12.07.2015 Views

Exercises for linear algebra - Dynamics-approx.jku.at

Exercises for linear algebra - Dynamics-approx.jku.at

Exercises for linear algebra - Dynamics-approx.jku.at

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

(Use the fact th<strong>at</strong> B = A t A). (We remark th<strong>at</strong> m<strong>at</strong>rices of the type B arisen<strong>at</strong>urally in the discretis<strong>at</strong>ion of Sturm-Liouville oper<strong>at</strong>ors).1.3 General exercisesWe conclude with some exercises on general properties of m<strong>at</strong>ricesExample Let A be an invertible n×n m<strong>at</strong>rix such th<strong>at</strong> the row sums of Aare constant. Show th<strong>at</strong> this constant is non-zero and th<strong>at</strong> the inverse of Aalso has non constant row sums. Wh<strong>at</strong> is the common value of these sums?Example Show th<strong>at</strong> if an m × n m<strong>at</strong>rix A is such th<strong>at</strong> A t A = 0, thenA = 0.Example Show th<strong>at</strong> every invertible n×n m<strong>at</strong>rix is a product of m<strong>at</strong>ricesof one of the following three <strong>for</strong>ms⎡ ⎤0 0 0 ... 11 0 0 ... 0⎢. .,⎥⎣ 0 ... 1 0 0 ⎦0 ... 0 1 0⎡ ⎤0 1 0 ... 01 0 0 ... 00 0 1 ... 0⎢ ⎥⎣ . . ⎦0 0 0 ... 1andand⎡ ⎤1 k 0 ... 00 1 0 ... 0⎢ ⎥⎣ . . ⎦ ,0 0 0 ... 1⎡⎢⎣λ 0 0 ... 00 1 0 ... 0. .0 0 0 ... 16⎤⎥⎦


(Note th<strong>at</strong> the last three are elementary m<strong>at</strong>rices i.e. correspond to elementaryrow oper<strong>at</strong>ions).Example Recall th<strong>at</strong> a square m<strong>at</strong>rix A is doubly stochastic if its elementsare non-neg<strong>at</strong>ive and the sum of each of its row and columns is 1.Show th<strong>at</strong> the l<strong>at</strong>ter condition is equivalent to the fact th<strong>at</strong> Ae = e = A t ewhere e is the column m<strong>at</strong>rix with all entries “1”s. If y = (η 1 ,...η n ) andx = (ξ 1 ,...,ξ n ), we say th<strong>at</strong> y domin<strong>at</strong>es x ifandξ 1 ≤ η 1 ,ξ 1 +ξ 2 ≤ η 1 +η 2 ,...,ξ 1 +···+ξ n−1 ≤ η 1 +···+η n−1ξ 1 +···+ξ n = η 1 +...η n .Show th<strong>at</strong> this is equivalent to the fact th<strong>at</strong> there is a doubly stochasticm<strong>at</strong>rix A so th<strong>at</strong> X = AY. (X and Y are the column m<strong>at</strong>rices correspondingto x and y).Example Let A be an m×n m<strong>at</strong>rix, B and n×p one. Show th<strong>at</strong>r(AB) ≥ r(A)+r(B)−n.Deduce th<strong>at</strong> if r(A) = n, r(AB) = r(B).Example Let M be a subset of the set M n of n × n m<strong>at</strong>rices with theproperties• if A,B ∈ M,λ,µ ∈ R, then λA+µB ∈ M;• if P,Q ∈ M n , A ∈ M, then PAQ ∈ M.Show th<strong>at</strong> M is either {0} or M n .2 Geometry2.1 The plane as a vector spaceWe begin with a number of problems which illustr<strong>at</strong>e the use of the vectorspace structure of R 2 to obtain geometrical results:II.1.A Calcul<strong>at</strong>e the barycentric coordin<strong>at</strong>es of the point p with respect toA, B and C where the numbers in Figure 1 indic<strong>at</strong>e the r<strong>at</strong>ios in which thevarious lines are divided.7


II.1.B Show th<strong>at</strong> the in-centre of the triangle ABC is the point1s (ax A +bx B +cx C )where a−|BC|, b = |CA|, c = |AB|, s = a+b+c. Wh<strong>at</strong> is the correspondingresult <strong>for</strong> the out-centres?II.1.C Wh<strong>at</strong> are the barycentric coordin<strong>at</strong>es of P,Q and R with respect toA, B and C? Use this to whose th<strong>at</strong> the area of ABC is seven times th<strong>at</strong> ofPQR. (See Figure 2).II.1.D Wh<strong>at</strong>istheareaoftheconvexn-gonwithverticesP 1 = (ξ 1 1 ,ξ1 2 ),...,P n =(ξ n 1,ξ n 2)?II.1.E Let X and Y be the midpoints of AC resp. BD and W the intersectionof AD and BC. Show th<strong>at</strong> the area of WXY is one quarter of th<strong>at</strong>of the rectangle ABCD (Figure 3).II.1.F Show th<strong>at</strong> the midpoints of the sides of a quadril<strong>at</strong>eral <strong>for</strong>m thevertices ofaparallelogram. Wh<strong>at</strong> isther<strong>at</strong>iooftheareaofthisparallelogramto th<strong>at</strong> of the originalquadril<strong>at</strong>eral? (Figure 4).II.1.G Show th<strong>at</strong> if M is the centroid of the triangle ABC, then the areaof AC 1 M is a sixth of th<strong>at</strong> of ABC where C 1 is the midpoint of AB (Figure5).II.1.H Let A 1 , A 2 , A 3 , A 4 be the vertices of a square and let B 1 , B 2 ¡ B 3and B 4 be as in diagram 6. Show th<strong>at</strong> they also <strong>for</strong>m the vertices of a squareand th<strong>at</strong> the area of the l<strong>at</strong>ter is one fifth of th<strong>at</strong> of the original one.II.1.I Show th<strong>at</strong> a quadril<strong>at</strong>eral ABCD is a parallelogram if and only ifAC and BD cross <strong>at</strong> their midpoints. Show th<strong>at</strong> if ABCD and APCQ areparallelograms (see Figure 7), then BPDQ is also a parallelogram (whichmay be degener<strong>at</strong>e i.e. such th<strong>at</strong> its vertices are col<strong>linear</strong>).II.1.J Let ABCD be a quadril<strong>at</strong>eral and choose B 1 , D 1 as in diagram 8 soth<strong>at</strong> CB 1 and AB (resp. CD 1 and AD) are equal and parallel. Show th<strong>at</strong>• BB 1 DD 1 is a parallelogram;8


• the lines BC, DC, D 1 C and B 1 C are equal and parallel to sides of theoriginal quadril<strong>at</strong>eral and the angles between them are the angles ofthe original quadril<strong>at</strong>eral;• the area of BB 1 D 1 D is twice th<strong>at</strong> of ABCD.(see Figure 9).II.1.K Let ABC be a triangle and let the bisectors of the angles <strong>at</strong> A resp.B meet the opposite sides <strong>at</strong> A 1 and B 1 . Show th<strong>at</strong>|BA 1 |/|CA 1 | = |AB|/|AC|and th<strong>at</strong> if |CC 1 | = |BB 1 |, then |AB| = |AC|. Show th<strong>at</strong> ifthen |BA|/|AC| = λ1−λ .x A1 = x B +(1−λ)x CII.1.L Show th<strong>at</strong> the bisectors of the angles between the lines(x−x 0 |n 0 ) = 0 and (x−x 1 |n 1 ) = 0have equ<strong>at</strong>ions(x−x 0 |n 1 ) = ±(x−x 1 |n 1 ).II.1.M Provethefollowinggeneralis<strong>at</strong>ionofMenelaus’theorem: A 1 ,...,A 5are the vertices of a pentagon and a line L meets the edges in the pointsP 1 ,...,P 5 as in figure ?? Show th<strong>at</strong>|P 1 A 1 |· |P 2A 2 |· |P 3A 3 |· |P 4A 4 |· |P 5A 5 |= 1.|P 1 A 1 |P 2 1A 3 |P 3 A 4 |P 4 A 5 |P 5 A 6Can you find a similar generalis<strong>at</strong>ion of Ceva’s theorem?II.1.N Let tL be the line{x : (n|x) = (n|x 0 )where n is the unit normal. Show th<strong>at</strong> the distance from y to L is |(n|y−x 0 ).9


II.1.O Let tL 1 , L 2 and L 3 through a fixed point P and let A 1 and B 1 (resp.A 2 and B 2 resp. A 3 and B 3 ) be points on L 1 resp. L 2 resp. L 3 . Show th<strong>at</strong> ifA 1 A 2 is parallel to B 1 B 2 and A 2 A 3 is parallel to B 2 B 3 , then A 3 A 1 is parallelto B 3 B 1 .II.1.P Let A, B, C and D be non-col<strong>linear</strong> points in the plane such th<strong>at</strong>|AB| = |CD| and |AD| = |BC|. Show th<strong>at</strong> x AD − x BC ⊥ x AC and x Ad −x BC ⊥ x BD and th<strong>at</strong> x AD = x BC or AC is parallel to BD.II.1.Q Let L = L a,b,c and L 1 = L a1 ,b 1 ,c 1be anon-parallel lines and putL λ,µ = {(ξ 1 ,ξ 2 ) : λ(aξ 1 +bξ 2 +c)+µ(a 1 ξ 1 +b 1 ξ 2 +c 1 ) = 0}.Show th<strong>at</strong> {L λ,µ ;λ,µ ∈ R,λ+µ = 1} is the set of all lines through the pointof intersection of L 1 and L 2 .II.1.R Let x, y and z be points in the plane. Show th<strong>at</strong> x and y areparallel if and only if we have ‖x+y‖ = ‖x‖+‖y‖ or ‖x−y‖ = ‖x‖+‖y‖andth<strong>at</strong> bothof these conditionsareequivalent tothevalidity ofthe equality|(x|y)| = ‖x‖‖y‖. Show th<strong>at</strong> z is the midpoint of x and y if and only if wehave the equalities‖x−z‖ = ‖z −y‖ = 1 2 ‖x−y‖.II.1.S Let ABC be a triangle and P, Q and S as in the diagram. Showth<strong>at</strong> the area of the triangle PQR is one seventh th<strong>at</strong> of ABC.II.1.T Let x 1 , x 2 , x 3 and x 4 be vectors in the p lane. Show th<strong>at</strong> thereexists a triangle ABC with x AB = x 1 , x BC = x 2 and x CA = x 3 if and only ifx 1 +x 2 +x 3 = 0. Show th<strong>at</strong> there is a parallelogram ABCD with x AB = x 1etc. if and only if x 1 +x 2 +x 3 +x 4 = 0 and x 1 +x 3 = 0.II.1.U Let A, B, C and D be points in the plane and putx A ′ = 1 2 (x B +x C ) x B ′ = 1 2 (x C +x A ) x C ′ = 1 2 (x A +x B ).Show th<strong>at</strong>(x A ′ D|x BC )+(x B ′ D|x CA )+(x C ′ D|x AB ) = 0.10


II.1.V Let a, b and c be vectors in the plane. Does there always exist <strong>at</strong>riangle ABC so th<strong>at</strong> x A,1(B+C) = a etc. How many such triangles exist?2II.1.W Let x, y, z be points in the plane. Show th<strong>at</strong>‖x+y −z‖ 2 = ‖x−z‖ 2 +‖y −z‖ 2 −‖x−y‖ 2 +‖x‖ 2 +‖y‖ 2 −‖z‖ 2 .2.2 Affine mappings of the planeThe essential reason <strong>for</strong> the success of applying methods of <strong>linear</strong> <strong>algebra</strong> togeometry is the fact th<strong>at</strong> the interesting elementary trans<strong>for</strong>m<strong>at</strong>ions of theplane are affine and so essentially implemented by m<strong>at</strong>rices. We bring someexercises on this them.II.2.A Calcul<strong>at</strong>e the images resp. the pre-images of the lineaξ 1 +bξ 2 +c = 0and the conic sectionunder the affine mappingaξ 2 1 +2bξ 1ξ 2 +cξ 2 2 = 0(where a 11 a 22 −a 12 a 21 ≠ 0).(ξ 1 ,ξ 2 ) ↦→ (a 11 ξ 1 +a 12 ξ 2 +c 1 ,a 21 ξ 1 +a 22 ξ 2 +c 2 )II.2.B More generally, find the image and pre-image of the conic section(f(x)|x)+2(b|x)+c = 0(where f is an affine mapping with symmetric m<strong>at</strong>rix and b is a vector inR 2 ) under the affine mapping x ↦→ g(x)+u (where g is <strong>linear</strong> and injective).II.2.C Show th<strong>at</strong> if f is an injective affine mapping and x,y,z are col<strong>linear</strong>and distinct, then‖f(x)−f(y)‖‖x−y‖= ‖f(x)−f(z)‖ .‖x−z‖II.2.D Let f be a <strong>linear</strong>, invertible mapping on R 2 . Show th<strong>at</strong> there is anorthonormal basis (x 1 ,x 2 ) <strong>for</strong> R 2 so th<strong>at</strong> f(x 1 ) ⊥ f(x 2 ). <strong>for</strong> which f is thereprecisely one such basis?11


2.3 CirclesII.3.A Show th<strong>at</strong> the lineaξ 1 +bξ 2 +c = 0cuts the circleif and only if‖x−x 0 ‖ 2 = r 2(ξ 0 1 +bξ 0 2 +c) 2 ≤ r 2 (a 2 +b 2 ).II.3.B consider the circlesξ 2 1 +ξ 2 2 +2aξ 1 +2bξ 2 +c = 0 (1)ξ 2 1 +ξ 2 2 +2aξ 1 +2bξ 2 +c 1 = 0 (2)with radii r resp. r 1 . Put d 2 = (a−a 1 ) 2 +(b−b 1 ) 2 . For which values of r,r 1and d do the circles intersect? If they do intersect, show th<strong>at</strong> the angle θ <strong>at</strong>which they cross each other is given by the <strong>for</strong>mulacosθ = r2 +r 2 1 −d 22rr 1.Deduce a criterium <strong>for</strong> the circles to cut <strong>at</strong> right angles.II.3.C If C is the circle ‖x−a‖ 2 = r 2 in R 2 , the power of a point x withrespect to C is the pointp(x) =Interpret this geometrically.II.3.D Show th<strong>at</strong> the line{x 0 +tu : t ∈ R}(where u is a unit vector) cuts the circle ‖x = a‖ 2 = r 2 <strong>at</strong> the points correspondingto the roots of the quadr<strong>at</strong>ic equ<strong>at</strong>ionin t. Show th<strong>at</strong> the product of these roots is independent of u. Interpret thisresult geometrically (bear in mind the case where x 0 lies inside of the circle).12


II.3.E Denote by C a,b,c the circleξ 2 1 +ξ 2 2 −2aξ 1 −2bξ 2 −c = 0.• show th<strong>at</strong> if x = (ξ 1 ,ξ 2 ) is a point in R 2 , thenS C (x) = ξ 2 1 +ξ2 2 −2aξ 1 −2bξ 2 +cis the square of the length of the tangent from x to C = C a,b,c providedth<strong>at</strong> x is exterior to C;• if C 1 = C a1 ,b 1 ,c 1, then C and C 1 are tangential to each other if and onlyif2aa 1 +2bb 1 −(c+c 1 +2rr 1 ) = 0where r resp. r−1 are the radii of the circles;• if C and C 1 are circles as above, then{x ∈ R 2 : S C (x) = S C1 (x)}is a straight line. It is called the radial axis of C and C 1 (give ageometrical interpret<strong>at</strong>ion);• show th<strong>at</strong> if C, C 1 and C 2 are circles so th<strong>at</strong>then the radial axes of the three circles are concurrent;• show th<strong>at</strong> if λ ≠ 1, thenC λ = {x ∈ R 2 : S C (x) = λS C1 (x)}isacircleandth<strong>at</strong>ifC andC 1 intersect intwopoints, thenitrepresents(with varying λ) the family of circles passing through these points;• show th<strong>at</strong> if a circle C 2 meets C and C 1 <strong>at</strong> right angles, then it alsomeets each C λ <strong>at</strong> right angles (C, C 1 and C λ as in (5)).II.3.F Show th<strong>at</strong> if C 1 , C 2 and C 3 are three circles, no two of which areconcentric, then the radial axes (cf. E above) are concurrent or parallel (thepoint of intersection in the <strong>for</strong>mer case is called the power point of thethree circles).13


II.3.G Show th<strong>at</strong> if A 1 , A 2 , A 3 , A 4 , A 5 and A 6 are six points on a circle soth<strong>at</strong> the linesA 1 A 4 ,A 2 A 5 ,A 3 A 6meet in a point, then|A 1 A 2 |·|A 3 A 4 |·|A 5 A 6 | = |A 2 A 3 |·|A 4 A 5 |·|A 6 A 1 |.Can you generalise this result to 2n+2 points on a circle (whereby n > 1)?II.3.G Show th<strong>at</strong> if A 1 ,...,A 2n+1 are the vertices of a regular polygoninscribed in a circle of unit radius and L i is the length of A 1 A i+1 , thenn∑ n∏L 2 i = L i .i=1II.3.H Let ABC be a triangle, A 1 a point on BC, B 1 on CA, C 1 on AB.Show th<strong>at</strong> the circles through AB 1 C 1 , BC 1 A 1 and CA 1 B 1 are concurrent.2.4 Conic sectionsThe next most complic<strong>at</strong>ed class of curves after the circles are the conicsections which were also studied by the Greeks. Their classific<strong>at</strong>ion is one ofthe highpoints of plane geometry. Similar methods can be used to prove anumber of elegant results on conic sections.II.4.A Show th<strong>at</strong> if f : R 2 → R 2 is an injective, affine mapping, then fmaps conic sections onto conic sections. For which f is the image of a circlealso a circle?i=1II.4.B Show th<strong>at</strong> if Q is the conic section{x ∈ R 2 : (f(x)|x)+2(b|x) = c = 0}then the tangent to Q <strong>at</strong> x 0 is the line{x ∈ R 2 : (f(x)|x 0 )+(b|x+x 0 )+c = 0}.Wh<strong>at</strong> is the geometrical significance of this line if x 0 does not lie on Q?14


• the conic has the <strong>for</strong>m{x : X t DX = 0}whereX =[ξ1ξ 2];• the image of Q under the <strong>linear</strong> mapping with m<strong>at</strong>rix U has the correspondingm<strong>at</strong>rix [ ] U t AU U t BB t U ?;• th<strong>at</strong> the following numerical functions of the conic section are invariantunder such a trans<strong>for</strong>m<strong>at</strong>ion:trA, d 0 = detA, d = detD;• th<strong>at</strong> Q is central (or empty) if and only if d 0 ≠ 0 and d ≠ 0;• if d 0 > 0, then Q is an ellipse or empty;• if d 0 < 0, then Q is a hyperbola;• if d 0 = 0 and d ≠ 0, then Q is a parabola;• if d = 0 and d 0 > 0, then Q is a point;• if d = 0, d 0 < 0, then Q is a pair of intersecting lines;• if d = d 0 = 0, then Q is a line, a pair of parallel lines or empty.II.4.G Calcul<strong>at</strong>e the locus of the foci of all conics which touch the foursides of a given parallelogram.II.4.H Let A and B be fixed points in the plane and suppose th<strong>at</strong> a pointC moves on a fixed circle with centre A. Find the locus of the point P whereP is the intersection of BC and the internal bisector of the angle ABC.16


3 IsometriesOneofthefundamental concepts ofeuclidean geometryisth<strong>at</strong>ofcongruence.This corresponds to the modern notion of isometry. The basic result on theisometries of R 2 is their classific<strong>at</strong>ion into the following types• transl<strong>at</strong>ions• reflections• rot<strong>at</strong>ions• glide reflections.3.1 Concrete isometriesIII.1.A Show th<strong>at</strong> if f is a half-turn about the point P, then P is themidpoint of x and f(x) <strong>for</strong> any x in R 2 .III.1.B Show th<strong>at</strong> if P, Q and R are points in the plane, then the rel<strong>at</strong>ionshipx Q,π ◦D xP ,π = T xPr = D xR ,π ◦D xQ ,πholds if and only if fA is the midpoint of PR.III.a.C Show th<strong>at</strong> if f and g are isometries, then G −1 ◦f ◦g is an isometryof the same geometrical type as f.III.1.D Show th<strong>at</strong> a glide reflection of the plane can be expressed as aproduct of three reflections in the sides of a triangle. (See figure ??).III.1.E Show th<strong>at</strong> a mapping of the <strong>for</strong>mD xP ,π ◦D xQ ,π ◦D xP ,πis a half-turn and calcul<strong>at</strong>e its axis. Carry out a similar analysis of theisometriesD xP ,π ◦T u ◦D xP ,π T u ◦D xP ,π ◦T −u .III.1.F Show th<strong>at</strong> if L 1 , L 2 and L 3 are non-concurrent lines, thenis a transl<strong>at</strong>ion.(R L1 ◦R L2 ◦R L3 ) 217


III.1.G Which isometries of the plane s<strong>at</strong>isfy the condition f 2 = Id?III.1.H Let L 1 and L 2 be distinct one-dimensional subspaces of R 2 andlet x be a point on the bisector of the angle between them. Describe thesuccessive images of x under the mappingsR L1 , R L2 ◦R L1 , R L1 ◦R L2 ◦R L1 ,....Distinguish between the cases where the angle between the lines has the <strong>for</strong>m2πα where• α is 1 n(n ∈ N)• α is r<strong>at</strong>ional• α is irr<strong>at</strong>ional.III.1.I Characterise those m<strong>at</strong>rices[ ]a11 a 12a 21 a 22<strong>for</strong> which the corresponding <strong>linear</strong> mappinghas the property th<strong>at</strong>where (x|y) R = ξ 1 η 1 −ξ 2 η 2 .3.2 Pseudo-squaresf : (ξ 1 ,ξ 2 ) ↦→ (a 11 ξ 1 +a 12 ξ 2 ,a 21 ξ 1 +a 22 ξ 2 )(f(x)|f(y)) R = (x|y) RA pseudo-square is a rectangle ABCD <strong>for</strong> which AC and BD are equal inlength and perpendicular to each other. The use of the rot<strong>at</strong>ion oper<strong>at</strong>orallows an elegant approach to their theory.III.2.A Show th<strong>at</strong> ABCD is a pseudo-square if and only ifx AC = D ±π2 (x BD).III.2.B Show th<strong>at</strong> the definition is equivalent to the existence of an F soth<strong>at</strong> AFD and BFC are right-angled, isosceles triangles. Show th<strong>at</strong> therethen exists a G so th<strong>at</strong> BGA and CGD are also right-angled and isosceles.18


III.2.C Show th<strong>at</strong> if M 1 (resp. M 2 ) is the midpoint of BD (resp. AC,then CGM 1 M 2 is a square with centre the centroid of A,B,C and D (i.e. thepoint 1 4 (x A +x B +x C +x D ).III.2.D Show th<strong>at</strong> F and G lie on the bisectors of the angles between ACand BD.III.2.E Show th<strong>at</strong>|AD| 2 +|BC| 2 = |AB| 2 +|CD| 2and th<strong>at</strong> the angles ∠FAD and ∠GAB are equal.III.2.F Showth<strong>at</strong>themidpointsofAB, BC, CD andDA<strong>for</strong>mtheverticesof a square.III.2.G Show th<strong>at</strong> if λ is a fixed real number and we definex P = λx A +(1−λ)x B x Q = λx B +(1−λ)x C (3)x R = λx C +(1−λ)x D x S = λx B +(1−λ)x A (4)then PQRS is also a pseudo-square.III.2.H Show th<strong>at</strong> if A 1 B 1 C 1 D 1 is a second pseudo-square and λ is a fixedreal number, then A 2 B 2 C 2 D 2 is also a pseudo-square, wherex A2 = λx A +(1−λ)x A1 etc.3.3 ConstructionsAnother use of isometries is to provide elegant solutions ofconstruction problemsof the following type.III.3.A GiventwofixedlinesL 1 andL 2 andapointAERasinthediagram,show how to find points B, C and D as in figure ?? with B on L 1 and D onL 2 so th<strong>at</strong> ABCD is a square.III.3.B L, A, and B are given as in figure ?? Show how to construct apoint P on L so th<strong>at</strong> LAP = LAB.19


III.3.C Given a circle and a point A outside of it, show how to constructa line through A which meets the circle in points P and Q so th<strong>at</strong> P is themidpoint of AQ (figure ??).III.3.D Given a triangle ABC and a segment p as in diagram ??, showhow to find a line L, parallel to p, which meets the triangle <strong>at</strong> the endpointsof a segment which is equal to p.III.3.E Given two circles C 1 and C 2 and a line L, find a line L 1 which isparallel to L and is such th<strong>at</strong> the segment AB has a given length a where Aand B are as in diagram ??III.3.F Given a circle C, a line L and a point A, find a line L 1 through Aso th<strong>at</strong> |PA| = |PB|. (see figure ??III.3.G Given intersecting circles C 1 and C 2 find a chord through a pointof intersection A so th<strong>at</strong> the difference |PA|−|AQ| is equal to a given lengtha.III.3.H Given a line L and curves C 1 and C 2 on opposite sides of L, constructa perpendicular to L which meets C 1 and C 2 <strong>at</strong> points equidistant toL (figure ??III.3.I GivenalineLandcirclesC 1 andC 2 onoppositesidesofL, constructa square with two vertices on L and one each on C 1 and C 2 .3.4 Some geometrical resultsIn this section, we collect some <strong>at</strong>tractive geometric results which can beproved elegantly by using isometries.III.4.A Let ABCD be a non-degener<strong>at</strong>e convex quadril<strong>at</strong>eral and denoteby X the centre of the external square on AB. Y, Z and W are constructedsimilarlywithrespect toBC, CD andDA(seefigure??). Showth<strong>at</strong>XYZWis a pseudo-square (i.e. XZ and YW areequal andperpendicular—cf. III.4).III.4.B Consider diagram ?? where AC ′ B and AB ′ C are similar isoscelestriangles. Show th<strong>at</strong> AB ′ A ′′ C and AB ′′ A ′ C ′′ are parallelograms.20


III.4.C Let ABCD be a quadril<strong>at</strong>eral and P, Q, R and S be so th<strong>at</strong> thetriangles PDC, ARD AQB and BSC are equil<strong>at</strong>eral (figure ??). Show th<strong>at</strong>PQ and RS are equal and parallel (i.e. th<strong>at</strong> ) Wh<strong>at</strong> can you say aboutPQRS in the special case where ABCD is a parallelogram?III.4.D Consider diagram ?? where ABC is a triangle and P, Q and Rare the centres of the external triangles which are equil<strong>at</strong>eral. Show th<strong>at</strong>PQR is equil<strong>at</strong>eral (This is known as Napoleon’s theorem and is sometimes<strong>at</strong>tributed to him).III.4.E Let A, B, C be a triangle, M the midpoint of the side BC. Showth<strong>at</strong> if Z 1 and Z 2 are the centres of the exterior squares on the sides AB andBC resp., then Z 1 MZ 2 is an isosceles, right-angled triangle (figure ??).III.4.F Let A 1 , A 2 , A 3 and A 4 be points on a circle C and denote by H 1 ,H 2 , H 3 and H 4 the orthocentres of the triangles, A 2 A 3 A 4 , A 3 A 4 A 1 , A 4 A 1 A 2and A 1 A 2 A 3 . Show th<strong>at</strong> there is a point O so th<strong>at</strong> H i = D xO , π 2 (A i) <strong>for</strong> eachi.III.4.G Let ABCD be a quadril<strong>at</strong>eral, B 1 and D 1 as in figure ?? Show• th<strong>at</strong> BB 1 DD 1 is a parallelogram;• th<strong>at</strong> the sides of ABCD are equal and parallel to the segments from Cto the vertices of BB 1 D 1 D (under a suitable pairing);• th<strong>at</strong> the angles described <strong>at</strong> C by these lines are the same as the anglesof the quadril<strong>at</strong>eral ABCD;• th<strong>at</strong> the area of BB 1 D 1 D is twice th<strong>at</strong> of ABCD.3.5 Isometries in R 3Once again, one can, with the aid of the methods of <strong>linear</strong> <strong>algebra</strong>, c<strong>at</strong>aloguethe possible isometries of R 3 . They are• transl<strong>at</strong>ions;• rot<strong>at</strong>ions;• rotary transl<strong>at</strong>ions;• glide-reflections;21


• rotary reflections;• screw displacements.III.5.A Describethegeometric<strong>for</strong>mofthesetsofsuccessiveimages{f n (x) :n ∈ N} of a point x in R 3 under each of the above types of isometry.III.5.B Let f be an isometry of R 3 . Show th<strong>at</strong> if x ∈ R 3 , thenf(x)×f(y) = (detf)(x×y)<strong>for</strong> each x,y ∈ R 3 . Hence we have the equ<strong>at</strong>ion f(x)×f(y) = x×y if f isa proper motion (i.e. its determinant is positive and so has the value 1).III.5.C A rigid motion of R 3 is a continuous mapping T from [0,1] intothe space of isometries of R 3 so th<strong>at</strong> T(0) = Id. (Here continuity means th<strong>at</strong>the elements of the m<strong>at</strong>rices of the isometries T(t) depend continuously ont). Show th<strong>at</strong> an isometry f is proper (cf. III.5.B) if and only if there is arigid motion T so th<strong>at</strong> T(1) = f.III.5.D Let U t be the screw displacementT (0,0,t) ◦D [(0,0,1)],t .Calcul<strong>at</strong>e the m<strong>at</strong>rix of U t and show th<strong>at</strong> U t+s = U t ◦U s . Calcul<strong>at</strong>e the p<strong>at</strong>h{U t (1,0,0) : t ∈ R}of the point (1,0,0) under this motion. Wh<strong>at</strong> are the orthogonal projectionsof this p<strong>at</strong>h onto• the (x,y)-plane;• the (y,z)-plane;• the (z,x)-plane;• the plane [(0,1,0),( 1 √2,0,1√2)].III.5.E Let f be a <strong>linear</strong> mapping on R 3 . Show th<strong>at</strong> there is a rot<strong>at</strong>ion gso th<strong>at</strong> f ◦g has a diagonal m<strong>at</strong>rix with respect to the canonical basis.22


3.6 Directed anglesIn this section we return to the plane. Using the scalar product, it is simpleto define the angle between two vector and hence between two intersectinglines. However, in some situ<strong>at</strong>ion, it is necessary to distinguish between thetwo possible directions (clockwise and anti-clockwise) along which an anglecan be traversed. This requires a slightly more sophistic<strong>at</strong>ed approach whichwe now describe.Firstly a definition: Let O and A be points in the plane. The ray OA(written r OA ) is the set{x O +tx OA : t > 0}.III.6.A Show th<strong>at</strong>r OA = {P : |AP| = |OA|−|OP|}.III.6.B Show th<strong>at</strong> if B ∈ r OA , then r OB = r OA .III.6.C Show th<strong>at</strong> two rays r OA and r OB are either disjoint or equal.III.6.D Show th<strong>at</strong> there is a unique θ ∈ [0,2π[ so th<strong>at</strong>D xO ,θ(r OA = r OB .θ is then called the directed angle from OA to OB (written ∠(r OA ,r OB )).III.6.E Show th<strong>at</strong> if ABC is a triangle, then4 Solid geometryIV.1.A Show th<strong>at</strong> the lines∠(r AB ,r AC )+∠(r BC ,r BA )+∠(r CA ,r CB ).L a,b,c ,L a1 ,b 1 ,c 1,L a2 ,b 2 ,c 2are concurrent or parallel if and only if the vectors (a,b,c), (a 1 ,b 1 ,c 1 ) and(a 2 ,b 2 ,c 2 ) are <strong>linear</strong>ly dependent in R 3 . Use this to show th<strong>at</strong> the bisectorsof the angles of a triangle are concurrent (do the same <strong>for</strong> the altitudes andthe perpendicular bisectors of the sides).23


IV.2.A Find an explicit <strong>for</strong>mula <strong>for</strong> the distance from the point x in spaceto the plane spanned by the three vectors y 1 ,, y 2 and y 3 .IV.2.B Let L 1 and L 2 be skew lines in space (i.e. they ;do not meet andare not parallel). Let P be a point in space which lies on neither of theselines. Show th<strong>at</strong> there is precisely one line through P which meets L 1 andL 2 . If L is L (a,b,c,d) and L 1 is L a1 ,b 1 ,c 1 ,d 1, calcul<strong>at</strong>e a <strong>for</strong>mula <strong>for</strong> the distancebetween the lines.IV.1.D Calcul<strong>at</strong>e the area of the projection of the ellipsoid( ) 2 ξ1+a( ) 2 ξ2+bon the plane perpendicular to the unit vectorn = (n 1 ,n 2 ,n 3 ).( ) 2 ξ3= 1cIV.1.E Calcul<strong>at</strong>e the eccentricity of the ellipse shown in figure ??IV.1.F Let V be the ellipsoid as in D above. Find an affine mapping f onR 3 which maps V onto the unit ball and use this to calcul<strong>at</strong>e its volume.4.1 TetrahedraIV.2.A Let ABCD be a skew quadril<strong>at</strong>eral in R 3 (i.e. the vertices are notcoplanar). Show th<strong>at</strong> the line joining the midpoints of AB and CD intersectand bisects the line joining the midpoint of AC and BD.IV.2.B Let A, B, C and D be the vertices of a tetrahedron in space. Showth<strong>at</strong> if AB and CD are perpendicular (resp. AC and BD are perpendicular),then AD and BC are also perpendicular.IV.2.C Show th<strong>at</strong> if one altitude of a tetrahedron intersects two others,then all four are concurrent.IV.2.D Show th<strong>at</strong> the lines joining the vertices of a tetrahedron ABCD tothe centroids of the opposite faces are concurrent and cut each other in ther<strong>at</strong>io 3 : 1.24


IV.2.D Let x, y and z be three vectors in space and denote by H (resp.K) the volume of the parallelotope spanned by them (res. the parallelotopewith these vectors as altitudes). Show th<strong>at</strong>HK = ‖x‖ 2 ‖y‖ 2 ‖z‖ 2 .IV..2.E Let x, y and z be vectors in space. Show th<strong>at</strong>(x|x)(y|z) ≥ (x|z)(x|y) = ‖x×z‖‖x×y‖.Deduce th<strong>at</strong> if O, A, B and C are points in space as in diagram ?? then∠AOC ≤ ∠AOB +∠BOC.IV.2.F If x, y and z are as above, show th<strong>at</strong>‖x−y‖+‖y −z‖+‖z −x‖ ≥ ‖(x−y)×(z −y)‖.Deduce th<strong>at</strong> if O, A, B and C are as in diagram ??, then4.2 The Pl<strong>at</strong>onic bodies△ABC ≤ △OAB +△OBC +△OCA.A Pl<strong>at</strong>onic body is a polyhedron which is regular in the sense th<strong>at</strong> its facesconsist ofcongruent regularpolygonsanditsvertices areallsimilar. thereareprecisely five such bodies—the tetrahedron, hexahedron (cube), octahedron,dodecahedron and icosahedron. The next exercises are devoted to some oftheir properties.IV.3.A Consider the points A = (1,0,0), B = (0,1,0) and C = (0,0,1).Then there are two points O 1 and O 2 so th<strong>at</strong>resp.|) 1 A| = |) 1 B| = |) 1 C| = √ 2|O 2 A| = |O 2 B| = |O 2 C| = √ 2.Chose one of these points and denote it by O. Then OABC is a regulartetrahedron. Calcul<strong>at</strong>e• its surface area;• its volume;25


• the angle between adjacent sides;• the orthogonal projection of OABC on the (x,y)-plane resp. the planeorthogonal to (1,1,1).Deduce from (1) and (2) an expression <strong>for</strong> the volume and surface area of aregular tetrahedron in terms of the length of a side.IV.3.B The eight point A = (1,1,1), B = (−1,1,1), C = (1,−1,1),D = (1,1,−1), F = (1,−1,1), G = (−1,1,−1), H = (−1,−1,1) andE = (−1,−1,−1) <strong>for</strong>m the corners of a cube. Prove• th<strong>at</strong> A, H, F and G are the vertices of a regular tetrahedron;• th<strong>at</strong> the midpoints of the sides AB, BH, HE, EF, FD and DA lieon a plane and <strong>for</strong>m the vertices of a regular hexagon. Calcul<strong>at</strong>e thel<strong>at</strong>ter’s area;• th<strong>at</strong> the points A, B, G, D and H are the vertices of a pyramid.Calcul<strong>at</strong>e its volume and the angle between adjacent sides. Show th<strong>at</strong>the cube can be dissected into three such congruent pyramids;• th<strong>at</strong> if 0 < λ < 1, then the points A 1 , B 1 , C 1 and D 1 <strong>for</strong>m the verticesof a square whereA 1 = (−1,−1+λ,1) B 1 = (1−λ,1,1) C 1 = (1,1−λ,−1) D 1 = (−1+λ,−1,−1).For which λ is the area of this square maximal?IV.3.C The centroids of the faces of the above cube <strong>for</strong>m the verticesof a regular octahedron, as do the midpoints of the sides of the regulartetrahedron. Calcul<strong>at</strong>e the surface area and volume (as functions of thelength of a side) and the angle between adjacent sides.IV.3.D If b > 0, then the twelve points(0,±1,±b) (±b,0,±1) (±1,±b,0)<strong>for</strong>m the vertices of an icosahedron. Show th<strong>at</strong> if b = τ (the golden mean12 (1+√ 5) (see ??), then this is a regular icosahedron. Calcul<strong>at</strong>e• the length of its sides;• the surface area;26


• the volume;• the angle between adjacent sides.IV.3.E Calcul<strong>at</strong>e the centroids of the twenty faces of the regular icosahedronand show th<strong>at</strong> they <strong>for</strong>m the vertices of a regular dodecahedron.Calcul<strong>at</strong>e the quantities (1) - (4) of the last exercises <strong>for</strong> this solid.IV.3.F Calcul<strong>at</strong>e the normal to one of the faces of the dodecahedron andthe orthogonal projection of its vertices onto the plane of this face.IV.3.G Prove the <strong>for</strong>mulae√ √R 3( 5+1)a = 4√ra = (25+ √ 152 √ 10<strong>for</strong> the regular dodecahedron and√ √√√ (Ra = 5+ √ )52 √ 2ra + 3+√ 54 √ 3<strong>for</strong>theregularicosahedron, whereRistheradiusofthecircumscribed sphere,r is the radius of the inscribed sphere and a is the length of a side.IV.3.H The rhombic dodecahedron is the polyhedron with vertices(0,0,±2) (0,±2,0) (±2,0,0) (1,1,1) (1,1,−1) (5)(1,−1,1) (−1,1,1) (−1,−1,1) (1,−1,−1) (−1,1,−1). (6)Calcul<strong>at</strong>e the angle between two faces, its surface area and the angles of therhombi which constitute its faces.IV.3.I Let A, B, C and D be the points (1,0,0,0), (0,1,0,0), (0,0,1,0)and (0,0,0,1) in R 4 . Show th<strong>at</strong> there are two points E and F so th<strong>at</strong> A, B,C, D and E resp. A, B¡ C, D and F are the corners of a regular polytope inR 4 . Calcul<strong>at</strong>e the angle between the sides of this polytope and its projectiononto the x,y,z space resp. the x,y plane resp. on the space{x ∈ R 4 : ξ 1 +ξ 2 +ξ 3 +ξ 3 = 0}.27


IV.3.J Inthis last exercise we consider thehypercube inR 4 . It hasverticesthe points with coordin<strong>at</strong>es (±1,±1,±1,±1). How many edges resp. sidesdoes it have. Wh<strong>at</strong> is the length of its diagonal?5 Vector spaces and <strong>linear</strong> mappings5.1 ?V.1.A Show th<strong>at</strong> two affine subspaces T u (M) and T v (M) of a vector spaceV coincide if and only if u ∈ T v (M) or equivalently v −u ∈ M.V..1.B Show th<strong>at</strong> if two affine subspaces of the <strong>for</strong>m T u (M) and T v (N)coincide, then M = N.V.1.C Show th<strong>at</strong> the affine subspace spanned by the set{x 1 ,...,x n }consistsofthosevectorsofthe<strong>for</strong>m ∑ ni=1 λ ix i where ∑ ni=1 λ i =1.Show th<strong>at</strong> this represent<strong>at</strong>ion is unique if and only if the x i are affinelyindependent.5.2 ?V.2.A If u is a vector in R 3 , then the mappingx ↦→ u×xis <strong>linear</strong>. Wh<strong>at</strong> is its m<strong>at</strong>rix with respect to the canonical basis?V.2.B Suppose th<strong>at</strong> M is a subspace of L(V) with the property th<strong>at</strong> theonly subspaces of V which are invariant under each f ∈ M are {0} and Vitself. Show th<strong>at</strong> if g ∈ L(V) commutes with each element of M, then g iseither the zero oper<strong>at</strong>or or invertible.6 Determinants6.1 The calcul<strong>at</strong>ion of concrete determinantsThe liter<strong>at</strong>ure abounds with exercises involving the explicit calcul<strong>at</strong>ion ofdeterminants, starting with the Vandermonde determinant. We bring a selectionof some of the more interesting ones:28


VI.1.A Calcul<strong>at</strong>e the determinant of the following n×n m<strong>at</strong>rices A = [a ij ],whereby• a ij −g.c.d.(i,j);• a ii = 2cosθ, a i,i−1 = a i,i+1 = 1, a ik = 0 otherwise;• a ij = ad ij −b i b k ;• a ij =1(i+j +1)!(0 ≤ i,j ≤ n−1);• the a ij are given recursively by the <strong>for</strong>mulae:a 11 = 1,a i1 = a 1,i−1 (i > 1) (7)a ij = a i+1,j−1 +a i,j−1 (j > 1); (8)• a ij = 0ifi−j ≠ 0,±2, a ii = λ i +λ i−1 (where λ 0 = λ n+1 = 0), a i+2,i = 1,a i,i+2 = λ 1 λ i+1 ;• a ij is the number of common divisors of i and j (2 ≤ i,j ≤ n);• a in = 0 if i+j is odd, a ij = ( 2kk)(i+j = 2k);• a ij = i+j−1j;• a ij = p j (x i ) where p j isapolynomial of degree j withleading coefficientc j and constant term 0;• a ij = j i−1 ;• a ij = x (i−1)(j−1) ;• a ij = p i+jq i+jwhere (p k ) and q k ) are arithmetic projections.VI.1.B Calcul<strong>at</strong>e the following determinants:6.2 General problems on determinantsWe continue with some more theoretical results involving determinants:29


VI.2.A Use the identity detAB = detAdetB <strong>for</strong> the m<strong>at</strong>rices[ ] [ ]a −b c −dA = B =b a d cto prove the fact th<strong>at</strong> if two integers areexpressible asthe sum of two squares(of integers), then the same is true of their product.VI.2.B Let B be an n × n m<strong>at</strong>rix. Wh<strong>at</strong> is the determinant f the <strong>linear</strong>mappingΦ : A ↦→ AB −BAon M n ?VI.2.C Show th<strong>at</strong> if A is an (n+1)×n m<strong>at</strong>rix with integer entries all ofwhose row sums are 0, show th<strong>at</strong> det(AA t has the <strong>for</strong>m nk 2 <strong>for</strong> some k ∈ N.VI.2.D LetA = [ A 1 A 2 ... A n]be an n×n m<strong>at</strong>rix with columns A 1 ,...,A n . Show th<strong>at</strong>det [ A 2 +···+A n A 1 +A 3 +···+A n ... A 1 +...A n−1]= (−1) n−1 (n−1)detA.]VI.2.E Show th<strong>at</strong> if a m<strong>at</strong>rix A is such th<strong>at</strong> A 2 = I and B is the m<strong>at</strong>rix[A ij ], then B 2 = I.VI.2.F Let Sx n 1 ,...,x k= ∑ α 1 +···+α k =n xα 11 ...x α k. Show th<strong>at</strong>S n x 1 ,...,x k= det[ a ]kdet [ a ].VI.2.G Show th<strong>at</strong> if A is an n×n m<strong>at</strong>rix, then|detA| ≤ ∏ ∑a jk .jShow th<strong>at</strong> if <strong>for</strong> each i, a ii ≥ 1 2∑ nk=1 a ik, thenn∏detA ≥ a 11 (a ii −i=2kn∑|a ik A).k=130


VI.2.H Let (σ n ) be a sequence of real umbers and defineresp.Show th<strong>at</strong> v(t)w(t) = 1.v(t) = 1−σ 1 t+w(t) = 1+σ 1 t+∞∑det [ a ] (−t) nn!n=2∞∑n=2det [ a ] t nn! .VI.2.I Show th<strong>at</strong> if the elements of p + 2 columns of a m<strong>at</strong>rix <strong>for</strong>m anarithmetic progression of length p, then the determinant vanishes.VI.2.J Suppose th<strong>at</strong> a 11 ,...,a 1n are integers. Show th<strong>at</strong> one can find integersa ij (<strong>for</strong> 2 ≤ i ≤ n, 1 ≤ j ≤ n) so th<strong>at</strong> det[a ij ] = 1 if and only if th egre<strong>at</strong>est common divisor of a 11 ,...,a 1n is 1.VI.2.K Let ξ 1 ,...,ξ n be real numbers so th<strong>at</strong>∑ ∑ξ i = 0 ξi 2 = 0,..., ∑i i iξ n i = 0.Show th<strong>at</strong> the ξ i vanish.VI.2.L Let A = [a ij ] be an n×n m<strong>at</strong>rix. Show th<strong>at</strong>det(I+A) = 1+n∑i=1⎡a ii + 1 [ ]2! det ai1 ,i 1i 1 ,i 2+···+ 1 a i2 ,i 1a i2 ,i 2 n! det ⎢⎣a i1 ,i 1.a in,i 1⎤... a i1 ,i n⎥. ⎦.... a in,i nVI.2.M Show th<strong>at</strong> if the last element a nn of an n×n m<strong>at</strong>rix is non-zero,then(a nn ) n−1 detA = detBwhere B is the (n−1)×(n−1) m<strong>at</strong>rix withb ij = a ij a nn −a in a nj .(This provides an algorithm <strong>for</strong> calcul<strong>at</strong>ing determinants by reducing thedimension step by step).31


VI.2.N Let Φ : L(V) → C be a <strong>linear</strong> mapping so th<strong>at</strong>• Φ(f ◦g) = Φ(f)Φ(g);• Φ(λId) = λ nwhere V is a complex vector space of dimension n. Show th<strong>at</strong> Φ(f) = detf.Show th<strong>at</strong> the corresponding result <strong>for</strong> real vector spaces hold if n is odd butth<strong>at</strong> if n is even we require the additional condition th<strong>at</strong> Φ(f) = −1 <strong>for</strong> somereflection in L(V) to conclude th<strong>at</strong> Φ is the determinant.VI.2.O (Sylvester’s criterium)6.3 Determinants and smooth functionsIn this section, we g<strong>at</strong>her some exercises on determinants involving deriv<strong>at</strong>ivesof smooth functions. In particular, they can be used to give a particularlyelegant <strong>for</strong>mul<strong>at</strong>ion of the chain rule <strong>for</strong> higher deriv<strong>at</strong>ives.IV.3.A Let x and y be continuously differentiable functions on the interval[a,b]. Wh<strong>at</strong> well known result of analysis can one deduce by applying Rolle’stheorem to the functionVI.3.B Let⎡t ↦→ det⎣1 1 1x(t) x(a) x(b)y(t) y(a) y(b)⎤⎦x 1 = rc 1 c 2 ...c n−2 c n−1 (9)x 2 = rc 1 ...c n−2 s n−1 (10)vdots (11)x j = rc 1 ...c n−j s n−j+1 (12). (13)x n = rs 1 (14)where c i = cosθ i , s i = sinθ i (these are the equ<strong>at</strong>ions of the trans<strong>for</strong>m<strong>at</strong>ionto polar coordin<strong>at</strong>es in n dimensions). Calcul<strong>at</strong>e the Jacobi m<strong>at</strong>rix∂(x 1 ,...,x n )∂(r,θ 1 ,...,θ n−1 )and show th<strong>at</strong> its determinant is r n−1 c n−21 c n−32 ...c n−2 .32


VI.3.C Suppose th<strong>at</strong> x is a smooth function on [a,b] and th<strong>at</strong>Show tht there is an s ∈]a,b[ so th<strong>at</strong>a = t 0 < t 1 < ··· < t n = b.det [ a ] =??VI.3.D Show th<strong>at</strong> if x 1 ,...,x n and y 1 ,...,y n are continuous functions on[a,b], then[∫ b]det x i (t)y j (t)dt = 1 ∫a n!∫...det[x i (t j )]dt 1 ...dt n .VI.3.E Let t ↦→ A(t) be a continuous function from R into the set M n ofn×n m<strong>at</strong>rices and let X 1 ,...,X n be solutions of the equ<strong>at</strong>ionShow th<strong>at</strong> ifthenX ′ (t) = A(t)X(t).W(t) = det[X 1 (t)...X n (t)]∫ tW(t) = W(t 0 )exp trA(t)dt.t 0Show th<strong>at</strong> if the function is continuously differentiable, thenddt detA(t) = tr(adjA(t))A′ (t)and thus if each A(t) is invertible, then this can be simplified to the <strong>for</strong>mtr(A −1 (t)A ′ (t))detA(t).VI.3.F Let x 1 ,...,x n be <strong>linear</strong>ly independent smooth functions on an interval,k ∈ N. Calcul<strong>at</strong>e⎡⎤x 1 (t) ... x n (t)lim h→0 h −k x 1 (t+h) ... x n (t+h)det⎢⎥⎣ . . ⎦ .x 1 (t+(n−1)h) ... x n (t+(n−1)h)33


VI.3.G Ifx 1 ,...,x n aresmoothfunctionson[0,1],theWronskianW(x 1 ,...,x n )is the function ⎡ ⎤x 1 (t) ... x n (t)x ′ 1t ↦→ det⎢(t) ... x′ n (t)⎥⎣ . . ⎦ .x (n)1 (t) ... x (n)n (t)Show th<strong>at</strong> this either has no zeroooos or is identically zero. Show th<strong>at</strong> if thex i are analytic, then the l<strong>at</strong>ter is the case f and only if the x i are <strong>linear</strong>lyindependent. Show th<strong>at</strong> if x is a further function, thenW(xx 1 ,...,xx n ) = x n W(x 1 ,...,x n )and use this to evalu<strong>at</strong>e the determinant⎡11 ...2! 12!det⎢⎣ .1n!1n!1 1...3! (n+1)!1 1...(n+1)! (2n−1)!.⎤⎥⎦ .VI.3.H Let x be a smooth function. Show th<strong>at</strong> if⎡x ′ ⎤x 0 ... 0x ′′x ′ x ... 02 D n = det⎢⎥⎣ .. ⎦ ,x (n) x (n−1) x (n−2)... x ′ n! (n−1)! (n−2)!thenD n+1 = x ′ D n − 1n+1 x·D′ n .Show th<strong>at</strong> if d r = 1 d r lnx, then(r−1)! dx⎡⎤d 1 −1 0 ... 0x (n) d 2 d 1 −2 ... 0= det⎢⎥⎣ . . ⎦ xn .d n d n−1 d n−2 ... s 1VI.3.I Show th<strong>at</strong> if z is the composition of the smooth function x and y(i.e. z = x◦y), thenz (n) = det [ a ] .34


VI.3.J Let xbeafunctionwhich issmoothintheneighbourhoodofapointa and defineT n,a x(t) = x(a)+x ′ (a)(t−a)+···+ x(n) (a)(t−a) nn!(i.e. the Taylor <strong>approx</strong>im<strong>at</strong>ion to x of degree n). Show th<strong>at</strong> T n,a x(t) is equaltodet [ a ]and th<strong>at</strong>7 Complex numbersf(x)−T n,a f(x) = det [ a ] .7.1 Complex numbers and geometryVII.1.A Show th<strong>at</strong> if z 1 and z 2 are distinct complex numbers, then⎡ ⎤z ¯z 1det⎣z 1 z 1 1 ⎦ = 0z 2 z 2 1is the equ<strong>at</strong>ion of the straight line through z −1 and z 2 .VII.1.B Let z 1 , z 2 and z 3 be complex numbers all with absolute value 1and putShow th<strong>at</strong>s = z 1 +z 2 +z 3 (15)t = z 1 z 2 +z 2 z 3 +z 3 z 1 (16)p = z 1 z 2 z 3 . (17)• s 3 is the centroid of the triangle with vertices <strong>at</strong> z 1,z 2 and z 3 ;• orthocentre• circumcentreShow th<strong>at</strong> the Euler line of the trianlge is{z : z = ¯s z} = {z : Is¯z = 0}sand th<strong>at</strong> the nine-0nt circle has equ<strong>at</strong>ionz = 1 4 (z − s 2 )−1 + ¯s 2 .35


VII.1.C Let z 0 , z 1 and z 2 be distinct complex numbers and defineR(z 0 ,z 1 ,z 2 ) = z 2 −z 0z 1 −z 0.Show th<strong>at</strong> the numbers are col<strong>linear</strong> if and only if this is real. Similarly, wedefine CR(z 0 ,z 1 ;z 2 ,z 3 ) (the cross-r<strong>at</strong>io) of four distinct points to beR(y 0 ,y 1 ,y 2 )R(z 0 ,z 1 ,z 3 ) .Show th<strong>at</strong> this is real if andonly if the points lie on a circle or a straight line.VII.1.D Show th<strong>at</strong> if C is the circleaz¯b+bz +¯b¯z +c = 0then c is the power of 0 with respect to the circle. More generally, the poweraof w isw¯w+ b a w − ¯ba ¯w+ c a .Deduce th<strong>at</strong> the locus of the set of points with constant power with respectto a given circle is itself a circle. If C and C 1 are two circles, the locus ofthe points which have the same power with respect to C and C 1 is a straightline which passes through the intersection of C and C 1 (if they intersect).VII.1.E Let C be the circleand define the mapping φ by(z −a)(z −a) = r 2φ(z) = r2¯z −āi.e. φ(z) is the inverse of z in C. Show th<strong>at</strong>• C = {z ∈ C : φ(z) = z};• if z 1 , z 2 , z 3 , z 4 are points which are col<strong>linear</strong> with a, thenCR(z 1 ,z 2 ,z 3 ,z 4 ) = CR(φ(z 1 ),φ(z 2 ),φ(z 3 ),φ(z 4 ));• the mapping φ maps circles and straight line onto circles and straightlines;36


• a circle C 1 cuts C <strong>at</strong> right angles if and only if φ(C 1 ) = C 1 ;• if C 1 = φ(C 2 ) <strong>for</strong> two circles C 1 and C 2 , then a is a centre of similitude<strong>for</strong> C 1 and C 2 (i.e.);• if C 1 and C 2 are two circles which are not concentric and have distinctradii, then there is a circle C as above so th<strong>at</strong> C 2 = φ(C 2 ).VII.1.F Show th<strong>at</strong> if z 1 ,z 2 , z 3 and z 4 are complex numbers, then(z 1 −z 4 )(z 2 −z 3 )+(z 2 −z 4 )(z 3 −z 1 )+(z 3 −z 4 )(z 1 −z 2 ) = 0.Deduce th<strong>at</strong> if A, B, C and D are four points in the plane, then|AD||BC| ≤ |BD||CA|+|CD||AB.VII.1.G Let z 1 ,...,z n be points on the unit circle. Show th<strong>at</strong>∏|z i z j −1| ≤ n ni≠jwith equality if and only if the z i are the vertices of a regular n-gon.7.2 Complex numbers and qu<strong>at</strong>ernionscomplex numbers also allow an elegant approach to the theory of qu<strong>at</strong>ernionsas the next examples show:VII.2.A Consider the set ˜Q of ordered pairs (z,w) of complex numberswith the n<strong>at</strong>ural addition and multiplic<strong>at</strong>ion defied as follows:(z 0 ,w 0 )(z 1 ,w 1 ) = (z 0 z 1 −w 0 w 1 ,z 0 w 1 +z 1 w 0 ).Show th<strong>at</strong> they s<strong>at</strong>isfy all of the axioms of a field with the exception of thecommut<strong>at</strong>ivity of multiplic<strong>at</strong>ion (such structures are called skew fields).VII.2.B Showth<strong>at</strong>thereisan<strong>at</strong>uralisomorphismfromthesetQofqu<strong>at</strong>ernionsand the set ˜Q above whereby we map i onto (i,0), j onto (0,i) andkk onto ??VII.2.C A qu<strong>at</strong>ernion of the <strong>for</strong>m (x,0) (x ∈ R) is said to be real. Showth<strong>at</strong> a qu<strong>at</strong>ernion is real if and only if it commutes with all qu<strong>at</strong>ernions.37


VII.2.D A double number is a number z = x+ey whereby e 2 = 1. More<strong>for</strong>mally, the set of double nnumbers is R 2 provided with the multiplic<strong>at</strong>ionThen we defineRx = x Iz = y ¯z = x−ey z · ¯z = x 2 −y 2 .Show th<strong>at</strong>7.3 PolynomialsVII.3.A Suppose th<strong>at</strong> λ 1 , λ 2 and λ 3 are the roots of the cubicz 3 +pz 2 +qz +r = 0.Show th<strong>at</strong>Similarly, show th<strong>at</strong> if λ 1 ,...λ 4 are the roots ofthenz 4 +pz 3 +qz 2 +rz +s = 0VII.3.B Show th<strong>at</strong> the roots of the equ<strong>at</strong>ionare the vertices of a regular n-gon ifa 0 z n +a 1 z n−1 +···+ n = 0n k a k a k−10 =( nk)a k 1<strong>for</strong> ???? Wh<strong>at</strong> are the special conditions <strong>for</strong> the case n = 1?VII.3.C Show th<strong>at</strong> if p and q are polynomials with leading coefficients 1where f is of degree with distinct zero λ 1 ,...,λ n and g has degree n − 1,then ∑g(λi )f ′ (λ j ) = 1.38


VII.3.D Consider the polynomialwith zeroes λ 1 ,...,λ n andShwo th<strong>at</strong> if z is a zero of p, thenp(z) = z n +a 1 z n−1 +···+a np ∗ (z) = z n +a ∗ 1 zn−1 +···+a ∗ n .|z| ≤ max{1, ∑ |a k |}.Show th<strong>at</strong> if z ∗ is a root of p of multiplicity m and if ǫ > 0, then there isa δ > 0 so th<strong>at</strong> if max|a n − a ∗ n| < δ, then p has m roots within ǫ of z ∗ .(Suppose th<strong>at</strong> p k → p and th<strong>at</strong> p k has less than m roots within ǫ of z ∗ . Usethe fact taht the roots are bounded and so have a convergent subsequence toget a contradiction.8 Eigenvalues, diagonalis<strong>at</strong>ion8.1 Eigenvalues of concrete m<strong>at</strong>ricesVIII.1.A Let A be a complex n×n m<strong>at</strong>rix of the <strong>for</strong>m⎡⎤a 1 0 ... 0 b 10 a 2 ... b 2 0⎢⎥⎣ . . ⎦0 ... 07 nb ni.e. where a ij = 0 if i+j ≠ n+1 and i−j ≠ n+1. Calcul<strong>at</strong>e the eigenvaluesof A. For which values of the a’s and b’s do its eigenvectors span C n ?VIII.1.B Wh<strong>at</strong> are the eigenvalues of the m<strong>at</strong>rix⎡⎤2a b 0 0 7... 0b 2a b 0 ... 0⎢⎥⎣ . . ⎦0 0 0 ... b 2aVIII.1.C Find the eigenvalues of the m<strong>at</strong>rix A = [a ij ] where a ij = k ik j<strong>for</strong>a suitable sequence k 1 ,...,k n of non-zero numbers.39


8.2 Difference equ<strong>at</strong>ionsThe method of diagonalising a m<strong>at</strong>rix can be used to give an elegant tre<strong>at</strong>mentofsomeproblemsinvolvingthedifferenceequ<strong>at</strong>ions—<strong>for</strong>example, questionsinvolving the Fibonacci numbers. We bring some examples of a similarn<strong>at</strong>ure.VIII.2.A Show th<strong>at</strong> there is precisely one sequence (a n ) of non-neg<strong>at</strong>ivenumbers which s<strong>at</strong>isfies the recursion rel<strong>at</strong>iona 1 = 1 and a n+2 = a n −a n+1 .VIII.2.B Let (x n ) be a given sequence. For k > o, define a new sequenceby the rel<strong>at</strong>ionsy 1 = x 1 (18)y n = kx n +x n−2 (n ≥ 2). (19)<strong>for</strong> which k do we have the following: the sequence (y n ) is convergent if anonly if (k n ) is?VIII.2.C Show th<strong>at</strong> if f n is the n-th Fibonacci number, thenf 3 n+1 +f3 n +f4 n−1 = f 3n (20)f 3 n+2 −3f3 n +f3 n−2 =?f 3n. (21)VIII.2.D Outline a method <strong>for</strong> solving the difference equ<strong>at</strong>ionApply it to the equ<strong>at</strong>ionx n = a 1 x n−1 +a 2 x n−2 +···+a k x n−k .x n+1 = x n +x n−1 +···+x n−k+1 .VIII.2.E Define a sequence (t n ) by puttingt 1 = 2,t 2 = 3,t 2n =??Show th<strong>at</strong> t 2n = βn−αn , t2 2n+1 = 2β n + 3αn where the α2 n and the β n are defineby the rel<strong>at</strong>ionships [ ]2 1α n I +β n A =2 1where A =??.40


VIII.2.F Asequence (x n ) offunctions isdefined by therecurrence rel<strong>at</strong>ion:x n (t) = tx n−1 (t)+x n−2 (t).Show th<strong>at</strong>x 2 n (t) ≤ (t2 +1) 2 (t 2 +2) n−3 .8.3 Loc<strong>at</strong>ion of eigenvaluesFor some applic<strong>at</strong>ions it is important to have a priori estim<strong>at</strong>es <strong>for</strong> theeigenvalues of a m<strong>at</strong>rix (i.e. estim<strong>at</strong>es involves the elements of the m<strong>at</strong>rix).We bring two such estim<strong>at</strong>es:VIII.3.A Show th<strong>at</strong> if A is an n×n complex m<strong>at</strong>rix, then its eigenvalueslie in the set: ⋃{λ ∈ C;|λ−a ii | ≤ ∑ |a ij |.ij≠iVIII.3.B Show th<strong>at</strong> if A is a real n×n m<strong>at</strong>rix, then its eigenvalue λ s<strong>at</strong>isfythe inequality|Iλ| ≤ n(n−1)1/22max |a ij −a ji | 1/2 .1≤i,j≤n(This is a quantit<strong>at</strong>ive version of the fact th<strong>at</strong> the eigenvalues of a symmetricm<strong>at</strong>rix are real).8.4 GeneralWe close this Chapter with some general properties of eigenvalues:VIII.4.A Show th<strong>at</strong> if A is a complex N×n m<strong>at</strong>rix and λ is an eigenvalue,then it is also an eigenvalue of adjA. Show th<strong>at</strong>χ adjA (λ) = (−1) n λndetA χ A( detAλ )and th<strong>at</strong> if λ is not an eigenvalue of A, thentr(λI −A) −1 = χ′ A (λ)χ A (λ) .41


VIII.4.B Show th<strong>at</strong> if A is an n×m m<strong>at</strong>rix and B is an m ×n m<strong>at</strong>rix,thenλ m χ AB (λ) = λ n χ BA (λ).Wh<strong>at</strong> can you deduce about the rel<strong>at</strong>ion between the eigenvalues of AB andthose of BA?VIII.4.C Show th<strong>at</strong> if A has a block represent<strong>at</strong>ion[ ]B C0 Dwhere B and C are square, then λ is an eigenvalue of A if and only if it isan eigenvalue of B or of D.VIII.4.D Let A be an n × n m<strong>at</strong>rix, X a 1 × n and Y an n ×1 m<strong>at</strong>rix.Show th<strong>at</strong> the m<strong>at</strong>rix [ ]A −AYB =−XA XAYis singular.Show th<strong>at</strong> if detA = 0, then 0 is an eigenvalue of multiplicity <strong>at</strong> leasttwo of the above m<strong>at</strong>rix.VIII.4.E Let P and Q be n × n m<strong>at</strong>rices, where we assume th<strong>at</strong> P isnon-singular and th<strong>at</strong> A has distinct eigenvalues. Show th<strong>at</strong> the polynomialsdet(λI−Q) and det(λP −PQ) have the same non-zeroes. Hence give a newproof of the fact th<strong>at</strong>det(PQ) = detQ·detQ.Show th<strong>at</strong> the l<strong>at</strong>ter equ<strong>at</strong>ion can be extended to general P and Q by usinga continuity argument.VIII.4.F Suppose th<strong>at</strong> A is ann×n m<strong>at</strong>rix with rankr. Then aswe know,A can be expressed as a product BC whereB = [ B 1 0 ],C =[C10where B 1 is an n×r m<strong>at</strong>rix and C 1 is r×n. Show th<strong>at</strong>]χ A (λ) = λ n−r χ D (λ)where D = C 1 B 1 . Use this to calcul<strong>at</strong>e χ A where A = [b i c j ].42


VIII.4.G LetX = [ X 1 ... X n]be a non-singular n×n complex m<strong>at</strong>rix (i.e. the X are the columns of X)and putY = [ X 2 X 3 ... X n 0 ]Show th<strong>at</strong> Y X −1 has rank n−1 and th<strong>at</strong> 0 is its only eigenvalue. Show th<strong>at</strong>if A is a m<strong>at</strong>rix with rank n−1 and 0 as its only eigenvalue, then it has theabove <strong>for</strong>m.VIII.4.H Let A andB be fixed n×n m<strong>at</strong>rices. Show th<strong>at</strong> there is a m<strong>at</strong>rixX so th<strong>at</strong>X 2 −2AX +B = 0provided th<strong>at</strong> the m<strong>at</strong>rix [has 2n distinct eigenvalues.A IA 2 −B A]VIII.4.I Let A and B be fixed n×n m<strong>at</strong>rices. Show th<strong>at</strong> the oper<strong>at</strong>orΦ : X ↦→ AX +XBis a <strong>linear</strong> oper<strong>at</strong>or on M n with eigenvalues {λ i +µ j } where {λ i } resp. {µ j }are the eigenvalues of A resp. B. Deduce a criterium <strong>for</strong> Φ to be invertible.VIII.4.J Show th<strong>at</strong> if A and B are commuting n×n m<strong>at</strong>rices and p is apolynomial in two variables, then the eigenvalues of p(A,B) are the numbersp(λ j ,µ j ) <strong>for</strong> some numbering λ 1 ,...,λ n resp., µ 1 ,...,µ n of the eigenvaluesof A and B.VIII.4.K Let A and B be complex n × n m<strong>at</strong>rices so th<strong>at</strong> AB = ωBAwhere ω is the primitive q-th root of unity. Show th<strong>at</strong> if λ is an eigenvalueof A with eigenvector X so th<strong>at</strong> BX ≠ 0, then ωλ is an eigenvalue of B.Show th<strong>at</strong> the eigenvalues of A resp. B can be numbered as λ 1 ,...,λ nresp. µ 1 ,...,µ n in such a way th<strong>at</strong> the eigenvalues of A+B resp. AB are{(λ q i +µq i )1/q : i = 1,...,n}resp.{ω q−12 λi µ i : i = 1,...,n}.43


9 The Jordan <strong>for</strong>m9.1 The functional calculusOne of the most fundamental consequences of the existence of the Jordan<strong>for</strong>m is the fact th<strong>at</strong> every oper<strong>at</strong>or f has a unique represent<strong>at</strong>ion f = d+nwhere d is diagonalisable, n is nilpotent and d and n commute. The if x is afunction which is such th<strong>at</strong> ???? we definex(f) = ∑ kn∑ (f −λ k Id) rx (r) (λ k )E(λ k ) =r!r=0n∑∫x (r) (λ)Edλ.r=1σ(T)IX.A.1 Show th<strong>at</strong> if the eigenvalues of f are distinct, thenx(f) = ∑ kx(λ k ) ∏ k≠jf −λ j Idλ k −λ j.IX.A.? A particularly important case is th<strong>at</strong> where x is the exponentialfunction, when we writee f resp. e A <strong>for</strong>thecorresponding oper<strong>at</strong>oror m<strong>at</strong>rix.Show th<strong>at</strong> if A has precisely one eigenvalue λ, thene A = e λ n∑k=01k! (A−λI)k .Show th<strong>at</strong> if A has n distinct eigenvalues λ 1 ,...,λ n , thene A = ∑ e λ kL k (A)whereL k (t) = ∏ j≠kt−λ jλ k −λ j.Use this to calcul<strong>at</strong>e e A whereresp.A =A =[cosθ −sinθsinθ cosθ[cosθ sinθsinθ −cosθresp. e D where D is the differenti<strong>at</strong>ion oper<strong>at</strong>or on Pol(n).44]]


IX.A.? Verify the following identities:• e A+B = e A ·e B when A and B commute;• d dt etA = A·e tA ;• e A = lim n→∞ (I + A n )n ;• det(expA) = exp(trA).IX.A.4 Show th<strong>at</strong> if all of the entries of A (with the possible exception ofthe diagonal ones) are positive, then all of the entries of e A are positive.IX.A.5 Show th<strong>at</strong> if A is an n×n m<strong>at</strong>rix such th<strong>at</strong> A 2 = −I, thenUse this to solve the equ<strong>at</strong>ione tA = I cost+A ∈ t.y ′′ +y = 0.IX.A.6 Show th<strong>at</strong> the general solution of the equ<strong>at</strong>iondXdt= AX +Bwhere B is a continuous mapping <strong>for</strong>m R into M n,1 with initial conditionX(0) = x 0 is given by the equ<strong>at</strong>ionX(t) =use this to solve the system∫ t0e (t−s)A B(s)ds+e tA X 0 .dxdt = y− 12 + e−3t (22)dy= −x+ 7y− 20z (23)dtdz= x− −5z +cost. (24)dt45


IX.A.7 If A is an n×n m<strong>at</strong>rix, define functions a ij by the equ<strong>at</strong>ionShow th<strong>at</strong>e tA = [a ij (t)].χ A (D)a ij (t) = 0where D is the differenti<strong>at</strong>ion oper<strong>at</strong>or.(This reduces the calcul<strong>at</strong>ion of e tA to the solution of the differentialequ<strong>at</strong>ionsχ A (D)G(t) = 0with initial conditionsG(0) =), G ′ (0) = A,...,G (n−1 (0) = A n−1 .Use this to calcul<strong>at</strong>e e tA where⎡A = ⎣−2 −1 −16 3 2471 3⎤⎦.9.2 MiscellaneousWe conclude with a number of theoretical exercises where the Jordan <strong>for</strong>mcan be used to advantage:IX.C.1 Let A be an n×n m<strong>at</strong>rix with characteristic polynomial(−1) n χ A (λ) = λ n +a 1 λ n−1 +···+a n .Show th<strong>at</strong>a k = − 1 k (a k−1S 1 +a k−2 S 2 +···+S k )where S k = tr(A k ). (This provides an algorithm <strong>for</strong> calcul<strong>at</strong>ing the coefficientsof the characteristic polynomial without computing determinants).IX.C.2 If p is a polynomial of degree n, sayp(λ) = λ n +a 1 λ n−1 +···+a nwe put⎡A = ⎢⎣⎤0 1 0 ... 00 0 1 ... 0⎥.. ⎦ .−a n n −a n−1 −a n−2 ... −a 146


Aiscalled thecompanion m<strong>at</strong>rix ofp. Showth<strong>at</strong> itscharacteristic polynomialis p and calcul<strong>at</strong>e a Jordan <strong>for</strong>m <strong>for</strong> A. (consider first the special caseswhere the eigenvalues of A (i.e. the zeroes of p) are distinct, respectivelywhere they all coincide. Show how to use this result to solve the differentialequ<strong>at</strong>ion p(D)x = 0.IX.C.3 LetAbeafixedn×nm<strong>at</strong>rix. Wh<strong>at</strong>isthecharacteristicpolynomialof the mappingB ↦→ ABon M n ?IX.C.4 Characterisethesetofallm<strong>at</strong>riceswhichcommutewiththeJordanm<strong>at</strong>rix J n (λ) resp. those m<strong>at</strong>rices which commute with all m<strong>at</strong>rices whichcommute with J n (λ). Use this to show th<strong>at</strong> a m<strong>at</strong>rix B is of the <strong>for</strong>m p(A)where A is a fixed n×n m<strong>at</strong>rix if and only if B commutes with every m<strong>at</strong>rixwhich commutes with A.IX.C.5 Let λ be an eigenvalue of the oper<strong>at</strong>or f on V. DefineE λ = ⋃ kKer(f −λI) k .Wesayth<strong>at</strong>thenon-zerovector xinV isap-eigenvector off if(f−λI) p (x) =0but(f−λI) p−1 (x) ≠ 0. Showth<strong>at</strong>xisthenapeigenvector <strong>for</strong>f −1 providedth<strong>at</strong> the l<strong>at</strong>ter exists.IX.C.6 Let A be an n×n m<strong>at</strong>rix with distinct10 Euclidean spacesX.1.A Show th<strong>at</strong> if x,y,z are vector in a euclidean space, then‖x+y +z‖+‖x‖+‖y‖+‖z‖ ≥ ‖x+y‖+‖y +z‖+‖z +x‖.X.1.B Show th<strong>at</strong> if (a 1 ,...,a n ) is a sequence of non-neg<strong>at</strong>ive numbers,thenn∑ ( ai) 2n∑ a i a j ≤i i+j .i=1 i,j=147


X.1.C Show th<strong>at</strong> if a 1 ≥ 0··· ≥ a n ≥ 0, then ∑ kj=1∑ kj=1 b j implies th<strong>at</strong>∑ nj=1 a2 j j = 1n b 2 j .X.1.D Show th<strong>at</strong> if (ξ i ) and (η i ) are vectors in R n , then( ∑ ξi 2 )(∑ ηi 2 )−(∑ ξ i η i ) 2 = ∑(ξ i η j −ξ j η i ) 2 .i≤i

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!