12.07.2015 Views

SAOCOM Calibration Strategy

SAOCOM Calibration Strategy

SAOCOM Calibration Strategy

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

COMISION NACIONAL DE ACTIVIDADES ESPACIALES(The Argentinean National Commission of Space Activities)<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González,M. Thibeault, T. ZajcNovember 7 - 9, 2011October201118CEOS- 21, 2009SAR <strong>Calibration</strong> and Validation WorkshopProgress In ElectromagneticsFairbanks,ResearchAlaska, U.S.A.SymposiumPIERS 2009 in Moscow, RUSSIA, 18-21 August, 2009<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 20111 of 27


Contents1. <strong>SAOCOM</strong> SAR Instrument Main Characteristics2. <strong>Calibration</strong> components3. External <strong>Calibration</strong> Model‣ Overview‣ TopSAR modes‣ <strong>Calibration</strong> sites4. Internal <strong>Calibration</strong>‣ Overview‣ Central Electronics <strong>Calibration</strong> - Scheme Fundamentals‣ Antenna <strong>Calibration</strong>5. Summary<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 20112 of 27


<strong>SAOCOM</strong> SAR InstrumentMAIN CHARACTERISTICS‣L-Band SAR‣ Right looking SAR‣ Left looking capability‣ 10m x 3.5m active phased arrayantenna with 140 TRMs‣ TOPSAR & STRIPMAPacquisition modes‣ Single, dual and quadpolarization operative modes‣More than 2600 beams<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 20113 of 27


<strong>SAOCOM</strong> <strong>Calibration</strong> ComponentsANTENNA MODEL<strong>SAOCOM</strong>CALIBRATIONCOMPONENTSINTERNAL CALIBRATIONEXTERNAL CALIBRATION<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 20114 of 27


Antenna modelObjectivesAntenna beams shapeBeam to beam and pol to pol gainGS 1HHS 2HHS 3HHHigh number of beamsS 1VVS 2VVS 3VVDriversWorkflowRadiometric accuracy optimizationOn-Orbit calibration effort reductionPre-Launch extensive characterizationPre-Launch validation (near field/int. Cal pulses)On-Orbit verification & monitoring (rain forest)θBeamCoefficientsInt. CalTelemetry<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 20115 of 27


L2B Mission System Requirements Summary‣Antenna Pattern shall be verify from External <strong>Calibration</strong>with a precisión of 0.2 dB.‣Absolute calibration constant (K) shall be estimated fromExternal <strong>Calibration</strong> measurements with an uncertainty equalor less than 0.2dB.‣Crosstalk levels shall be estimated from External <strong>Calibration</strong>measurements and and corrected so that the residual x-talksis less than -30dB‣Imbalance (f) shall be estimated with an uncertainty equal orless than 0.1dB.‣Image geolocation error in STRIPMAP mode shall be lessthan 2 resolution cells.<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 20117 of 27


Beams designTo limit the calibration effort, all the modes are based on a totalset of 18 beams (in range):‣9 Quad-Pol‣9 Dual- Single PolTOPSAR mode waschosen to maximizecoverage vs geometricand radiometricresolution.<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 20118 of 27


TOPSAR Absolute <strong>Calibration</strong>‣ Rely on the Antenna Model and the fact that the STRIPMAPbeams are used to construct the TOPSAR mode‣ Computation of absolute constant using corner reflectorfor STRIPMAP then conversion to TOPSAR modes‣ Verification using Corners reflector over very low backgroundSTRIPMAPTOPSAR WIntegration area [pixels] 20 x 20 20 x 20Corner RCS σ CR [dB] 38.1 38.1Background σ0B [dB] σ CR -15 -25Pixel area A [m²] 50 1000Confidence error [%] 95 95Salt Lakes for CRSingle Measurement error[dB]0.2 0.2712 Measurements error [dB] 0.05 0.08<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 20119 of 27


<strong>Calibration</strong> Sites for Corner Reflectors# AcquisitionsSQP-S1 60SQP-S2 6SQP-S3 16SQP-S4 7SQP-S5 6SQP-S6 15SQP-S7 6SQP-S8 22SQP-S9 4Total QP 142SDP-S1 38SDP-S2 9SDP-S3 21SDP-S4 50SDP-S5 30SDP-S6 72SDP-S7 60SDP-S8 0SDP-S9 36Total DP 316<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201110 of 27


Point Targets‣Some sites arealready operative forAirborne and satellitesuse.‣Mores sites areplanned in the nearfutureSARATCOSMO<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 2011ALOS11 of 27


L+X Malargue <strong>Calibration</strong> Site• 55 Km² area.• Background RCS of -10dB for X-bandand -15dB for L-band.• 1500 m height 2% of terrain slope.<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201112 of 27


L+X Malargue <strong>Calibration</strong> SiteTargets• 750 m away of any other object• 7 L band &12 X band<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201113 of 27


Range Antenna Pattern Model Validation• Antenna pointing will be verified using a special “notch” beam (1).• A subset of beams will be validated: S1QP, S4QP, S8QP and S7DP (2).• The validity of the model will be assumed for the rest of the beams.• TOPSAR images correction will be verified as an end-to-end test (3).<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201114 of 27


Extended TargetsAmazon Rain ForestCongo Rain Forest<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201115 of 27


Azimuth antenna pattern and pointing<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201116 of 27


<strong>SAOCOM</strong> <strong>Calibration</strong> ComponentsANTENNA MODEL<strong>SAOCOM</strong>CALIBRATIONCOMPONENTSINTERNAL CALIBRATIONEXTERNAL CALIBRATION<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201117 of 27


<strong>SAOCOM</strong> Internal <strong>Calibration</strong>NOISE ACQUISITIONS σ bias estimationCENTRAL ELECTRONICSCAL PULSESINTERNALCALIBRATIONCOMPONENTSANTENNACAL PULSESSensor driftsINSTRUMENT TELEMETRYON GROUNDCHARACTERIZATION<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201118 of 27


Sensor Drifts• Review of the needs for measuring drifts• Sensor designed stable, however there will be drifts• ICAL compensates for these drifts => AccuracyParameter driftmeasured byICALSensorparameterParameter driftyFlight pathxSensorExternaltargetsz<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201119 of 27


<strong>SAOCOM</strong> InstrumentCDUCRXDNHTRMTX HH PolSSG FERX HSSGCALNWV PolCEANTENNA (140 TRMs)<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201120 of 27


CE <strong>Calibration</strong> - Scheme Fundamentals (1/3)TX path / pulsesABK TXMagnitude drift:K(t=10 TX 1MDTX≡=KTX(t= t0)t)KK1TX0TXToCDUDownconverterFromcoreSSGX CRXb CRX←⎤ Γ CRXXb GSSGSS→⎤ Γ GSSQuadrature modulatorK TXCALNWK =TXXXCRX,BGSS,BXXGSS,ACRX,AFInput and outputsignals from cal pulsesPaths in pulses A and Band nominal elementsTX21 of 27


CE <strong>Calibration</strong> - Scheme Fundamentals (2/3)Scheme PerformanceActual:Without considering F TX :10TXKTXMD = =K10TXXXXX1CRX,B10GSS,BCRX,B0GSS,BXXXX110GSS,ACRX,A0GSS,ACRX,AFF1TX0TXEMD =10TXXXXX1CRX,B10GSS,BCRX,B0GSS,BXXXX11CRX,A00GSS,AGSS,ACRX,AεMD10TX≡EMD10TX/ MD10TX=11+ ∆F10TX/ F0TXPerformance depends on the relative change of F TX : ∆F10TX=F1TX− F0TX<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201122 of 27


CE <strong>Calibration</strong> - Scheme Fundamentals (3/3)• Scattering parameters• Partial increments⎡A⎢⎢⎣A1112AA2122⎤⎥⎥⎦∆F/ F ≅∑i∂F∆v∂vii/ FTwo type of uncertainty sources:∆A21 / A 21− ∆B21 / B 21( 1+C21·C32·Γ2/ C31) · C21/ C211/∆( C22 − C21·C32/ C31) · ∆Γ2222+ A22+ A21· ΓGSS)( −B∆Γ211+ A21· ΓCRX)( A∆Γ: :GSSCRX• AS A RESULT:Instabilities of theICAL NW– We obtain the ICAL performance in terms of measurable parameters– We understand the influence of each parameter on the total uncertainty– We can derive guidelines for ICAL NW designChanges innominal HW<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201123 of 27


Antenna <strong>Calibration</strong>• Similar concept as for calibration of the CE• In-flight measurements of TRMs (PCC)• Models of passive devices (AM)TRM Transmission ChainTRM Reception Chain<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201124 of 27


Summary (1/2)1. The <strong>SAOCOM</strong> calibration <strong>Strategy</strong> is build upon three features:Antenna Model, External <strong>Calibration</strong> and Internal<strong>Calibration</strong>.2. TOPSAR mode absolute <strong>Calibration</strong> made use of theAntenna model and the STRIPMAP <strong>Calibration</strong> with CR s.3. Many <strong>Calibration</strong> sites are planned or underway in Argentinafor Corner Reflector and use of both Amazon and CongoForest is envisaged as extended targets4. Ground receptors are foreseen to be used for both validationof some azimuth beams and pointing.<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201125 of 27


Summary (2/2)5. The <strong>SAOCOM</strong> ICAL <strong>Strategy</strong> was presented focusing onmeasurement accuracy, together with a proposed method forestimating the ICAL performance6. The method can be used to drive the ICAL network design,including requirements allocation to its components7. Potential error sources such as the effect of changes in thereflection coefficients of nominal elements were considered8. The method is planned to be used for the final version of the ICALnetwork<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201126 of 27


Thank You<strong>SAOCOM</strong> <strong>Calibration</strong> <strong>Strategy</strong>M. Azcueta, J. Giardini, J. P. Cuesta González, M. Thibeault, T. ZajcCEOS 2011 Workshop, Fairbanks, Alaska, U.S.A., November 7-9, 201127 of 27


Back-Up Slides - CE Transmission GainCRX3To CDUFromcore GSSXCRX,ADownconverterXGSS,AQuadraturemodulatorbCRX,A ←⎤ ΓCRXCRX RF Input SectionbGSS,A →⎤ ΓGSS2GSS1CRX RF SW21123ACTXTRRS3DC212CALNWGSS RF Output SectionGSS RF SWFigure 1. <strong>Calibration</strong> pulse A.CRX3To CDUFromcore GSSXCRX,BDownconverterXGSS,BQuadraturemodulatorbCRX,B←⎤ ΓCRXCRX RF Input SectionbGSS,B→⎤ ΓGSS2GSSCRX RF SW21123CTXTRRSDC2 C1 231D32 1CALNWBGSS RF Output SectionGSS RF SWFigure 2. <strong>Calibration</strong> pulse B.CRX3To CDUFromcore GSSXCRXDownconverterXGSSQuadraturemodulatorbCRX←⎤ ΓCRXCRX RF Input SectionbGSS→⎤ ΓGSSGSSCRX RF SW21123CTXTRRSEGDC21 231F32CALNWGSS RF Output SectionGSS RF SW28 of 27


Back-Up Slides - All PulsesABCCE Transmission ChainCE Reception ChainTRM Transmission ChainTRM Reception Chain29 of 27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!