12.07.2015 Views

Earth's Magnetism in the Age of Sail - USGS Geomagnetism Program

Earth's Magnetism in the Age of Sail - USGS Geomagnetism Program

Earth's Magnetism in the Age of Sail - USGS Geomagnetism Program

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

358 Book reviewsdon over several decades, <strong>the</strong> English ma<strong>the</strong>matician,Henry Gellibrand (1635), announced that magneticdecl<strong>in</strong>ation changes with time. Specifically, Gellibrandfound that <strong>the</strong> decl<strong>in</strong>ation at London was decreas<strong>in</strong>gby ∼ 0.13 ◦ per year. This observation was soonconfirmed by o<strong>the</strong>rs, and, <strong>in</strong> 1676, Henry Bond, anEnglish ma<strong>the</strong>matician and navigational teacher, proposeda dynamic magnetic longitude scheme based ona precess<strong>in</strong>g dipole, with <strong>the</strong> magnetic poles slowlyand steadily migrat<strong>in</strong>g <strong>in</strong> a westward direction about<strong>the</strong> geographic poles (Howarth, 2002; Jonkers, 2003,pp. 85–89). This model became deeply embedded <strong>in</strong><strong>the</strong> navigational literature, even though gross discrepancieswith data were almost immediately noted. Moregenerally, what was develop<strong>in</strong>g was a rout<strong>in</strong>e expectation<strong>of</strong> consistency between <strong>the</strong> models and <strong>the</strong>, nowquite obvious, secular variation.8. Time-dependent, multiple polesAfterwards, time-dependent, multipolar modelswere proposed. Most prom<strong>in</strong>ent among <strong>the</strong>se werethose proposed <strong>in</strong> by Edmond Halley (Halley, 1683,1692), <strong>the</strong> English astronomer whose name is mostcommonly associated with <strong>the</strong> comet that bears hisname, but who also made substantial contributions togeophysics (e.g., Bullard, 1956). Extrapolat<strong>in</strong>g fromhis own observations on <strong>the</strong> effects <strong>of</strong> two or morelodestones, Halley modelled geomagnetic directionality<strong>in</strong> terms <strong>of</strong> four poles, two <strong>in</strong> <strong>the</strong> crust and twoanchored to an <strong>in</strong>terior “ball”, nei<strong>the</strong>r <strong>of</strong> which hadantipodal symmetry. Halley supposed that <strong>the</strong> <strong>in</strong>teriorball was separated from <strong>the</strong> overly<strong>in</strong>g crust, and thatit could rotate with respect to <strong>the</strong> surface, <strong>the</strong>rebyproduc<strong>in</strong>g <strong>the</strong> observed secular variation <strong>of</strong> decl<strong>in</strong>ation(Kollerstrom, 1992; Jonkers, 2003, pp. 90–95).Although different <strong>in</strong> detail from what we knowtoday about <strong>the</strong> Earth’s stratified <strong>in</strong>terior, Halley’shypo<strong>the</strong>sis was certa<strong>in</strong>ly remarkable for its time.These conceptual developments did not, however,occur <strong>in</strong> a vacuum. Halley was well aware <strong>of</strong>observations <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong> global decl<strong>in</strong>ationfunction was both geographically complicated andtime-dependent. Fur<strong>the</strong>rmore, <strong>the</strong>re is some evidence,<strong>the</strong> entire significance <strong>of</strong> which is difficult for historiansto ascerta<strong>in</strong>, that Halley was strongly <strong>in</strong>fluencedby Peter Perk<strong>in</strong>s, an English ma<strong>the</strong>matician whoproposed, through unpublished, verbal presentationsgiven before <strong>the</strong> Royal Society <strong>of</strong> London, that decl<strong>in</strong>ationcould be modelled by four mov<strong>in</strong>g poles(Jonkers, 2003, pp. 90–95). More generally, Halleywas also <strong>in</strong>fluenced by rapid developments <strong>in</strong> <strong>the</strong><strong>the</strong>ories <strong>of</strong> forces, which were beg<strong>in</strong>n<strong>in</strong>g to be conceivedwith<strong>in</strong> a larger and unify<strong>in</strong>g mechanical andquantitative framework (e.g., Thrower, 1990).9. Mechanistic <strong>the</strong>oriesJonkers makes very careful and spar<strong>in</strong>g usage <strong>of</strong><strong>the</strong> word “field”. This is for good reason: for prettymuch <strong>the</strong> entire historical w<strong>in</strong>dow <strong>of</strong> time covered byEarth’s <strong>Magnetism</strong>, attraction and repulsion at a distancebetween magnetic objects was observed and geomagnetismhad begun to be mapped on a global scale,but <strong>the</strong>se subjects were not expla<strong>in</strong>ed with terms andconcepts that we would today recognize as belong<strong>in</strong>gto a general field <strong>the</strong>ory. Peregr<strong>in</strong>us and Gilbertmade what were essentially qualitative, descriptive accounts<strong>of</strong> magnetism, draw<strong>in</strong>g analogies with liv<strong>in</strong>gbe<strong>in</strong>gs and see<strong>in</strong>g teleologistic <strong>in</strong>tent. In a clear breakwith ancient dogmatic thought, Descartes (1644) advocateda scientific philosophy that was more practicalthan that <strong>of</strong> his predecessors. In his rigid rationalism,appeal<strong>in</strong>g to spiritual notions and div<strong>in</strong>e purposewas unnecessary. Instead, scientific <strong>the</strong>ories could beconsidered successful if <strong>the</strong>y could make mechanisticpredictions <strong>of</strong> observations (Hesse, 1961; Jonkers,2003, pp. 80–81).To account for magnetic action at a distance,Descartes suggested that an ae<strong>the</strong>r, composed <strong>of</strong> <strong>in</strong>terlock<strong>in</strong>gvortices or “tourbillons”, supported <strong>the</strong>cont<strong>in</strong>uous flow <strong>of</strong> <strong>in</strong>f<strong>in</strong>itesimal particles along magneticl<strong>in</strong>es <strong>of</strong> force, with a channel<strong>in</strong>g <strong>of</strong> <strong>the</strong> particlesalong <strong>the</strong> <strong>in</strong>side <strong>of</strong> magnetic objects. Accord<strong>in</strong>g tohis <strong>the</strong>ory, a compass needle would turn so that itsmagnetic channels would be parallel to <strong>the</strong> path takenby <strong>the</strong> flow <strong>of</strong> Earth’s magnetic particles. Descartes’s<strong>the</strong>ory is <strong>of</strong>ten described as corpuscular, but withsome accommodation for differences <strong>in</strong> vocabularyit also clearly possesses some <strong>of</strong> <strong>the</strong> properties <strong>of</strong> afield <strong>the</strong>ory. Of course, a more precise elaboration requiredma<strong>the</strong>matics that were undeveloped at <strong>the</strong> time<strong>of</strong> Descartes. The necessary quantitative foundationwould be established when <strong>the</strong> great English physicist


Book reviews 359and ma<strong>the</strong>matician, Newton (1687), <strong>in</strong>troduced hislaws <strong>of</strong> universal gravitation. Curiously, Newton didnot direct his attention to magnetism, but his success<strong>in</strong> quantify<strong>in</strong>g gravity provided a powerful example<strong>of</strong> how to proceed. Moreover, Newton (1711) andLeibniz (1684, 1686)would go on to <strong>in</strong>vent calculus,a revolutionary development <strong>in</strong> its own right and <strong>the</strong>basic ma<strong>the</strong>matical formalism needed to fully describea cont<strong>in</strong>uous media, such as <strong>the</strong> geomagneticfield.Jonkers does not go <strong>in</strong>to additional detail on <strong>the</strong>development <strong>of</strong> ma<strong>the</strong>matics. This I can understand,s<strong>in</strong>ce prior to 1800 ma<strong>the</strong>matics was not very securely<strong>in</strong>tegrated <strong>in</strong>to <strong>the</strong> subject <strong>of</strong> geomagnetism. None<strong>the</strong>less,it is worth not<strong>in</strong>g that ma<strong>the</strong>matics was progress<strong>in</strong>gparallel to geomagnetism, and, <strong>in</strong>deed, much <strong>of</strong><strong>the</strong> ma<strong>the</strong>matics we use today for modell<strong>in</strong>g <strong>the</strong> ma<strong>in</strong>part <strong>of</strong> <strong>the</strong> geomagnetic field was developed <strong>in</strong> <strong>the</strong>18th century. For example, <strong>the</strong> Swiss ma<strong>the</strong>matician,Euler (1736), through his study <strong>of</strong> <strong>in</strong>viscid fluids, and<strong>the</strong> French-Italian ma<strong>the</strong>matician, Lagrange (1773),through his study <strong>of</strong> gravitation, established <strong>the</strong> foundations<strong>of</strong> potential-field <strong>the</strong>ory. The French ma<strong>the</strong>maticians,Legendre (1784) and Laplace (1799-1825),discovered, respectively, <strong>the</strong> axisymmetrical and nonaxisymmetrical,spherical-harmonic decompositions<strong>of</strong> potential fields. With respect to analyz<strong>in</strong>g geomagneticdata, <strong>the</strong> method <strong>of</strong> least-squares, used todayfor fitt<strong>in</strong>g spherical harmonics to magnetic-field data(among myriad o<strong>the</strong>r very obvious applications), was<strong>in</strong>vented by <strong>the</strong> great German ma<strong>the</strong>matician andphysicist, Carl F. Gauss, <strong>in</strong> <strong>the</strong> clos<strong>in</strong>g years <strong>of</strong> <strong>the</strong>18th century when he was, <strong>in</strong>credibly, just a teenager(e.g., Plackett, 1972).10. Data collection, compilation, and usageIf <strong>the</strong> first half <strong>of</strong> Earth’s <strong>Magnetism</strong> is about <strong>the</strong>gradual condensation <strong>of</strong> concepts and <strong>the</strong>ories about<strong>the</strong> geomagnetic field, <strong>the</strong> second half is concernedwith <strong>the</strong> practical issues <strong>of</strong> navigation, and how,specifically, to exploit <strong>the</strong> compass given that its directionalproperties are such a complicated function <strong>of</strong>space and time. The geophysicist reader will certa<strong>in</strong>lybe <strong>in</strong>terested <strong>in</strong> <strong>the</strong> discussion <strong>of</strong> specific voyages <strong>of</strong>exploration and discovery, which <strong>of</strong>ten <strong>in</strong>cluded magneticsurveys, and <strong>in</strong> <strong>the</strong> evolution <strong>in</strong> thought abouthow to display geomagnetic data on a map. Jonkersdiscusses estimation and measurement methodologies,and data collection dur<strong>in</strong>g rout<strong>in</strong>e oceanic voyages,which were recorded by mar<strong>in</strong>ers who happenedto be on <strong>the</strong>ir way from one place to ano<strong>the</strong>r. Many<strong>of</strong> <strong>the</strong> voyages were associated with mercantile organizations<strong>of</strong> historical notoriety, such as <strong>the</strong> Hudson’sBay Company, <strong>the</strong> English East India Company, <strong>the</strong>French Compagnie des Indes, <strong>the</strong> Dutch VereenigdeOost<strong>in</strong>dische Compagnie, and o<strong>the</strong>rs. Because <strong>of</strong> <strong>the</strong>grow<strong>in</strong>g importance <strong>of</strong> global trade and colonizationafter <strong>the</strong> mid-17th century, <strong>the</strong> numbers <strong>of</strong> availabledata <strong>in</strong>creases dramatically (see also, e.g., Jacksonet al., 1997). In all, Jonkers, with <strong>the</strong> assistance <strong>of</strong>colleagues, reports on <strong>the</strong> <strong>in</strong>spection <strong>of</strong> 2062logbooksproduc<strong>in</strong>g 51,306 decl<strong>in</strong>ational measurements takendur<strong>in</strong>g <strong>the</strong> years 1590–1800, a quantity <strong>of</strong> data which,by itself, is a significant contribution to <strong>the</strong> discipl<strong>in</strong>es<strong>of</strong> geomagnetism and nautical history. In <strong>the</strong>f<strong>in</strong>al chapter <strong>of</strong> Earth’s <strong>Magnetism</strong> Jonkers uses <strong>the</strong>senewly available data, toge<strong>the</strong>r with a field model,to make quantitative comparison <strong>of</strong> <strong>the</strong> navigationalmethodologies <strong>of</strong> various nations, a subject that might<strong>in</strong>terest an historian, but which, I suspect, will not<strong>in</strong>terest <strong>the</strong> typical geophysicist reader.11. Contour mapsToday, we <strong>of</strong>ten make visual representation <strong>of</strong> spatialfunctions by plott<strong>in</strong>g contour l<strong>in</strong>es <strong>of</strong> constantvalue. Interest<strong>in</strong>gly, <strong>the</strong> notion <strong>of</strong> contours first arose<strong>in</strong> <strong>the</strong> 1530s <strong>in</strong> <strong>the</strong> context <strong>of</strong> a tilted-dipole model <strong>of</strong>decl<strong>in</strong>ation, that proposed by <strong>the</strong> Portuguese cartographer,Alonso de Santa Cruz (Jonkers, 2003, p. 186).But <strong>the</strong>“isogonic” contours <strong>of</strong> constant decl<strong>in</strong>ationon his map (now lost) were simply predictive, <strong>the</strong>ywere not actually representations <strong>of</strong> data. In 1584, <strong>the</strong>Dutch surveyor, Pieter Bru<strong>in</strong>sz, made <strong>the</strong> first knowncontour display <strong>of</strong> <strong>the</strong> nontrivial complexity <strong>of</strong> realdata, isobaths show<strong>in</strong>g water depth (e.g., Rob<strong>in</strong>son,1982). The particular dist<strong>in</strong>ction <strong>of</strong> mak<strong>in</strong>g an isogonicrepresentation <strong>of</strong> actual magnetic decl<strong>in</strong>ationaldata is assigned to <strong>the</strong> Italian Jesuit and navigationteacher, Christovao Bruno. His map, made <strong>in</strong> <strong>the</strong>1620s (now also lost) encompassed both <strong>the</strong> Atlanticand Indian Oceans and was based on <strong>the</strong> publishednavigational records <strong>of</strong> sailors and Bruno’s own mea-


360 Book reviewssurements made dur<strong>in</strong>g sea journeys to India (Jonkers,2003, p. 187). The significance <strong>of</strong> <strong>the</strong>se developmentscan hardly be overstated. They represent a focus<strong>in</strong>gon <strong>the</strong> characterization <strong>of</strong> <strong>the</strong> actual physical form<strong>of</strong> nature and, <strong>in</strong> particular, <strong>the</strong> directional properties<strong>of</strong> <strong>the</strong> Earth’s magnetic field, ra<strong>the</strong>r than simply<strong>the</strong> repeated generation <strong>of</strong> simplistic models hav<strong>in</strong>glittle basis <strong>in</strong> reality. This was appreciated by Halley(Thrower, 1996, p. 275; Jonkers, 2003, p. 187),who would himself go on to make important contributionsto magnetic data collection and decl<strong>in</strong>ationalcartography.12. Scientific voyages and global chartsThe first oceanic voyages dedicated specifically toscientific research were those <strong>of</strong> Halley. Sett<strong>in</strong>g sail<strong>in</strong> 1698, <strong>in</strong> command <strong>of</strong> <strong>the</strong> Royal Naval vessel <strong>the</strong>Paramore, Halley made frequent measurements <strong>of</strong> latitude,magnetic decl<strong>in</strong>ation, and (when possible) he calculatedlongitude by observ<strong>in</strong>g eclipses <strong>of</strong> <strong>the</strong> moons<strong>of</strong> Jupiter to estimate universal time. Upon his return,<strong>in</strong> 1701, Halley published a chart <strong>of</strong> decl<strong>in</strong>ation for <strong>the</strong>Atlantic, based on his own data, and <strong>in</strong> 1702 he publisheda chart <strong>of</strong> decl<strong>in</strong>ation for <strong>the</strong> Atlantic and IndianOceans based, <strong>in</strong> part, on data collected by o<strong>the</strong>rs. Today,<strong>the</strong>se charts are considered to be <strong>of</strong> historical significance,s<strong>in</strong>ce <strong>the</strong>y are <strong>the</strong> oldest isogonic charts still<strong>in</strong> existence and because, at <strong>the</strong> time, <strong>the</strong>y generatedmuch discussion among scientists, cartographers, andnavigators (e.g., Barraclough and Clark, 2001). Halleyhoped that his charts would help <strong>in</strong> <strong>the</strong> determ<strong>in</strong>ation<strong>of</strong> longitude, at least <strong>in</strong>s<strong>of</strong>ar as <strong>the</strong> charts rema<strong>in</strong>edaccurate. However, because <strong>of</strong> secular variation it wasclear that regular updates would be needed. Indeed,<strong>in</strong> 1710, <strong>the</strong> French cartographer, Guillaume Delisle,noted that <strong>the</strong> rate <strong>of</strong> change <strong>of</strong> decl<strong>in</strong>ation was notpredictable and that it could not, for example, be representedby a simple westward drift (Jonkers, 2003,pp. 188–189).Unfortunately, from <strong>the</strong> standpo<strong>in</strong>t <strong>of</strong> modell<strong>in</strong>g <strong>the</strong>geomagnetic field us<strong>in</strong>g historical data, early seafar<strong>in</strong>gsurveyors, <strong>in</strong>clud<strong>in</strong>g Halley, made less frequent measurement<strong>of</strong> <strong>in</strong>cl<strong>in</strong>ation. This was probably due to <strong>the</strong>fact that <strong>in</strong>cl<strong>in</strong>ation was not considered to be as usefulas decl<strong>in</strong>ation, and, <strong>in</strong> any case, its measurement wasmore difficult to make on board a rock<strong>in</strong>g deck thanwas that <strong>of</strong> decl<strong>in</strong>ation; <strong>the</strong> vertical plane <strong>of</strong> a dip needlemust be aligned with <strong>the</strong> magnetic meridian andmeasurements need to be made relative to a stable horizontalplane. Given Jonkers’s own emphasis on navigationalhistory <strong>in</strong> Earth’s <strong>Magnetism</strong>, it is perhaps notsurpris<strong>in</strong>g that he does not discuss <strong>the</strong> development <strong>of</strong><strong>in</strong>cl<strong>in</strong>ational, or “isocl<strong>in</strong>ic”, charts, although I note that<strong>the</strong>re is a short discussion <strong>of</strong> <strong>the</strong> matter <strong>in</strong> his <strong>the</strong>sis(Jonkers, 2000, pp. 381–382). The subject is, however,certa<strong>in</strong>ly <strong>of</strong> <strong>in</strong>terest to geophysicists. Credit goes to <strong>the</strong>Cambridge pr<strong>of</strong>essor, William Whiston, for produc<strong>in</strong>g<strong>the</strong> first known isocl<strong>in</strong>ic charts (e.g., Howarth, 2003).But his maps, published <strong>in</strong> 1721, were conf<strong>in</strong>ed toSou<strong>the</strong>rn England, were heavily biased by Whiston’ssimplistic notion <strong>of</strong> a precess<strong>in</strong>g-dipole model <strong>of</strong> geomagneticdirectionality, and <strong>the</strong>y are, <strong>in</strong> fact, verymuch <strong>in</strong>consistent with <strong>the</strong> h<strong>in</strong>dcast<strong>in</strong>g field model <strong>of</strong>Jackson et al. (2000). The first global-scale isocl<strong>in</strong>icchart mak<strong>in</strong>g a realistic depiction <strong>of</strong> <strong>in</strong>cl<strong>in</strong>ational datawas that produced by <strong>the</strong> Swedish physicist, JohannC. Wilcke (1768). His map, based on magnetic-dipmeasurements made by <strong>in</strong>dividuals <strong>of</strong> several nationalities,has not, <strong>in</strong> my op<strong>in</strong>ion, received <strong>the</strong> attentionthat it deserves.F<strong>in</strong>ally, because it was not be<strong>in</strong>g measured untilvery late <strong>in</strong> <strong>the</strong> 18th century and because it too was notgenerally considered to be <strong>of</strong> use to navigators, earlymeasurements and mapp<strong>in</strong>gs <strong>of</strong> geomagnetic <strong>in</strong>tensityare not addressed at all <strong>in</strong> Earth’s <strong>Magnetism</strong>. Briefly,<strong>the</strong> oldest surviv<strong>in</strong>g records <strong>in</strong>dicat<strong>in</strong>g geographic differences<strong>in</strong> field <strong>in</strong>tensity are those due <strong>the</strong> French capta<strong>in</strong>,Elisabeth P.E. De Rossel, who measured relative<strong>in</strong>tensity by observ<strong>in</strong>g <strong>the</strong> oscillation rate <strong>of</strong> a magnetizedneedle dur<strong>in</strong>g <strong>the</strong> 1791–1794 expedition <strong>of</strong> <strong>the</strong>Bruny D’Entrecasteaux (e.g., Lilley and Day, 1993).De Rossel noted, <strong>in</strong> particular, that magnetic <strong>in</strong>tensitywas greatest near <strong>the</strong> magnetic poles and least near<strong>the</strong> magnetic equator. This observation was rediscoveredby <strong>the</strong> German naturalist, Alexander von Humboldt,who produced <strong>the</strong> first map show<strong>in</strong>g relative <strong>in</strong>tensity,published by von Humboldt and Biot (1804),with contours consist<strong>in</strong>g <strong>of</strong> “isodynamics” over <strong>the</strong>nor<strong>the</strong>rn part <strong>of</strong> South America. The first global-scalemap <strong>of</strong> relative <strong>in</strong>tensity was published by <strong>the</strong> Norwegianscientist, Hansteen (1826); also see, e.g., Brekkeand Egeland (1986), but this came well after Jonkers’schoice <strong>of</strong> an 1800 cut-<strong>of</strong>f for his historical <strong>in</strong>vestigation.


Book reviews 36113. Modell<strong>in</strong>g <strong>the</strong> geomagnetic vector fieldOf course, more can be said about <strong>the</strong> essentialrole <strong>of</strong> data collection and ma<strong>the</strong>matical analysis <strong>in</strong><strong>the</strong> historical development <strong>of</strong> geomagnetism. With <strong>the</strong>onset <strong>of</strong> <strong>the</strong> 19th century, <strong>the</strong> grow<strong>in</strong>g use <strong>of</strong> iron<strong>in</strong> ship construction contam<strong>in</strong>ated compass data, and<strong>the</strong> new century saw <strong>the</strong> demise <strong>of</strong> <strong>the</strong> maritime mercantilecompanies, whose logbooks provided Jonkersand company with a valuable resource. Despite <strong>the</strong>sechanges, geomagnetic data useful for field modell<strong>in</strong>gbecame very numerous <strong>in</strong> <strong>the</strong> 19th century, when <strong>the</strong>ywere be<strong>in</strong>g rout<strong>in</strong>ely collected at ground-based magneticobservatories 2 and dur<strong>in</strong>g dedicated magneticsurveys on both land and sea. The <strong>in</strong>vention <strong>of</strong> <strong>the</strong> absolute<strong>in</strong>tensity magnetometer (Gauss, 1832) made itpossible to measure and map <strong>the</strong> full-vectorial nature<strong>of</strong> <strong>the</strong> geomagnetic field. Theories <strong>of</strong> geomagnetismwere unified with potential-field <strong>the</strong>ory and with <strong>the</strong>quantitative, least-squares analysis <strong>of</strong> data by Gauss(1839), who used spherical-harmonic analysis to separate<strong>the</strong> geomagnetic field <strong>in</strong>to <strong>in</strong>ternal and externalparts, <strong>the</strong>reby show<strong>in</strong>g that <strong>the</strong> majority <strong>of</strong> <strong>the</strong> fieldorig<strong>in</strong>ated from with<strong>in</strong> <strong>the</strong> Earth.S<strong>in</strong>ce <strong>the</strong>n, many researchers have applied asimilar methodology, us<strong>in</strong>g data collected at orabove <strong>the</strong> Earth’s surface and fitt<strong>in</strong>g a truncatedspherical-harmonic expansion to obta<strong>in</strong> a global fieldmodel correspond<strong>in</strong>g to a particular <strong>in</strong>stance <strong>in</strong> time(for a review, see Barraclough, 1978). This is, forexample, <strong>the</strong> procedure adopted for construct<strong>in</strong>gcandidate models for <strong>the</strong> International GeomagneticReference Field (IGRF) every five years (e.g., Barton,1997). It is superior, however, when construct<strong>in</strong>g amodel describ<strong>in</strong>g <strong>the</strong> field over a duration <strong>of</strong> time,to allow it to be a (non-constantly) variable function<strong>of</strong> time. So, for example, Bloxham and Jackson(1992) use a set <strong>of</strong> model basis functions consist<strong>in</strong>g<strong>of</strong> spherical-harmonic spl<strong>in</strong>es. Data collected at differentgeographic locations and at different moments<strong>in</strong> time can <strong>the</strong>n be fitted simultaneously and consistently.And, <strong>in</strong> this way, <strong>the</strong> <strong>in</strong>formational content <strong>of</strong><strong>the</strong> spatial and temporal correlations between <strong>the</strong> var-ious data are exploited, someth<strong>in</strong>g that is especiallyimportant for modell<strong>in</strong>g historical epochs representedby relatively few data.What is perhaps <strong>in</strong>sufficiently appreciated with<strong>in</strong><strong>the</strong> field-modell<strong>in</strong>g community is that fitt<strong>in</strong>g a prematurelytruncated set <strong>of</strong> o<strong>the</strong>rwise complete basis functions,such as spherical harmonics, to a set <strong>of</strong> data canyield a model that is overly sensitive to <strong>the</strong> (spatialand temporal) distribution <strong>of</strong> <strong>the</strong> data, that is unstableto errors <strong>in</strong> <strong>the</strong> data, and that is dependent on both<strong>the</strong> particular choice <strong>of</strong> basis functions and <strong>the</strong> level<strong>of</strong> truncation (e.g., Lowes, 1990); fur<strong>the</strong>rmore, excessivesubsidiary structure and odd symmetries, ak<strong>in</strong> to<strong>the</strong> Gibbs phenomenon seen <strong>in</strong> standard Fourier-typeanalyses, can result (Whaler and Gubb<strong>in</strong>s, 1981).These difficulties stem from <strong>the</strong> fact that a completebasis-function expansion is too general. There existan <strong>in</strong>f<strong>in</strong>ite number <strong>of</strong> different models that fit <strong>the</strong> dataequally well, most hav<strong>in</strong>g far more short-wavelengthand high-frequency content than is usually desired.One resolution is to choose a model that m<strong>in</strong>imizes aweighted comb<strong>in</strong>ation <strong>of</strong> data misfit, as measured byχ 2 , and model complexity, as measured by a modelnorm (Frankl<strong>in</strong>, 1970; Backus and Gilbert, 1970).Such an approach, known variously as stochastic <strong>in</strong>version,Bayesian <strong>in</strong>version, damped least-squares, orregularization, is now be<strong>in</strong>g employed <strong>in</strong> studies <strong>of</strong><strong>the</strong> Earth’s <strong>in</strong>ternal magnetic field (Shure et al., 1982;Gubb<strong>in</strong>s and Bloxham, 1985; Sabaka et al., 2002). Itis also <strong>the</strong> methodology used to construct <strong>the</strong> globalmagnetic field model (gufm1) <strong>of</strong>Jackson et al. (2000)that covers cont<strong>in</strong>uously <strong>the</strong> years 1590-1990 andwhich is associated with <strong>the</strong> historical analysis presentedby Jonkers <strong>in</strong> Earth’s <strong>Magnetism</strong> 3 . Among <strong>the</strong>range <strong>of</strong> possible solutions, <strong>the</strong> preferred solution is<strong>the</strong> one <strong>of</strong> m<strong>in</strong>imum norm that is consistent with <strong>the</strong>coherent signal <strong>in</strong> <strong>the</strong> data, a result that can be said t<strong>of</strong>ollow from <strong>the</strong> parsimonious pr<strong>in</strong>ciples <strong>of</strong> William<strong>of</strong> Occam, <strong>the</strong> medieval English philosopher whoseproverbial razor cut away unnecessary hypo<strong>the</strong>sesand whose appeal<strong>in</strong>g philosophy is <strong>of</strong>ten <strong>in</strong>voked bygeophysicists (e.g., Constable et al., 1987).2 And magnetic data are still collected at such observatories; seewww.<strong>in</strong>termagnet.org for more <strong>in</strong>formation.3 Movies depict<strong>in</strong>g geomagnetic secular variation can be foundat http://geomag.usgs.gov.


Book reviews 363Hansteen, C., 1826. Isodynamiske L<strong>in</strong>ier for den hele magnetiskeKraft, Magaz<strong>in</strong> for Naturvidenskaberne 7, 76–111, Christiania.Repr<strong>in</strong>ted <strong>in</strong> facsimilie. In: Hellman, G. (Ed.), Neudrucke vonSchriften und Karten über Meteorologie und Erdmagnetismus,vol. 1. Berl<strong>in</strong> (1893). Repr<strong>in</strong>ted aga<strong>in</strong> <strong>in</strong> its entiretyby Kraus-Thomson Org. Ltd., Nendeln/Liechtenste<strong>in</strong> (1969)(repr<strong>in</strong>t).Hesse, M.B., 1961. Forces and Fields: The Concept <strong>of</strong> Action at aDistance <strong>in</strong> <strong>the</strong> History <strong>of</strong> Physics. Philosophical Library Inc.,New York, NY.Hewson, J.B., 1983. A History <strong>of</strong> <strong>the</strong> Practice <strong>of</strong> Navigation,Brown, Son & Ferguson, Glasgow, UK.Howarth, R.J., 2002. Fitt<strong>in</strong>g Geomagnetic Fields before <strong>the</strong>Invention <strong>of</strong> Least Squares: I. Henry Bond’s Predictions (1636,1668) <strong>of</strong> <strong>the</strong> Change <strong>in</strong> Magnetic Decl<strong>in</strong>ation <strong>in</strong> London. Annals<strong>of</strong> Science 59, 391–408.Howarth, R.J., 2003. Fitt<strong>in</strong>g Geomagnetic Fields before <strong>the</strong>Invention <strong>of</strong> Least Squares: II. William Whiston’s Isocl<strong>in</strong>icMaps <strong>of</strong> Sou<strong>the</strong>rn England. Annals <strong>of</strong> Science 60, 63–84.Jackson, A., Jonkers, A.R.T., Murray, A., 1997. Past attractions.Astron. Geophys. 38, 6.10–6.15.Jackson, A., Jonkers, A.R.T., Walker, M.R., 2000. Four centuries<strong>of</strong> geomagnetic secular variation from historical records. Phil.Trans. R. Soc. Lond. Ser. A 358, 957–990.Jackson, A., Jonkers, A.R.T., Mandea, M., Murray, A., 2003.Earth’s magnetic field <strong>in</strong> <strong>the</strong> early 19th century fromFrench sources. Geochem. Geophys. Geosyst. 4, 1054,doi:10.1029/2002GC000494.Jonkers, A.R.T., 2000. North by Northwest, Ph.D. <strong>the</strong>sis, VrijeUniversiteit, Amsterdam, The Ne<strong>the</strong>rlands, 2 volumes, CuvillierVerlag, Gött<strong>in</strong>gen, Germany, ISBN 90-9013825-0.Jonkers, A.R.T., 2003, Earth’s <strong>Magnetism</strong> <strong>in</strong> <strong>the</strong> <strong>Age</strong> <strong>of</strong> <strong>Sail</strong>,Johns Hopk<strong>in</strong>s University Press, Baltimore, MD and London,UK, ISBN 0-8018-7132-8, $45 (£35).Jonkers, A.R.T., Jackson, A., Murray, A., 2003. Four centuries <strong>of</strong>geomagnetic data from historical records. Rev. Geophys. 41,1006, doi:10.1029/2002RG000115.Kollerstrom, N., 1992. The hollow world <strong>of</strong> Edmond Halley. J.Hist. Astron. 23, 185–192.Lagrange, J.L., 1773. Sur l’équation sécularie de la lune, Mémoiresde l’Académie Royale des Sciences, Paris, (Prix pour l’année1774). Repr<strong>in</strong>ted <strong>in</strong> Oeuvres de Lagrange, Tome 6, pp. 335–400,Gauthier-Villars, Paris (1867).Laplace, P.S., 1799–1825. Traité de Mécanique Céleste. In:Oeuvres Complètes, vol. 1–5. Gauthier-Villars, Paris (1882).Repr<strong>in</strong>ted by Chelsea Publish<strong>in</strong>g Co., New York, NY, (1969).vol. 1–4 (N. Bowditch, Trans.).Legendre, A.M., 1784. Reserches sur la figure des planètes,Mèmoires de mathématique et de physique, tirès des reg. del’Académie des Sciences, pp. 370–389.Leibniz, G.W., 1684. Nova methodus pro maximis et m<strong>in</strong>imis,itemque tangentibus, quae nec fractas nec irrationalesquantitates moratur, et s<strong>in</strong>gulare pro illis calculi genus, ActaEruditorum, (octubre), Leipzig.Leibniz, G.W., 1686, De Geometria Recondita et Analysi,Indivisibilium atque <strong>in</strong>f<strong>in</strong>itorum, Acta Eruditorum, (junio),Leipzig.Lilley, F.E.M., Day, A.A., 1993. D’Entrecasteaux, 1792:Celebrat<strong>in</strong>g a Bicentennial <strong>in</strong> <strong>Geomagnetism</strong>. EOS Trans. Am.Geophys. Union 74 (97), 102–103.Lowes, F.J., 1990. Some problems <strong>in</strong> modell<strong>in</strong>g <strong>the</strong> ma<strong>in</strong>geomagnetic field. J. Geomagn. Geoelectr. 42, 961–971.Mal<strong>in</strong>, S.R.C., Barraclough, D.R., 2000. Gilbert’s De Magnete:An Early Study <strong>of</strong> <strong>Magnetism</strong> and Electricity. EOS Trans. Am.Geophys. Union 81, 233–234.Mercator, G., 1546, Letter to Antonius Perrenotus, most venerableBishop <strong>of</strong> Arras, A.D. 1546. Repr<strong>in</strong>ted <strong>in</strong> an article byH.D. Harradon, Some Early Contributions to <strong>the</strong> History <strong>of</strong><strong>Geomagnetism</strong>, VI, Terr. Magn. Atmos. Elect. 48 (1943)201–202.Merrill, R.T., 2003. Review <strong>of</strong> Earth’s <strong>Magnetism</strong> <strong>in</strong> <strong>the</strong> <strong>Age</strong> <strong>of</strong><strong>Sail</strong> by A.R.T. Jonkers. EOS Trans. Am. Geophys. Union 84,520.Mitchell, A.C., 1937. Chapters <strong>in</strong> <strong>the</strong> history <strong>of</strong> terrestrialmagnetism: chapter II—<strong>the</strong> discovery <strong>of</strong> <strong>the</strong> magneticdecl<strong>in</strong>ation. Terr. Magn. Atmos. Elect. 42, 241–280.Newton, I., 1687. Philosophiae Naturalis Pr<strong>in</strong>cipia Ma<strong>the</strong>matica(The Pr<strong>in</strong>cipia), I.B. Cohen, A. Whitman (Trans.). Repr<strong>in</strong>tedby University <strong>of</strong> California Press, Berkeley, 1999.Newton, I., 1711. Analysis per Quantitatum Series, Fluxiones, acDifferentias: cum enumeratione L<strong>in</strong>earum Tertii Ord<strong>in</strong>us. In:Jones, W. (Ed.), The Analysis. London.Norman, R., 1581. The Newe Attractiue, Conta<strong>in</strong>yng a shortdiscourse <strong>of</strong> <strong>the</strong> Magnes or Lodestone, and amongest o<strong>the</strong>rhis vertues, <strong>of</strong> a newe discouered secret and subtill propertie,concernyng <strong>the</strong> Decl<strong>in</strong>y<strong>in</strong>g <strong>of</strong> <strong>the</strong> Needle, touched <strong>the</strong>rewithunder <strong>the</strong> pla<strong>in</strong>e <strong>of</strong> <strong>the</strong> Horizon. The New Attractive. Impr<strong>in</strong>tedby J. Kyngston for R. Ballard, London, England. Repr<strong>in</strong>ted<strong>in</strong> facsimilie <strong>in</strong> a book. In: Hellman, G. (Ed.), 1898. RaraMagnetica, Part <strong>of</strong> a Series called Neudrucke von Schriftenund Karten über Meteorologie und Erdmagnetismus, vol.10, Berl<strong>in</strong>, pp. 1269–1599. Repr<strong>in</strong>ted aga<strong>in</strong> <strong>in</strong> its Entiretyby Kraus-Thomson Org. Ltd., Nendeln/Liechtenste<strong>in</strong>, KrausRepr<strong>in</strong>t (1969) (repr<strong>in</strong>t).Peregr<strong>in</strong>us, P., 1269. Epistola Petri Peregr<strong>in</strong>i de Maricourt adSygerum de Foucaucourt militem de magnete (Epistola deMagnete). Repr<strong>in</strong>ted <strong>in</strong> an article by H.D. Harradon, 1943.Some early contributions to <strong>the</strong> history <strong>of</strong> geomagnetism, I.,Terr. Magn. Atmos. Elect. 48, 3–17 (repr<strong>in</strong>t).Plackett, R.L., 1972. The discovery <strong>of</strong> <strong>the</strong> method <strong>of</strong> least squares.Biometrika 59, 239–251.Rob<strong>in</strong>son, A.H., 1982. Early Thematic Mapp<strong>in</strong>g <strong>in</strong> <strong>the</strong> History <strong>of</strong>Cartography. University <strong>of</strong> Chicago Press, Chicago, IL.Sabaka, T.J., Olsen, N., Langel, R.A., 2002. A comprhensive model<strong>of</strong> <strong>the</strong> quiet-time, near-Earth magnetic field: phase 3. Geophys.J. Int. 151, 32–68.Shure, L., Parker, R.L., Backus, G.E., 1982. Harmonic spl<strong>in</strong>es forgeomagnetic modell<strong>in</strong>g. Phys. Earth Planet. Inter. 28, 215–229.Smith, P.J., 1968. Pre-Gilbertian conceptions <strong>of</strong> terrestrialmagnetism. Tectonophysics 6, 499–510.Thrower, N.J.W. (Ed.), 1990. Stand<strong>in</strong>g on <strong>the</strong> Shoulders <strong>of</strong> Giants:A Longer View <strong>of</strong> Newton and Halley. University <strong>of</strong> CaliforniaPress, Berkeley, CA.Thrower, N.J.W., 1996. Maps & Civilization: Cartography <strong>in</strong>Culture and Society. University <strong>of</strong> Chicago Press, Chicago, IL.


364 Book reviewsvon Humboldt, A., Biot, J.B., 1804. Sur les variations dumagnétique terrestre à différentes latitudes, J. Phys. Chim.Hist. Nat. et Arts, 59, 429–450. Repr<strong>in</strong>ted <strong>in</strong> facsimilie <strong>in</strong> abook Hellman, G. (Ed.), 1893. Neudrucke von Schriften undKarten über Meteorologie und Erdmagnetismus, vol. 1. Berl<strong>in</strong>.Repr<strong>in</strong>ted aga<strong>in</strong> <strong>in</strong> its entirety by Kraus-Thomson Org. Ltd.,Nendeln/Liechtenste<strong>in</strong> (1969) (repr<strong>in</strong>t).Whaler, K.A., Gubb<strong>in</strong>s, D., 1981. Spherical harmonic analysis <strong>of</strong><strong>the</strong> geomagnetic field: an example <strong>of</strong> a l<strong>in</strong>ear <strong>in</strong>verse problem.Geophys. J. R. Astron. Soc. 65, 645–693.Wilcke, J.C., 1768. Försök til en Magnetisk Incl<strong>in</strong>ations-Charta,Konigl. Vetenskaps Akad. Handl. 29, Tab. VI. Pr<strong>in</strong>ted <strong>in</strong>accompaniment to an article by C.G. Ekeberg, pp. 193–225.Repr<strong>in</strong>ted <strong>in</strong> facsimilie <strong>in</strong> a book. In: Hellman, G. (Ed.), 1893.Neudrucke von Schriften und Karten über Meteorologie undErdmagnetismus, vol. 1. Berl<strong>in</strong>. Repr<strong>in</strong>ted aga<strong>in</strong> <strong>in</strong> its entiretyby Kraus-Thomson Org. Ltd., Nendeln/Liechtenste<strong>in</strong> (1969)(repr<strong>in</strong>t).doi:10.1016/j.pepi.2004.05.004J.J. LoveUS Geological SurveyDenver Federal Center, P.O. Box 25046MS 966, Denver, CO 80225-0046, USA17 May 2004

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!