30.11.2012 Views

FinFET and other New Transistor Technologies

FinFET and other New Transistor Technologies

FinFET and other New Transistor Technologies

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>FinFET</strong> <strong>and</strong> <strong>other</strong> <strong>New</strong><br />

<strong>Transistor</strong> <strong>Technologies</strong><br />

Chenming Hu<br />

Univ. of California<br />

Chenming Hu, July 2011


May 4 2011 NY Times Front Page<br />

NY Times news article:<br />

• Intel will use 3D <strong>FinFET</strong> for 22nm<br />

• Most radical change in decades<br />

• There is a competing SOI technology<br />

Chenming Hu, July 2011<br />

2


Other Background Info<br />

• TSMC, IBM…new transistors soon<br />

• Since 2001 ITRS shows <strong>FinFET</strong> <strong>and</strong><br />

ultra-thin-body UTB-SOI as the two<br />

successor MOSFETs<br />

• SOITEC UTB-SOI recently available<br />

• IBM 2009 5nm UTB SOI paper<br />

Chenming Hu, July 2011<br />

3


<strong>New</strong> MOSFET Structures<br />

Chenming Hu, July 2011<br />

Cylindrical FET<br />

Ultra Thin Body SOI<br />

4


Good Old MOSFET Nearing Limits<br />

Vt, S (swing) <strong>and</strong> Ioff<br />

are sensitive to Lg &<br />

dopant variations.<br />

• high design cost<br />

• high Vdd, hence<br />

high power usage<br />

Finally painful enough for change.<br />

Chenming Hu, July 2011<br />

5


Power Consumption Problems<br />

1.Not just a chip <strong>and</strong> package thermal<br />

issue.<br />

2.ICs use a few % of world’s electricity<br />

today <strong>and</strong><br />

• Power per chip is growing.<br />

• IC units in use also growing.<br />

3.If power consumption is not reduced,<br />

industry future growth is at risk.<br />

Chenming Hu, July 2011


Want Low Vt <strong>and</strong> Low Ioff<br />

Need smaller<br />

S <strong>and</strong> less<br />

variations of<br />

S <strong>and</strong> V t<br />

Chenming Hu, July 2011<br />

7


MOSFET becomes “resistor” at very<br />

small L –- Drain competes with Gate to<br />

control the channel barrier.<br />

Drain Current, I DS (A/µm)<br />

10 -3<br />

10 -5<br />

10 -7<br />

10 -9<br />

10 -11<br />

How V t Variation & S Got So Bad<br />

Smaller Size<br />

size shrink<br />

or larger Vd<br />

0.0 0.3 0.6 0.9<br />

Gate Voltage, V GS (V)<br />

L<br />

Gate<br />

C g<br />

Insulator<br />

Source Drain<br />

Chenming Hu, July 2011<br />

C d


Reducing EOT is Not Enough<br />

Gate<br />

Source Drain<br />

Leakage Path<br />

Gate cannot control the<br />

leakage current paths<br />

that are far from the gate.<br />

Chenming Hu, July 2011


One of Two Ways to Better V t <strong>and</strong> S<br />

The gate controls a thin body from<br />

more than one side. Gate Length<br />

Gate<br />

Source Drain<br />

Gate<br />

<strong>FinFET</strong> body is a<br />

�<br />

thin fin N. Lindert et al., DRC paper II.A.6, 2001<br />

Chenming Hu, July 2011<br />

Source<br />

Drain<br />

Fin Height<br />

Fin Width


<strong>FinFET</strong>- 1999<br />

Undoped Body. 30nm etched thin fin.<br />

Vt set with gate work-function (SiGe).<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

X. Huang et al., IEDM, p. 67, 1999<br />

Chenming Hu, July 2011<br />

ΔVt [V]<br />

Vt at 100 nA/μm, Vd = 0.05 V<br />

Fin width: 20 nm<br />

0 10 20 30 40 50<br />

Lg [nm]


State-of-the-Art <strong>FinFET</strong> on Buk Si<br />

STI<br />

Si<br />

Gate<br />

STI<br />

Chenming Hu, July 2011<br />

28nm SoC<br />

C.C. Yeh et al.,<br />

2010 IEDM<br />

20nm Hi Perf<br />

C.C. Wu et al.,<br />

2010 IEDM


<strong>FinFET</strong> is “Easy” to Scale<br />

10nm Lg AMD<br />

2002 IEDM<br />

5nm Lg TSMC<br />

2004 VLSI Symp<br />

L g =<br />

5 nm<br />

because leakage is well suppressed if<br />

Fin thickness =or< Lg<br />

• Thin fin can be made with the same Lg<br />

patterning/etching tools.<br />

Chenming Hu, July 2011<br />

3nm Lg KAIST<br />

2006 VLSI Symp


Second Way to Better V t <strong>and</strong> S<br />

Ultra-thin-body SOI (UTB-SOI) �<br />

No leakage path far from the gate.<br />

Gate<br />

Source Drain<br />

UTB<br />

SiO2<br />

Si<br />

Y-K. Choi, IEEE EDL, p. 254, 2000<br />

Drain Current [A/um]<br />

1.E-02<br />

1.E-04<br />

1.E-06<br />

1.E-08<br />

1.E-10<br />

1.E-12<br />

Chenming Hu, July 2011<br />

T si=8nm<br />

T si=6nm<br />

T si=4nm<br />

0 0.2 0.4 0.6 0.8 1<br />

Gate Voltage [V]


Most Leakage Flows >5nm Below Surface<br />

Y-K. Choi et al., IEEE Electron Device Letters, p. 254, 2000<br />

Chenming Hu, July 2011


Silicon Body Needs to be


UTB-SOI<br />

3nm Silicon Body, Raised S/D<br />

Y-K. Choi et al, VLSI Tech. Symposium, p. 19, 2001<br />

Chenming Hu, July 2011


State-of-the-Art 5nm<br />

Thin-Body SOI<br />

Chenming Hu, July 2011<br />

ETSOI, IBM<br />

K. Cheng et al, IEDM, 2009


Both Thin-Body <strong>Transistor</strong>s Provide<br />

• Better swing.<br />

• S & Vt less sensitive to Lg <strong>and</strong> Vd.<br />

• No r<strong>and</strong>om dopant fluctuation.<br />

• No impurity scattering.<br />

• Less surface scattering (lower Eeff).<br />

•Higher on-current <strong>and</strong> lower leakage<br />

•Lower Vdd <strong>and</strong> power consumption<br />

•Further scaling <strong>and</strong> lower cost<br />

Chenming Hu, July 2011


Back-Gate Bias Option<br />

UTB-SOI <strong>FinFET</strong><br />

Gate 1<br />

STI<br />

Chenming Hu, July 2011<br />

Si<br />

STI<br />

Gate 2


Similarities<br />

• 1996: UC Berkeley proposed to DARPA two<br />

“25nm <strong>Transistor</strong>s”. Both of them<br />

•use body thickness as a new scaling parameter<br />

•can use undoped body for high µ <strong>and</strong> no RDF<br />

• 1999: demonstrated <strong>FinFET</strong><br />

2000: demonstrated UTB-SOI (Ultra-Thin Body)<br />

• Since 2001: ITRS highlights <strong>FinFET</strong> <strong>and</strong> UTBSOI<br />

• Now: Intel will use Trigate <strong>FinFET</strong>.<br />

Soitec readies +-0.5nm substrates for UTBSOI<br />

• Both <strong>FinFET</strong> & UTBSOI better than planar bulk!<br />

Chenming Hu, July 2011


Main Differences<br />

• <strong>FinFET</strong> body thickness ~ Lg. Investment by fabs<br />

UTBSOI thickness ~1/3 Lg. Investment by Soitec<br />

• <strong>FinFET</strong> has clear long term scalability. UTBSOI<br />

may be ready sooner depending on each firm’s<br />

readiness with <strong>FinFET</strong>.<br />

• <strong>FinFET</strong> has larger Ion or can use lower Vdd.<br />

UTBSOI has a good back-gate bias option.<br />

UTBSOI<br />

<strong>FinFET</strong><br />

Chenming Hu, July 2011<br />

Gate 1 Gate 2<br />

Si<br />

STI<br />

STI


What May Happen<br />

• <strong>FinFET</strong> will be used at 22nm by Intel <strong>and</strong> later<br />

by more firms through <strong>and</strong> beyond 10nm.<br />

• Some firms may use UTBSOI to gain/protect<br />

market at 20 or 18nm if <strong>FinFET</strong> is not option.<br />

If so, competition between <strong>FinFET</strong> <strong>and</strong> UTBSOI<br />

will bring out the best of both.<br />

If not----- back to first bullet.<br />

Chenming Hu, July 2011


Chenming Hu, July 2011


Drain Current (A)<br />

<strong>FinFET</strong> BSIM Compact Model Verified<br />

�<strong>FinFET</strong> Fabricated at TSMC.<br />

�Lg = 30 nm-10um<br />

50µ<br />

25µ<br />

Id-Vg 1m I<br />

Lg = 50nm<br />

Lg = bulk 50nm<br />

Vd = 50mV<br />

Vd = 1.2V<br />

0<br />

1p<br />

0.0 0.4 0.8 1.2<br />

Gate Voltage (V)<br />

1µ<br />

1n<br />

Bulk Current (A)<br />

100p<br />

10p<br />

Vd = 1.2V<br />

1p<br />

0.0 0.4 0.8 1.2<br />

Gate Voltage (V)<br />

Chenming Hu, July 2011<br />

Drain Current (µA)<br />

50 Lg = 50nm<br />

Vg = 1.2 - 0.4V<br />

25<br />

Id-Vd<br />

Id-Vd<br />

0<br />

0.0 0.4 0.8 1.2<br />

Drain Voltage (V)<br />

M. Dunga, 2008 VLSI Tech Sym


Chenming Hu, July 2011


Chenming Hu, July 2011


Chenming Hu, July 2011


Chenming Hu, July 2011


Reduce C<br />

f ⋅C<br />

⋅<br />

Vdd<br />

Reduce all capacitances.<br />

2<br />

Chenming Hu, July 2011<br />

30


Vacuum-Sheath Interconnect<br />

� C TOTAL ∝ Delay, C M ∝ Crosstalk Noise<br />

Dielectric Beam<br />

Etch Stop layer<br />

Metal<br />

Chenming Hu, July 2011<br />

Load Capacitance : C O<br />

Mutual Capacitance : C M<br />

Total Capacitance : C TOTAL<br />

J. Park, Electronics Letters, p. 1294, 2009


Effective k of Vacuum-Sheath<br />

Interconnects<br />

Beam Dielectric Constant<br />

2.25<br />

2.9<br />

3.3<br />

3.6<br />

3.9<br />

1.9<br />

2.0<br />

2.1<br />

2.3 2.2<br />

2.4<br />

2.5<br />

No Solution<br />

2.6<br />

1.8<br />

No Solution<br />

1.7<br />

20 30 40 50 60 70 80<br />

Air Percentage (%)<br />

1.6<br />

1.4<br />

1.5<br />

1.3<br />

J. Park, Electronics Letters, p. 1294, 2009<br />

Chenming Hu, July 2011


Vacuum Spacer to Reduce C GC<br />

� C GOX : Gate Oxide Capacitance<br />

� C GC : Gate-to-Contact Capacitance<br />

C GOX<br />

» CGC CGOX < CGC Gate<br />

Chenming Hu, July 2011<br />

Contacts<br />

Scale Down


Vacuum Spacer Self-Aligned Contact<br />

20nm MOSFET comparison<br />

Oxide<br />

Vacuum<br />

Inverter<br />

Delay, ps<br />

Inverter<br />

switching<br />

energy, fJ<br />

Relative<br />

Area<br />

Chenming Hu, July 2011<br />

Oxide<br />

Spacer<br />

6.15<br />

(1)<br />

24.2<br />

(1)<br />

Vacuum<br />

Spacer<br />

Selfaligned<br />

contact<br />

(SAC)<br />

5.05<br />

(0.82)<br />

18.8<br />

(0.78)<br />

1 0.7<br />

J. Park, IEEE EDL, p.1368, 2009


Future Low Voltage Green <strong>Transistor</strong><br />

Log Drain Current I d<br />

S60mV/dec<br />

Gate Voltage V g<br />

Chenming Hu, July 2011<br />

35


How to reduce V dd to 0.15V?<br />

1.Reduce Vdd – Vt to < 0.1V with high-<br />

mobility-channel material, or sub-<br />

threshold circuits.<br />

2. Reduce V t to 50mV. Need a device<br />

that is free of the 60mV/decade<br />

turn-off limit.<br />

Chenming Hu, July 2011


Origin of the 60mV/decade Limit<br />

A potential<br />

barrier controls<br />

the electron flow.<br />

E c<br />

E v<br />

C OX<br />

Leakage current is determined by Boltzmann<br />

distribution or 60 mV/decade, limiting MOSFET, bipolar,<br />

graphene MOSFET…<br />

So, let electrons go through, not over, the<br />

energy barrier � semiconductor tunneling<br />

or MEMS<br />

V G<br />

Source Channel Drain<br />

Chenming Hu, July 2011


E C<br />

E V<br />

Semiconductor B<strong>and</strong>-to-B<strong>and</strong> Tunneling:<br />

generating electron/hole pairs<br />

A known mechanism of leakage current since<br />

1985.<br />

Called Gate Induce Drain Leakage (GIDL).<br />

Chenming Hu, July 2011<br />

N+ P-<br />

N+<br />

J. Chen, P. Ko, C. Hu, IEDM 1985


P+ Pocket<br />

S<br />

P+<br />

Pocket<br />

G<br />

N+ N- P+ -<br />

Green <strong>Transistor</strong> --Simulation<br />

Buried Oxide<br />

Gate<br />

Energy Electron b<strong>and</strong> flow diagram<br />

N+ Source<br />

D<br />

Hole flow<br />

Simulated carrier generation rates<br />

P+ Drain<br />

C. Hu, 2008 VLSI-TSA, p.14, April, 2008<br />

Abrupt turn-on due to over-lap of valence/conduction<br />

b<strong>and</strong>s; adjustable turn-on voltage.<br />

C. Hu, 2008 VLSI-TSA, p.14, April, 2008<br />

Chenming Hu, July 2011


I DS (µ/µm)<br />

Reduce Vdd by Reducing Eg<br />

1E-02<br />

1E-03<br />

1E-04<br />

1E-05<br />

1E-06<br />

1E-07<br />

1E-08<br />

1E-09<br />

1E-10<br />

1E-11<br />

Simulated impact of Eg scaling<br />

Eg=0.36eV, Vdd=0.2V, EOT=5 Å, CV/I=0.42pS<br />

Eg=0.69eV, Vdd=0.5V, EOT=7 Å, CV/I=2.2pS<br />

Eg=1.1eV, Vdd=1V, EOT=10 Å, CV/I=4.2pS<br />

Eg=0.36eV<br />

Eg=0.69eV<br />

Eg=1.1eV<br />

Lg=40nm<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Gate Voltage, V GS (V)<br />

Vdd scales down faster than Eg.<br />

Chenming Hu, July 2011<br />

C. Hu, 2008 VLSI-TSA, p.14, April, 2008


Simulated gFET Inverter VTC<br />

Good voltage gain at 0.1V<br />

Output Voltage, V OUT (mV)<br />

.<br />

200<br />

150<br />

100<br />

50<br />

0<br />

VDD: 0.2 V<br />

VDD: 0.15 V<br />

VDD: 0.1 V<br />

0 50 100 150 200<br />

Input Voltage, V IN (mV)<br />

Chenming Hu, July 2011<br />

C. Hu, 2008 VLSI-TSA, p.14, April, 2008


Gate<br />

P+ Source N+ Drain<br />

Ge Substrate<br />

Hetero-junction gFET<br />

• Strained Si on Ge has 0.18eV “effective<br />

tunneling Eg”.<br />

• III-V.<br />

Si<br />

Gate<br />

~<br />

~<br />

Gate Oxide<br />

~<br />

~<br />

Si Ge<br />

E C offset<br />

E C<br />

E V<br />

Ge tFET<br />

Si-Ge HtFET<br />

A. Bowonder, Intern’l Workshop Junction Tech., 2008<br />

Chenming Hu, July 2011


• <strong>FinFET</strong> <strong>and</strong> UTB-SOI are viable new<br />

sub-22nm transistors.<br />

• Different performances, investment<br />

costs, wafer costs, scaling barriers.<br />

• Their BSIM SPICE models are<br />

available – free �<br />

Summary<br />

• Capacitance <strong>and</strong> tunnel gFET are<br />

potential opportunities.<br />

Chenming Hu, July 2011<br />

43

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!