12.07.2015 Views

Radiative Neutrino Mass Generation and Dark Matter - Institute for ...

Radiative Neutrino Mass Generation and Dark Matter - Institute for ...

Radiative Neutrino Mass Generation and Dark Matter - Institute for ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

OutlineOutline1 Introduction2 <strong>Neutrino</strong> <strong>Mass</strong> <strong>Generation</strong>3 <strong>Dark</strong> <strong>Matter</strong>4 A Concrete Model of <strong>Radiative</strong> SeesawConstraintsCoannihilation Effect of DMDirect Detection of (Leptophilic) DM5 Further Extension of <strong>Radiative</strong> SeesawSUSY with anomalous U(1)Indirect detection of DM with flavor symmetry6 SummaryTakashi Toma (IPPP) Internal Seminar 7th June 2013 2 / 34


<strong>Neutrino</strong> <strong>Mass</strong> <strong>Generation</strong><strong>Neutrino</strong> <strong>Mass</strong> <strong>Generation</strong> at Tree LevelInverse seesaw mechanismSmall lepton number violation (L/) → light neutrino masses.Three singlets S L are added.L = −ν L m D N R −NR cMSL c − 1 2 S LµSLc<strong>Mass</strong> matrix⎛0 m D 0⎝ mDT 0 M0 M T µ⎞⎠ →m ν ∼ m D M −1 µM T−1 m T D(if µ ≪ m D , M)Typical scale of µ is keV.M ∼ 10 TeV, m D ∼ 100 GeV → m ν ∼ 0.1 eV.Note : generally 1 2 N cR µ′ N R also exists.Takashi Toma (IPPP) Internal Seminar 7th June 2013 5 / 34


<strong>Neutrino</strong> <strong>Mass</strong> <strong>Generation</strong>Examples of ModelsExamples of ModelsZee modelSU(2) L U(1) Yφ 2 2 1h + 1 1· neutrino mass (1-loop level)Ma modelSU(2) L U(1) Y Z 2N i 1 0 −1η 2 1/2 −1· neutrino mass (1-loop level)· DM c<strong>and</strong>idates (N 1 or η 0 )V = µφ T 1 φ 2h −V = λ 52(φ † η ) 2Takashi Toma (IPPP) Internal Seminar 7th June 2013 7 / 34


<strong>Dark</strong> <strong>Matter</strong><strong>Dark</strong> <strong>Matter</strong>Takashi Toma (IPPP) Internal Seminar 7th June 2013 9 / 34


<strong>Dark</strong> <strong>Matter</strong>Nature of DM· stable (or long lifetime)· non-relativistic particle· electrically neutral· no electromagnetic interaction (at tree level)DM c<strong>and</strong>idateIn order to include DM we have to stabilize a particle.→ Z 2 parity· Neutralino, Lightest KK Particle, Right-h<strong>and</strong>ed neutrino,Gravitino, Axion etc..Takashi Toma (IPPP) Internal Seminar 7th June 2013 10 / 34


<strong>Dark</strong> <strong>Matter</strong>DM Thermal ProductionDM Thermal ProductionY = n/sDM number density is determined by decoupling from thermalbath in the universe.Number density follows the Boltzmann equation.dYdz = −ΓY eqHz[ ( YY eq) 2−1], z ≡ m T , Γ ≡ 〈σv〉n eq, Y ≡ n sapproximate solutionΩh 2 ≈ 1.04×109 [GeV −1 ]√g∗ m pl 〈σv〉= 0.12 (Planck)z = m/T↔ 〈σv〉 ≈ 3×10 −26 [cm 3 /s]= 3×10 −9 [GeV −2 ]Takashi Toma (IPPP) Internal Seminar 7th June 2013 11 / 34


<strong>Dark</strong> <strong>Matter</strong>Non-thermal ProductionNon-thermal production of DM arXiv:0810.4147· a metastable particle (χ 2 ) decays into DM (χ 1 )· simuletaneous Boltzmann equationdY 1dzdY 2dz= − Γ A1Y 1eqHz= − Γ A2Y 2eqHz[ ( ) ] 2 Y1−1Y 1eq[ ( ) ] 2 Y2−1Y 2eq+N decΓ 2Hz Y 2− Γ 2Hz Y 210 0 10 -2 10 0 10 2 10 4 10 6 10 8Y i = n i (z)/s(z)10 -210 -410 -610 -810 -1010 -1210 -1410 -16z = m 1 /TY 1Y 1eqY 2χ 2 → N dec χ 1 +XY 2eq〈σv〉 > 3×10 −26 [cm 3 /s]m 1 = 130 [GeV]m 2 = 300 [GeV] = 3.0x10 -25 [GeV -2 ] = 3.0x10 -26 [GeV -2 ]Γ 2 = 1.0x10 -24 [GeV]Γ −12 0.1 sExplaination of the positron<strong>and</strong> gamma-ray excess incosmic-ray observations?Takashi Toma (IPPP) Internal Seminar 7th June 2013 12 / 34


Concrete ModelA Concrete Model of <strong>Radiative</strong> SeesawTakashi Toma (IPPP) Internal Seminar 7th June 2013 13 / 34


Concrete ModelInteractions <strong>and</strong> <strong>Neutrino</strong> <strong>Mass</strong>esThe Simplest Model (Ma Model)New particlesSU(2) L U(1) Y Z 2N i 1 0 −1η 2 1/2 −1Interactions<strong>Neutrino</strong> mass generation at1-loop levelInclude DM c<strong>and</strong>idatesN 1 <strong>and</strong> η 0L = (D µ η) † (D µ η)+N i i∂/N i − M i2 Nc i N i +h αi l α η † N i +h.c.−V (φ,η)V (φ,η) = mφ 2 |φ|2 +mη|η| 2 2 + λ 12 |φ|4 + λ 22 |η|4)( )+λ 3 |φ| 2 |η| 2 +λ 4(φ † ηη † φ+ λ 52〈η〉 = 0 is assumed.φ <strong>and</strong> η do not mix after the symmetry breaking.assumed that new particles are less than a few TeV.[ ( 2 ( ) ] 2φ η) † + η † φTakashi Toma (IPPP) Internal Seminar 7th June 2013 14 / 34


Concrete Model<strong>Neutrino</strong> <strong>Mass</strong>esη 0 split after electroweak symmetry breaking.η 0 = 1 √2η R + i √2η I , mass eigenstates (η R ,η I )(m ν ) αβ=3∑ h αi h βi M i[mR2(4π) 2 mR 2 −M2 ii=1) m2log(RMi2 −∼ ( hΛh T) αβΛ = diag(Λ 1 ,Λ 2 ,Λ 3 )m 2 Im 2 I−M 2 i)] m2log(IMi2When λ 5 ≪ 1, m 2 R ≈ m2 I = M 2 η3∑ 2λ 5 h αi h βi 〈φ 0 〉 2 ( ) M2(m ν ) αβ≃(4π) 2 I iMi=1 iMη2I(x) = x (1+ x logx )1−x 1−xTakashi Toma (IPPP) Internal Seminar 7th June 2013 15 / 34


Concrete ModelConstraintsThe parameters are constrained by various aspects.<strong>Neutrino</strong> mass scale m ν ∼ 10 −1 eV<strong>Neutrino</strong> mixingU T PMNS m νU PMNS = diag(m 1 ,m 2 ,m 3 )Lepton flavor violation (LFV)µ → eγ : Br(µ → eγ) ≤ 2.4×10 −12 → 5.7×10 −13 (now)µ → 3e?Thermal relic density of DM· N 1 is assumed to be DM here.· Leptophilic DM.· degenerated with N 2 .Takashi Toma (IPPP) Internal Seminar 7th June 2013 16 / 34


Concrete ModelConstraintsTo derive the neutrino mass scale(λ 5 h 210 −11 ∼ M √ )i ∆m 2〈φ〉 0.05 eVThe structure of the neutrino mass matrix is determined by theYukawa matrix h αi .The flavor structure:⎛ ⎞ǫ 1 ǫ 2 h 3′h αi = ⎝ h 1 h 2 h 3⎠, ǫ i ≪ h ih 1 h 2 −h 3ǫ i are understood as deviations from the Tri-bimaximal mixing.→ sin 2 θ 12 = 1 3 +ǫ, sin2 θ 23 = 1 2 +ǫ′ , sin 2 θ 13 = 0+ǫ ′′ .U T PMNS m νU PMNS = diag(m 1 ,m 2 ,m 3 )Takashi Toma (IPPP) Internal Seminar 7th June 2013 17 / 34


Concrete ModelConstraintsConstraints from LFVBr(l α → l β γ) = 3α em64πG 2 F M4 η3∑∣i=1The experimental boundsBr(µ → eγ) < 2.4×10 −12Br(τ → µγ) < 4.4×10 −8Br(τ → eγ) < 3.3×10 −8( Mhαi ∗ 2) ∣ 2h i ∣∣∣βiF 2Mη2 Br(l α → l β ν α ν β )where Br(µ → eν µ ν e ) ≃ 1, Br(τ → µν τ ν µ ) ≃ 0.174,Br(τ → eν τ ν e ) ≃ 0.178.→ Yukawa couplings h αi should be small.orSpecial structure of Yukawa matrix.Takashi Toma (IPPP) Internal Seminar 7th June 2013 18 / 34


Concrete ModelConstraintsConstraint from DM Relic DensityThe lightest right-h<strong>and</strong>ed neutrino N 1 is assumed to be DMc<strong>and</strong>idate.The channel: N 1 N 1 → l α l β (t, u-channel)Expansion in terms of v 2 , σv = a+bv 2 +O(v 4 )Fermionic DM is often suppressed by chiral suppression.The annihilation cross section has no s-wave due to chiralsuppression.σv =τ∑α=e|h α1 | 424πM 2 1(M41 +M 4 η)( )M21 +Mη2 4v 2 ∝ v 2→ the Yukawa couplings h αi should be large.Takashi Toma (IPPP) Internal Seminar 7th June 2013 19 / 34


Concrete ModelCoannihilation of DMCoannihilation of DMIf N 2 is degenerated with N 1 (M 1 ≈ M 2 ), they can coannihilate:The effective annihilation cross section σ eff includesN 1 N 2 → l α l β , N 2 N 2 → l α l β .s-wave appears due to the coannihilation processN 1 N 2 → l α l β if the Yukawa h αi are complex.σ eff v = a eff +b eff v 2 , a eff ∝ Im(h ∗ 1h 2 ) ≠ 0.→ It is possible to be consistent with LFV <strong>and</strong> DM relic abundance.Takashi Toma (IPPP) Internal Seminar 7th June 2013 20 / 34


Concrete ModelAllowed parameter region from<strong>Neutrino</strong> mass <strong>and</strong> mixing Perturbativity |h i | < 1.5LFVDM relic abundance Ωh 2 = 0.12ξ ≡ Im(h ∗ 1 h 2)A: 2.00 < M η /M 1 < 9.80B: 1.20 < M η /M 1 < 2.00C: 1.05 < M η /M 1 < 1.20D: 1.00 < M η /M 1 < 1.051 DM mass 3 TeVTakashi Toma (IPPP) Internal Seminar 7th June 2013 21 / 34


Concrete ModelDirect Detection of DMDirect DetectionDetection RatedRdE R= ∑ nuclei∫ρ ⊙ 1m DM m detNuclei are made of quarks.→ Interactions with quarks areimportant.Many direct detectionexperiments are per<strong>for</strong>med.XENON100, CDMSII, DAMA,CoGeNT, CRESST, KIMS etc.v>v mindσdE Rvf ⊙ (v+v e )d 3 vdσ/dE R : cross section (Particle physics dependence)ρ ⊙ , v: DM local density, velocity (Astrophysics dependence)Takashi Toma (IPPP) Internal Seminar 7th June 2013 22 / 34


Concrete ModelDirect Detection of DMElastic scattering N 1 A → N 1 A is highly suppressed.Scattring with nuclei occurs inelastically in the model likeN 1 A → N 2 A.We need the effective coupling of N 1 N 2 γ.N 2γ ∗ =N 2γ ∗ +N 2η +l αl αl αη +η +γ ∗N 1N 1(L eff = ia 12 N 2 γ µ N 1 ∂ ν µ12)F µν +i N 2 σ µν N 1 F µν +ic 12 N 2 γ µ N 1 A µ2There are three types of interactions. a 12 , µ 12 , c 12 ∝ ξ ≡ Im(h2 ∗h 1)→ Charge int. a 12 <strong>and</strong> c 12 , Dipole int. µ 12 .N 1Takashi Toma (IPPP) Internal Seminar 7th June 2013 23 / 34


Concrete ModelDirect Detection of DMScattering with nucleiN 1l −N 2N 1η +N 2η + η +l −l −γγAAAAInelastic Scattering with nuclei occurs when δm 100 keVPhoton has small transter energy E R .Three types of cross sections are obtained.Charge-Charge coupling: σ CC ∼ (a 12 +c 12 ) 2 Z 2Dipole-Charge coupling: σ DC ∼ µ 2 12 Z2Dipole-Dipole coupling: σ DD ∼ µ 2 12 µ2 Nσ CD is suppressed.Takashi Toma (IPPP) Internal Seminar 7th June 2013 24 / 34


Concrete ModelDirect Detection of DMComparison of the couplings <strong>for</strong> M η /M 1 = 1.5CC coupling is dominant <strong>for</strong> rather small mass range.DD coupling is larger than DC coupling <strong>for</strong> DAMA <strong>and</strong> KIMS.→ dependence of µ NTakashi Toma (IPPP) Internal Seminar 7th June 2013 25 / 34


Concrete ModelDirect Detection of DMδ = 0 keVδ = 40 keVThe inelastic cross section (CC coupling) is enhanced if DM <strong>and</strong>η are highly degenerated (light blue region).→ the behavor of the loop function in the effective couplings.Enhanced by a 12 ∝ M2 1m 2 lwhen M 1 ≈ M ηSome parameter space can be investigated by XENON1T.Takashi Toma (IPPP) Internal Seminar 7th June 2013 26 / 34


Extensions of <strong>Radiative</strong> SeesawExtensions of <strong>Radiative</strong> SeesawTakashi Toma (IPPP) Internal Seminar 7th June 2013 27 / 34


Extensions of <strong>Radiative</strong> Seesaw1. Supersymmetry with anomalous U(1) AA pair of inert Higgs η u <strong>and</strong> η d is required.Break gauge coupling unification at GUT scale because ofadditional inert Higgs doublets ηU(1) A anomaly cancellation by Green-Schwarz mechanismδL = − g2 A TrQ A32π 2 α(x)ǫ µνρσ F µν F ρσL = aǫ µνρσ F µν F ρσ , a → a+δ GS α(x)Remain accidental Z 2 parity after the U(1) A breakingTakashi Toma (IPPP) Internal Seminar 7th June 2013 28 / 34


Extensions of <strong>Radiative</strong> SeesawInteresting featuresZ 2 is softly broken → metastable DMlifetime is determined by charge assignment of U(1) Aτ ∝ exp(δ −1GS ), δ GS = TrQ A48π 2We have Multi-component DM (R-parity <strong>and</strong> softly broken Z 2 )Neutralino <strong>and</strong> the lightest Z 2 odd particle.The positron excess of AMS-02 <strong>and</strong> PAMELA is explained bythe decay of DM.l αψ N1¯l βχTakashi Toma (IPPP) Internal Seminar 7th June 2013 29 / 34


Extensions of <strong>Radiative</strong> Seesaw2. Flavor SymmetryIntroduce flavor symmetry to derive neutrino mixing.θ 12 = 34 ◦ , θ 23 = −45 ◦ , θ 13 = −9 ◦DM decay channel is also controlled by the symmetry.Allowed interaction of DMs X <strong>and</strong> X ′Decay rateL = λ XΛ 2LLEc X c + λ X ′Λ 2 LLEc X c′dΓ Xdx = |λ X| 2 m 5 X48(4π) 3 Λ 4x2 (21−16x), x = 2E em XΓ X = |λ X| 2 m 5 X16(4π) 3 Λ 4Takashi Toma (IPPP) Internal Seminar 7th June 2013 30 / 34


Extensions of <strong>Radiative</strong> SeesawPositron flux from DMdΦdE =v e ρ(r)4πb(E)m X∫ mX /2EAstrophysical dependences are in I(E,E ′ )e + /(e + +e - ) [GeV -1 cm -2 s -1 sr -1 ]10 0 10 0 10 1 10 2 10 310 -110 -2arXiv:1304.2680PAMELAAMS-02BackgroundBackground + <strong>Dark</strong> <strong>Matter</strong>E [GeV]dE ′dΓ XdE ′ I(E,E′ )small dump around 120 GeVe : µ : τ = 1 : 1 : 1 becauseof the flavor symmetryTwo-component DMBest fit :m X = 244 GeV, Γ X = 1.2×10 28 s.m X ′ = 1360 GeV, Γ X ′ = 2.4×10 27 s.Takashi Toma (IPPP) Internal Seminar 7th June 2013 31 / 34


SummarySummary1 The SM should be extended to include neutrino masses <strong>and</strong> DM.2 In some <strong>Radiative</strong> Seesaw models, neutrino masses <strong>and</strong> DM arerelated.3 Coannihilation plays an important role to be consistent with allthe constraints.4 Due to small mass difference between N 1 <strong>and</strong> N 2 , inelasticscattering between DM <strong>and</strong> nuclei is possible even if the DM isleptophilic.Takashi Toma (IPPP) Internal Seminar 7th June 2013 32 / 34


Future WorksFuture Works1 Gamma-ray from DM annihilation.E 2 · dJ/dE [GeV/cm 2 /s/sr]10 -510 -610 -710 0 10 1 10 2E [GeV]Required cross section :σv ∼ 10 −27 [cm 3 /s]↔ relic density of DMσv ∼ 10 −26 [cm 3 /s]Large cross section is required ↔ DM relic density2 Lepton Flavor Violation µ → 3e.When Yukawa coupling is large enough, µ → 3e can be largerthan µ → eγ→ <strong>Radiative</strong> Seesaw or Inverse Seesaw3 The other extensions of the SM.(model building of new radiative seesaw)Takashi Toma (IPPP) Internal Seminar 7th June 2013 33 / 34


Thank you <strong>for</strong> your attention!Takashi Toma (IPPP) Internal Seminar 7th June 2013 34 / 34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!