

– where 2 μ ν = μ ν+ ν μ= 2η μν i.e. 0 2 = - k 2 = 1<br />

• Structure: 1,4,6,4,1 ( n 4 , 16-dim<strong>en</strong>sional )<br />

– Bivector-Basis: k := k 0<br />

– Pseudo-scalar: 0 1 2 3 = 1 2 3<br />

1 { μ} { k, k} { μ}<br />

1 Scalar 4 Vector 6 Bivectors 4 Pseudo-vectors 1 Pseudo-scalar<br />

41


x<br />

Basis-Bivectors in STA<br />

k: 3 timelike bi-vectors<br />

y<br />

z<br />

k : 3 spacelike bivectors<br />

x y z<br />

42


Structure of Bivectors<br />

Any bi-vector can be writt<strong>en</strong> as<br />

– B = B k k = a k k + b k k = a + b<br />

– a,b: 3-Vectors (relative 0)<br />

– a timelike compon<strong>en</strong>t<br />

– b spacelike compon<strong>en</strong>t<br />

Classification in<br />

– “complex” Bivector:<br />

No common axes, spans the full<br />

4D space<br />

– “simple” Bivector:<br />

One common axis, can be<br />

reduced to a single “Blade”<br />

43


Spacetime-Rotor<br />

• Spacetime-rotor: R = eB =ea+ b e |B| B/|B|<br />

R = e a+ b = e a e b =<br />

[cosh a + sinh a ] [ cos b + sin b ] =<br />

[cosh |a| + a/|a| sinh |a| ] [cos |b| + b/|b| sin|b| ]<br />

• Interpretation:<br />

rotation in spacelike plane b by angle |b|<br />

hyperbolic rotation in timelike plane a= a 0 with<br />

“boost-factor” (velocity) tanh|a|<br />

� Lor<strong>en</strong>tz-transformation in a , 0 !<br />

44


Maxwell Equations in 4D<br />

• Four-dim<strong>en</strong>sional gradi<strong>en</strong>t := μ μ<br />

• Elektro-magnetic 4-pot<strong>en</strong>tial A:<br />

– F = A = A - A<br />

with A=0 is Lor<strong>en</strong>tz-gauge condition<br />

– Faraday-Field: F = (E + B) 0<br />

Pure Bivector (3D:vector + bi-vector), but complex:<br />

E timelike compon<strong>en</strong>t, B spacelike<br />

• Maxwell-Equation: F = J<br />

45


Dirac-Equation<br />

• Relativistic Mom<strong>en</strong>tum in Schrödingereqn:<br />

– E=p 2 /2m � E 2 = m 2 – p 2<br />

(α 0mc² + ∑ α j p j c) = i ħ / t<br />

where α j Dirac-matrices (4 4)<br />

in Dirac-basis: 0 = α 0, i = α 0 α i mit [ μ, ν] = 2 η μν<br />

covariant formulation<br />

∑ μ μ = mc²<br />

• In <strong>GA</strong> basis vectors { 0, 1, 2, 3} provide<br />

same algebraic properties as Dirac<br />

matrices:<br />

= mc² 0<br />

46


<strong>GA</strong> in Computergraphics<br />

• Homog<strong>en</strong>eous Coordinates (4D):<br />

• Additional coordinate e , 3-vector: A i / A<br />

• Allows unified handling of directions and<br />

locations, standard in Op<strong>en</strong>GL<br />

• conform, homog<strong>en</strong>eous coordinates<br />

(5D):<br />

• Additional coordinates e 0, e<br />

• Signature (+,+,+,+,-) , e 0 e =-1, |e 0| = |e | =0<br />

• Allows describing geometric objekts (sphere,<br />

line, plane …) as vectors in 5D<br />

• Unions and intersections of objects are<br />

algebraic operations (“meet”, “join”)<br />

47


Objects in conform 5D <strong>GA</strong><br />

Punkt x + e 0 + |x| 2 /2<br />

e<br />

Paar von Punkt<strong>en</strong> a b<br />

Linie a b e<br />

Kreis a b c<br />

Eb<strong>en</strong>e a b c e<br />

Kugel a b c d<br />

48


Implem<strong>en</strong>tations<br />

• Runtime evaluation<br />

– geoma (2001-2005),<br />

<strong>GA</strong>BLE (symbolic <strong>GA</strong>)<br />

• Matrix-based<br />

– CLU (2003)<br />

• Code-G<strong>en</strong>eration<br />

– Gaig<strong>en</strong> (-2005)<br />

• Template Meta<br />

Programming<br />

– GLuCat, BOOST (~2003)<br />

• Ext<strong>en</strong>ding programming<br />

languages (proposed)<br />

49


Literatur<br />

http://modelingnts.la.asu.edu/<br />

http://www.mrao.cam.ac.uk/˜clifford<br />

• David Hest<strong>en</strong>es: New Foundations for Classical Mechanics (Second Edition). ISBN<br />

0792355148, Kluwer Academic Publishers (1999)<br />

• Oersted Medal Lecture 2002: Reforming the Mathematical Language of Physics<br />

(David Hest<strong>en</strong>es)<br />

• Geometric (Clifford) Algebra: a practical tool for effici<strong>en</strong>t geometrical repres<strong>en</strong>tation<br />

(Leo Dorst, University of Amsterdam)<br />

• An Introduction to the Mathematics of the Space-Time Algebra (Richard E. Harke,<br />

University of Texas)<br />

• EUROGRAPHICS 2004 Tutorial: Geometric Algebra and its Application to Computer<br />

Graphics (D. Hild<strong>en</strong>brand, D. Fontijne, C. Perwass and L. Dorst)<br />

• Rotating Astrophysical Systems and a Gauge Theory Approach to Gravity (A.N.<br />

Las<strong>en</strong>by, C.J.L. Doran, Y. Dabrowski, A.D. Challinor, Cav<strong>en</strong>dish Laboratory,<br />

Cambridge), astro-ph/9707165<br />

50

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!