12.07.2015 Views

The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B

The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B

The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

I hereby declare that this <strong>the</strong>sis is my own work and ef<strong>for</strong>t.in<strong>for</strong>mation have been used, <strong>the</strong>y have been acknowledged.Where o<strong>the</strong>r sources ofOstrava, 6 th May 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


‘Why is raven like a writing desk?’‘I haven’t <strong>the</strong> slightest idea.’Lewis CarrollI would like to express my gratitude to Doc. RNDr. Jiří Bouchala, Ph.D. <strong>for</strong> his constructiveadvice and especially <strong>for</strong> <strong>the</strong> willingness to share his insight into <strong>the</strong> adventurous world ofma<strong>the</strong>matics. My thanks also go to <strong>the</strong> staff of <strong>the</strong> Department of Applied Ma<strong>the</strong>matics<strong>for</strong> <strong>the</strong>ir continued support during my graduate studies.


AbstractIn this work we study <strong>the</strong> application of <strong>the</strong> boundary element method <strong>for</strong> solving <strong>the</strong><strong>Helmholtz</strong> equation in 3D. Contrary to <strong>the</strong> finite element method, one does not need todiscretize <strong>the</strong> whole domain and thus <strong>the</strong> problem dimension is reduced. This advantage ismost pronounced when solving an exterior problem, i.e., a problem on an unbounded domain.On <strong>the</strong> o<strong>the</strong>r hand, it should be mentioned that <strong>the</strong> boundary element discretizationleads to dense matrices and is computationally demanding. In this <strong>the</strong>sis we concentrate on<strong>the</strong> Galerkin approach known, e.g., from <strong>the</strong> finite element method. In sections devoted to<strong>the</strong> discretization of boundary integral equations we describe <strong>the</strong> combination of analyticand numerical integration used <strong>for</strong> <strong>the</strong> computation of matrices generated by boundaryintegral operators. We also mention <strong>the</strong> collocation method, which gained its popularityamong engineers due to its simplicity.Keywords: <strong>Boundary</strong> <strong>Element</strong> <strong>Method</strong>, <strong>Boundary</strong> Integral <strong>Equation</strong>s, Galerkin <strong>Equation</strong>s,Representation Formulae.AbstraktTato práce se zabývá řešením <strong>Helmholtz</strong>ovy rovnice ve 3D metodou hraničních prvků.Na rozdíl od metody konečných prvků tento přístup nevyžaduje diskretizaci celé oblastia tím snižuje dimenzi problému. Tohoto faktu se dá s výhodou využít především přiřešení vnějších úloh, tedy úloh na neomezených oblastech. Na druhou stranu je třebapodotknout, že při diskretizaci problémů pomocí metody hraničních prvků vznikají hustématice a jejich vyčíslení je výpočetně náročné. V dalším textu se zaměřujeme na Galerkinovudiskretizaci, která je známá například z metody konečných prvků. V části věnovanédiskretizaci hraničních integrálních rovnic popíšeme kombinaci analytické a numerické integracepro sestavení matic generovaných jednotlivými hraničními integrálními operátory.Kromě Galerkinova přístupu zmíníme zároveň metodu kolokace, která se těší popularitěobzvlášť mezi inženýry, a to zejména pro svou jednoduchost.Klíčová slova: Metoda hraničních prvků, hraniční integrální rovnice, Galerkinovy rovnice,věty o reprezentaci.


List of SymbolsR – Set of real numbersR + – Set of positive real numbersN – Set of natural numbersN 0 – Set of natural numbers including zeroC – Set of complex numbersRe z – Real part of a complex number zIm z – Imaginary part of a complex number zi – Imaginary unit∥ · ∥ – Euclidian norm in R n and C n∥ · ∥ X – Norm in a linear space X⟨·, ·⟩ – Euclidian inner product in R n and C n⟨·, ·⟩ – Functional value⟨·, ·⟩ X – Inner product in a linear space XIm V – Image of an operator VL(X, Y ) – Space of linear continuous mappings from X to Y(X) ∗ – Dual space to X, i.e., L(X, C)∇u – Gradient of a function u∆ – Laplace operatorγ 0,int – Interior Dirichlet trace operatorγ 1,int – Interior Neumann trace operatorγ 0,ext – Exterior Dirichlet trace operatorγ 1,ext – Exterior Neumann trace operatorI – Identity operatorv κ – Fundamental solution <strong>for</strong> <strong>the</strong> <strong>Helmholtz</strong> equation


1Introduction<strong>The</strong> boundary element method has started to play an important role in modern ma<strong>the</strong>maticsduring <strong>the</strong> last few decades. Toge<strong>the</strong>r with <strong>the</strong> finite element and <strong>the</strong> finite differencemethods it belongs to <strong>the</strong> most used methods <strong>for</strong> solving elliptic partial differential equations.Contrary to <strong>the</strong> finite element method, which is based on <strong>the</strong> weak <strong>for</strong>mulation of<strong>the</strong> partial differential equation, <strong>the</strong> boundary element method trans<strong>for</strong>ms <strong>the</strong> probleminto a boundary integral equation, which leads to a dimension reduction. <strong>The</strong> method isparticularly advantageous if one is only interested in <strong>the</strong> Cauchy data, i.e., in <strong>the</strong> values of<strong>the</strong> solution on <strong>the</strong> boundary and its normal derivatives, which may be <strong>the</strong> only importantvalues in some applications. <strong>The</strong> boundary element method can especially outper<strong>for</strong>m <strong>the</strong>finite element method when solving a problem on an unbounded domain, e.g., acousticscattering or sound propagation problems described by <strong>the</strong> <strong>Helmholtz</strong> equation. As <strong>the</strong>finite element method is only designed <strong>for</strong> bounded domains, one has to add an artificialboundary and prescribe a new boundary condition replacing <strong>the</strong> original radiation condition,i.e., a boundary condition ‘in infinity’. This procedure can be quite tricky whenconsidering <strong>the</strong> above mentioned <strong>Helmholtz</strong> equation because reflections from <strong>the</strong> artificialboundary have to be taken into account. <strong>The</strong>re are several ways of dealing with thisproblem (<strong>for</strong> <strong>the</strong> PML method see, e.g., [10]), never<strong>the</strong>less, this concept may seem quiteunnatural contrary to <strong>the</strong> boundary element approach. Despite <strong>the</strong> advantages mentionedabove, <strong>the</strong> boundary element method is not as universal as <strong>the</strong> finite element method since<strong>the</strong> fundamental solution <strong>for</strong> <strong>the</strong> given partial differential equation has to be known toobtain <strong>the</strong> corresponding boundary integral equations.<strong>The</strong>re are two basic ways of deriving <strong>the</strong> boundary integral equations. <strong>The</strong> so-calleddirect methods are based on <strong>the</strong> representation <strong>for</strong>mulae and properties of <strong>the</strong> single anddouble layer integral operators. Ano<strong>the</strong>r approach is based on <strong>the</strong> fact that <strong>the</strong> single anddouble layer potentials <strong>the</strong>mselves solve <strong>the</strong> partial differential equation and only a suitabledensity function has to be found in order to satisfy <strong>the</strong> boundary conditions. Because <strong>the</strong>density functions have no direct physical meaning, <strong>the</strong>se methods are called indirect. Thisapproach was already proposed by C. F. Gauss, who suggested seeking <strong>the</strong> solution to aDirichlet boundary value problem <strong>for</strong> <strong>the</strong> Laplace equation in <strong>the</strong> <strong>for</strong>m of a double layerpotential with an unknown density function.<strong>The</strong> discretization of <strong>the</strong> variational <strong>for</strong>mulation in <strong>the</strong> finite element method is basedon <strong>the</strong> decomposition of <strong>the</strong> domain into finite elements of <strong>the</strong> same dimension as <strong>the</strong>original region. In <strong>the</strong> boundary element method we are only interested in <strong>the</strong> boundaryand in 3D we only have to deal with a 2D manifold, which is usually compact regardless of<strong>the</strong> boundedness of <strong>the</strong> domain itself. <strong>The</strong> most popular ways of discretizing <strong>the</strong> boundaryintegral equations are <strong>the</strong> collocation method used especially by <strong>the</strong> engineering community<strong>for</strong> its simplicity and <strong>the</strong> Galerkin method well-known from <strong>the</strong> finite element method. Inspite of its complexity, <strong>the</strong> Galerkin approach is well studied and has several advantagesover <strong>the</strong> collocation method, e.g., better error estimates and rates of convergence, symmetryof matrices, etc.


2Contrary to stiffness matrices arising from <strong>the</strong> finite element discretization, matricesgenerated by <strong>the</strong> discretized integral operators are dense and <strong>the</strong> memory and computationalrequirements can be high. However, new fast boundary element methods have beendeveloped to reduce this drawback (<strong>for</strong> <strong>the</strong> ACA method see, e.g., [17]).Because <strong>the</strong> Laplace equation can be considered as a special case of <strong>the</strong> <strong>Helmholtz</strong>equation, this work is related to <strong>the</strong> bachelor <strong>the</strong>sis [19] and <strong>the</strong> paper [20] describing<strong>the</strong> boundary element method <strong>for</strong> <strong>the</strong> Laplace equation in 2D. This <strong>the</strong>sis is divided intoseveral sections, toge<strong>the</strong>r building a scheme <strong>for</strong> <strong>the</strong> application of <strong>the</strong> boundary elementmethod <strong>for</strong> solving <strong>the</strong> <strong>Helmholtz</strong> equation in 3D. In <strong>the</strong> first section we introduce functionspaces necessary <strong>for</strong> <strong>the</strong> boundary integral <strong>for</strong>mulation of <strong>the</strong> problem. In <strong>the</strong> followingpart we show <strong>the</strong> connection between <strong>the</strong> <strong>Helmholtz</strong> equation and <strong>the</strong> well-known waveequation and provide <strong>the</strong> representation <strong>for</strong>mulae <strong>for</strong> <strong>the</strong> solution. In <strong>the</strong> third section weintroduce boundary integral operators and describe <strong>the</strong>ir properties. Afterwards, we deriveboundary integral equations used <strong>for</strong> <strong>the</strong> computation of <strong>the</strong> missing Cauchy data. In <strong>the</strong>last part of this <strong>the</strong>sis we describe <strong>the</strong> discretization of <strong>the</strong> boundary integral equationsand provide some thoughts useful <strong>for</strong> practical implementation. Lastly, we provide somenumerical experiments.


31 Function SpacesIn this section we introduce function spaces necessary <strong>for</strong> <strong>the</strong> boundary integral <strong>for</strong>mulationof boundary value problems <strong>for</strong> <strong>the</strong> <strong>Helmholtz</strong> equation. For a more detailed treatment ofthis topic we refer to [1] and [11].For d ∈ N we define a multiindexα = [α 1 , . . . , α d ] ∈ N d 0of <strong>the</strong> length |α| := α 1 + · · · + α d .u: R d → R can thus be expressed asPartial derivatives of a smooth enough functionD α u :=∂ |α|∂x α 11 . . . u.∂xα ddFor a complex-valued function u: R d → C we define <strong>the</strong> partial derivatives asD α u := D α (Re u) + iD α (Im u).1.1 Continuous FunctionsIn <strong>the</strong> following text we assume that Ω denotes a domain, i.e., a non-empty open connectedsubset of R d . By C(Ω) = C 0 (Ω) we denote <strong>the</strong> space of functions defined and continuousin Ω. For k ∈ N we denote by C k (Ω) <strong>the</strong> space of k times differentiable functions suchthat∀α, |α| ≤ k : D α u ∈ C(Ω).We also defineC ∞ (Ω) := k∈NC k (Ω).Moreover, <strong>for</strong> k ∈ N 0 ∪ {∞} we define <strong>the</strong> space C0 k (Ω) asu ∈ C0 k (Ω) ⇔ u ∈ C k (Ω) ∧ supp u := {x ∈ Ω : u(x) ≠ 0} ⊂ Ω is compact .By C(Ω) = C 0 (Ω) we denote <strong>the</strong> space of functions in C(Ω) that are bounded anduni<strong>for</strong>mly continuous in Ω. Note that such functions are continuously extendable to ∂Ωasu(x) :=lim u(˜x)Ω∋˜x→x∈∂Ω<strong>for</strong> x ∈ ∂Ωand in <strong>the</strong> following text we assume that <strong>the</strong>se functions are already extended in sucha way. Similarly as above, C k (Ω) with k ∈ N represents <strong>the</strong> space of all functions inu ∈ C k (Ω) such that D α u ∈ C(Ω) <strong>for</strong> all α, |α| ≤ k. Equipped with <strong>the</strong> norm∥u∥ C k (Ω) := sup |D α u(x)|x∈Ω|α|≤k


4 1 Function Spaces<strong>the</strong> space C k (Ω) is a Banach space. Fur<strong>the</strong>rmore, we define C ∞ (Ω) as <strong>the</strong> space offunctions in C ∞ (Ω) that are continuously extendable to ∂Ω. Note that functions in thisspace do not have to be bounded nor uni<strong>for</strong>mly continuous.For u ∈ C k (Ω) with k ∈ N 0 , a multiindex α, |α| ≤ k and λ ∈ (0, 1] we denote|D α u(x) − D α u(y)|H α,λ (u) := supx,y∈Ω ∥x − y∥ λ .x≠yWe define <strong>the</strong> space of Hölder continuous functions asC k,λ (Ω) := u ∈ C k (Ω): H α,λ (u) < ∞ <strong>for</strong> all α, |α| = k .Toge<strong>the</strong>r with <strong>the</strong> norm∥u∥ C k,λ (Ω) := x∈Ω|α|≤ksup |D α u(x)| + |α|=k|D α u(x) − D α u(y)|supx,y∈Ω ∥x − y∥ λx≠y<strong>the</strong> space C k,λ (Ω) is a Banach space. Setting k = 0 and λ = 1 we get <strong>the</strong> space C 0,1 (Ω)of Lipschitz continuous functions in Ω.Definition 1.1. A domain Ω ⊂ R d with a compact boundary ∂Ω is a C k,λ domain if <strong>the</strong>reexists a finite family of open sets {U i } n i=1 such that <strong>for</strong> every i ∈ {1, . . . , n} <strong>the</strong>re exist• a Cartesian system of coordinates• ε i , δ i ∈ R + ,• a function a i : R d−1 → Rsatisfying(y i 1, . . . , y i d−1 , yi d ) = (yi , y i d ), where yi := (y i 1, . . . , y i d−1 ),• Γ i := U i ∩ ∂Ω = {(y i , y i d ): ∥yi ∥ < δ i , y i d = a i(y i )},• U + i:= {(y i , y i d ): ∥yi ∥ < δ i , a i (y i ) < y i d < a i(y i ) + ε i } ⊂ Ω,• U − i:= {(y i , y i d ): ∥yi ∥ < δ i , a i (y i ) − ε i < y i d < a i(y i )} ⊂ R d \ Ω,• a i ∈ C k,λ ({y i : ∥y i ∥ ≤ δ i }).For a Lipschitz domain, i.e., a C 0,1 domain (<strong>for</strong> an example of a Lipschitz domain inR 2 see Figure 1.1), <strong>the</strong> unit outward normal vector n = (n 1 , . . . , n d ) is defined almosteverywhere on ∂Ω. <strong>The</strong> coordinates n 1 , . . . , n d are bounded measurable functions on ∂Ω.Note that in this case <strong>the</strong> term ‘measurable’ corresponds to a surface measure defined on∂Ω. This abuse of terminology could be treated by introducing mappings from U i ∩ ∂Ω to<strong>the</strong> global coordinate system and <strong>the</strong> measure could be understood as a (d−1) dimensionalLebesgue measure. However, throughout this text we use <strong>the</strong> simpler notation and referto this interpretation.


5∂Ωy i 2ΩU + iU − iΓ iy i 1Figure 1.1: Lipschitz domain in R 2 .1.2 Lebesgue and Sobolev SpacesFor a domain Ω ⊂ R d and p ∈ [1, ∞) we introduce L p (Ω) as <strong>the</strong> space of measurablefunctions u: Ω → C with1/p∥u∥ L p (Ω) := |u(x)| dx p < ∞.ΩRemark 1.2. In L p (Ω) we identify functions that are equal almost everywhere in Ω, thus<strong>the</strong> elements of L p (Ω) are actually equivalence classes. By <strong>the</strong> relation u ∈ L p (Ω) weunderstand that <strong>the</strong>re exists an equivalence class in L p (Ω) such that u belongs to it.For functions u ∈ L p (Ω) and v ∈ L q (Ω) with1p + 1 q= 1, p, q ∈ (1, ∞)it holds that uv ∈ L 1 (Ω) and <strong>the</strong> Hölder inequality|u(x)v(x)| dx ≤ ∥u∥ L p (Ω)∥v∥ L q (Ω)is satisfied.Ω<strong>The</strong> L ∞ (Ω) space is defined as <strong>the</strong> space of measurable functions u: Ω → C satisfying∥u∥ L ∞ (Ω) := ess sup |u| :=Ωwhere µ d denotes <strong>the</strong> Lebesgue measure in R d .infE⊂Ωµ d (E)=0sup |u(x)| < ∞,x∈Ω\E


6 1 Function SpacesAll L p (Ω) spaces with p ∈ [1, ∞) ∪ {∞} are Banach spaces. Moreover, L 2 (Ω) is aHilbert space with <strong>the</strong> inner product⟨u, v⟩ L 2 (Ω) := u(x)v(x) dxinducing <strong>the</strong> norm ∥ · ∥ L 2 (Ω). In particular, <strong>for</strong> v = u, i.e., <strong>for</strong> <strong>the</strong> square of <strong>the</strong> L 2 (Ω)norm of u we get <strong>the</strong> equality∥u∥ 2 L 2 (Ω) = ⟨u, u⟩ L 2 (Ω) = u(x)u(x) dx = |u(x)| 2 dx.ΩFur<strong>the</strong>rmore, we introduce L 1 loc(Ω) as <strong>the</strong> space of locally integrable measurable functionsu: Ω → C, i.e., <strong>for</strong> such functions it holds|u(x)| dx < ∞ <strong>for</strong> all compact subsets K ⊂ Ω.KNote that every function f ∈ L 1 loc(Ω) can be identified with a distribution defined as⟨f, ϕ⟩ := f(x)ϕ(x) dx <strong>for</strong> all ϕ ∈ C0 ∞ (Ω).ΩA partial derivative of a distribution F is a distribution D α F defined byΩ⟨D α F, ϕ⟩ := (−1) |α| ⟨F, D α ϕ⟩ <strong>for</strong> all ϕ ∈ C ∞ 0 (Ω). (1.1)ΩSince we deal with <strong>the</strong> <strong>Helmholtz</strong> equation in <strong>the</strong> following sections, it is necessary tointroduce Sobolev spaces of <strong>the</strong> first order. We define W 1,p (Ω) asW 1,p (Ω) :=u ∈ L p (Ω):∂u∈ L p (Ω) <strong>for</strong> k ∈ {1, . . . , d} ,∂x kwhere <strong>the</strong> derivatives must be considered in <strong>the</strong> distributional sense. Hence, W 1,p (Ω) is asubspace of L p (Ω). We denote by W 1,p0 (Ω) <strong>the</strong> closure of C0 ∞(Ω) in <strong>the</strong> space W 1,p (Ω).Both previously introduced spaces are Banach spaces <strong>for</strong> p ∈ [1, ∞) ∪ {∞} with respect to<strong>the</strong> norm d1/p∥u∥ W 1,p (Ω) := |u(x)| p +∂up (x)Ω∂x k dx. (1.2)According to <strong>The</strong>orem 3.22 in [1], <strong>for</strong> Lipschitz domains it holds that <strong>the</strong> set of functionsin C ∞ 0 (Rd ) restricted to Ω is dense in W 1,p (Ω) and thus <strong>for</strong> every function u ∈ W 1,p (Ω)<strong>the</strong>re exists a sequence (ϕ n ) ⊂ C ∞ 0 (Rd ) such thatk=1lim ∥ϕ n | Ω − u∥ W 1,p (Ω) = 0.


7For a special choice of p = 2 we get Hilbert spaces H 1 (Ω) := W 1,2 (Ω) and H0 1 (Ω) :=W 1,20 (Ω) equipped with <strong>the</strong> inner product⟨u, v⟩ H 1 (Ω) := ⟨u, v⟩ L 2 (Ω) + ⟨∇u, ∇v⟩ L 2 (Ω)inducing <strong>the</strong> norm (1.2), which can be rewritten in <strong>the</strong> <strong>for</strong>m∥u∥ H 1 (Ω) := ∥u∥ W 1,2 (Ω) = ∥u∥ 2 L 2 (Ω) + ∥∇u∥2 L 2 (Ω) .In <strong>the</strong> previous two <strong>for</strong>mulae we used <strong>the</strong> notation⟨∇u, ∇v⟩ L 2 (Ω) :=∥∇u∥ 2 L 2 (Ω) :=dk=1dk=1ΩΩ∂u∂x k(x) ∂v∂x k(x) dx,∂u (x)∂x kIn <strong>the</strong> following text we also consider a more restricted space H 1 (Ω, ∆ + κ 2 ) ⊂ H 1 (Ω)with κ ∈ R + defined asH 1 (Ω, ∆ + κ 2 ) := {u ∈ H 1 (Ω): ∆u + κ 2 u ∈ L 2 (Ω)}, (1.3)where <strong>for</strong> smooth functions <strong>the</strong> symbol ∆ stands <strong>for</strong> <strong>the</strong> Laplace operator defined as∆u :=d ∂ 2 u.∂x 2 k=1 kNote that <strong>for</strong> a non-smooth function u <strong>the</strong> corresponding function ∆u + κ 2 u from <strong>the</strong>definition (1.3) must be interpreted in <strong>the</strong> distributional sense, i.e., using <strong>the</strong> definition ofdistributional derivatives (1.1), ∆u + κ 2 u is a distribution satisfying⟨∆u + κ 2 u, ϕ⟩ =d ∂ 2 u∂x 2 , ϕ + κ 2 ⟨u, ϕ⟩ =kk=12dk=1dx.= ⟨u, ∆ϕ + κ 2 ϕ⟩ <strong>for</strong> all ϕ ∈ C ∞ 0 (Ω). u, ∂2 ϕ∂x 2 + κ 2 ⟨u, ϕ⟩k(1.4)We say that ∆u + κ 2 u ∈ L 2 (Ω) in <strong>the</strong> distributional sense if <strong>the</strong>re exists a functionv ∈ L 2 (Ω) satisfyingv(x)ϕ(x) dx = u(x) ∆ϕ(x) + κ 2 ϕ(x) dx <strong>for</strong> all ϕ ∈ C0 ∞ (Ω).ΩToge<strong>the</strong>r with <strong>the</strong> normΩ∥u∥ H 1 (Ω,∆+κ 2 ) :=∥u∥ 2 H 1 (Ω) + ∥∆u + κ2 u∥ 2 L 2 (Ω)


8 1 Function Spaces<strong>the</strong> space H 1 (Ω, ∆ + κ 2 ) is a Hilbert space.Finally, we introduce Hloc 1 (Ω) and H1 loc (Ω, ∆ + κ2 ) asu ∈ Hloc 1 (Ω) ⇔ u ∈ H1 ( Ω) <strong>for</strong> all open bounded subsets Ω ⊂ Ω,u ∈ Hloc 1 (Ω, ∆ + κ2 ) ⇔ u ∈ H 1 ( Ω, ∆ + κ 2 ) <strong>for</strong> all open bounded subsets Ω ⊂ Ω.Note that <strong>for</strong> a bounded domain Ω we haveHloc 1 (Ω) = H1 (Ω),Hloc 1 (Ω, ∆ + κ2 ) = H 1 (Ω, ∆ + κ 2 ).1.3 Lebesgue and Sobolev Spaces on ManifoldsSince <strong>the</strong> most important computations in <strong>the</strong> boundary element method take place on<strong>the</strong> boundary, it is necessary to introduce appropriate function spaces defined on ∂Ω.For p ∈ [1, ∞) we denote by L p (∂Ω) <strong>the</strong> space of functions u : ∂Ω → C satisfying∥u∥ L p (∂Ω) :=∂Ω|u(x)| p ds 1/p< ∞.Fur<strong>the</strong>rmore, we introduce L ∞ (∂Ω) as <strong>the</strong> space of functions u: ∂Ω → C such that∥u∥ L ∞ (∂Ω) := ess sup |u| :=∂ΩinfE⊂∂Ωµ(E)=0sup |u(x)| < ∞.x∈∂Ω\ESimilarly as <strong>for</strong> <strong>the</strong> Lebesgue spaces defined on Ω, <strong>the</strong> elements of L p (∂Ω) are actuallyequivalence classes of functions (see Remark 1.2).Let us recall <strong>the</strong> trace <strong>the</strong>orem generalizing <strong>the</strong> concept of a restriction of a functionto <strong>the</strong> boundary (see <strong>The</strong>orem 2.6.8 in [15]).<strong>The</strong>orem 1.3 (On Traces). Let Ω ⊂ R d denote a Lipschitz domain. <strong>The</strong>n <strong>the</strong>re exists aunique linear continuous mappingγ 0 : H 1 loc (Ω) → L2 (∂Ω)satisfyingu ∈ C ∞ (Ω): γ 0 u = u| ∂Ω .<strong>The</strong> function γ 0 u ∈ L 2 (∂Ω) is called <strong>the</strong> (Dirichlet) trace of <strong>the</strong> function u ∈ H 1 loc (Ω).Remark 1.4. <strong>The</strong> trace <strong>the</strong>orem allows an alternative definition of H0 1 (Ω) asH 1 0 (Ω) := {u ∈ H 1 (Ω): γ 0 u = 0}.


9Note that <strong>the</strong> trace operator is not surjective, i.e., <strong>the</strong>re exist functions in L 2 (∂Ω) thatare not traces of any function in Hloc 1 (Ω). <strong>The</strong>re<strong>for</strong>e, we introduce H1/2 (∂Ω) as <strong>the</strong> tracespace of Hloc 1 (Ω), i.e.,H 1/2 (∂Ω) := γ 0 (Hloc 1 (Ω)).Obviously, H 1/2 (∂Ω) is a linear subset of L 2 (∂Ω). Equipped with <strong>the</strong> Sobolev–Slobodeckiinorm ∥u∥ H 1/2 (∂Ω) := ∥u∥ 2 L 2 (∂Ω) + |u(x) − u(y)| 2 1/2∥x − y∥ 3 ds x ds y∂Ω<strong>the</strong> space is complete. Note that <strong>for</strong> a bounded domain Ω we have an equivalent norm∥u∥ H 1/2 (∂Ω) :=We define H −1/2 (∂Ω) as <strong>the</strong> dual space to H 1/2 (∂Ω), i.e., ∗H −1/2 (∂Ω) := H 1/2 (∂Ω)with <strong>the</strong> standard supremum norm∂Ωinf ∥v∥ H 1 (Ω). (1.5)v∈H 1 (Ω)γ 0 v=u∥f∥ H −1/2 (∂Ω) :=supu∈H 1/2 (∂Ω)u≠0|⟨f, u⟩|∥u∥ H 1/2 (∂Ω). (1.6)For a relatively open part of <strong>the</strong> boundary Γ ⊂ ∂Ω we define <strong>the</strong> spacesH 1/2 (Γ ) := v = ṽ| Γ : ṽ ∈ H 1/2 (∂Ω) ,H 1/2 (Γ ) := v = ṽ| Γ : ṽ ∈ H 1/2 (∂Ω), supp ṽ ⊂ Γ , ∗H −1/2 (Γ ) := H 1/2 (Γ ),∗H −1/2 (Γ ) := H 1/2 (Γ ).<strong>The</strong>se spaces will be used <strong>for</strong> <strong>the</strong> purposes of mixed boundary value problems. For a moredetailed treatment on this topic see [12] or [18].1.4 Generalized Normal DerivativesLet us now assume that Ω denotes a bounded domain. Recall that <strong>for</strong> a function u ∈ H 1 (Ω)<strong>the</strong>re exists a unique trace γ 0 u ∈ H 1/2 (∂Ω) generalizing <strong>the</strong> notion of a restriction to<strong>the</strong> boundary. To generalize a normal derivative in <strong>the</strong> same way we would need higherwould have to be inH 1 (Ω). In <strong>the</strong> following section we will, however, show that it is possible to introducenormal derivatives <strong>for</strong> functions in H 1 (Ω, ∆ + κ 2 ).regularity of u. Namely, <strong>the</strong> distributional partial derivatives ∂u∂x k


10 1 Function SpacesFirst of all, we recall how normal derivatives are treated in <strong>the</strong> finite element method.To derive <strong>the</strong> weak <strong>for</strong>mulation of a boundary value problem we will use <strong>the</strong> first Green’sidentity.<strong>The</strong>orem 1.5 (First Green’s Identity). Let Ω ⊂ R d be a bounded C 1 domain and let ndenote <strong>the</strong> unit exterior normal vector to ∂Ω. <strong>The</strong>n <strong>for</strong> u ∈ C 2 (Ω), v ∈ C 1 (Ω) <strong>the</strong> firstGreen’s identityis satisfied.Ω∆u(x)v(x) dx =∂Ω∂u∂nΩ(x)v(x) ds − ∇u(x)∇v(x) dx (1.7)Remark 1.6. <strong>The</strong> normal derivatives in <strong>the</strong> preceding <strong>the</strong>orem should be understood as∂u(x) := lim ⟨∇u(x − hn(x)), n(x)⟩∂n h→0 +<strong>for</strong> x ∈ ∂Ω.Corollary 1.7 (Second Green’s Identity). Let Ω ⊂ R d be a bounded C 1 domain and let ndenote <strong>the</strong> unit exterior normal vector to ∂Ω. <strong>The</strong>n <strong>for</strong> u, v ∈ C 2 (Ω) <strong>the</strong> second Green’sidentityΩ∆u(x)v(x) dx −is satisfied.Ωu(x)∆v(x) dx =Consider <strong>the</strong> boundary value problem∂Ω∂u∂n∂Ω(x)v(x) ds − u(x) ∂v (x) ds (1.8)∂n⎧−(∆u + κ⎪⎨2 u) = 0 in Ω,u = g D on Γ D ,(1.9)⎪⎩ ∂u∂n = g N on Γ Nwith a bounded C 1 domain Ω, non-overlapping sets Γ D , Γ N ⊂ ∂Ω such that Γ D ∪ Γ N = ∂Ωand g D , g N ∈ C(∂Ω). Considering a classical solution u ∈ C 2 (Ω), we can multiply <strong>the</strong>equation by a test function v ∈ V := {v ∈ C 2 (Ω): v| ∂Ω = 0 on Γ D } to obtain− ∆u(x)v(x) dx − κ 2 u(x)v(x) dx = 0 <strong>for</strong> all v ∈ V.ΩΩApplying <strong>the</strong> first Greens’s identity (1.7) we obtain∇u(x)∇v(x) dx − κ 2 u(x)v(x) dx = g N (x)v(x) ds <strong>for</strong> all v ∈ V.ΩΩΓ NThis <strong>for</strong>mulation, however, is also valid <strong>for</strong> more general settings given in <strong>the</strong> followingdefinition.


11Definition 1.8 (Weak Solution). Consider <strong>the</strong> boundary value problem (1.9) with abounded Lipschitz domain Ω, non-overlapping measurable sets Γ D , Γ N ⊂ ∂Ω such thatΓ D ∪ Γ N = ∂Ω, g D ∈ H 1/2 (Γ D ) and g N ∈ L 2 (Γ N ). <strong>The</strong>n u ∈ H 1 (Ω) is a weak solution to(1.9) if it satisfies⎧ ⎪⎨ ∇u(x)∇v(x) dx − κ 2 u(x)v(x) dx = g N (x)γ 0 v(x) ds <strong>for</strong> all v ∈ V,ΩΩΓ N⎪⎩γ 0 u = g D on Γ DwithV := {v ∈ H 1 (Ω): γ 0 v = 0 on Γ D }<strong>The</strong> advantage of <strong>the</strong> weak <strong>for</strong>mulation is that <strong>the</strong> Neumann boundary condition istrans<strong>for</strong>med into <strong>the</strong> term Γ Ng N (x)γ 0 v(x) dsand thus <strong>the</strong> normal derivatives of <strong>the</strong> solution do not appear in <strong>the</strong> weak <strong>for</strong>mulation.However, <strong>for</strong> <strong>the</strong> purposes of <strong>the</strong> boundary element method <strong>the</strong> concept of normalderivatives has to be generalized. Using <strong>the</strong> definition of distributional partial derivatives(1.1) we get <strong>for</strong> u ∈ L 1 loc (Ω)d ∂ 2 ud ∂u⟨∆u, ϕ⟩ =∂x 2 , ϕ = − , ∂ϕ =k=1 k∂x k ∂x kk=1= u(x)∆ϕ(x) dx <strong>for</strong> all ϕ ∈ C0 ∞ (Ω).dk=1For u ∈ H 1 (Ω, ∆ + κ 2 ) we may use <strong>the</strong> middle term from (1.10)⟨∆u, ϕ⟩ = −dk=1 ∂u, ∂ϕ = −∂x k ∂x kand rewrite (1.10) as∆u(x)ϕ(x) dx = −ΩΩdk=1Ω∂u(x) ∂ϕ (x) dx∂x k ∂x k u, ∂2 ϕ∂x 2 = ⟨u, ∆ϕ⟩k<strong>for</strong> all ϕ ∈ C ∞ 0 (Ω)(1.10)∇u(x)∇ϕ(x) dx <strong>for</strong> all ϕ ∈ C ∞ 0 (Ω). (1.11)Let u ∈ H 1 (Ω, ∆ + κ 2 ) be an arbitrary but fixed function. We define a functional˜L u : H 1 (Ω) → C as˜L u (v) := ∇u(x)∇v(x) dx + ∆u(x) + κ 2 u(x) v(x) dx − κ 2 u(x)v(x) dxΩΩΩApparently, ˜L u is linear and due to <strong>the</strong> Hölder inequality we have|˜L u (v)| ≤ ∥∇u∥ L 2 (Ω)∥∇v∥ L 2 (Ω) + ∥∆u + κ 2 u∥ L 2 (Ω)∥v∥ L 2 (Ω) + κ 2 ∥u∥ L 2 (Ω)∥v∥ L 2 (Ω)≤ (2 + κ 2 )∥u∥ H 1 (Ω,∆+κ 2 )∥v∥ H 1 (Ω),


13In <strong>the</strong> previous paragraphs we showed how to generalize <strong>the</strong> concept of a normal derivativeof a function in H 1 (Ω, ∆ + κ 2 ) with a bounded domain Ω. However, it is also possibleto introduce <strong>the</strong> Neumann trace operator γ 1 <strong>for</strong> functions defined on an unbounded domain.Since <strong>the</strong> trace is only dependable on <strong>the</strong> behaviour of <strong>the</strong> function in <strong>the</strong> vicinityof <strong>the</strong> boundary, we haveγ 1 : H 1 loc (Ω, ∆ + κ2 ) → H −1/2 (∂Ω).Because H 1 loc (Ω, ∆+κ2 ) coincides with H 1 (Ω, ∆+κ 2 ) <strong>for</strong> bounded domains, <strong>the</strong> precedingdefinitions agree with this concept. For a more detailed treatment of this topis see [15],Section 2.7.Note that <strong>for</strong> a function u ∈ H 2 (Ω), whereH 2 (Ω) := u ∈ L 2 (Ω): D α u ∈ L 2 (Ω) <strong>for</strong> |α| ≤ 2 ,we have⟨γ 1 u, γ 0 v⟩ =dk=1∂Ωγ 0 ∂u(x)n k (x)γ 0 ∂uv(x) ds =∂x k ∂Ω ∂n (x)γ0 v(x) ds.


152 <strong>Helmholtz</strong> <strong>Equation</strong>Let us first recall <strong>the</strong> well-known wave equation∂ 2 U∂t 2 = c2 ∆U in (0, τ) × Ω (2.1)describing <strong>the</strong> wave propagation in a homogeneous, isotropic and friction-free medium witha constant speed of propagation c. For <strong>the</strong> derivation of <strong>the</strong> wave equation (2.1) see, e.g.,[10] or [9].In <strong>the</strong> case of time harmonic waves, i.e., waves of <strong>the</strong> <strong>for</strong>mU(t, x) = Re u(x)e −iωtwith a complex-valued scalar function u: Ω → C, <strong>the</strong> imaginary unit i and ω ∈ R + denoting<strong>the</strong> angular frequency, we can reduce <strong>the</strong> wave equation (2.1) as follows. For <strong>the</strong> solutionU we getU(t, x) = Re u(x)e −iωt = (Re u) cos ωt + (Im u) sin ωt. (2.2)Inserting (2.2) into (2.1) and dividing by c 2 we obtain− ω2c 2 (Re u) cos ωt + (Im u) sin ωt= (∆ Re u) cos ωt + (∆ Im u) sin ωt,which after rearranging yieldscos ωt∆ Re u + ω2c 2 Re u + sin ωt∆ Im u + ω2c 2 Im u = 0. (2.3)<strong>The</strong> equation (2.3) is satisfied in some time interval (0, τ) if it holdsi.e., if <strong>the</strong> equation∆ Re u + ω2ω2Re u = 0 ∧ ∆ Im u + Im u = 0,c2 c2 ∆u + ω2c 2 u = 0in Ωis satisfied. Defining <strong>the</strong> wave number κ asκ := ω c ∈ R +we finally obtain <strong>the</strong> <strong>Helmholtz</strong> equation∆u + κ 2 u = 0 in Ω.


17<strong>the</strong> boundary value problem (see, e.g., [6], [9])⎧∆u + κ 2 u = 0 in Ω ext ,⎪⎨⎪⎩x ∇u s (x),∥x∥u s + u i = u in Ω ext ,− iκu s (x)u = 0 on Γ D ,∂u∂n = 0 on Γ N, 1 = O ∥x∥ 2<strong>for</strong> ∥x∥ → ∞(2.4)with u := u s + u i denoting <strong>the</strong> total wave. <strong>The</strong> homogeneous Dirichlet and Neumannboundary conditions represent <strong>the</strong> so-called sound-soft and sound-hard scattering, respectively.Assuming that <strong>the</strong> source of <strong>the</strong> incident wave is remote enough, we can approximateu i by plane waves, i.e.,u i (x) := e iκ⟨x,d⟩with d denoting <strong>the</strong> normalized propagation direction. Because such u i satisfies <strong>the</strong> Helmhholtzequation, we can reduce <strong>the</strong> problem (2.4) to⎧⎪⎨⎪⎩ ∇u s (x),x∥x∥∆u s + κ 2 u s = 0 in Ω ext ,u s = −u i on Γ D ,∂u s∂n = −iκ⟨d, n⟩u i on Γ N , − iκu s (x)1 = O ∥x∥ 2 <strong>for</strong> ∥x∥ → ∞with n denoting <strong>the</strong> unit outward normal vector to ∂Ω. <strong>The</strong> total wave is <strong>the</strong>n given by<strong>the</strong> <strong>for</strong>mula u = u s + u i .2.2 Fundamental Solution<strong>The</strong> knowledge of <strong>the</strong> fundamental solution is essential <strong>for</strong> <strong>the</strong> derivation of <strong>the</strong> representation<strong>for</strong>mulae and <strong>the</strong> corresponding boundary integral equations. <strong>The</strong> fundamentalsolution <strong>for</strong> <strong>the</strong> <strong>Helmholtz</strong> equation in R 3 is introduced by <strong>the</strong> following definition.Definition 2.1 (Fundamental Solution). <strong>The</strong> function v : R 3 × R 3 → C defined asv κ (x, y) := 1 e iκ∥x−y∥4π ∥x − y∥is called <strong>the</strong> fundamental solution <strong>for</strong> <strong>the</strong> <strong>Helmholtz</strong> equation in R 3 .In <strong>the</strong> following <strong>the</strong>orems we provide some properties of <strong>the</strong> fundamental solution v κ ,which will be used <strong>for</strong> <strong>the</strong> derivation of <strong>the</strong> representation <strong>for</strong>mulae.


20 2 <strong>Helmholtz</strong> <strong>Equation</strong>∂ΩΩ εεynB ε∂B εFigure 2.2: Illustration <strong>for</strong> <strong>the</strong> proof of <strong>The</strong>orem 2.5.with⎡⎢det J(r, ϑ, ψ) = det ⎣∂x 1∂r∂x 2∂r∂x 3∂r∂x 1∂ϑ∂x 2∂ϑ∂x 3∂ϑ∂x 1∂ψ∂x 2∂ψ∂x 3∂ψ⎤⎥⎦ = r 2 cos ψ.According to <strong>The</strong>orem 2.4 we have ṽ κ ∈ L 1 loc (R3 ) and we can identify ṽ κ with a distributionṽ κ : C0 ∞(R3 ) → C defined as⟨ṽ κ , ϕ⟩ :=ṽ κ (x)ϕ(x) dx =R 3 v κ (x, y)ϕ(x) dx.R 3<strong>The</strong>orem 2.5. Let y ∈ R 3 . <strong>The</strong>n <strong>the</strong> function ṽ κ : R 3 → C,satisfiesṽ κ (x) := v κ (x, y)∆ṽ κ + κ 2 ṽ κ = −δ yin <strong>the</strong> distributional sense, i.e.,∆ṽκ + κ 2 ṽ κ , ϕ = ⟨−δ y , ϕ⟩ := −ϕ(y) <strong>for</strong> all ϕ ∈ C ∞ 0 (R 3 ).Proof. Let y ∈ R 3 and ϕ ∈ C ∞ 0 (R3 ) be chosen arbitrarily. We have to prove that∆ṽκ + κ 2 ṽ κ , ϕ = −ϕ(y).Similarly as in (1.4), we get <strong>for</strong> <strong>the</strong> left-hand side∆ṽκ + κ 2 ṽ κ , ϕ = ⟨ṽ κ , ∆ϕ + κ 2 ϕ⟩.


21Because ṽ κ ∈ L 1 loc (R3 ) (see <strong>The</strong>orem 2.4), we can rewrite <strong>the</strong> last term of <strong>the</strong> previous<strong>for</strong>mula as⟨ṽ κ , ∆ϕ + κ 2 ϕ⟩ = v κ (x, y) ∆ϕ(x) + κ 2 ϕ(x) dx =: I.R 3Let us now choose a smooth enough bounded domain Ω ⊂ R 3 such that supp ϕ ⊂ Ω,y ∈ Ω. Fur<strong>the</strong>rmore, we denote B ε (y) := {x ∈ R 3 : ∥x − y∥ < ε} and Ω ε := Ω \ B ε (y)(see Figure 2.2). Since <strong>the</strong> domain Ω ε does not contain <strong>the</strong> point y, it holds∆ x v κ (x, y) + κ 2 v κ (x, y) = 0<strong>for</strong> all x ∈ Ω εand we obtainI = v κ (x, y) ∆ϕ(x) + κ 2 ϕ(x) dx = lim v κ (x, y) ∆ϕ(x) + κ 2 ϕ(x) dxR 3 ε→0 + Ω ε= lim v κ (x, y) ∆ϕ(x) + κ 2 ϕ(x) − ∆ x v κ (x, y) + κ 2 v κ (x, y) ϕ(x) dxε→0 + Ω ε =0= lim v κ (x, y)∆ϕ(x) − ∆ x v κ (x, y)ϕ(x) dx.ε→0 + Ω εUsing <strong>the</strong> second Green’s identity (1.8) and <strong>the</strong> fact that ϕ = ∂ϕ∂n= 0 on ∂Ω we haveI = lim∂ϕ∂n (x)v κ(x, y) dx − lim =:I 1ε→0 +∂B ε(y)∂v κ(x, y)ϕ(x) dx .∂n x =:I 2ε→0 +∂B ε(y)To evaluate <strong>the</strong> integrals I 1 and I 2 we parametrize <strong>the</strong> sphere ∂B ε (y) using (2.6) withr = ε. Because <strong>for</strong> x ∈ ∂B ε (y) we have ∥x − y∥ = ε, we obtainI 1 = 1 2π π24π 0 − π 2= 14π εeiκε 2π0e iκεε π2− π 2∂ϕ y + ε(cos ϑ cos ψ, sin ϑ cos ψ, sin ψ) ε 2 cos ψ dψ dϑ∂n∂ϕ y + ε(cos ϑ cos ψ, sin ϑ cos ψ, sin ψ) cos ψ dψ dϑ.∂nBecause ϕ ∈ C ∞ 0 (R3 ) andwe obtain <strong>for</strong> <strong>the</strong> first integrallim εe iκε = 0,ε→0 +limε→0 +I 1 = 0.To evaluate I 2 we first have to express <strong>the</strong> normal derivative ∂vκ∂n x∂B ε (y). For <strong>the</strong> gradient of v κ we get= ⟨∇ x v κ , n⟩ on∇ x v κ (x, y) = 1 iκ∥x − y∥ − 1eiκ∥x−y∥4π ∥x − y∥ 3 (x − y),


22 2 <strong>Helmholtz</strong> <strong>Equation</strong><strong>the</strong> normal vector n can be expressed as (see Figure 2.2)n(x) = − 1 (x − y)εand thusHence, we have∂v κ(x, y) = 1∂n x 4π1ε1 − iκ∥x − y∥eiκ∥x−y∥ .∥x − y∥I 2 = 1 2π π24π 0 − π 21ε1 − iκεeiκε ϕ y + ε(cos ϑ cos ψ, sin ϑ cos ψ, sin ψ) ε 2 cos ψ dψ dϑε= 1 2π π2e iκε (1 − iκε)ϕ y + ε(cos ϑ cos ψ, sin ϑ cos ψ, sin ψ) cos ψ dψ dϑ.4π 0 − π 2<strong>The</strong> Lebesgue dominated convergence <strong>the</strong>orem allows us to interchange <strong>the</strong> limit and <strong>the</strong>integration. Moreover, because ϕ ∈ C ∞ 0 (R3 ) andlim e iκε (1 − iκε) = 1,ε→0 +we obtainand finallylim I 2 = 1 2π π2ϕ(y) cos ψ dψ dϑ = ϕ(y)ε→0 + 4π 0 − π 2which was to be proved.I = ⟨∆ṽ κ + κ 2 ṽ κ , ϕ⟩ = limε→0 +I 1 − limε→0 +I 2 = −ϕ(y) = ⟨−δ y , ϕ⟩,2.3 Representation Formulae<strong>The</strong> following two <strong>the</strong>orems <strong>for</strong>m <strong>the</strong> basis of <strong>the</strong> boundary element method, providing<strong>for</strong>mulae <strong>for</strong> calculating <strong>the</strong> solution to a boundary value problem in any point of <strong>the</strong>given domain. Firstly, we focus on interior problems, i.e., problems on bounded domains.<strong>The</strong>orem 2.6 (Representation Formula <strong>for</strong> Bounded Domains). Let Ω ⊂ R 3 be a boundedC 1 domain, let v κ denote <strong>the</strong> fundamental solution <strong>for</strong> <strong>the</strong> <strong>Helmholtz</strong> equation in R 3 andlet n denote <strong>the</strong> unit outward normal vector to ∂Ω. <strong>The</strong>n <strong>for</strong> u ∈ C 2 (Ω) we have <strong>the</strong>representation <strong>for</strong>mula∂uu(x) =∂Ω ∂n (y)v κ(x, y) ds y − u(y) ∂v κ(x, y) ds y∂Ω ∂n y− ∆u(y) + κ 2 u(y) v κ (x, y) dy <strong>for</strong> x ∈ Ω.Ω


23In particular, if u satisfies <strong>the</strong> <strong>Helmholtz</strong> equation<strong>the</strong>nu(x) =∂Ω∆u + κ 2 u = 0 in Ω,∂u∂n (y)v κ(x, y) ds y − u(y) ∂v κ(x, y) ds y <strong>for</strong> x ∈ Ω. (2.7)∂Ω ∂n yProof. <strong>The</strong> proof is constructed in <strong>the</strong> same way as in <strong>the</strong> case of <strong>The</strong>orem 2.5. Let x ∈ Ωbe an arbitrary fixed point. Let us choose ε > 0 such thatB ε (x) := {y ∈ R 3 : ∥x − y∥ < ε} ⊂ B ε (x) ⊂ Ωand let us denote Ω ε := Ω \ B ε (x) (similar situation as in Figure 2.2 with points x and yswapped). From <strong>The</strong>orem 2.2 and <strong>the</strong> symmetry of v κ we have∆ y v κ (x, y) + κ 2 v κ (x, y) = 0 <strong>for</strong> all y ∈ Ω ε .Using <strong>the</strong> second Green’s identity with functions u and v κ on Ω ε we obtain=0∆u(y) + κ 2 u(y) v κ (x, y) dy − u(y) ∆ y v κ (x, y) + κ 2 v κ (x, y) dyΩ ε Ω ε∂u=∂Ω ∂n (y)v κ(x, y) ds y − u(y) ∂v κ(x, y) ds y(2.8)∂Ω ∂n y+−∂B ε(x)∂u∂n (y)v κ(x, y) ds y =:I 1Because <strong>for</strong> y ∈ ∂B ε (x) we have ∥x − y∥ = ε andit holds thatn(y) = 1 (x − y),εu(y) ∂v κ(x, y) ds y∂B ε(x) ∂n y =:I 2.v κ (x, y) = 1 e iκε4π ε ,∇ y v κ (x, y) = 1 1 − iκεeiκε4π ε 3 (x − y),∂v κ(x, y) = ⟨∇ y v κ (x, y), n(y)⟩ = 1 1∂n y 4π ε 2 eiκε (1 − iκε)<strong>for</strong> all y ∈ ∂B ε (x). Using <strong>the</strong> parametrization as in <strong>the</strong> proof of <strong>The</strong>orem 2.4 (but with xand y swapped) we have <strong>for</strong> <strong>the</strong> integral I 1I 1 = 14π 2π0 π2− π 2= 14π εeiκε 2π0e iκεε π2− π 2∂u x + ε(cos ϑ cos ψ, sin ϑ cos ψ, sin ψ) ε 2 cos ψ dψ dϑ∂n∂u x + ε(cos ϑ cos ψ, sin ϑ cos ψ, sin ψ) cos ψ dψ dϑ∂n


24 2 <strong>Helmholtz</strong> <strong>Equation</strong>and due to properties of uFor <strong>the</strong> integral I 2 we obtainlim I 1 = 0.ε→0 +I 2 = 1 2π π24π 0 − π 21ε 2 eiκε (1 − iκε)u x + ε(cos ϑ cos ψ, sin ϑ cos ψ, sin ψ) ε 2 cos ψ dψ dϑ= 1 2π π2e iκε (1 − iκε)u x + ε(cos ϑ cos ψ, sin ϑ cos ψ, sin ψ) cos ψ dψ dϑ4π 0 − π 2and using <strong>the</strong> Lebesgue dominated convergence <strong>the</strong>orem and qualities of u we haveFinally, letting ε → 0 + we obtain from (2.8)∆u(y) + κ 2 u(y) v κ (x, y) dylim I 2 = u(x).ε→0 +Ω=∂Ω∂u∂n (y)v κ(x, y) ds y − u(y) ∂v κ(x, y) ds y − u(x).∂Ω ∂n ySince <strong>the</strong> point x ∈ Ω was arbitrary, we have proved <strong>The</strong>orem 2.6.When solving a problem of sound scattering or wave propagation described by <strong>the</strong><strong>Helmholtz</strong> equation we are usually interested in <strong>the</strong> solution in an unbounded domain.<strong>The</strong> following <strong>the</strong>orem gives us <strong>the</strong> representation <strong>for</strong>mula <strong>for</strong> such domains (see [6]).<strong>The</strong>orem 2.7 (Representation Formula <strong>for</strong> Unbounded Domains). Let Ω ⊂ R 3 be abounded C 1 domain, let v κ denote <strong>the</strong> fundamental solution <strong>for</strong> <strong>the</strong> <strong>Helmholtz</strong> equation inR 3 and let n denote <strong>the</strong> unit outward normal vector to ∂Ω. Let us define Ω ext := R 3 \ Ω.<strong>The</strong>n <strong>for</strong> u ∈ C 2 (Ω ext ) satisfying∆u + κ 2 u = 0in Ω extand <strong>the</strong> Sommerfeld radiation condition x ∇u(x), − iκu(x)1∥x∥ = O ∥x∥ 2<strong>for</strong> ∥x∥ → ∞we have <strong>the</strong> representation <strong>for</strong>mulau(x) = u(y) ∂v κ(x, y) ds y −∂n y∂Ω∂Ω∂u∂n (y)v κ(x, y) ds y <strong>for</strong> x ∈ Ω ext .


25Ωn to ∂Ω ε0n to ∂Ω∂Ω∂B ε (o)n to ∂Ω εΩ εFigure 2.3: Illustration <strong>for</strong> <strong>the</strong> proof of <strong>The</strong>orem 2.7.Proof. Let B ε (0) := {y ∈ R 3 : ∥y∥ < ε}, where ε is taken such that Ω ⊂ B ε (0). Fur<strong>the</strong>rmore,let Ω ε := B ε (0) \ Ω (see Figure 2.3). We start with showing that|u(y)| 2 ds = O(1) <strong>for</strong> ε → ∞.∂B ε(0)From <strong>the</strong> radiation condition we deduce lim∂u2ε→∞ ∂n (y) − iκu(y) ds = 0. (2.9)∂B ε(0)BecauseIm u ∂ū = Re u Im ∂ū∂ū∂u∂u+ Im u Re = − Re u Im + Im u Re∂n∂n ∂n ∂n ∂n ,we get <strong>for</strong> <strong>the</strong> integrand from (2.9) ∂u 2∂n − iκu =∂uRe ∂n∂u2 + i Im∂n − iκ Re u + κ Im u = Re ∂u∂n+ κ 2 (Im u) 2 + 2κ Im u Re ∂u ∂n + Im ∂u∂n− 2κ Im ∂u ∂n Re u = ∂u∂n2+ κ 2 |u| 2 + 2κ Im 2 2+ κ 2 (Re u) 2u ∂ū ∂n


26 2 <strong>Helmholtz</strong> <strong>Equation</strong>and thus lim∂u 2ε→∞ ∂B ε(0) ∂n (y)Since+ κ 2 |u(y)| 2 ds + 2κ Im u(y) ∂ū∂B ε(0) ∂n (y) ds = 0. (2.10)Now we apply <strong>the</strong> first Green’s identity (1.7) in Ω ε <strong>for</strong> functions u and ū to obtain∂ū∆ū(y)u(y) dy + ∇ū(y)∇u(y) dy = (y)u(y) ds. (2.11)Ω ε Ω ε∂n∆ū + κ 2 ū = 0in Ω εand ∂Ω ε = ∂Ω ∪ ∂B ε (0), we can rewrite <strong>the</strong> <strong>for</strong>mula (2.11) as|∇u(y)| 2 dy − κ 2 |u(y)| 2 ∂ūdy =Ω ε Ω ε ∂B ε(0) ∂n∂Ω(y)u(y) ds − ∂ū(y)u(y) ds, (2.12)∂nwhere we had to take into account <strong>the</strong> opposite direction of n <strong>for</strong> y ∈ ∂Ω (see Figure 2.3).Because <strong>the</strong> left-hand side of (2.12) is real, we obtain∂ūIm∂n∂Ω(y)u(y) ds = Im ∂ū(y)u(y) ds < ∞. (2.13)∂n∂B ε(0)Inserting (2.13) into (2.10) we getand thus lim∂u 2ε→∞ ∂B ε(0) ∂n (y)limε→∞∂B ε(0) ∂u 2∂n (y)∂Ω ε+ κ 2 |u(y)| 2 ds + 2κ Im u(y) ∂ū∂Ω ∂n (y) ds = 0+ κ 2 |u(y)| 2 ds = −2κ Im∂Ωu(y) ∂ū (y) ds < ∞.∂nBecause both terms on <strong>the</strong> left-hand side are non-negative, <strong>the</strong>y have to be bounded <strong>for</strong>ε → ∞. <strong>The</strong>re<strong>for</strong>e, we have proved that|u(y)| 2 ds = O(1) <strong>for</strong> ε → ∞. (2.14)∂B ε(0)From <strong>The</strong>orem 2.3 we know that <strong>the</strong> radiation condition and thus also (2.14) is valid<strong>for</strong> <strong>the</strong> fundamental solution v κ . Using <strong>the</strong> Hölder inequality we thus obtain ∂vκI 1 := u(y) (x, y) − iκv κ (x, y) ds y∂B ε(0) ∂n y 1/2 ≤ |u(y)| 2 ds y ∂v κ2 1/2 (x, y) − iκv κ (x, y)∂B ε(0)∂B ε(0) ∂n y ds y → 0 <strong>for</strong> ε → ∞(2.15)


27andI 2 :=∂B ε(0) ∂uv κ (x, y)∂n (y) − iκu(y) ds y 1/2 ≤ |v κ (x, y)| 2 ds y ∂u2 1/2∂B ε(0)∂B ε(0) ∂n (y) − iκu(y) ds y → 0 <strong>for</strong> ε → ∞.(2.16)Finally, <strong>for</strong> <strong>the</strong> bounded domain Ω ε we can apply <strong>the</strong> representation <strong>for</strong>mula (2.7) toobtain∂uu(x) =∂Ω ε∂n (y)v κ(x, y) ds y − u(y) ∂v κ(x, y) ds y∂Ω ε∂n y∂u= −∂n (y)v κ(x, y) ds y + u(y) ∂v κ(x, y) ds y + I 2 − I 1∂n y∂Ω<strong>for</strong> all x ∈ Ω ε . Letting ε → ∞, using (2.15) and (2.16), we eventually getu(x) = u(y) ∂v κ∂u(x, y) ds y −∂n y ∂n (y)v κ(x, y) ds y∂Ω<strong>for</strong> all x ∈ Ω ext , which was to be proved.<strong>The</strong>orems 2.6 and 2.7 provide representation of <strong>the</strong> solution to <strong>the</strong> <strong>Helmholtz</strong> equationby means of boundary integrals. <strong>The</strong> functions( V ∂v κκ s)(x) := v κ (x, y)s(y) ds y and (W κ t)(x) := (x, y)t(y) ds y∂n y∂Ωare called potentials with density functions s, t. Although we have only discussed <strong>the</strong> caseof smooth data, in <strong>the</strong> following section we will show that <strong>the</strong> potentials can also be defined<strong>for</strong> more general density functions and domains. <strong>The</strong> properties of <strong>the</strong> integral operatorsV κ and W κ will play a crucial role in obtaining <strong>the</strong> missing Cauchy data.∂Ω∂Ω∂Ω


293 <strong>Boundary</strong> Integral <strong>Equation</strong>sAt <strong>the</strong> beginning of this section we introduce some operator properties, which will be usedto prove existence and uniqueness of solutions to boundary integral equations derived laterin Section 3.5. In <strong>the</strong> following definitions we assume X and Y to be some Hilbert spaces.Definition 3.1. A linear operator A: X → X ∗ is X-elliptic if <strong>the</strong>re exists a constantc A 1 ∈ R + such that <strong>the</strong> inequalityholds <strong>for</strong> all u ∈ X.Re ⟨Au, u⟩ ≥ c A 1 ∥u∥ 2 XDefinition 3.2. A linear operator A: X → Y is bounded if <strong>the</strong>re exists a constant c A 2 ∈ R +such that <strong>the</strong> inequality∥Au∥ Y ≤ c A 2 ∥u∥ Xholds <strong>for</strong> all u ∈ X.Remark 3.3. Note that <strong>for</strong> linear operators boundedness is equivalent to continuity.Definition 3.4. A linear operator A: X → X ∗ is coercive if <strong>the</strong>re exists a compactoperator C : X → X ∗ and a constant c A 1 ∈ R + such that <strong>the</strong> Gårdings inequalityholds <strong>for</strong> all u ∈ X.∂ΩRe ⟨(A + C)u, u⟩ ≥ c A 1 ∥u∥ 2 XIn <strong>the</strong> previous section we showed that in <strong>the</strong> smooth case <strong>the</strong> solution to <strong>the</strong> <strong>Helmholtz</strong>equation on a bounded domain can be represented as∂uu(x) =∂n (y)v κ(x, y) ds y − u(y) ∂v κ(x, y) ds y <strong>for</strong> x ∈ Ω. (3.1)∂n yFor <strong>the</strong> solution on an unbounded domain we have similarly∂uu(x) = −∂n (y)v κ(x, y) ds y + u(y) ∂v κ(x, y) ds y <strong>for</strong> x ∈ Ω ext . (3.2)∂n y∂Ω∂ΩIn both cases <strong>the</strong> solution u is determined by <strong>the</strong> Cauchy data, i.e., by <strong>the</strong> values of <strong>the</strong>solution on <strong>the</strong> boundary and its normal derivatives. However, <strong>the</strong>se data are not givenbe<strong>for</strong>ehand as <strong>the</strong> boundary value problem would be overdetermined. When considering amixed problem, we are only given Dirichlet data on a part of <strong>the</strong> boundary and Neumanndata on <strong>the</strong> remaining part. In this section we show how <strong>the</strong> Cauchy couple can be obtainedfrom boundary integral equations derived from <strong>the</strong> representation <strong>for</strong>mulae (3.1) and (3.2).Afterwards, <strong>the</strong>se <strong>for</strong>mulae can be used to compute <strong>the</strong> solution in any point x ∈ Ω orx ∈ Ω ext , respectively.∂Ω


30 3 <strong>Boundary</strong> Integral <strong>Equation</strong>sIntroducing <strong>the</strong> integral operatorsV κ : H −1/2 (∂Ω) → Hloc 1 (Ω), ( V κ s)(x) :=W κ : H 1/2 (∂Ω) → Hloc 1 (Ω), (W κt)(x) :=∂Ω∂Ωv κ (x, y)s(y) ds y , (3.3)∂v κ∂n y(x, y)t(y) ds y (3.4)with density functions s, t: ∂Ω → R allows us to rewrite <strong>the</strong> representation <strong>for</strong>mulae (3.1)and (3.2) asu = V κ γ 1,int u − W κ γ 0,int u in Ω,u = − V κ γ 1,ext u + W κ γ 0,ext u in Ω ext .Remark 3.5. <strong>The</strong> operators V κ and W κ are usually called <strong>the</strong> single layer potential operatorand <strong>the</strong> double layer potential operator, respectively. However, <strong>the</strong>re is a naming conflict.In <strong>the</strong> following sections we also use <strong>the</strong>se terms <strong>for</strong> composite operators γ 0 Vκ and γ 0 W κ ,where γ 0 denotes <strong>the</strong> interior or exterior Dirichlet trace operator.<strong>The</strong>orem 3.6. <strong>The</strong> operator V κ : H −1/2 (∂Ω) → Hloc 1 (Ω) is linear and continuous. Hence,<strong>for</strong> bounded domains <strong>the</strong>re exists a constant c ∈ R + such that∥ V κ s∥ H 1 (Ω) ≤ c∥s∥ H −1/2 (∂Ω)<strong>for</strong> all s ∈ H −1/2 (∂Ω).Moreover, <strong>for</strong> all s ∈ H −1/2 (∂Ω) <strong>the</strong> function V κ s satisfies <strong>the</strong> <strong>Helmholtz</strong> equation in <strong>the</strong>weak sense (including <strong>the</strong> Sommerfeld radiation condition in <strong>the</strong> case of an unboundeddomain).<strong>The</strong>orem 3.7. <strong>The</strong> operator W κ : H 1/2 (∂Ω) → Hloc 1 (Ω) is linear and continuous. Hence,<strong>for</strong> bounded domains <strong>the</strong>re exists a constant c ∈ R + such that∥W κ t∥ H 1 (Ω) ≤ c∥t∥ H 1/2 (∂Ω)<strong>for</strong> all t ∈ H 1/2 (∂Ω).Moreover, <strong>for</strong> all t ∈ H 1/2 (∂Ω) <strong>the</strong> function W κ t satisfies <strong>the</strong> <strong>Helmholtz</strong> equation in <strong>the</strong>weak sense (including <strong>the</strong> Sommerfeld radiation condition in <strong>the</strong> case of an unboundeddomain).<strong>The</strong> preceding <strong>the</strong>orems allow us to seek <strong>the</strong> solution to <strong>the</strong> <strong>Helmholtz</strong> equation in <strong>the</strong><strong>for</strong>m u = V κ s or u = W κ t with unknown density functions s, t. This approach gives rise toindirect boundary element methods, which will be mentioned later.Properties of <strong>the</strong> above given potential operators, which will be discussed in <strong>the</strong> followingsections, can be found in [12] (see also [9] and [18]). <strong>The</strong>se properties will be crucial<strong>for</strong> <strong>the</strong> derivation of boundary integral equations (both direct and indirect), which will beused <strong>for</strong> <strong>the</strong> computation of <strong>the</strong> missing Cauchy data.


313.1 Single Layer Potential OperatorLet us first consider <strong>the</strong> operator V κ defined by (3.3). Recall, that <strong>for</strong> <strong>the</strong> Dirichlet traceoperator γ 0 we haveγ 0 : H 1 loc (Ω) → H1/2 (∂Ω).Combining this operator with V κ we obtain <strong>the</strong> single layer potential operatorV κ : H −1/2 (∂Ω) → H 1/2 (∂Ω), V κ := γ 0 Vκ .From linearity and continuity of γ 0 and V κ we get that <strong>the</strong> single layer potential operatoris linear and continuous, i.e., <strong>the</strong>re exists a constant c ∈ R + such that∥V κ s∥ H 1/2 (∂Ω) ≤ c∥s∥ H −1/2 (∂Ω)<strong>for</strong> all s ∈ H −1/2 (∂Ω).<strong>The</strong>orem 3.8. <strong>The</strong> single layer potential operator V κ : H −1/2 (∂Ω) → H 1/2 (∂Ω) is coercive.Proof. From <strong>The</strong>orem 6.22 in [18] we have that he operator V 0 corresponding to <strong>the</strong> Laplaceequation, i.e., <strong>the</strong> <strong>Helmholtz</strong> equation with κ = 0, is H −1/2 (∂Ω)-elliptic. Moreover, <strong>the</strong>operator C := V 0 − V κ : H −1/2 (∂Ω) → H 1/2 (∂Ω) is compact (see [18], Section 6.9). Thus,we have⟨(V κ + C)s, s⟩ = ⟨V 0 s, s⟩ ≥ c∥s∥ 2 H −1/2 (∂Ω)<strong>for</strong> all s ∈ H −1/2 (∂Ω),which completes <strong>the</strong> proof.<strong>The</strong>orem 3.9. For s ∈ L ∞ (∂Ω) <strong>the</strong>re holds <strong>the</strong> representation(V κ s)(x) = v κ (x, y)s(y) ds y <strong>for</strong> x ∈ ∂Ω.Proof. <strong>The</strong> proof is similar to <strong>the</strong> proof of Lemma 6.7 in [18].∂ΩMoreover, <strong>for</strong> <strong>the</strong> jump of <strong>the</strong> Dirichlet trace of <strong>the</strong> single layer potential V κ s on <strong>the</strong>boundary we have[γ 0 Vκ s] := γ 0,ext Vκ s − γ 0,int Vκ s = 0 <strong>for</strong> all s ∈ H −1/2 (∂Ω). (3.5)3.2 Adjoint Double Layer Potential OperatorIn Section 1.4 we introduced <strong>the</strong> Neumann trace operatorγ 1 : H 1 loc (Ω, ∆ + κ2 ) → H −1/2 (∂Ω).


32 3 <strong>Boundary</strong> Integral <strong>Equation</strong>sBecause <strong>the</strong> function V κ s satisfies <strong>the</strong> <strong>Helmholtz</strong> equation in <strong>the</strong> weak sense, we actuallyhaveV κ : H −1/2 (∂Ω) → H 1 loc (Ω, ∆ + κ2 )and thus we can compose <strong>the</strong> Neumann trace operator with <strong>the</strong> single layer potentialoperator to obtain <strong>the</strong> linear continuous mappingγ 1 Vκ : H −1/2 (∂Ω) → H −1/2 (∂Ω).<strong>The</strong>orem 3.10. For s ∈ H −1/2 (∂Ω) <strong>the</strong>re holdsγ 1,int ( V κ s)(x) = σ(x)s(x) + (K ∗ κs)(x) <strong>for</strong> x ∈ ∂Ω, (3.6)γ 1,ext ( V κ s)(x) = (σ(x) − 1)s(x) + (K ∗ κs)(x) <strong>for</strong> x ∈ ∂Ω, (3.7)where Kκ ∗ denotes <strong>the</strong> adjoint double layer potential operator(Kκs)(x) ∗ ∂v κ:= (x, y)s(y) ds y <strong>for</strong> x ∈ ∂Ω∂n xand∂Ω∂v κσ(x) := lim(x, y) ds y . (3.8)ε→0 +y∈Ω : ∥x−y∥=ε ∂n yProof. <strong>The</strong> proof can be found in [9], following Lemma 2.29.Remark 3.11. For <strong>the</strong> function σ we get1σ(x) = lim⟨x − y, n(y)⟩ eiκ∥x−y∥ 1ε→0 + 4π∥x − y∥ 2 ∥x − y∥ − iκ ds y .For n we can substituteto obtainy∈Ω : ∥x−y∥=ε1σ(x) = limε→0 + 4πn(y) =y∈Ω : ∥x−y∥=ε1 1= limε→0 + 4π eiκε ε 2 − iκ εx − y∥x − y∥e iκ∥x−y∥∥x − y∥ 1∥x − y∥ − iκ ds y1 ds y .y∈Ω : ∥x−y∥=εThus, <strong>the</strong> function σ depends on <strong>the</strong> interior angle of Ω in x ∈ ∂Ω. In particular, <strong>for</strong>domains with boundary smooth in x ∈ ∂Ω we get σ(x) = 1/2. For Lipschitz domains<strong>the</strong> relation σ(x) = 1/2 is valid almost everywhere and we can simplify (3.6) and (3.7) toobtainγ 1,int ( V κ s)(x) = 1 2 s(x) + (K∗ κs)(x) <strong>for</strong> x ∈ ∂Ω, (3.9)γ 1,ext ( V κ s)(x) = − 1 2 s(x) + (K∗ κs)(x) <strong>for</strong> x ∈ ∂Ω. (3.10)


33For <strong>the</strong> jump of <strong>the</strong> Neumann trace of <strong>the</strong> single layer potential V κ s on <strong>the</strong> boundarywe thus get[γ 1 Vκ s] := γ 1,ext Vκ s − γ 1,int Vκ s = −s <strong>for</strong> all s ∈ H −1/2 (∂Ω).3.3 Double Layer Potential OperatorLet us now consider <strong>the</strong> operator W κ defined by (3.4). We define <strong>the</strong> corresponding boundaryintegral operator as <strong>the</strong> composition of γ 0 and W κ to get <strong>the</strong> mappingγ 0 W κ : H 1/2 (∂Ω) → H 1/2 (∂Ω).From <strong>the</strong> properties of <strong>the</strong> Dirichlet trace operator and <strong>the</strong> integral operator W κ we getthat γ 0 W κ is linear and continuous.<strong>The</strong>orem 3.12. For t ∈ H 1/2 (∂Ω) <strong>the</strong>re holdsγ 0,int (W κ t)(x) = (σ(x) − 1)t(x) + (K κ t)(x)γ 0,ext (W κ t)(x) = σ(x)t(x) + (K κ t)(x)<strong>for</strong> x ∈ ∂Ω,<strong>for</strong> x ∈ ∂Ω,where K κ denotes <strong>the</strong> double layer potential operator∂v κ(K κ t)(x) := (x, y)t(y) ds y∂n y∂Ω<strong>for</strong> x ∈ ∂Ωand σ is defined by (3.8).Proof. <strong>The</strong> proof can be found in [9], following Lemma 2.32.Remark 3.13. Similarly as in Remark 3.11, <strong>for</strong> Lipschitz domains we get simplified <strong>for</strong>mulaeγ 0,int (W κ t)(x) = − 1 2 t(x) + (K κt)(x) <strong>for</strong> x ∈ ∂Ω, (3.11)γ 0,ext (W κ t)(x) = 1 2 t(x) + (K κt)(x) <strong>for</strong> x ∈ ∂Ω. (3.12)For <strong>the</strong> jump of <strong>the</strong> Dirichlet trace of <strong>the</strong> double layer potential W κ t on <strong>the</strong> boundarywe have[γ 0 W κ t] := γ 0,ext W κ t − γ 0,int W κ t = t <strong>for</strong> all t ∈ H 1/2 (∂Ω).3.4 Hypersingular Integral OperatorFinally, we consider <strong>the</strong> hypersingular integral operator defined as <strong>the</strong> negative Neumanntrace of <strong>the</strong> double layer potential operator, i.e.,D κ : H 1/2 (∂Ω) → H −1/2 (∂Ω), D κ := −γ 1 W κ .


34 3 <strong>Boundary</strong> Integral <strong>Equation</strong>sAgain, <strong>the</strong> hypersingular operator is linear and <strong>the</strong>re exists a constant c ∈ R + such that∥D κ t∥ H −1/2 (∂Ω) ≤ c∥t∥ H 1/2 (∂Ω)<strong>for</strong> all t ∈ H 1/2 (∂Ω).<strong>The</strong> hypersingular operator cannot be represented in <strong>the</strong> same way as <strong>the</strong> precedingoperators. For D κ t with a smooth enough density function t we have(D κ t)(x) = −γ 1 (W κ t)(x) = − limΩ∋˜x→x∈∂Ω ⟨n(x), ∇˜x(W κ t)(˜x)⟩.Recall, that <strong>for</strong> <strong>the</strong> double layer potential we have <strong>the</strong> representation∂v κ(W κ t)(˜x) = (˜x, y)t(y) ds y∂Ω ∂n y= 1 ⟨˜x − y, n(y)⟩e iκ∥˜x−y∥ 14π∥˜x − y∥ 3 − iκ∥˜x − y∥ 2 t(y) ds y .∂ΩInterchanging <strong>the</strong> limit with <strong>the</strong> computation of <strong>the</strong> normal derivative we obtainlim (W κt)(˜x)Ω∋˜x→x∈∂Ω= 14π lim⟨x − y, n(y)⟩eε→0 +y∈∂Ω iκ∥x−y∥ : ∥x−y∥≥εBy computing <strong>the</strong> normal derivative of <strong>the</strong> integrand we get1∥x − y∥ 3 −(D κ t)(x) = 14π lime⟨n(y),ε→0 +y∈∂Ω iκ∥x−y∥ n(x)⟩: ∥x−y∥≥ε+ ⟨x − y, n(y)⟩⟨x − y, n(x)⟩3∥x − y∥ 5 −iκ∥x − y∥ 2 t(y) ds y .iκ∥x − y∥ 2 − 1∥x − y∥ 33iκ∥x − y∥ 4 − κ 2 ∥x − y∥ 3 t(y) ds y . (3.13)Un<strong>for</strong>tunately, <strong>for</strong> ε → 0 + <strong>the</strong> integrand from (3.13) is not an integrable function. To expressD κ t explicitly we need some regularization procedure. For <strong>the</strong> Galerkin discretizationof <strong>the</strong> boundary integral equations we need to evaluate <strong>the</strong> bilinear <strong>for</strong>m⟨D κ t, s⟩ ∂Ω := (D κ t)(x)s(x) ds x∂Ωinduced by <strong>the</strong> hypersingular operator. <strong>The</strong> following <strong>the</strong>orem gives us a representationusing surface curl operators.<strong>The</strong>orem 3.14. For functions s, t ∈ H 1/2 (∂Ω) <strong>the</strong>re holds <strong>the</strong> representation∂Ω(D κ t)(x)s(x) ds x = 1 4π− κ24π∂Ω∂Ω∂Ω∂Ωe iκ∥x−y∥∥x − y∥ ⟨curl ∂Ω t(y), curl ∂Ω s(x)⟩ ds y ds xe iκ∥x−y∥∥x − y∥ t(y)s(x)⟨n(x), n(y)⟩ ds y ds x


35with <strong>the</strong> surface curl operatorcurl ∂Ω t(y) := n(y) × ∇˜t(y)<strong>for</strong> y ∈ ∂Ω,where ˜t is some locally defined extension of t into <strong>the</strong> neighbourhood of ∂Ω.Proof. For <strong>the</strong> proof and more details see [13], <strong>The</strong>orem 3.4.2 and [15], <strong>The</strong>orem 3.3.22and Corrolary 3.3.24.<strong>The</strong>orem 3.15. <strong>The</strong> hypersingular operator D κ : H 1/2 (∂Ω) → H −1/2 (∂Ω) is coercive.Proof. <strong>The</strong> proof is taken from [15], Lemma 3.9.8. <strong>The</strong> regularised hypersingular operatorD 0 + I corresponding to <strong>the</strong> Laplace equation is H 1/2 (∂Ω)-elliptic. Due to <strong>the</strong> compactembedding H 1/2 (∂Ω) ↩→↩→ H −1/2 (∂Ω) and <strong>the</strong> compactness of D κ − D 0 , <strong>the</strong> operatorC := I + D 0 − D κ : H 1/2 (∂Ω) → H −1/2 (∂Ω) is compact. Thus, we have⟨(D κ + C)t, t⟩ = ⟨(D 0 + I)t, t⟩ ≥ c∥t∥ 2 H 1/2 (∂Ω)<strong>for</strong> all t ∈ H 1/2 (∂Ω),which completes <strong>the</strong> proof.To conclude, <strong>for</strong> <strong>the</strong> jump of <strong>the</strong> Neumann trace of <strong>the</strong> double layer potential W κ t on<strong>the</strong> boundary we have[γ 1 W κ t] := γ 1,ext W κ t − γ 1,int W κ t = 0 <strong>for</strong> all t ∈ H 1/2 (∂Ω). (3.14)3.5 <strong>Boundary</strong> Integral <strong>Equation</strong>sRecall that <strong>the</strong> solution to an interior boundary value problem <strong>for</strong> <strong>the</strong> <strong>Helmholtz</strong> equationcan be represented asu = −W κ γ 0,int u + V κ γ 1,int u in Ω.Applying <strong>the</strong> interior Dirichlet trace operator and using <strong>the</strong> definition of V κ and <strong>the</strong> property(3.11) we get <strong>the</strong> boundary integral equation 1γ 0,int u =2 I − K κ γ 0,int u + V κ γ 1,int u on ∂Ω (3.15)with <strong>the</strong> identity operator I. Similarly, applying <strong>the</strong> Neumann trace operator and using(3.9) and <strong>the</strong> definition of <strong>the</strong> hypersingular integral operator we obtain 1γ 1,int u = D κ γ 0,int u +2 I + K∗ κ γ 1,int u on ∂Ω. (3.16)<strong>The</strong> boundary integral equations (3.15), (3.16) can be rewritten as γ 0,int uγ 1,int = C int γ 0,int uu γ 1,int u


36 3 <strong>Boundary</strong> Integral <strong>Equation</strong>swith <strong>the</strong> Calderon projection matrix 1C int := 2 I − K κV κD κ12 I + K∗ κFor <strong>the</strong> solution in an unbounded domain we have <strong>the</strong> <strong>for</strong>mula.u = W κ γ 0,ext u − V κ γ 1,ext u in Ω ext .Applying <strong>the</strong> Dirichlet and Neumann trace operators, respectively, and using properties(3.12), (3.10) and <strong>the</strong> definitions of <strong>the</strong> boundary integral operators V κ and D κ we get 1γ 0,ext u =2 I + K κ γ 0,ext u − V κ γ 1,ext u on ∂Ω ext , (3.17)γ 1,ext u = −D κ γ 0,ext u + 12 I − K∗ κγ 1,ext u on ∂Ω ext . (3.18)Again, <strong>the</strong> boundary integral equations (3.17), (3.18) can be rewritten as γ 0,ext uγ 1,ext = C ext γ 0,ext uu γ 1,ext uwith <strong>the</strong> Calderon projection matrix 1C ext := 2 I + K κ−V κ1−D κ 2 I − K∗ κ<strong>The</strong>orem 3.16. <strong>The</strong> Calderon operators C int and C ext are projection operators, i.e.,.(C int ) 2 = C int (C ext ) 2 = C ext .Proof. <strong>The</strong> proof is analogous to <strong>the</strong> proof of Lemma 6.18 in [18].Corollary 3.17. For <strong>the</strong> boundary integral operators we have <strong>the</strong> following identities 1 1V κ D κ = κ2 I + K 2 I − K κ ,D κ V κ = 12 I + K∗ κ 12 I − K∗ κD κ K κ = K ∗ κD κ ,K κ V κ = V κ K ∗ κ.Proof. <strong>The</strong> relations follow directly from <strong>the</strong> comparison of <strong>the</strong> matrices (C int ) 2 and C int .,


37<strong>The</strong> following <strong>the</strong>orems are standard results of functional analysis and will be usedto prove solvability of boundary integral equations studied in <strong>the</strong> next sections. In <strong>the</strong><strong>the</strong>orems we assume that X denotes a Hilbert space.<strong>The</strong>orem 3.18 (Lax-Milgram Lemma). Let A: X → X ∗ denote a linear, bounded andX-elliptic operator. <strong>The</strong>n <strong>for</strong> any f ∈ X ∗ <strong>the</strong>re exists a unique element u ∈ X satisfyingMoreover, <strong>the</strong>re holds <strong>the</strong> estimatewith <strong>the</strong> ellipticity constant c A 1 .Au = f.∥u∥ X ≤ 1c A ∥f∥ X ∗1Proof. For <strong>the</strong> proof of <strong>the</strong> Lax-Milgram Lemma see [18], proof following <strong>The</strong>orem 3.4 orany standard functional analysis textbook.<strong>The</strong>orem 3.19 (Fredholm Alternative). Let K : X → X denote a compact operator. Ei<strong>the</strong>r<strong>the</strong> homogeneous equation(I − K)u = 0has a nontrivial solution u ∈ X or <strong>the</strong> inhomogeneous problem(I − K)u = fhas a unique solution u ∈ X <strong>for</strong> all f ∈ X. In <strong>the</strong> latter case <strong>the</strong>re exists a constant c ∈ R +such that∥u∥ X ≤ c∥f∥ X <strong>for</strong> all f ∈ X.Proof. For <strong>the</strong> proof of <strong>the</strong> Fredholm Alternative see, e.g., [7], <strong>The</strong>orem 2.2.9.<strong>The</strong>orem 3.20. Let A: X → X ∗ denote a linear, bounded and coercive operator and letA be injective, i.e., from Au = 0 it follows u = 0. <strong>The</strong>n <strong>for</strong> every f ∈ X ∗ <strong>the</strong>re exists aunique solution to <strong>the</strong> equationAu = f. (3.19)Moreover, <strong>the</strong>re exists a constant c ∈ R + such that∥u∥ X ≤ c∥f∥ X ∗ <strong>for</strong> all f ∈ X ∗ . (3.20)Proof. From coercivity of A we know that <strong>the</strong>re exists a compact operator C such that <strong>the</strong>linear operator D := A + C : X → X ∗ is X-elliptic. From <strong>the</strong> Lax-Milgram Lemma 3.18we get that <strong>the</strong>re exists <strong>the</strong> inverse operator D −1 : X ∗ → X. <strong>The</strong>re<strong>for</strong>e, we obtain that<strong>the</strong> equation (3.19) is equivalent toBu = D −1 f


38 3 <strong>Boundary</strong> Integral <strong>Equation</strong>swithB := D −1 A = D −1 (D − C) = I − D −1 C.From X-ellipticity of D and boundedness of A we get that B is bounded. Since we assumethat A is injective, it follows that <strong>the</strong> homogeneous equationD −1 Au = (I − D −1 C)u = 0only has <strong>the</strong> trivial solution and thus D −1 C is injective. <strong>The</strong> Fredholm Alternative 3.19with <strong>the</strong> compact operator K := D −1 C <strong>the</strong>n guarantees a unique solution to (3.19) satisfying<strong>the</strong> estimate (3.20).<strong>The</strong>orem 3.21. Let X denote a Hilbert space. <strong>The</strong>n it holds(∀x, y ∈ X, x ≠ y)(∃f ∈ X ∗ ): ⟨f, x⟩ ≠ ⟨f, y⟩.Proof. <strong>The</strong> <strong>the</strong>orem is a direct consequence of <strong>the</strong> well-known Hahn-Banach <strong>The</strong>orem (see,e.g., [21], <strong>The</strong>orem 1.B, Corollary 2 on pages 4–5).In Section 2.3 we introduced representation <strong>for</strong>mulae <strong>for</strong> <strong>the</strong> solution to <strong>the</strong> <strong>Helmholtz</strong>equation with smooth enough data. <strong>The</strong> following <strong>the</strong>orems generalize <strong>the</strong> previous results<strong>for</strong> a broader range of functions. For more details see [12], <strong>The</strong>orems 6.10 and 7.12.<strong>The</strong>orem 3.22. Let Ω be a bounded Lipschitz domain and let u ∈ H 1 (Ω, ∆ + κ 2 ) satisfy<strong>the</strong> <strong>Helmholtz</strong> equation in <strong>the</strong> weak sense. <strong>The</strong>n we have <strong>the</strong> representationu(x) = ( V κ γ 1,int u)(x) − (W κ γ 0,int u)(x) <strong>for</strong> x ∈ Ω. (3.21)<strong>The</strong>orem 3.23. Let Ω be a bounded Lipschitz domain and let us denote Ω ext := R 3 \ Ω.Let u ∈ H 1 loc (Ωext , ∆ + κ 2 ) satisfy <strong>the</strong> Sommerfeld radiation condition and <strong>the</strong> <strong>Helmholtz</strong>equation in <strong>the</strong> weak sense. <strong>The</strong>n we have <strong>the</strong> representationu(x) = −( V κ γ 1,ext u)(x) + (W κ γ 0,ext u)(x) <strong>for</strong> x ∈ Ω ext . (3.22)Be<strong>for</strong>e we proceed to individual boundary value problems, we provide <strong>the</strong>orems regardingexistence and uniqueness of <strong>the</strong> weak solution to general boundary value problems <strong>for</strong><strong>the</strong> <strong>Helmholtz</strong> equation (see [12] and [15]).<strong>The</strong>orem 3.24. <strong>The</strong> interior boundary value problem⎧⎪⎨∆u + κ 2 u = 0 in Ω,γ 0,int u = g D on Γ D ,⎪⎩γ 1,int u = g N on Γ Nwith a bounded Lipschitz domain Ω, non-overlapping sets Γ D , Γ N satisfying Γ D ∪ Γ N = ∂Ωand boundary conditions g D ∈ H 1/2 (Γ D ), g N ∈ H −1/2 (Γ N ) has a unique weak solution


39u ∈ H 1 (Ω, ∆+κ 2 ) if and only if κ 2 does not coincide with an eigenvalue λ of <strong>the</strong> eigenvalueproblem <strong>for</strong> <strong>the</strong> Laplace equation⎧⎪⎨−∆u λ = λu λ in Ω,γ 0,int u λ = 0 on Γ D ,(3.23)⎪⎩γ 1,int u λ = 0 on Γ N .Fur<strong>the</strong>rmore, if κ 2 coincides with an eigenvalue λ of (3.23), <strong>the</strong> solution exists if and onlyif⟨γ 0,int u λ , g N ⟩ ΓN = ⟨γ 1,int u λ , g D ⟩ ΓD <strong>for</strong> all corresponding eigenfunctions u λ .<strong>The</strong>orem 3.25. Let us denote Ω ext := R 3 \ Ω with a bounded Lipschitz domain Ω. <strong>The</strong>exterior boundary value problem⎧∆u + κ 2 u = 0 in Ω ext ,⎪⎨⎪⎩ ∇u(x),x∥x∥γ 0,ext u = g D on Γ D ,γ 1,ext u = g N on Γ N , − iκu(x)1 = O ∥x∥ 2<strong>for</strong> ∥x∥ → ∞with non-overlapping sets Γ D , Γ N satisfying Γ D ∪ Γ N = ∂Ω and boundary conditions g D ∈H 1/2 (Γ D ), g N ∈ H −1/2 (Γ N ) has a unique weak solution u ∈ H 1 loc (Ωext , ∆ + κ 2 ).3.5.1 Interior Dirichlet <strong>Boundary</strong> Value ProblemLet us first consider <strong>the</strong> interior Dirichlet boundary value problem <strong>for</strong> <strong>the</strong> <strong>Helmholtz</strong> equation∆u + κ 2 u = 0 in Ω,γ 0,int u = g Don ∂Ω(3.24)with a bounded Lipschitz domain Ω and <strong>the</strong> Dirichlet boundary condition g D ∈ H 1/2 (∂Ω).<strong>The</strong> solution to (3.24) is given by <strong>the</strong> representation <strong>for</strong>mula (3.21) with γ 0,int u = g D , i.e.,u(x) = ( V κ γ 1,int u)(x) − (W κ g D )(x) <strong>for</strong> x ∈ Ω (3.25)with unknown Neumann trace data γ 1,int u ∈ H −1/2 (∂Ω). Applying <strong>the</strong> Dirichlet traceoperator γ 0,int to (3.25) we obtain <strong>the</strong> Fredholm integral equation of <strong>the</strong> first kind(V κ γ 1,int u)(x) = 1 2 g D(x) + (K κ g D )(x) <strong>for</strong> x ∈ ∂Ω. (3.26)Similarly, applying <strong>the</strong> Neumann trace operator γ 1,int to (3.25) we obtain <strong>the</strong> Fredholmintegral equation of <strong>the</strong> second kind12 γ1,int u(x) − (K ∗ κγ 1,int u)(x) = (D κ g D )(x) <strong>for</strong> x ∈ ∂Ω. (3.27)


40 3 <strong>Boundary</strong> Integral <strong>Equation</strong>sAccording to <strong>The</strong>orem 3.21, <strong>the</strong> boundary integral equations (3.26) and (3.27) areequivalent to <strong>the</strong> variational problems 1⟨V κ γ 1,int u, s⟩ ∂Ω =2 I + K κ g D , s <strong>for</strong> all s ∈ H −1/2 (∂Ω)∂Ωand 12κI − K∗ γ 1,int u, t = ⟨D κ g D , t⟩ ∂Ω <strong>for</strong> all t ∈ H 1/2 (∂Ω),∂Ωrespectively, where⟨u, v⟩ ∂Ω :=∂Ωu(x)v(x) dsdenotes <strong>the</strong> duality pairing between H 1/2 (∂Ω) and H −1/2 (∂Ω).<strong>The</strong> equations (3.26) and (3.27) are not uniquely solvable <strong>for</strong> all κ ∈ R + . To show this,let us consider <strong>the</strong> Dirichlet eigenvalue problem <strong>for</strong> <strong>the</strong> Laplace equation−∆uλ = λu λ in Ω,γ 0,int (3.28)u λ = 0 on ∂Ω,which can be understood as <strong>the</strong> <strong>Helmholtz</strong> boundary value problem with κ 2 = λ and <strong>the</strong>homogeneous Dirichlet boundary condition. Let λ ∈ R + be an eigenvalue of (3.28) and u λ<strong>the</strong> corresponding eigensolution. From <strong>the</strong> boundary integral equations (3.26) and (3.27)we get(V κ γ 1,int u λ )(x) = 1 2 γ0,int u λ (x) + (K κ γ 0,int u λ )(x) = 0 <strong>for</strong> x ∈ ∂Ω,12 γ1,int u λ (x) − (K ∗ κγ 1,int u λ )(x) = (D κ γ 0,int u λ )(x) = 0 <strong>for</strong> x ∈ ∂Ωand hence, if κ 2 coincides with <strong>the</strong> eigenvalue λ, <strong>the</strong> operators V κ and (1/2I − K ∗ κ) are notinjective and thus not invertible.On <strong>the</strong> o<strong>the</strong>r hand, <strong>for</strong> o<strong>the</strong>r values of κ both operators are injective. <strong>The</strong> coercivity of<strong>the</strong> single layer potential operator <strong>the</strong>n ensures a unique solution to <strong>the</strong> boundary integralequation (3.26) (see <strong>The</strong>orem 3.20). <strong>The</strong> following <strong>the</strong>orem describes <strong>the</strong> relation between<strong>the</strong> weak solution and <strong>the</strong> solution given by <strong>the</strong> representation <strong>for</strong>mula (see [12], <strong>The</strong>orem7.5).<strong>The</strong>orem 3.26. If u ∈ H 1 (Ω, ∆+κ 2 ) is a solution to <strong>the</strong> interior Dirichlet problem (3.24),<strong>the</strong>n <strong>the</strong> Neumann trace γ 1,int u satisfies <strong>the</strong> boundary integral equation (3.26) and u has<strong>the</strong> representation (3.25).Conversely, if γ 1,int u satisfies <strong>the</strong> boundary integral equation (3.26), <strong>the</strong>n <strong>the</strong> representation<strong>for</strong>mula (3.25) defines a solution u ∈ H 1 (Ω, ∆+κ 2 ) to <strong>the</strong> interior Dirichlet problem(3.24).


41Ano<strong>the</strong>r approach to computing <strong>the</strong> missing Neumann data is based on <strong>The</strong>orems 3.6and 3.7 suggesting that we may seek <strong>the</strong> solution in <strong>the</strong> <strong>for</strong>m of a single layer potentialor a double layer potentialu(x) = ( V κ s)(x) <strong>for</strong> x ∈ Ω (3.29)u(x) = −(W κ t)(x) <strong>for</strong> x ∈ Ω (3.30)with unknown density functions s, t. <strong>The</strong> density functions usually have no physical meaningand <strong>the</strong>se methods are thus called indirect. <strong>The</strong> representations (3.29) and (3.30) giverise to <strong>the</strong> boundary integral equationsand <strong>the</strong> corresponding variational problemsV κ s(x) = γ 0,int u(x) <strong>for</strong> x ∈ ∂Ω, (3.31)12 t(x) − (K κt)(x) = γ 0,int u(x) <strong>for</strong> x ∈ ∂Ω⟨V κ s, t⟩ ∂Ω = ⟨γ 0,int u, t⟩ ∂Ω <strong>for</strong> all t ∈ H −1/2 (∂Ω), 1κ2 I − K t, s = ⟨γ 0,int u, s⟩ ∂Ω <strong>for</strong> all s ∈ H −1/2 (∂Ω).∂ΩNote that <strong>the</strong> structure of (3.31) and (3.26) is similar, only <strong>the</strong> right-hand sides are different.Thus, <strong>for</strong> values of κ 2 not coinciding with an eigenvalue of (3.28) we have a uniquesolution to (3.31).Although <strong>the</strong> indirect approach can also be used <strong>for</strong> o<strong>the</strong>r types of boundary valueproblems, in <strong>the</strong> following sections we only consider <strong>the</strong> direct boundary element methods.3.5.2 Interior Neumann <strong>Boundary</strong> Value ProblemSolution to <strong>the</strong> interior Neumann boundary value problem∆u + κ 2 u = 0 in Ω,γ 1,int u = g Non ∂Ω(3.32)with a bounded Lipschitz domain Ω and <strong>the</strong> Neumann trace g N ∈ H −1/2 (∂Ω) is given by<strong>the</strong> representation <strong>for</strong>mulau(x) = ( V κ g N )(x) − (W κ γ 0,int u)(x) <strong>for</strong> x ∈ Ω (3.33)with unknown Dirichlet trace data γ 0,int u. Applying <strong>the</strong> Dirichlet trace operator to (3.33)we obtain <strong>the</strong> Fredholm integral equation of <strong>the</strong> second kind12 γ0,int u(x) + (K κ γ 0,int u)(x) = (V κ g N )(x) <strong>for</strong> x ∈ ∂Ω. (3.34)


42 3 <strong>Boundary</strong> Integral <strong>Equation</strong>sSimilarly, applying <strong>the</strong> Neumann trace operator we get <strong>the</strong> Fredholm integral equation of<strong>the</strong> first kind(D κ γ 0,int u)(x) = 1 2 g N(x) − (K ∗ κg N )(x) <strong>for</strong> x ∈ ∂Ω. (3.35)Alternatively, we may consider <strong>the</strong> variational problems 1κ2 I + K γ 0,int u, s = ⟨V κ g N , s⟩ ∂Ω <strong>for</strong> all s ∈ H −1/2 (∂Ω),∂Ωand⟨D κ γ 0,int u, t⟩ ∂Ω = 12 I − K∗ κ g N , t∂Ω<strong>for</strong> all t ∈ H 1/2 (∂Ω).corresponding to (3.34) and (3.35), respectively.To study <strong>the</strong> solvability of (3.34) and (3.35) let us first consider <strong>the</strong> Neumann eigenvalueproblem <strong>for</strong> <strong>the</strong> Laplace equation−∆uµ = µu µ in Ω,γ 1,int u µ = 0on ∂Ω.(3.36)Let µ ∈ R + be an eigenvalue of (3.36) with <strong>the</strong> corresponding eigensolution u µ . From(3.34) and (3.35) we obtain <strong>for</strong> κ 2 = µ12 γ0,int u µ (x) + (K κ γ 0,int u µ )(x) = (V κ γ 1,int u µ )(x) = 0 <strong>for</strong> x ∈ ∂Ω,(D κ γ 0,int u µ )(x) = 1 2 γ1,int u µ (x) − (K ∗ κγ 1,int u µ )(x) = 0 <strong>for</strong> x ∈ ∂Ω,implying that <strong>the</strong> function γ 0,int u µ belongs to <strong>the</strong> kernel of <strong>the</strong> boundary integral operatorsD κ and (1/2I + K κ ) and thus <strong>the</strong>se operators are not invertible.For values of κ 2 not coinciding with eigenvalues of (3.36) both operators are injective.Since <strong>the</strong> hypersingular operator D κ is coercive, <strong>the</strong> boundary integral equation (3.35) isuniquely solvable.<strong>The</strong>orem 3.27. If u ∈ H 1 (Ω, ∆ + κ 2 ) is a solution to <strong>the</strong> interior Neumann problem(3.32), <strong>the</strong>n <strong>the</strong> Dirichlet trace γ 0,int u satisfies <strong>the</strong> boundary integral equation (3.35) and uhas <strong>the</strong> representation (3.33).Conversely, if γ 0,int u satisfies <strong>the</strong> boundary integral equation (3.35), <strong>the</strong>n <strong>the</strong> representation<strong>for</strong>mula (3.33) defines a solution u ∈ H 1 (Ω, ∆ + κ 2 ) to <strong>the</strong> interior Neumannproblem (3.32).


433.5.3 Interior Mixed <strong>Boundary</strong> Value ProblemIn many engineering problems we have to deal with mixed boundary conditions, i.e., withproblems of <strong>the</strong> type⎧⎪⎨∆u + κ 2 u = 0 in Ω,γ 0,int u = g D on Γ D ,(3.37)⎪⎩γ 1,int u = g N on Γ Nwith a bounded Lipschitz domain Ω, non-overlapping sets Γ D , Γ N such that Γ D ∪Γ N = ∂Ω,and functions g D ∈ H 1/2 (Γ D ) and g N ∈ H −1/2 (Γ N ). In <strong>the</strong> smooth case, <strong>the</strong> solution to(3.37) is given by <strong>the</strong> representation <strong>for</strong>mulau(x) =γ 1,int u(y) v κ (x, y) ds y +Γ Dg N (y) v κ (x, y) ds yΓ N−Γ Dg D (y) ∂v κ∂n y(x, y) ds y −Γ Nγ 0,int u(y) ∂v κ∂n y(x, y) ds y<strong>for</strong> x ∈ Ωwith unknown Dirichlet data γ 0,int u| ΓN and Neumann data γ 1,int u| ΓD . <strong>The</strong> missing Cauchydata can be obtained using any of <strong>the</strong> previously mentioned boundary integral equations(3.26), (3.27), (3.34) or (3.35). However, in this section we describe <strong>the</strong> so-called symmetric<strong>for</strong>mulation using <strong>the</strong> single layer potential equation (3.26) and <strong>the</strong> hypersingular equation(3.35) simultaneously (see [17], Section 1.1.3).From Sections 3.5.1 and 3.5.2 we have <strong>the</strong> relations(V κ γ 1,int u)(x) = 1 2 γ0,int u(x) + (K κ γ 0,int u)(x) <strong>for</strong> x ∈ Γ D ⊂ ∂Ω,(D κ γ 0,int u)(x) = 1 2 γ1,int u(x) − (K ∗ κγ 1,int u)(x) <strong>for</strong> x ∈ Γ N ⊂ ∂Ω.(3.38)Let us define functionsH 1/2 (Γ N ) ∋ t := γ 0,int u − ˜g D ,H −1/2 (Γ D ) ∋ s := γ 1,int u − ˜g N(3.39)with some suitable extensions ˜g D , ˜g N defined on ∂Ω. Inserting <strong>the</strong> functions t, s into (3.38)we obtain <strong>the</strong> system of equations(V κ s)(x) − (K κ t)(x) = 1 2 ˜g D(x) + (K κ˜g D )(x) − (V κ˜g N )(x) <strong>for</strong> x ∈ Γ D ,(Kκs)(x) ∗ + (D κ t)(x) = 1 (3.40)2 ˜g N(x) − (Kκ˜g ∗ N )(x) − (D κ˜g D )(x) <strong>for</strong> x ∈ Γ Nequivalent to <strong>the</strong> variational <strong>for</strong>mulationa(s, t, q, r) = F (q, r) <strong>for</strong> all q ∈ H −1/2 (Γ D ), r ∈ H 1/2 (Γ N ) (3.41)with unknown functions s ∈ H −1/2 (Γ D ), t ∈ H 1/2 (Γ N ), <strong>the</strong> bilinear <strong>for</strong>ma(s, t, q, r) := ⟨V κ s, q⟩ ΓD − ⟨K κ t, q⟩ ΓD + ⟨K ∗ κs, r⟩ ΓN + ⟨D κ t, r⟩ ΓN


44 3 <strong>Boundary</strong> Integral <strong>Equation</strong>sand <strong>the</strong> right-hand side 1F (q, r) :=2 I + K κ ˜g D , q − ⟨V κ˜g N , q⟩ ΓD +Γ D 12κI − K∗ ˜g N , r − ⟨D κ˜g D , r⟩ ΓN .Γ N<strong>The</strong>orem 3.28. If u ∈ H 1 (Ω, ∆ + κ 2 ) is a solution to <strong>the</strong> mixed problem (3.37), <strong>the</strong>n<strong>the</strong> functions s, t satisfy <strong>the</strong> system of boundary integral equations (3.40) and u has <strong>the</strong>representationu(x) = ( V κ (s + ˜g N ))(x) − (W κ (t + ˜g D ))(x) <strong>for</strong> x ∈ Ω. (3.42)Conversely, if s, t satisfy <strong>the</strong> system of boundary integral equations (3.40), <strong>the</strong>n <strong>the</strong>representation <strong>for</strong>mula (3.42) defines a solution u ∈ H 1 (Ω, ∆ + κ 2 ) to <strong>the</strong> interior mixedproblem (3.37).3.5.4 Exterior Dirichlet <strong>Boundary</strong> Value ProblemLet us denote Ω ext := R 3 \ Ω with a simply connected bounded Lipschitz domain Ω ⊂ R 3so that ∂Ω ext = ∂Ω. Now we consider <strong>the</strong> exterior Dirichlet boundary value problem⎧∆u + κ 2 u = 0 in Ω ext ,⎪⎨γ 0,ext u = g D on ∂Ω,⎪⎩∇u(x) x∥x∥ − iκu(x)1 = O ∥x∥ 2<strong>for</strong> ∥x∥ → ∞(3.43)with <strong>the</strong> Dirichlet boundary condition g D ∈ H 1/2 (∂Ω). <strong>The</strong> solution can be representedasu(x) = −( V κ γ 1,ext u)(x) + (W κ g D )(x) <strong>for</strong> x ∈ Ω ext (3.44)with unknown Neumann trace data γ 1,ext u. Applying <strong>the</strong> Dirichlet trace operator to (3.44)we obtain <strong>the</strong> Fredholm integral equation of <strong>the</strong> first kind(V κ γ 1,ext u)(x) = − 1 2 g D(x) + (K κ g D )(x) <strong>for</strong> x ∈ ∂Ω. (3.45)Applying <strong>the</strong> Neumann trace gives rise to <strong>the</strong> Fredholm integral equation of <strong>the</strong> secondkind12 γ1,ext u(x) + (K ∗ κγ 1,ext u)(x) = −(D κ g D )(x) <strong>for</strong> x ∈ ∂Ω. (3.46)<strong>The</strong> boundary integral equations (3.45) and (3.46) are equivalent to <strong>the</strong> variationalproblems⟨V κ γ 1,ext u, s⟩ ∂Ω = − 1 2 I + K κ g D , s <strong>for</strong> all s ∈ H −1/2 (∂Ω) (3.47)∂Ωand 12κI + K∗ γ 1,ext u, t = ⟨−D κ g D , t⟩ ∂Ω <strong>for</strong> all t ∈ H 1/2 (∂Ω),∂Ω


45respectively.<strong>The</strong> unique solvability of <strong>the</strong> boundary integral equation (3.45) and <strong>the</strong> related variationalproblem (3.47) <strong>for</strong> κ 2 not coinciding with an eigenvalue of (3.28) follows from <strong>the</strong>discussion in Section 3.5.1.<strong>The</strong>orem 3.29. If u ∈ H 1 loc (Ωext , ∆ + κ 2 ) is a solution to <strong>the</strong> exterior Dirichlet problem(3.43), <strong>the</strong>n <strong>the</strong> Neumann trace γ 1,ext u satisfies <strong>the</strong> boundary integral equation (3.45) andu has <strong>the</strong> representation (3.44).Conversely, if γ 1,ext u satisfies <strong>the</strong> boundary integral equation (3.45), <strong>the</strong>n <strong>the</strong> representation<strong>for</strong>mula (3.44) defines a solution u ∈ H 1 loc (Ωext , ∆ + κ 2 ) to <strong>the</strong> exterior Dirichletproblem (3.43).Note that <strong>The</strong>orems 3.25 and 3.29 ensure that <strong>for</strong> all κ ∈ R + it holds− 1 2 I + K κ g D ∈ Im V κeven though <strong>the</strong> equation (3.45) is not uniquely solvable <strong>for</strong> some values of κ. To overcomethis difficulty, several approaches have been proposed. <strong>The</strong> approach of Brakhageand Werner (see [5]) suggests seeking <strong>the</strong> solution in <strong>the</strong> <strong>for</strong>m of some complex linearcombination of a single and double layer potentials, i.e.,u(x) = (W κ w)(x) − iη( V κ w)(x)<strong>for</strong> x ∈ Ω extwith an unknown density function w ∈ L 2 (∂Ω). In [4], Burton and Miller suggest analternative to direct methods, using a complex linear combination of <strong>the</strong> boundary integralequations (3.17) and (3.18). To conclude, we also mention <strong>the</strong> CHIEF method proposedby Schenck (see [2]).3.5.5 Exterior Neumann <strong>Boundary</strong> Value ProblemNow we consider <strong>the</strong> exterior Neumann boundary value problem⎧∆u + κ 2 u = 0 in Ω ext ,⎪⎨γ 1,ext u = g N on ∂Ω, ⎪⎩x ∇u(x), − iκu(x)1∥x∥ = O ∥x∥ 2 <strong>for</strong> ∥x∥ → ∞(3.48)with an unbounded domain Ω ext := R 3 \ Ω and <strong>the</strong> Neumann trace g N ∈ H −1/2 (∂Ω). <strong>The</strong>solution is given byu(x) = −( V κ g N )(x) + (W κ γ 0,ext u)(x) <strong>for</strong> x ∈ Ω ext (3.49)with unknown Dirichlet trace data γ 0,ext u. Applying <strong>the</strong> Dirichlet trace operator to (3.49)we obtain <strong>the</strong> Fredholm integral equation of <strong>the</strong> second kind− 1 2 γ0,ext u(x) + (K κ γ 0,ext u)(x) = (V κ g N )(x) <strong>for</strong> x ∈ ∂Ω. (3.50)


46 3 <strong>Boundary</strong> Integral <strong>Equation</strong>sSimilarly, applying <strong>the</strong> Neumann trace operator we get <strong>the</strong> Fredholm integral equation of<strong>the</strong> first kind(D κ γ 0,ext u)(x) = − 1 2 g N(x) − (K ∗ κg N )(x) <strong>for</strong> x ∈ ∂Ω. (3.51)andInstead of equations (3.50) and (3.51) we may consider <strong>the</strong> variational problemsrespectively.− 1 2 I + K κ γ 0,ext u, s = ⟨V κ g N , s⟩ ∂Ω <strong>for</strong> all s ∈ H −1/2 (∂Ω),∂Ω⟨D κ γ 0,ext u, t⟩ ∂Ω =− 1 2 I − K∗ κ g N , t∂Ω<strong>for</strong> all t ∈ H 1/2 (∂Ω), (3.52)<strong>The</strong> arguments <strong>for</strong> <strong>the</strong> unique solvability of <strong>the</strong> boundary integral equation (3.51) and<strong>the</strong> corresponding variational problem (3.52) <strong>for</strong> κ 2 not coinciding with an eigenvalue of(3.36) are <strong>the</strong> same as in Section 3.5.2.<strong>The</strong>orem 3.30. If u ∈ H 1 loc (Ωext , ∆ + κ 2 ) is a solution to <strong>the</strong> exterior Neumann problem(3.48), <strong>the</strong>n <strong>the</strong> Dirichlet trace γ 0,ext u satisfies <strong>the</strong> boundary integral equation (3.51) andu has <strong>the</strong> representation (3.49).Conversely, if γ 0,ext u satisfies <strong>the</strong> boundary integral equation (3.51), <strong>the</strong>n <strong>the</strong> representation<strong>for</strong>mula (3.49) defines a solution u ∈ H 1 loc (Ωext , ∆ + κ 2 ) to <strong>the</strong> interior Neumannproblem (3.48).Note that <strong>The</strong>orems 3.25 and 3.30 ensure that <strong>for</strong> all κ ∈ R + it holds− 1 2 I − K∗ κ g N ∈ Im D κand thus one of <strong>the</strong> methods mentioned at <strong>the</strong> end of <strong>the</strong> previous section can be used tocompute a solution to (3.51) with κ 2 coinciding with an eigenvalue of (3.36).3.5.6 Exterior Mixed <strong>Boundary</strong> Value ProblemFinally, let us consider <strong>the</strong> exterior mixed boundary value problem⎧⎪⎨⎪⎩ ∇u(x),x∥x∥∆u + κ 2 u = 0 in Ω ext ,γ 0,ext u = g D on Γ D ,γ 1,ext u = g N on Γ N , − iκu(x)1 = O ∥x∥ 2<strong>for</strong> ∥x∥ → ∞(3.53)


47with an unbounded domain Ω ext := R 3 \ Ω and boundary conditions g D ∈ H 1/2 (Γ D ),g N ∈ H −1/2 (Γ N ). In <strong>the</strong> smooth case <strong>the</strong> solution to (3.53) is given byu(x) = − γ 1,ext u(y) v κ (x, y) ds y − g N (y) v κ (x, y) ds yΓ D Γ N+ g D (y) ∂v κ(x, y) ds y + γ 0,ext u(y) ∂v κ(x, y) ds y <strong>for</strong> x ∈ Ω extΓ D∂n y Γ N∂n ywith unknown Cauchy data γ 0,ext u| ΓN and γ 1,ext u| ΓD . Similarly as <strong>for</strong> <strong>the</strong> interior mixedproblem we have <strong>the</strong> boundary integral equations(V κ γ 1,ext u)(x) = − 1 2 γ0,ext u(x) + (K κ γ 0,ext u)(x) <strong>for</strong> x ∈ Γ D ⊂ ∂Ω,(D κ γ 0,ext u)(x) = − 1 2 γ1,ext u(x) − (K ∗ κγ 1,ext u)(x) <strong>for</strong> x ∈ Γ N ⊂ ∂Ω.(3.54)Inserting <strong>the</strong> functions t, s defined by (3.39) into (3.54) yields(V κ s)(x) − (K κ t)(x) = − 1 2 ˜g D(x) + (K κ˜g D )(x) − (V κ˜g N )(x) <strong>for</strong> x ∈ Γ D ,(K ∗ κs)(x) + (D κ t)(x) = − 1 2 ˜g N(x) − (K ∗ κ˜g N )(x) − (D κ˜g D )(x) <strong>for</strong> x ∈ Γ N(3.55)and <strong>the</strong> equivalent variational <strong>for</strong>mulationa(s, t, q, r) = F (q, r) <strong>for</strong> all q ∈ H −1/2 (Γ D ), r ∈ H 1/2 (Γ N ) (3.56)with unknown functions s ∈ H −1/2 (Γ D ), t ∈ H 1/2 (Γ N ), <strong>the</strong> bilinear <strong>for</strong>ma(s, t, q, r) := ⟨V κ s, q⟩ ΓD − ⟨K κ t, q⟩ ΓD + ⟨K ∗ κs, r⟩ ΓN + ⟨D κ t, r⟩ ΓNand <strong>the</strong> right-hand sideF (q, r) := − 1 2 I + K κ ˜g D , q − ⟨V κ˜g N , q⟩ ΓD + − 1 Γ D2 I − K∗ κ ˜g N , r − ⟨D κ˜g D , r⟩ ΓN .Γ N<strong>The</strong>orem 3.31. If u ∈ H 1 loc (Ωext , ∆ + κ 2 ) is a solution to <strong>the</strong> mixed problem (3.53), <strong>the</strong>n<strong>the</strong> functions s, t satisfy <strong>the</strong> system of boundary integral equations (3.55) and u has <strong>the</strong>representationu(x) = −( V κ (s + ˜g N ))(x) + (W κ (t + ˜g D ))(x) <strong>for</strong> x ∈ Ω ext . (3.57)Conversely, if s, t satisfy <strong>the</strong> system of boundary integral equations (3.55), <strong>the</strong>n <strong>the</strong>representation <strong>for</strong>mula (3.57) defines a solution u ∈ H 1 loc (Ωext , ∆ + κ 2 ) to <strong>the</strong> interiormixed problem (3.53).


494 Discretization and Numerical RealizationIn this section we will describe <strong>the</strong> discretization of <strong>the</strong> boundary integral equations coveredin <strong>the</strong> previous part. We will discuss <strong>the</strong> collocation method as well as <strong>the</strong> more complicatedGalerkin scheme. <strong>The</strong> solution will be sought in approximating function spaces introducedbelow.We restrict ourselves to triangular meshes approximating <strong>the</strong> corresponding boundary∂Ω, i.e.,E∂Ω ≈and assume that neighbouring triangular elements ei<strong>the</strong>r share a whole edge or a singlevertex. Each element τ k ⊂ R 3 with nodes x k 1, x k 2, x k 3can be described via <strong>the</strong>parametrizationR k (ξ) := x k 1+ R k ξ <strong>for</strong> ξ ∈ ˆτ, (4.1)where R k denotes <strong>the</strong> matrixk=1⎡τ kx k 21 − xk 11 x k 31 − xk 11R k := x k 2− x k 1x k 3− x k 1= ⎣x k 22 − xk 12 x k 32 − xk 1⎦ 2∈ R 3×2 (4.2)x k 23 − xk 13 x k 33 − xk 13and ˆτ ⊂ R 2 represents <strong>the</strong> reference triangle (see Figure 4.1a)ˆτ := {ξ ∈ R 2 : 0 < ξ 1 < 1, 0 < ξ 2 < 1 − ξ 1 }.Remark 4.1. Note that a function f defined on τ k can be identified with a function ˆfdefined on ˆτ and vice versa, i.e.,⎤f(x) = f(R k (ξ)) =: ˆf(ξ)<strong>for</strong> x ∈ τ k , ξ ∈ ˆτ.In <strong>the</strong> following text we use <strong>the</strong> symbol ∂Ω to denote <strong>the</strong> discretized boundary.4.1 Piecewise Constant Basis FunctionsFor every element τ k we define <strong>the</strong> function ψ k (see Figure 4.2a) as1 <strong>for</strong> x ∈ τ k ,ψ k (x) :=0 o<strong>the</strong>rwise.Following Remark 4.1, <strong>the</strong> function ψ k can alternatively be defined via <strong>the</strong> reference function1 <strong>for</strong> ξ ∈ ˆτ,ˆψ(ξ) :=0 o<strong>the</strong>rwise.


50 4 Discretization and Numerical Realizationξ 2x k 31x k 1τ kˆτ(a) Reference triangle.1ξ 1x 3x 2x k 2x 1(b) General triangle.Figure 4.1: Triangular mesh elements.ϕ k (x)ψ k (x)x kτ k(a) Piecewise constant basis function.(b) Piecewise affine basis function.Figure 4.2: Basis functions.Fur<strong>the</strong>rmore, we define <strong>the</strong> linear space T ψ (∂Ω) asT ψ (∂Ω) := span{ψ k } E k=1 ,where E denotes <strong>the</strong> number of elements. Obviously, dim T ψ (∂Ω) = E and every complexvaluedfunction g ψ ∈ T ψ (∂Ω) can be represented asg ψ =Eg k ψ kand thus it can be identified with a vector g := [g 1 , . . . , g E ] T ∈ C E .k=1A smooth enough function g can be approximated by a linear combination of piecewiseconstant functions in several ways. <strong>The</strong> simplest approach is to setg k = g(x k∗ )


51with x k∗denoting <strong>the</strong> midpoint of τ k . Alternatively, we can setg k = 1 3g(x k 1) + g(x k 2) + g(x k 3) .However, since we deal with functions in Lebesgue and Sobolev spaces, where we do notdistinguish between functions differing on a measure zero set, <strong>the</strong> above mentioned approximationsmay prove impossible. Hence, we introduce <strong>the</strong> projection P ψ : L 2 (∂Ω) → T ψ (∂Ω)minimizing <strong>the</strong> error∥g − P ψ g∥ L 2 (∂Ω),i.e.,P ψ g := arg min ∥g − g ψ∥ Lg ψ ∈T ψ (∂Ω) 2 (∂Ω).To find <strong>the</strong> coefficients g kf : R E → R as E f(g 1 , . . . , g E ) := g − 2g k ψ kk=1= ⟨g, g⟩ L 2 (∂Ω) − 2For <strong>the</strong> partial derivatives of f we get<strong>for</strong> a real-valued function g we introduce <strong>the</strong> functionL 2 (∂Ω)=g −Eg k ψ k , g −k=1Eg k ⟨g, ψ k ⟩ L 2 (∂Ω) +k=1∂f∂g j= −2⟨g, ψ j ⟩ L 2 (∂Ω) + 2Moreover, <strong>for</strong> <strong>the</strong> Hessian of f we haveH f [j, i] =EEg k ψ kk=1Eg kk=1 l=1Eg k ⟨ψ k , ψ j ⟩ L 2 (∂Ω).k=1∂2 f∂g j ∂g i= 2⟨ψ i , ψ j ⟩,L 2 (∂Ω)g l ⟨ψ k , ψ l ⟩ L 2 (∂Ω).which is <strong>the</strong> double Gram matrix corresponding to <strong>the</strong> basis of T ψ (∂Ω). Hence, <strong>the</strong> Hessianis positive definite and to find <strong>the</strong> minimum of f we set ∂f∂g j= 0 to obtain <strong>the</strong> system oflinear equationsEg k ⟨ψ k , ψ j ⟩ L 2 (∂Ω) = ⟨g, ψ j ⟩ L 2 (∂Ω) <strong>for</strong> j ∈ {1, . . . , E}k=1with a unique solution g = [g 1 , . . . , g E ] T ∈ R E . Because∆ k <strong>for</strong> k = j,⟨ψ k , ψ j ⟩ L 2 (∂Ω) =0 o<strong>the</strong>rwise,


52 4 Discretization and Numerical Realizationwhere ∆ k denotes <strong>the</strong> surface of τ k , we get <strong>for</strong> <strong>the</strong> piecewise constant approximationg k = 1 ∆ kτ kg(x) ds x .Let us now consider <strong>the</strong> case when g = Re g + i Im g is complex-valued. We thus search<strong>for</strong> coefficients g k = Re g k + i Im g k . For <strong>the</strong> L 2 error norm we get E g − 2g k ψ kk=1==∂Ω∂ΩL 2 (∂Ω) E = Re g + i Im g − 2(Re g k + i Im g k )ψ kk=1E Re g(x) − Re g k ψ k (x) + i Im g(x) −Re g(x) −k=1L 2 (∂Ω)E2Im g k ψ k (x) ds xk=12 ERe g k ψ k (x)+ Im g(x) −k=1 E = Re g − 2Re g k ψ kk=1L 2 (∂Ω) 2EIm g k (x)ψ k ds xk=1 E + Im g − 2Im g k ψ kk=1L 2 (∂Ω)and <strong>the</strong>re<strong>for</strong>e, <strong>the</strong> problem is reduced to searching <strong>for</strong> appropriate coefficients of <strong>the</strong> tworeal-valued functions Re g and Im g as was described in <strong>the</strong> previous paragraph.<strong>The</strong> space T ψ (∂Ω) will be used <strong>for</strong> <strong>the</strong> approximation of <strong>the</strong> Neumann data, i.e., of <strong>the</strong>normal derivatives on ∂Ω.4.2 Continuous Piecewise Affine Basis FunctionsLet N denote <strong>the</strong> number of all nodes of a given discretization. <strong>The</strong>n we define <strong>the</strong> familyof functions {ϕ k } N k=1continuous over <strong>the</strong> whole discretized boundary (see Figure 4.2b) as⎧⎪⎨ 1 <strong>for</strong> x = x k ,ϕ k (x) := 0 <strong>for</strong> x = x⎪⎩l ≠ x k ,piecewise affine o<strong>the</strong>rwise.Fur<strong>the</strong>rmore, we define <strong>the</strong> linear space T ϕ (∂Ω) asT ϕ (∂Ω) := span{ϕ k } N k=1 .Obviously, dim T ϕ (∂Ω) = N. A restriction of a function ϕ k to an element τ l ⊂ supp ϕ kcan be identified with one of <strong>the</strong> functions ˆϕ 1 , ˆϕ 2 , ˆϕ 3 defined on <strong>the</strong> reference triangle asˆϕ 1 (ξ) := 1 − ξ 1 − ξ 2 , ˆϕ 2 (ξ) := ξ 1 , ˆϕ 3 (ξ) := ξ 2 <strong>for</strong> ξ ∈ ˆτ.


53k \ τ k x k 1x k 2x k 3local indices1 1 2 32 2 4 33 4 5 3....global indicesx 1 τ 1τ 2τ 3 x 5x 3 x 4x 2Figure 4.3: Connectivity table.We use <strong>the</strong> connectivity table (see Figure 4.3) to determine <strong>the</strong> mapping between globaland local indices of nodes building <strong>the</strong> triangular mesh. For example, <strong>the</strong> point x 4 is <strong>the</strong>second vertex of <strong>the</strong> triangle τ 2 , i.e., x 4 = x 2 2. Fur<strong>the</strong>rmore, <strong>for</strong> ϕ 4 | τ2 we haveϕ 4 | τ2 (x) = ϕ 4 | τ2 (R 4 (ξ)) = ˆϕ 2 (ξ) = ξ 1<strong>for</strong> x ∈ τ 2 , ξ ∈ ˆτ.As in <strong>the</strong> case of piecewise constant basis functions we can identify a functionT ϕ (∂Ω) ∋ g ϕ =Ng k ϕ kwith a vector [g 1 , . . . , g N ] T ∈ C N . For <strong>the</strong> approximation of a smooth enough function gwe can ei<strong>the</strong>r use an interpolation, i.e.,k=1g k = g(x k ).For a function g ∈ L 2 (∂Ω) it is more appropriate to define <strong>the</strong> projection P ϕ : L 2 (∂Ω) →T ϕ (∂Ω) asP ϕ g := arg min ∥g − g ϕ∥ Lg 2 (∂Ω).ϕ∈T ϕ(∂Ω)<strong>The</strong> coefficients <strong>for</strong> real-valued functions can be found in <strong>the</strong> same way as <strong>for</strong> <strong>the</strong> piecewiseconstant functions as <strong>the</strong> solution to <strong>the</strong> system of linear equationsNg k ⟨ϕ k , ϕ j ⟩ L 2 (∂Ω) = ⟨g, ϕ j ⟩ L 2 (∂Ω)k=1<strong>for</strong> j ∈ {1, . . . , N}.In <strong>the</strong> case of complex-valued functions we can separately search <strong>for</strong> <strong>the</strong> real parts and <strong>the</strong>imaginary parts of <strong>the</strong> coefficients.<strong>The</strong> space T ϕ (∂Ω) will be used <strong>for</strong> <strong>the</strong> approximation of <strong>the</strong> Dirichlet data, i.e., <strong>the</strong>values of <strong>the</strong> solution on ∂Ω.4.3 Discretized <strong>Boundary</strong> Integral <strong>Equation</strong>sIn <strong>the</strong> following sections we describe <strong>the</strong> discretization of <strong>the</strong> boundary integral equationsderived in Section 3.5. Although <strong>the</strong> collocation method will be mentioned, we will prefer


54 4 Discretization and Numerical Realization<strong>the</strong> well studied Galerkin scheme based on <strong>the</strong> corresponding variational <strong>for</strong>mulations. Toapproximate <strong>the</strong> Dirichlet and Neumann boundary data we use continuous piecewise affinefunctions and piecewise constant functions, respectively.4.3.1 Interior Dirichlet <strong>Boundary</strong> Value Problem<strong>The</strong> solution to <strong>the</strong> interior Dirichlet boundary value problem (3.24) is given by <strong>the</strong> representation<strong>for</strong>mula (3.25) with unknown Neumann data g N := γ 1,int u. To compute <strong>the</strong>missing values we use <strong>the</strong> Fredholm integral equation of <strong>the</strong> first kind(V κ g N )(x) = 1 2 g D(x) + (K κ g D )(x) <strong>for</strong> x ∈ ∂Ωor equivalentlyg N (y)v κ (x, y) ds y = 1 2 g D(x) +∂Ωwith <strong>the</strong> fundamental solution v κ and <strong>the</strong> normal derivative∂Ωg D (y) ∂v κ∂n y(x, y) ds y <strong>for</strong> x ∈ ∂Ω (4.3)∂v κ(x, y) = 1 e iκ∥x−y∥(1 − iκ∥x − y∥)⟨x − y, n(y)⟩.∂n y 4π ∥x − y∥3 <strong>The</strong> corresponding variational <strong>for</strong>mulation reads 1⟨V κ g N , s⟩ ∂Ω =2 I + K κ g D , sor∂Ω∂Ω<strong>for</strong> all s ∈ H −1/2 (∂Ω)s(x) g N (y)v κ (x, y) ds y ds x∂Ω= 1 s(x)g D (x) ds x + s(x) g D (y) ∂v κ(x, y) ds y ds x .2 ∂Ω∂Ω ∂Ω ∂n yWe seek <strong>the</strong> solution in <strong>the</strong> approximate <strong>for</strong>mg N ≈ g N,h :=Egl N ψ l ∈ T ψ (∂Ω) (4.4)l=1which can be identified with a vector g N ∈ C E . Fur<strong>the</strong>rmore, we use <strong>the</strong> L 2 projection toapproximate <strong>the</strong> given Dirichlet datag D ≈ g D,h :=Ngj D ϕ j ∈ T ϕ (∂Ω), (4.5)j=1


55which corresponds to a vector g D ∈ C N . <strong>The</strong> solution g N,h is given by <strong>the</strong> GalerkinequationsEgl N ⟨V κψ l , ψ k ⟩ ∂Ω =l=1Nj=1For <strong>the</strong> left-hand side of (4.6) we obtainwithg D jEgl N ⟨V κψ l , ψ k ⟩ ∂Ω =l=1C E×E ∋ V κ,h [k, l] :==τ k 12 I + K κϕ j , ψ kEl=1El=1<strong>The</strong> right-hand side of (4.6) yieldswithandNj=1g D j 12 I + K κϕ j , ψ k===Nj=1Nj=1Nj=1g D jg D jg D j 12 12C E×N ∋ K κ,h [k, j] :=∂Ωg N lg N l∂Ωτ k∂Ω<strong>for</strong> all k ∈ {1, . . . , E}. (4.6)ψ k (x) ψ l (y)v κ (x, y) ds y ds x∂Ωτ lv κ (x, y) ds y ds x =τ lv κ (x, y) ds y ds x = 14π∂ΩEgl N V κ,h[k, l]l=1τ kτ le iκ∥x−y∥∥x − y∥ ds y ds x . (4.7) ψ k (x)ϕ j (x) ds x + ψ k (x) ϕ j (y) ∂v κ(x, y) ds y ds x∂Ω ∂Ω ∂n yτ kϕ j (x) ds x +τ k 12 M h[k, j] + K κ,h [k, j]τ k= 14π∂Ωϕ j (y) ∂v κ∂n y(x, y) ds y ds xR E×N ∋ M h [k, j] := ϕ j (x) ds xτ k(4.8)∂Ω τ kϕ j (y) ∂v κ∂n y(x, y) ds y ds x (4.9)∂Ωϕ j (y) eiκ∥x−y∥∥x − y∥ 3 (1 − iκ∥x − y∥)⟨x − y, n(y)⟩ ds y ds x .(4.10)


56 4 Discretization and Numerical Realization<strong>The</strong> Galerkin equations (4.6) can thus be rewritten into <strong>the</strong> system of linear equationsV κ,h g N = 12 M h + K κ,hg D .<strong>The</strong> approximate solution to (3.24) can be obtained using <strong>the</strong> discretized representation<strong>for</strong>mulau(x) ≈ u h (x) :=El=1g N lτ lv κ (x, y) ds y −Nj=1g D j∂Ωϕ j (y) ∂v κ∂n y(x, y) ds y . (4.11)Ano<strong>the</strong>r approach to <strong>the</strong> discretization of <strong>the</strong> boundary integral equations is <strong>the</strong> collocationmethod. Because <strong>the</strong> relation (4.3) is valid <strong>for</strong> all x ∈ ∂Ω, we can insert <strong>the</strong>midpoints x k∗ into (4.3) to obtain <strong>the</strong> system of linear equationswithV κ,h g N =C E×E ∋ V κ,h [k, l] := 1 e4πτ iκ∥xk∗ −y∥l∥x k∗ − y∥ ds y,R E×N ∋ M h [k, j] := ϕ j (x k∗ ),C E×N ∋ K κ,h [k, j] :=∂Ωϕ j (y) 14π 12 M h + K κ,hg De iκ∥xk∗ −y∥∥x k∗ − y∥ 3 (1 − iκ∥xk∗ − y∥)⟨x k∗ − y, n(y)⟩ ds y .Contrary to <strong>the</strong> Galerkin scheme, <strong>the</strong> system matrix V κ,h arising from <strong>the</strong> collocationmethod is in general non-symmetric and <strong>the</strong> stability of <strong>the</strong> method is still an open problem.Although <strong>the</strong> collocation scheme can be derived <strong>for</strong> o<strong>the</strong>r boundary integral equations in<strong>the</strong> same way, in <strong>the</strong> following sections we prefer <strong>the</strong> Galerkin discretization.4.3.2 Interior Neumann <strong>Boundary</strong> Value Problem<strong>The</strong> solution to <strong>the</strong> interior Neumann boundary value problem (3.32) is given by <strong>the</strong>representation <strong>for</strong>mula (3.33) or by its discretized version (4.11). To compute <strong>the</strong> missingDirichlet data g D := γ 0,int u we use <strong>the</strong> hypersingular equation(D κ g D )(x) = 1 2 g N(x) − (K ∗ κg N )(x) <strong>for</strong> x ∈ ∂Ωor−γ 1,int ∂Ωg D (y) ∂v κ(x, y) ds y = 1 ∂n y 2 g N(x) − g N (y) ∂v κ(x, y) ds y∂Ω ∂n x<strong>for</strong> x ∈ ∂Ω


57with∂v κ(x, y) = 1 e iκ∥x−y∥(iκ∥x − y∥ − 1)⟨x − y, n(x)⟩.∂n x 4π ∥x − y∥3 <strong>The</strong> corresponding variational problem reads 1⟨D κ g D , t⟩ ∂Ω =2 I − K∗ κ g N , t∂Ω<strong>for</strong> all t ∈ H 1/2 (∂Ω). (4.12)Inserting <strong>the</strong> approximations of <strong>the</strong> Cauchy data (4.4), (4.5) into (4.12) we obtain <strong>the</strong>Galerkin equationsNgj D ⟨D κ ϕ j , ϕ i ⟩ ∂Ω =j=1El=1g N l 12 I − K∗ κψ l , ϕ iUsing <strong>The</strong>orem 3.14, <strong>the</strong> left-hand side of (4.13) yieldsNgj D ⟨D κ ϕ j , ϕ i ⟩ ∂Ω =j=1withC N×N ∋ D κ,h [i, j] := 1 4π− κ24π∂Ω∂Ω∂Ω∂ΩFor <strong>the</strong> right-hand side of (4.13) we obtainandEl=1g N l 12 ψ l, ϕ iEgl N ⟨K∗ κψ l , ϕ i ⟩ ∂Ω =l=1===El=1El=1g N lg N lEl=1∂Ωg N l∂ΩNgj D D κ,h [i, j]j=1<strong>for</strong> all i ∈ {1, . . . , N}. (4.13)e iκ∥x−y∥∥x − y∥ ⟨curl ∂Ω ϕ j (y), curl ∂Ω ϕ i (x)⟩ ds y ds xe iκ∥x−y∥∥x − y∥ ϕ j(y)ϕ i (x)⟨n(x), n(y)⟩ ds y ds x .=∂ΩEl=1g N l1ϕ i (x) ds x =2 τ lϕ i (x)τ lEl=1g N l∂v κ∂n x(x, y) ds y ds x12 M h[l, i]1eϕ i (x)4π ∂Ωτ iκ∥x−y∥l∥x − y∥ 3 (iκ∥x − y∥ − 1)⟨x − y, n(x)⟩ ds y ds x1ϕ i (y)4πτ eiκ∥x−y∥l ∂Ω ∥x − y∥ 3 (1 − iκ∥x − y∥)⟨x − y, n(y)⟩ ds y ds xEgl N K κ,h[l, i]l=1(4.14)


58 4 Discretization and Numerical RealizationΓ DE D (Dirichlet elements)E N (Neumann elements)Γ NN D (Dirichlet nodes)N N (Neumann nodes)Figure 4.4: Triangulation of ∂Ω <strong>for</strong> <strong>the</strong> mixed boundary value problem.with matrices M h and K κ,h defined by (4.8) and (4.9), respectively. <strong>The</strong> Galerkin equations(4.13) can now be represented as 1D κ,h g D =2 MT h − KT κ,h g N .Note that in <strong>the</strong> system of linear equations above <strong>the</strong> transpositions are not conjugatetranspositions and only involve reordering of <strong>the</strong> original matrices.4.3.3 Interior Mixed <strong>Boundary</strong> Value ProblemFor <strong>the</strong> solution to <strong>the</strong> interior mixed boundary value problem (3.37) we consider <strong>the</strong>symmetric approach given by <strong>the</strong> variational <strong>for</strong>mulationa(s, t, q, r) = F (q, r) <strong>for</strong> all q ∈ H −1/2 (Γ D ), r ∈ H 1/2 (Γ N ) (4.15)with unknown functions s ∈ H −1/2 (Γ D ), t ∈ H 1/2 (Γ N ), <strong>the</strong> bilinear <strong>for</strong>m<strong>the</strong> right-hand sideF (q, r) := 12 I + K κa(s, t, q, r) := ⟨V κ s, q⟩ ΓD − ⟨K κ t, q⟩ ΓD + ⟨K ∗ κs, r⟩ ΓN + ⟨D κ t, r⟩ ΓN , 1˜g D , q − ⟨V κ˜g N , q⟩ ΓD +Γ D2κI − K∗ ˜g N , r − ⟨D κ˜g D , r⟩ ΓNΓ Nand some fixed prolongations of <strong>the</strong> Cauchy data ˜g D , ˜g N .Be<strong>for</strong>e we proceed, we divide <strong>the</strong> boundary elements into two groups, E D denoting<strong>the</strong> set of all elements with <strong>the</strong> Dirichlet boundary condition and E N denoting <strong>the</strong> set ofNeumann elements. Similarly, we divide <strong>the</strong> set of boundary nodes into sets N D and N N(see Figure 4.4). Note that in <strong>the</strong> following text we also use <strong>the</strong> symbols E D , E N , N D andN N to denote <strong>the</strong> cardinality of <strong>the</strong> corresponding sets.Note that <strong>for</strong> smooth enough functions t, s we have t| ΓD = 0 and s| ΓN = 0. Thus, weseek <strong>the</strong> unknown functions in <strong>the</strong> approximate <strong>for</strong>mst ≈ t h := t i ϕ i ∈ T ϕ (Γ N ), s ≈ s h := s j ψ j ∈ T ψ (Γ D ) (4.16)i∈N N j∈E D


59represented by vectors t ∈ C N Nand s ∈ C E D, respectively. Moreover, we define <strong>the</strong>prolongations ˜g D , ˜g N as˜g D ≈ ˜g D,h := ˜g i D ϕ i ∈ T ϕ (Γ D ),i∈N D˜g N ≈ ˜g N,h := ˜g j N ψ j ∈ T ψ (Γ N ),j∈E N(4.17)i.e., ˜g D,h | Γ− = 0 with Γ −NNdenoting <strong>the</strong> Neumann part of <strong>the</strong> boundary without elementsadjacent to Γ D and ˜g N,h | ΓD = 0. Inserting <strong>the</strong> approximate representations (4.16), (4.17)into <strong>the</strong> variational <strong>for</strong>mulation (4.15) we obtain <strong>the</strong> system of Galerkin equationsa(s h , t h , ψ k , ϕ l ) = F (ψ k , ϕ l ) <strong>for</strong> all k ∈ E D , l ∈ N N . (4.18)For <strong>the</strong> left-hand side of (4.18) we obtain⟨V κ s, ψ k ⟩ ΓD = 1s j4πj∈E Dτ kτ je iκ∥x−y∥∥x − y∥ ds y ds x = j∈E Ds j Vκ,h [k, j],⟨K κ t, ψ k ⟩ ΓD = 1t i ϕ i (y)4πi∈Nτ kΓ eiκ∥x−y∥N∥x − y∥ 3 (1 − iκ∥x − y∥)⟨x − y, n(y)⟩ ds y ds xN= t iKκ,h [k, i],i∈N N⟨Kκs, ∗ ϕ l ⟩ ΓN = 1es j ϕ l (x)4πj∈EΓ Nτ iκ∥x−y∥j∥x − y∥ 3 (iκ∥x − y∥ − 1)⟨x − y, n(x)⟩ ds y ds xD= 1s j4πj∈E D= j∈E Ds j Kκ,h [j, l],τ jΓ Nϕ l (y) eiκ∥x−y∥∥x − y∥ 3 (1 − iκ∥x − y∥)⟨x − y, n(y)⟩ ds y ds x⟨D κ t, ϕ l ⟩ ΓN = 1 et i4πi∈NΓ NΓ iκ∥x−y∥N∥x − y∥ ⟨curl ∂Ω ϕ i (y), curl ∂Ω ϕ l (x)⟩ ds y ds xN− κ2 e4πΓ NΓ iκ∥x−y∥N∥x − y∥ ϕ i(y)ϕ l (x)⟨n(x), n(y)⟩ ds y ds x = t iDκ,h [l, i].i∈N NNote that <strong>the</strong> matrices from <strong>the</strong> previous <strong>for</strong>mulae are submatrices of (4.7), (4.9) and(4.14) with dimensionsV κ,h ∈ C E D×E D, Kκ,h ∈ C E D×N N, Dκ,h ∈ C N N×N N.For <strong>the</strong> right-hand side of (4.18) we have⟨˜g D , ψ k ⟩ ΓD = ˜g iD ϕ i (x) ds x = ˜g iDi∈Nτ k D i∈N D¯M h [k, i],


60 4 Discretization and Numerical Realization⟨K κ˜g D , ψ k ⟩ ΓD = i∈N D˜g D i= ⟨V ˜g N , ψ k ⟩ ΓD = 1ϕ i (y)4πτ eiκ∥x−y∥k Γ + ∥x − y∥ 3 (1 − iκ∥x − y∥)⟨x − y, n(y)⟩ ds y ds xDi∈N D˜g D i ¯K κ,h [k, i],j∈E N˜g N j⟨˜g N , ϕ l ⟩ ΓN = 14πτ kτ je iκ∥x−y∥∥x − y∥ ds y ds x = τ jϕ l (x) ds x = j∈E N˜g N j ¯V κ,h [k, j],˜g jN ˜g j N ¯Mh [j, l],j∈E N j∈E N⟨Kκ˜g ∗ N , ϕ l ⟩ ΓN = ˜g N 1ej ϕ l (x)4πj∈EΓ Nτ iκ∥x−y∥j∥x − y∥ 3 (iκ∥x − y∥ − 1)⟨x − y, n(x)⟩ ds y ds xN= j∈E N˜g N j= ˜g j N ¯Kκ,h [j, l],j∈E N⟨D κ˜g D , ϕ l ⟩ ΓN = ˜g D 1i4πi∈N D1ϕ l (y)4πτ jΓ eiκ∥x−y∥N∥x − y∥ 3 (1 − iκ∥x − y∥)⟨x − y, n(y)⟩ ds y ds xΓ NΓ + De iκ∥x−y∥∥x − y∥ ⟨curl ∂Ω ϕ i (y), curl ∂Ω ϕ l (x)⟩ ds y ds x− κ2 e4πΓ iκ∥x−y∥N Γ + ∥x − y∥ ϕ i(y)ϕ l (x)⟨n(x), n(y)⟩ ds y ds xD= ˜g D ¯D i κ,h [l, i]i∈N Dwith Γ + Ddenoting <strong>the</strong> Dirichlet part of <strong>the</strong> boundary toge<strong>the</strong>r with Neumann elementsadjacent to Γ D . Again, <strong>the</strong> matrices from <strong>the</strong> above relations are submatrices of (4.8),(4.9), (4.7) and (4.14) with dimensions¯M h ∈ R E D×N D, ¯Kκ,h ∈ C E D×N D, ¯Vκ,h ∈ C E D×E N,¯M h ∈ R E N×N N,¯K κ,h ∈ C E N×N N, ¯Dκ,h ∈ C N N×N D.<strong>The</strong> system of Galerkin equations can now be rewritten asVκ,hK T κ,h−K κ,h sD κ,h t=121−¯V ¯M κ,h 2 h + ¯K κ,h gN¯M T h − ¯KT κ,h−¯D κ,h g DNote that similarly as <strong>for</strong> <strong>the</strong> interior Neumann problem <strong>the</strong> transpositions do not involve<strong>the</strong> complex conjugation..


614.3.4 Exterior Dirichlet <strong>Boundary</strong> Value ProblemIn <strong>the</strong> following three sections we describe <strong>the</strong> solution to exterior boundary value problems.Since <strong>the</strong> discretization techniques are identical to those mentioned above, <strong>the</strong> discussionwill be more succinct.<strong>The</strong> approximate solution to <strong>the</strong> exterior Dirichlet boundary value problem (3.43) isgiven by <strong>the</strong> discretized representation <strong>for</strong>mula (3.44), i.e.,u(x) ≈ u h (x) := −El=1g N lτ lv κ (x, y) ds y +Nj=1g D j∂Ωϕ j (y) ∂v κ∂n y(x, y) ds y (4.19)with unknown Neumann data g N,h . To obtain <strong>the</strong> missing data we use <strong>the</strong> variational<strong>for</strong>mulation corresponding to <strong>the</strong> Fredholm integral equation (3.45), i.e.,⟨V κ g N , s⟩ ∂Ω = − 1 2 I + K κ g D , s <strong>for</strong> all s ∈ H −1/2 (∂Ω). (4.20)Inserting <strong>the</strong> approximations of <strong>the</strong> Cauchy data (4.4), (4.5) into (4.20) we obtain <strong>the</strong>system of Galerkin equationsEgl N ⟨V κψ l , ψ k ⟩ ∂Ω =l=1Nj=1g D j∂Ω− 1 2 I + K κ ϕ j , ψ k∂Ωand <strong>the</strong> related system of linear equationsV κ,h g N =− 1 2 M h + K κ,h g Dwith <strong>the</strong> matrices given by (4.7), (4.8) and (4.9).<strong>for</strong> all k ∈ {1, . . . , E}4.3.5 Exterior Neumann <strong>Boundary</strong> Value Problem<strong>The</strong> solution to <strong>the</strong> exterior Neumann boundary value problem (3.48) is given by <strong>the</strong>representation <strong>for</strong>mula (3.49) and its discretized variant (4.19). To compute <strong>the</strong> missingDirichlet data we use <strong>the</strong> hypersingular boundary integral equation (3.51) and <strong>the</strong> relatedvariational problem⟨D κ g D , t⟩ ∂Ω = − 1 2 I − K∗ κ g N , t <strong>for</strong> all t ∈ H 1/2 (∂Ω). (4.21)∂ΩSubstituting <strong>the</strong> approximate boundary data g D,h , g N,h into (4.21) we obtain <strong>the</strong> GalerkinequationsNgj D ⟨D κ ϕ j , ϕ i ⟩ ∂Ω =j=1El=1g N l− 1 2 I − K∗ κ ψ l , ϕ i∂Ω<strong>for</strong> all i ∈ {1, . . . , N}


62 4 Discretization and Numerical Realizationand <strong>the</strong> system of linear equationsD κ,h g D =− 1 2 MT h − KT κ,h g N ,given by <strong>the</strong> matrices (4.14), (4.8) and (4.9). Again, <strong>the</strong> transpositions do not involve <strong>the</strong>complex conjugation.4.3.6 Exterior Mixed <strong>Boundary</strong> Value ProblemLastly, let us consider <strong>the</strong> exterior mixed boundary value problem (3.53). Similarly asin <strong>the</strong> case of <strong>the</strong> interior mixed problem we use <strong>the</strong> symmetric approach given by <strong>the</strong>variational <strong>for</strong>mulationa(s, t, q, r) = F (q, r) <strong>for</strong> all q ∈ H −1/2 (Γ D ), r ∈ H 1/2 (Γ N ) (4.22)with unknown functions s ∈ H −1/2 (Γ D ), t ∈ H 1/2 (Γ N ), <strong>the</strong> bilinear <strong>for</strong>ma(s, t, q, r) := ⟨V κ s, q⟩ ΓD − ⟨K κ t, q⟩ ΓD + ⟨K ∗ κs, r⟩ ΓN + ⟨D κ t, r⟩ ΓN<strong>the</strong> right-hand sideF (q, r) := − 1 2 I + K κ ˜g D , q − ⟨V κ˜g N , q⟩ ΓD + − 1 Γ D2 I − K∗ κ ˜g N , r − ⟨D κ˜g D , r⟩ ΓNΓ Nand some fixed prolongations of <strong>the</strong> Cauchy data ˜g D , ˜g N . Inserting <strong>the</strong> discretized functionss h , t h from (4.16) and <strong>the</strong> prolongations ˜g D , ˜g N from (4.17) into (4.22) we obtain <strong>the</strong> systemof Galerkin equationsa(s h , t h , ψ k , ϕ l ) = F (ψ k , ϕ l )<strong>for</strong> all k ∈ E D , l ∈ N Nand <strong>the</strong> related system of linear equationsVκ,h −K κ,h s −¯V κ,h − 1 ¯M 2 h + ¯K κ,h gN=D κ,h t ¯M T h − ¯KT κ,h−¯D κ,h g DK T κ,h− 1 2with <strong>the</strong> matrices defined in Section 4.3.3. <strong>The</strong> transpositions in <strong>the</strong> above given systemdo not involve <strong>the</strong> complex conjugation of <strong>the</strong> elements.4.4 Integration over <strong>Boundary</strong> <strong>Element</strong>s<strong>The</strong>re are several approaches to <strong>the</strong> computation of <strong>the</strong> double integrals arising from <strong>the</strong>Galerkin discretization of <strong>the</strong> boundary integral equations. One way is to use a numericalquadrature <strong>for</strong> both integrals. It should be, however, noted, that numerical integrationintroduces an additional error and one has to be cautious when dealing with singularitiesin <strong>the</strong> integrands. As a workaround to this problem <strong>the</strong> Duffy trans<strong>for</strong>mation proposed in


63[8] (see also [16]) can be used. However, we will not describe this technique and will preferanalytic integration when possible.Due to <strong>the</strong> complexity of <strong>the</strong> integrands it seems impossible to compute both integralsanalytically. However, it is possible to integrate <strong>the</strong> inner integral analytically and <strong>for</strong> <strong>the</strong>remaining one use a suitable quadrature scheme. In this section we describe a combinationof analytic and numerical integration as proposed in [17].4.4.1 Numerical IntegrationIn <strong>the</strong> following text we assume <strong>the</strong> discretization of ∂Ω given by∂Ω ≈Eτ k ,where τ k are triangles in R 3 . Recall from (4.1) and (4.2), that <strong>for</strong> every element τ we have<strong>the</strong> parametrisationk=1R(ξ) := x 1 + Rξ = x 1 + x 2 − x 1 ξ 1 + x 3 − x 1 ξ 2<strong>for</strong> ξ ∈ ˆτ,where ˆτ denotes <strong>the</strong> reference triangle (see Figure 4.1a)ˆτ := {ξ ∈ R 2 : 0 < ξ 1 < 1, 0 < ξ 2 < 1 − ξ 1 }.For an arbitrary function f defined on τ we thus havef(x) ds x = f(R(ξ)) x 2 − x 1 × x 3 − x 1 dsξ = 2∆ ττˆτˆτˆf(ξ) ds ξwith ˆf(ξ) := f(R(ξ)) and ∆ τ denoting <strong>the</strong> surface of <strong>the</strong> triangle τ, i.e.,∆ τ = 1 ds x .Hence, it is only sufficient to develop a quadrature scheme corresponding to <strong>the</strong> referencetriangle ˆτ. We approximate <strong>the</strong> integration asˆττˆf(ξ) ds ξ ≈ 1 2Mω k ˆf(ξ k )k=1with unknown parameters ω k and ξ k ∈ ˆτ <strong>for</strong> k ∈ {1, . . . , M}.In numerical examples presented in <strong>the</strong> last section we use a 7-point scheme, which isexact <strong>for</strong> polynomials up to order 5, i.e., <strong>for</strong> functions in <strong>the</strong> linear space P 5 (ˆτ) := span ξ1ξ a 2b , 0 ≤ a + b ≤ 5.


64 4 Discretization and Numerical Realization<strong>The</strong> quadrature points ξ k and corresponding wages ω k are defined as follows;and 11,ξ 1 := 1 3ξ 2 := 1 √ 6 − 1521 6 − √ , ξ 3 := 1 √9 + 2 151521 6 − √ 15ξ 5 := 1 √ 6 + 1521 6 + √ , ξ 6 := 1 √ 6 + 151521 9 − 2 √ 15ω 1 := 9 40 , ω 2 := ω 3 := ω 4 := 155 − √ 151200, ξ 4 := 121, ξ 7 := 121 √ 6 − 159 + 2 √ ,15 √ 9 − 2 15,6 + √ 15, ω 5 := ω 6 := ω 7 := 155 + √ 15.1200For <strong>the</strong> derivation of <strong>the</strong> presented 7-point rule and less accurate quadratures see [17],Section C.1.4.4.2 Analytic IntegrationConsidering a triangulation of ∂Ω, <strong>the</strong> integration over <strong>the</strong> boundary reduces to integrationover <strong>the</strong> set of individual elements. For this purpose, it is convenient to introduce anew coordinate system corresponding to a general boundary element τ ⊂ R 3 with verticesx 1 , x 2 , x 3 . <strong>The</strong> vertex x 1 will be considered as <strong>the</strong> origin of <strong>the</strong> coordinate system. Orthogonalcoordinate vectors r 1 , r 2 , n introduced in <strong>the</strong> following paragraph are visualizedin Figure 4.5a.x 3 r 2x 3nr 1τx ∗x 1 x 2sx 1 x 2t(a) Coordinate system corresponding to τ.(b) Triangle parametrization.Figure 4.5: Analytic integration over triangles.We define <strong>the</strong> vector r 2 asr 2 := 1 t τ(x 3 − x 2 ),


65where t τ denotes <strong>the</strong> length of <strong>the</strong> side x 2 x 3 , i.e.,t τ := ∥x 3 − x 2 ∥.Be<strong>for</strong>e we define <strong>the</strong> vector r 1 , we introduce an auxiliary point x ∗ lying on <strong>the</strong> intersectionof <strong>the</strong> line defined by <strong>the</strong> side x 2 x 3 and <strong>the</strong> altitude coming through x 1 . Thus, we canwritex ∗ := x 2 + t ∗ r 2 ,where t ∗ can be computed as<strong>The</strong>n we definewitht ∗ := ⟨x 1 − x 2 , r 2 ⟩.r 1 := 1 s τ(x ∗ − x 1 )s τ := ∥x ∗ − x 1 ∥. (4.23)<strong>The</strong> last coordinate vector orthogonal to both r 1 and r 2 is defined asn := r 1 × r 2 .Note that <strong>for</strong> n we have an alternative representationn = (x2 − x 1 ) × (x 3 − x 2 )∥(x 2 − x 1 ) × (x 3 − x 2 )∥ .Any point x ∈ R 3 can now be expressed asx = x 1 + s x r 1 + t x r 2 + u x n,wheres x := ⟨x − x 1 , r 1 ⟩, t x := ⟨x − x 1 , r 2 ⟩, u x := ⟨x − x 1 , n⟩.To derive <strong>the</strong> parametrization of <strong>the</strong> triangle we introduce two more quantities, namely<strong>the</strong> tangents of <strong>the</strong> angles between <strong>the</strong> altitude x 1 x ∗ and <strong>the</strong> sides x 1 x 2 and x 1 x 3 , respectively.<strong>The</strong>se values can be expressed asα 1 := − t ∗s τ,α 2 := t τ − t ∗s τ. (4.24)Using <strong>the</strong>se parameters toge<strong>the</strong>r with s τ defined in (4.23) we can parametrize <strong>the</strong> triangleτ asτ = y = y(s, t) = x 1 + sr 1 + tr 2 : 0 < s < s τ , α 1 s < t < α 2 s .See Figure 4.5b <strong>for</strong> <strong>the</strong> illustration of <strong>the</strong> parametrization.Also note that <strong>for</strong> any point x ∈ R 3 and a point y ∈ τ we have∥x − y∥ 2 = ∥(s x − s)r 1 + (t x − t)r 2 + u x n∥ 2 = (s − s x ) 2 + (t − t x ) 2 + u 2 x.


66 4 Discretization and Numerical Realization4.4.3 Single Layer Potential OperatorTo compute <strong>the</strong> matrices arising from <strong>the</strong> Galerkin equations we need to evaluate <strong>the</strong>corresponding double surface integrals. In <strong>the</strong> following three sections we provide analyticevaluations of <strong>the</strong> singular parts of <strong>the</strong> inner integrals related to <strong>the</strong> single layer potentialmatrix V κ,h , <strong>the</strong> double layer potential matrix K κ,h and <strong>the</strong> hypersingular operator matrixD κ,h . <strong>The</strong> outer integrals can be computed using <strong>the</strong> 7-point quadrature rule discussed inSection 4.4.1.<strong>The</strong> analytic <strong>for</strong>mulae corresponding to <strong>the</strong> single layer potential operator and <strong>the</strong>double layer potential operator are given in [17], Section C.2, and we only provide <strong>the</strong> finalresults with some discussion. For <strong>the</strong> hypersingular operator we provide a more detailedcomputation.<strong>The</strong> entries of <strong>the</strong> single layer operator matrix are given byV κ,h [k, l] := 1 e4πτ kτ iκ∥x−y∥l∥x − y∥ ds y ds x= 14πτ kFor <strong>the</strong> latter integrand we have1τ l∥x − y∥ ds y ds x + 14πτ ke iκ∥x−y∥ − 1τ l∥x − y∥e iκ∥x−y∥ − 1 e iκa − 1 llim= lim′ H = lim iκe iκa = iκx→y ∥x − y∥ a→0 a a→0ds y ds x .and thus <strong>the</strong> integral is not singular and can be evaluated numerically. For <strong>the</strong> remainingsingular part of <strong>the</strong> integral we use an analytic computation based on <strong>the</strong> local coordinatesystem introduced in Section 4.4.2 combined with a quadrature scheme. For <strong>the</strong> innerintegral we obtain (see [17], Section C.1.2.)S V (τ, x) := 1 14π τ ∥x − y∥ ds y = 1 sτ α2 s1 dt ds4π 0 α 1 s (s − sx ) 2 + (t − t x ) 2 + u 2 x= 1 sτ ln t − t x + α2(s − s x )4π2 + (t − t x ) 2 + u 2 sx ds0α 1 s= 1 F V (s τ , α 2 ) − F V (0, α 2 ) − F V (s τ , α 1 ) + F V (0, α 1 ) ,4πwhereF V (s, α) := (s − s x ) ln αs − t x + (s − s x ) 2 + (αs − t x ) 2 + u 2 x − s+ αs x − t√ x ln 1 + α 2 (s − p) + (s − s x ) 2 + (αs − t x ) 2 + u 21 + α 2 x (sq − αsx−tx1+α −+ 2u x arctan2 sx ) 2 + (αs − t x ) 2 + u 2 x + (αs − t x − q)q(s − p)u x(4.25)


67with parametersp := αt x + s x1 + α 2 , q := u 2 x + (t x − αs x ) 21 + α 2 . (4.26)Notice that q ≥ 0 andq = 0 ⇔ [u x = 0 ∧ t x − αs x = 0].For α = α 1 and α = α 2 (see (4.24)) <strong>the</strong> above given situation corresponds to <strong>the</strong> point xlying on <strong>the</strong> line defined by <strong>the</strong> triangle sides x 1 x 2 and x 1 x 3 , respectively.<strong>The</strong> previous <strong>for</strong>mulae provide an analytic computation of <strong>the</strong> integral <strong>for</strong> generalparameters. However, we need to discuss <strong>the</strong> singularities that may appear in (4.25).Although <strong>the</strong> arguments of <strong>the</strong> logarithms are non-negative, <strong>the</strong>y may vanish. However,in both cases <strong>the</strong> situation is similar toln xlim x ln x = limx→0 + x→0 1 +xl ′ 1H = limxx→0 + − 1 x 2= limx→0 +−x = 0.In <strong>the</strong> case of u x = 0, i.e., <strong>the</strong> point x lying in <strong>the</strong> plane defined by <strong>the</strong> triangle τ wecan set <strong>the</strong> arctangent part equal to zero due to <strong>the</strong> jump property of V κ (3.5) and <strong>the</strong>boundedness of <strong>the</strong> arctangent function. Lastly, in <strong>the</strong> case when s = p, <strong>the</strong> last part of<strong>the</strong> function F becomes2u x arctan αqu x.4.4.4 Double Layer Potential Operator<strong>The</strong> entries in <strong>the</strong> double layer potential matrix are given byK κ,h [k, j] := 14π= 14π+ 14πτ k∂Ω τ k∂Ω τ k∂Ωϕ j (y) eiκ∥x−y∥∥x − y∥ 3 (1 − iκ∥x − y∥)⟨x − y, n(y)⟩ ds y ds x⟨x − y, n(y)⟩ϕ j (y)∥x − y∥ 3 ds y ds x⟨x − y, n(y)⟩ϕ j (y)∥x − y∥ 3e iκ∥x−y∥ (1 − iκ∥x − y∥) − 1 ds y ds x .Again, <strong>the</strong> latter integrand is bounded and we can use <strong>the</strong> 7-point scheme to compute <strong>the</strong>double surface integral. For <strong>the</strong> first integral it is sufficient to compute <strong>the</strong> local elementcontributionsD(τ, x) := 1 ⟨x − y, n(y)⟩ϕ 1 (y)4π∥x − y∥ 3 ds ywith <strong>the</strong> affine function ϕ 1 defined on τ by⎧⎪⎨ 1 <strong>for</strong> y = x 1 ,ϕ 1 (y) := 0 <strong>for</strong> y = x⎪⎩2 ,0 <strong>for</strong> y = x 3 .τ


68 4 Discretization and Numerical RealizationRemark 4.2. For integrals with o<strong>the</strong>r affine basis functions it is sufficient to rotate <strong>the</strong>triangle.Remark 4.3. For x lying in <strong>the</strong> plane defined by <strong>the</strong> triangle τ (and especially in <strong>the</strong> caseof x ∈ τ) <strong>the</strong> integrand is equal to zero and we have D(τ, x) = 0.Using <strong>the</strong> local coordinates and assuming that <strong>the</strong> local coordinate vector n correspondsto <strong>the</strong> unit outward normal vector to τ, we haveD(τ, x) = 1 sτ4π 0= u sτx4π 0s τ − ss τ α2 sα 1 ss τ − ss τ1(s − s x ) 2 + u 2 xu xdt ds((t − t x ) 2 + (s − s x ) 2 + u 2 3/2x)t − t x(t − tx ) 2 + (s − s x ) 2 + u 2 x= 14πs τF K (s τ , α 2 ) − F K (0, α 2 ) − F K (s τ , α 1 ) + F K (0, α 1 ). α2 sα 1 sdsFor <strong>the</strong> function F K we have (see [17], Section C.2.2.)F K (s, α) := −αu x√ ln 1 + α 2 (s − p) + (s − s x ) 2 + (αs − t x ) 2 + u 21 + α 2 x− u x2 ln v 2 + A 1 v + B 1+ (sτ − s x ) u x|u x | arctan 2v + A 12G 1+ u x2 ln v 2 + A 2 v + B 2− (sτ − s x ) u x|u x | arctan 2v + A 2with parameters p and q defined by (4.26) andA 1 := − 2αq√ 1 + α 2u 2 x + α 2 q 2 tx − αs x1 + α 2 + q , A 2 := − 2αq√ 1 + α 2u 2 x + α 2 q 22G 2(4.27) tx − αs x1 + α 2 − q ,B 1 :=G 1 :=v :=1 + α2 tx − αs 2xu 2 x + α 2 q 2 1 + α 2 + q , B 2 := 1 + α2 tx − αs xu 2 x + α 2 q 2√1 + α 2 |u x |u 2 x + α 2 q 2 q + t √x − αs x1 + α1 + α 2 , G 2 :=2 |u x |u 2 x + α 2 q 2(1 + α 2 )(s − p) 2 + q 2 − q√ .1 + α 2 (s − p) 21 + α 2 − q ,q − t x − αs x1 + α 2 ,Singularities in <strong>the</strong> arguments of <strong>the</strong> logarithms in (4.27) and in <strong>the</strong> computation of <strong>the</strong>coefficients A 1/2 , B 1/2 and G 1/2 can only occur when u x = 0. In such case, however, wehave D(τ, x) = 0 (see Remark 4.3). To conclude, <strong>for</strong> <strong>the</strong> situation when s = p ∧ u x ≠ 0 wehave v = 0.


694.4.5 Hypersingular Integral Operator<strong>The</strong> matrix corresponding to <strong>the</strong> hypersingular integral operator is given byD κ,h [i, j] := 1 4π− κ24π∂Ω∂Ω∂Ω∂Ωe iκ∥x−y∥∥x − y∥ ⟨curl ∂Ω ϕ j (y), curl ∂Ω ϕ i (x)⟩ ds y ds xe iκ∥x−y∥∥x − y∥ ϕ j(y)ϕ i (x)⟨n(x), n(y)⟩ ds y ds x .Since <strong>the</strong> unit outward normals are constant on individual elements, we have <strong>for</strong> <strong>the</strong> firstintegral D 1 1 e iκ∥x−y∥κ,h [i, j] :=4π ∂Ω ∂Ω ∥x − y∥ ⟨curl ∂Ω ϕ j (y), curl ∂Ω ϕ i (x)⟩ ds y ds x= ⟨curl ∂Ω ϕ j | τl (y), curl ∂Ω ϕ i | τk (x)⟩ 14πτ k ⊂supp ϕ i τ l ⊂supp ϕ i= ⟨curl ∂Ω ϕ j | τl (y), curl ∂Ω ϕ i | τk (x)⟩V κ,h [k, l]τ k ⊂supp ϕ i τ l ⊂supp ϕ iτ kτ le iκ∥x−y∥∥x − y∥ ds y ds xand thus <strong>the</strong> matrix entries are some linear combination of corresponding entries in V κ,h .Recall thatcurl ∂Ω ϕ(y) := n(y) × ∇ ϕ(y),where <strong>for</strong> <strong>the</strong> extensions of <strong>the</strong> basis functions we can choose functions constant along <strong>the</strong>normal defined by <strong>the</strong> reference functionsˆϕ1 (ξ) := 1 − ξ 1 − ξ 2 , ˆϕ2 (ξ) := ξ 1 , ˆϕ3 (ξ) := ξ 2 <strong>for</strong> ξ = [ξ 1 , ξ 2 , ξ 3 ] T ∈ ˆτ × R.Hence, it is sufficient to compute <strong>the</strong> integralD 2 κ2κ,h [i, j] :=4π= κ24π+ κ24π∂Ω∂Ω∂Ωϕ i (x)ϕ i (x)ϕ i (x)∂Ω∂Ω∂Ωe iκ∥x−y∥∥x − y∥ ϕ j(y)⟨n(x), n(y)⟩ ds y ds x1∥x − y∥ ϕ j(y)⟨n(x), n(y)⟩ ds y ds xe iκ∥x−y∥ − 1∥x − y∥ ϕ j(y)⟨n(x), n(y)⟩ ds y ds x .<strong>The</strong> latter integrand is bounded and we can use <strong>the</strong> 7-point quadrature scheme. <strong>The</strong>remaining integral is similar to <strong>the</strong> single layer potential matrix entries and although <strong>the</strong>analytical <strong>for</strong>mula is not given in [17], we will follow <strong>the</strong> computations in Section C.2.1


70 4 Discretization and Numerical Realizationand reuse some results. For <strong>the</strong> inner integral we haveS D (τ, x) := κ21ϕ 1 (y)4π ∥x − y∥ ds ywherewith F V= κ24πτ sτ0= κ2 sτ4π= κ24π0s τ − ss τ α2 sα 1 ss τ − slns τ1 dt ds(s − sx ) 2 + (t − t x ) 2 + u 2 xt − t x + (s − s x ) 2 + (t − t x ) 2 + u 2 xF D (s τ , α 2 ) − F D (0, α 2 ) − F D (s τ , α 1 ) + F D (0, α 1 )F D (s, α) := F V (s, α) 1 − p + s x− 1 I 12s τ s τfrom (4.25) and parameters p, q given by (4.26) and I 1 := s − p + s xlnαs − t x + (1 + α22 )(s − p) 2 + q 2 ds., α2 sdsα 1 sUsing per partes withu = lnαs − t x + (1 + α 2 )(s − p) 2 + q 2 , v ′ = s − p + s x,2u ′ =α (1 + α 2 )(s − p) 2 + q 2 + (1 + α 2 )(s − p)(αs − t x ) (1 + α 2 )(s − p) 2 + q 2 + (1 + α 2 )(s − p) 2 + q 2 , v = 1 2 (s − p)(s − s x)we obtainwithI 2 :=I 1 = 1 2 (s − p)(s − s x) lnαs − t x + (1 + α 2 )(s − p) 2 + q 2 − 1 2 I 2α (1 + α(s − p)(s − s x )2 )(s − p) 2 + q 2 + (1 + α 2 )(s − p)(αs − t x ) (1 + α 2 )(s − p) 2 + q 2 + (1 + α 2 )(s − p) 2 + q ds 2whereI 3 :== s22 − ps + I 3,(s − p) (t x − αs x ) (1 + α 2 )(s − p) 2 + q 2 + (1 + α 2 )(s − p)(p − s x ) − q 2(1 + α 2 )(s − p) 2 + q 2 + (αs − t x ) (1 + α 2 )(s − p) 2 + q 2 ds.With <strong>the</strong> substitutions = p +qds√ sinh u,1 + α 2du =q√1 + α 2 cosh u


71proposed in [17], page 247, we obtainI 3 =q 2 √1 + α 2sinh uWith ano<strong>the</strong>r substitution from [17]√1 + α 2 (t x − αs x ) cosh u + α(t x − αs x ) sinh u − q √ 1 + α 2q(1 + α 2 ) cosh u + αq √ 1 + α 2 sinh u + αs x − t xdu.v = tanh u 2v1 + v2, sinh u = , cosh u =2 1 − v2 1 − v 2 , dudv = 21 − v 2we havewith parametersI 3 =√ 4q21 + α 2v1 − v 2 11 − v 2 B 2 v 2 + B 1 v + B 0A 2 v 2 + A 1 v + A 0dvB 2 := 1 + α 2 (t x − αs x + q), A 2 := (1 + α 2 )q − (αs x − t x ),B 1 := 2α(t x − αs x ), A 1 := 2αq 1 + α 2 ,B 0 := 1 + α 2 (t x − αs x − q), A 0 := (1 + α 2 )q + (αs x − t x ).For <strong>the</strong> decomposition of <strong>the</strong> fractions in I 3 we get (see [17], pages 247–248)withHence,4q 2√1 + α 2v 1 B 2 v 2 + B 1 v + B 01 − v 2 1 − v 2 A 2 v 2 =+ A 1 v + A 0C 1 := 4q(t x − αs x )1 + α 2 , C 2 := −4qu 2 x.I 3 = 2q(t x − αs x ) 11 + α 2 1 − v 2 − 4qu2 xv1 − v 2 C11 − v 2 + C 2A 2 v 2 + A 1 v + A 0v 11 − v 2 A 2 v 2 dv.+ A 1 v + A 0<strong>The</strong> fractions from <strong>the</strong> remaining integral can be decomposed aswith coefficients4qu 2 v 1x1 − v 2 A 2 v 2 = D 1+ A 1 v + A 0 1 − v + D 21 + v + D 3 v + D 4A 2 v 2 + A 1 v + A 0D 1 :=1 u 2 x√ √1 + α 2 1 + α 2 + α , D 3 := (D 1 − D 2 )A 2 = 2u 2 xA 2 ,1 u 2 xD 2 := −√ √1 + α 2 1 + α 2 − α , D 4 := −(D 1 + D 2 )A 0 = √ 2u2 xαA 0.1 + α 2


72 4 Discretization and Numerical RealizationThus, <strong>for</strong> I 3 we haveI 3 = 2q(t x − αs x ) 11 + α 2 1 − v 2 + 1 u 2 x√ √ ln |1 − v|1 + α 2 1 + α 2 + α+1 u 2 x√ √1 + α 2 1 + α 2 − α ln |1 + v| − u2 x ln |A 2 v 2 + A 1 v + A 0 |− 2αu x(αs x − t x )1 + α 2 arctan 2A 2v + A 12u x√1 + α 2 .Collecting all terms toge<strong>the</strong>r we finally obtainF D (s, α) = F V (s, α) 1 − p + s x2s τ− 1 (s − p)(s − s x ) lnαs − t x + (1 + α2s 2 )(s − p) 2 + q 2 − s2τ 2 + ps− 2q(t x − αs x ) 11 + α 2 1 − v 2 − 1 u 2 x√ √ ln |1 − v|1 + α 2 1 + α 2 + α1 u 2 x− √ √1 + α 2 1 + α 2 − α ln |1 + v| + u2 x ln |A 2 v 2 + A 1 v + A 0 |+ 2αu x(αs x − t x )1 + α 2 arctan 2A 2v + A√ 1.2u x 1 + α 2Note that <strong>the</strong> previous <strong>for</strong>mula can be directly evaluated <strong>for</strong> u x ≠ 0 corresponding to<strong>the</strong> case when x does not lie in <strong>the</strong> plane defined by τ. In <strong>the</strong> case of u x = 0 <strong>the</strong> jumpproperty of <strong>the</strong> hypersingular operator (3.14) allows us to take <strong>the</strong> limit u x → 0. <strong>The</strong>terms with singularity <strong>for</strong> v = ±1 all vanish <strong>for</strong> u x → 0 and it only remains to treat <strong>the</strong>term u 2 x ln |A 2 v 2 + A 1 v + A 0 |. For <strong>the</strong> discriminant of A 2 v 2 + A 1 v + A 0 we haveA 2 1 − 4A 2 A 0 = −4(1 + α 2 )u 2 xand thus <strong>the</strong> polynomial only has a real root <strong>for</strong> u x = 0. For u x ≠ 0 we have A 2 ≠ 0 andu 2 x ln |A 2 v 2 + A 1 v + A 0 | ≤ u 2 x ln |A 2 v0 2 + A 1 v 0 + A 0 | = u2 x ln(1 + α 2 )q 2 − (αs x − t x ) 2 (1 + α 2 )q − (αs x − t x )withv 0 := − A 1αq √ 1 + α= −22A 2 (1 + α 2 )q − (αs x − t x )corresponding to <strong>the</strong> vertex of <strong>the</strong> parabola. In <strong>the</strong> case of αs x = t x we haveand <strong>for</strong> <strong>the</strong> limit we getK := (1 + α2 )q 2 − (αs x − t x ) 2(1 + α 2 )q − (αs x − t x )lim u 2 x ln |u x | = 0.u x→0= |u x |


73Now we consider <strong>the</strong> situation αs x ≠ t x and α ≠ 0. For K we haveK = u 2 (1 + α 2 )x (1 + α 2 ) u 2 x + (αsx−tx)2 − (αs1+α 2 x − t x )with a nonzero limit of <strong>the</strong> denominator. Thus, <strong>the</strong> function u 2 x ln |K| behaves like u2x ln |cu 2 x| → 0 <strong>for</strong> ux → 0. (4.28)Finally, let us assume <strong>the</strong> case of αs x ≠ t x and α = 0. For K we haveK =u 2 xu 2 x + t 2 x + t x.For t x ≥ 0 <strong>the</strong> limit is similar to (4.28). For t x < 0 we haveK =u 2 xu 2 x + t 2 x + t xu 2 x + t 2 x − t xu 2 x + t 2 x − t x= u 2 x + t 2 x − t xand <strong>the</strong> term u2x ln |K| vanishes <strong>for</strong> ux → 0.


755 Numerical ExperimentsIn this part we provide numerical solutions to some boundary value problems using <strong>the</strong>boundary element method described in <strong>the</strong> previous sections. Although we concentrateon <strong>the</strong> computation of <strong>the</strong> missing Cauchy data, we provide some in<strong>for</strong>mation about <strong>the</strong>solution inside <strong>the</strong> given domain as well.In <strong>the</strong> following sections we use <strong>the</strong> Galerkin boundary element method with L 2 projectedCauchy data. We approximate <strong>the</strong> given Dirichlet and Neumann data by continuouspiecewise affine functions and piecewise constant functions, respectively. For <strong>the</strong> testingdomains we take a sphere, a cube and a ra<strong>the</strong>r simplified model of an elephant (see Figure5.1).110.80.80.60.610.40.20.40.20.80.60.4000.2−0.2−0.20−0.4−0.4−0.2−0.6−0.6−0.4−0.8−0.8−0.6−1−1−0.500.500.51 1(a) Sphere.−0.5−1−1−1−0.500.50.51 1(b) Cube.0−0.5−1−0.8−1−0.500.500.511.5(c) Elephant.−0.5−1Figure 5.1: Testing domains.5.1 Interior Dirichlet <strong>Boundary</strong> Value ProblemLet us first consider <strong>the</strong> interior Dirichlet boundary value problem (3.24) with κ = 2. For<strong>the</strong> testing solutions we choosein <strong>the</strong> case of <strong>the</strong> sphere and <strong>the</strong> cube andu(x) := (5i + 17x 1 )(11 + 7ix 2 )e iκx 3(5.1)u(x) := v κ (x, y 1 ) + v κ (x, y 2 ) (5.2)with <strong>the</strong> fundamental solution v κ and points y 1 := [1.2, 0.25, 0.7] T , y 2 := [1.2, −0.25, 0.7] Tin <strong>the</strong> case of <strong>the</strong> elephant.For <strong>the</strong> computation of <strong>the</strong> missing Neumann data g N,h we use <strong>the</strong> discretized Galerkinequations 1⟨V κ g N,h , ψ k ⟩ ∂Ω =2 I + K κ g D,h , ψ k <strong>for</strong> all k ∈ {1, . . . , E}∂Ω


76 5 Numerical Experimentsand <strong>the</strong> matrix <strong>for</strong>mulationV κ,h g N = 12 M h + K κ,hg D .<strong>The</strong> approximate solution u h to (3.24) is given by <strong>the</strong> discretized representation <strong>for</strong>mula(4.11).E N Err N Err N,p Err ϑ320 162 1.78 · 10 −1 1.24 · 10 −1 1.61 · 10 −31240 622 9.68 · 10 −2 6.48 · 10 −2 1.23 · 10 −47432 3718 3.33 · 10 −2 2.62 · 10 −2 5.44 · 10 −6Table 5.1: Interior Dirichlet BVP on <strong>the</strong> sphere.E N Err N Err N,p Err ϑ300 152 3.10 · 10 −1 1.81 · 10 −1 3.41 · 10 −31200 602 1.25 · 10 −1 9.10 · 10 −2 2.40 · 10 −47500 3752 4.22 · 10 −2 3.65 · 10 −2 9.55 · 10 −6Table 5.2: Interior Dirichlet BVP on <strong>the</strong> cube.10.820015010.82001500.60.41000.60.4100500.20−0.25000.20−0.20−50−0.4−50−0.4−100−0.6−0.8−100−0.6−0.8−150−1−1−0.500.500.51 1(a) Real part.−0.5−1−150−200−1−1−0.500.500.51 1(b) Imaginary part.−0.5−1−200−250Figure 5.2: Solution to <strong>the</strong> interior Dirichlet BVP on <strong>the</strong> sphere with E = 7432.In Tables 5.1, 5.2, 5.3 we summarize <strong>the</strong> results. <strong>The</strong> first two columns correspondto <strong>the</strong> mesh properties, namely to <strong>the</strong> number of elements and nodes. In <strong>the</strong> subsequentcolumns we provide L 2 relative errors given byErr N := ∥g N − g N,h ∥ L 2 (∂Ω)∥g N ∥ L 2 (∂Ω), Err N,p := ∥g N − g N,p ∥ L 2 (∂Ω)∥g N ∥ L 2 (∂Ω), Err ϑ := ∥u − u h∥ L 2 (ϑ)∥u∥ L 2 (ϑ)(5.3)


77E N Err N Err N,p Err ϑ3962 1983 1.54 · 10 −1 1.20 · 10 −1 1.60 · 10 −47510 3757 1.09 · 10 −1 9.18 · 10 −2 3.85 · 10 −5Table 5.3: Interior Dirichlet BVP on <strong>the</strong> elephant.3.50.151310.10.80.62.50.80.60.050.420.400.201.50.20−0.05−0.2−0.410.5−0.2−0.4−0.1−0.6−0.80−0.6−0.8−0.15−1−0.500.50.511.5(a) Real part.0−0.5−1−0.5−1−1−0.500.500.511.5(b) Imaginary part.−0.5−1−0.2−0.25Figure 5.3: Solution to <strong>the</strong> interior Dirichlet BVP on <strong>the</strong> elephant with E = 7510.with g N , g N,h , g N,p denoting <strong>the</strong> exact, computed and L 2 projected Neumann data, respectively.Note that <strong>the</strong> error of <strong>the</strong> computed solution cannot be lower than <strong>the</strong> errorcorresponding to <strong>the</strong> L 2 projected function. Fur<strong>the</strong>rmore, ϑ: [0, 1] → R 3 denotes <strong>the</strong> curve⎡ ⎤ ⎡ ⎤0.4 0ϑ(t) := ⎣ 0.3 ⎦ + t ⎣ 0 ⎦ <strong>for</strong> t ∈ [0, 1]. (5.4)−0.7 1.4See also Figures 5.2, 5.3 depicting <strong>the</strong> solution on <strong>the</strong> sphere and <strong>the</strong> elephant, respectively.5.2 Interior Neumann <strong>Boundary</strong> Value ProblemFor <strong>the</strong> testing solutions to <strong>the</strong> interior Neumann boundary value problem (3.32) withκ = 2 we choose <strong>the</strong> same functions as <strong>for</strong> <strong>the</strong> interior Dirichlet boundary value problem,i.e., <strong>the</strong> function (5.1) in <strong>the</strong> case of <strong>the</strong> sphere and <strong>the</strong> cube and (5.2) in <strong>the</strong> case of <strong>the</strong>elephant.To find <strong>the</strong> missing Dirichlet data we use <strong>the</strong> discretized variational <strong>for</strong>mulation relatedto <strong>the</strong> hypersingular boundary equation (3.35), i.e.,⟨D κ g D,h , ϕ i ⟩ ∂Ω = 12 I − K∗ κg N,h , ϕ i∂Ω<strong>for</strong> all i ∈ {1, . . . , N}.


78 5 Numerical Experimentsand <strong>the</strong> matrix <strong>for</strong>mulationD κ,h g D = 12 MT h − KT κ,hg N .E N Err D Err D,p Err ϑ320 162 5.33 · 10 −2 1.82 · 10 −2 4.96 · 10 −21240 622 1.55 · 10 −2 4.94 · 10 −3 1.41 · 10 −27432 3718 2.75 · 10 −3 7.45 · 10 −4 2.72 · 10 −3Table 5.4: Interior Neumann BVP on <strong>the</strong> sphere.E N Err D Err D,p Err ϑ300 152 8.11 · 10 −2 3.96 · 10 −2 4.45 · 10 −21200 602 1.79 · 10 −2 8.95 · 10 −3 1.04 · 10 −27500 3752 2.63 · 10 −3 1.36 · 10 −3 1.62 · 10 −3Table 5.5: Interior Neumann BVP on <strong>the</strong> cube.E N Err D Err D,p Err ϑ3962 1983 1.11 · 10 −1 5.89 · 10 −3 9.44 · 10 −27510 3757 9.71 · 10 −2 2.41 · 10 −3 8.31 · 10 −2Table 5.6: Interior Neumann BVP on <strong>the</strong> elephant.120012000.81500.81500.60.41000.60.41000.2500.2500−0.200−0.20−0.4−50−0.4−50−0.6−0.8−100−0.6−0.8−100−1−1−0.500.500.51 1(a) Real part.−0.5−1−150−200−1−1−0.500.500.51 1(b) Imaginary part.−0.5−1−150−200Figure 5.4: Solution to <strong>the</strong> interior Neumann BVP on <strong>the</strong> cube with E = 7500.


792002000.81500.81500.60.41000.60.41000.2500.2500−0.200−0.20−0.4−50−0.4−50−0.6−0.8−100−0.6−0.8−100−0.500.50.5(a) Real part.0−0.5−150−200−0.500.50.5(b) Imaginary part.0−0.5−150Figure 5.5: Solution to <strong>the</strong> interior Neumann BVP inside <strong>the</strong> cube with E = 1200.In Tables 5.4, 5.5, 5.6 we summarize <strong>the</strong> results. <strong>The</strong> error columns are now given byErr D := ∥g D − g D,h ∥ L 2 (∂Ω)∥g D ∥ L 2 (∂Ω), Err D,p := ∥g D − g D,p ∥ L 2 (∂Ω), Err ϑ := ∥u − u h∥ L 2 (ϑ)∥g D ∥ L 2 (∂Ω)∥u∥ L 2 (ϑ)(5.5)with g D , g D,h , g D,p denoting <strong>the</strong> exact, computed and L 2 projected Dirichlet data, respectively.Note that <strong>the</strong> error of <strong>the</strong> computed solution cannot be lower than <strong>the</strong> errorcorresponding to <strong>the</strong> L 2 projected function. Again, ϑ: [0, 1] → R 3 denotes <strong>the</strong> curve (5.4).See pictures 5.4, 5.5 <strong>for</strong> <strong>the</strong> solution on <strong>the</strong> cube and on a grid placed inside.5.3 Interior Mixed <strong>Boundary</strong> Value ProblemLet us now consider <strong>the</strong> interior mixed boundary value problem (3.37) with κ = 2 and <strong>the</strong>testing solution (5.1). For Ω we choose <strong>the</strong> sphere {x ∈ R 3 : ∥x∥ ≤ 1} withΓ D := {x ∈ R 3 : ∥x∥ = 1 ∧ x 3 > 0}, Γ N := {x ∈ R 3 : ∥x∥ = 1 ∧ x 3 < 0}and <strong>the</strong> cube with three sides belonging to Γ D and <strong>the</strong> remaining part belonging to Γ N .To solve <strong>the</strong> mixed problem and to find <strong>the</strong> missing Cauchy data we use <strong>the</strong> discretizedGalerkin equations related to <strong>the</strong> symmetric <strong>for</strong>mulation (3.41), i.e.,a(s h , t h , ψ k , ϕ l ) = F (ψ k , ϕ l )<strong>for</strong> all k ∈ E D , j ∈ N Nwith <strong>the</strong> matrix <strong>for</strong>mulationVκ,h −K κ,h s=D κ,h tK T κ,h121−¯V ¯M κ,h 2 h + ¯K κ,h gN¯M T h − ¯KT κ,h−¯D κ,h g D.


80 5 Numerical ExperimentsE N Err D Err D,p Err N Err N,p Err ϑ320 162 3.09 · 10 −2 1.82 · 10 −2 1.78 · 10 −1 1.24 · 10 −1 7.94 · 10 −31240 622 7.96 · 10 −3 4.98 · 10 −3 9.60 · 10 −2 6.49 · 10 −2 1.68 · 10 −37432 3718 1.21 · 10 −3 7.46 · 10 −4 3.32 · 10 −2 2.62 · 10 −2 2.79 · 10 −4Table 5.7: Interior mixed BVP on <strong>the</strong> sphere.E N Err D Err D,p Err N Err N,p Err ϑ300 152 5.28 · 10 −2 4.54 · 10 −2 2.84 · 10 −1 1.88 · 10 −1 1.22 · 10 −21200 602 1.19 · 10 −2 1.03 · 10 −2 1.18 · 10 −1 9.47 · 10 −2 2.98 · 10 −37500 3752 1.80 · 10 −3 1.56 · 10 −3 4.15 · 10 −2 3.79 · 10 −2 5.37 · 10 −4Table 5.8: Interior mixed BVP on <strong>the</strong> cube.<strong>The</strong> results are summarized in Tables 5.7, 5.8 with errors given byErr D := ∥g D − g D,h ∥ L 2 (Γ N )∥g D ∥ L 2 (Γ N )Err N := ∥g N − g N,h ∥ L 2 (Γ D )∥g N ∥ L 2 (Γ D ), Err D,p := ∥g D − g D,p ∥ L 2 (Γ N ),∥g D ∥ L 2 (Γ N)and <strong>the</strong> curve ϑ: [0, 1] → R 3 defined by (5.4)., Err N,p := ∥g N − g N,p ∥ L 2 (Γ D ), Err ϑ := ∥u − u h∥ L 2 (ϑ)∥g N ∥ L 2 (Γ D)∥u∥ L 2 (ϑ)(5.6)5.4 Exterior Dirichlet <strong>Boundary</strong> Value ProblemNow we consider <strong>the</strong> exterior Dirichlet boundary value problem (3.43) with κ = 2. For <strong>the</strong>testing solutions we chooseu(x) := v κ (x, y 1 ) (5.7)with y 1 := [0, 0, 0.9] T in <strong>the</strong> case of <strong>the</strong> sphere and <strong>the</strong> cube andu(x) := v κ (x, y 2 ) + v κ (x, y 3 ) (5.8)with y 2 := [0.9, 0.25, 0.7] T and y 3 := [0.9, −0.25, 0.7] T in <strong>the</strong> case of <strong>the</strong> elephant.For <strong>the</strong> computation of <strong>the</strong> missing Neumann data we use <strong>the</strong> discretized Galerkinequations⟨V κ g N,h , ψ k ⟩ ∂Ω = − 1 2 I + K κ g D,h , ψ k <strong>for</strong> all k ∈ {1, . . . , E}∂Ωleading to <strong>the</strong> system of linear equationsV κ,h g N =− 1 2 M h + K κ,h g D .


81<strong>The</strong> approximate solution u h to (3.43) is given by <strong>the</strong> discretized representation <strong>for</strong>mula(4.19).E N Err N Err N,p Err ϑ320 162 7.99 · 10 −1 7.65 · 10 −1 7.18 · 10 −21240 622 4.97 · 10 −1 4.47 · 10 −1 1.20 · 10 −27432 3718 1.70 · 10 −1 1.51 · 10 −1 4.95 · 10 −4Table 5.9: Exterior Dirichlet BVP on <strong>the</strong> sphere.E N Err N Err N,p Err ϑ300 152 7.91 · 10 −1 6.82 · 10 −1 1.63 · 10 −11200 602 5.97 · 10 −1 5.43 · 10 −1 2.44 · 10 −27500 3752 2.38 · 10 −1 1.95 · 10 −1 1.77 · 10 −3Table 5.10: Exterior Dirichlet BVP on <strong>the</strong> cube.E N Err N Err N,p Err ϑ3962 1983 1.38 · 10 −1 1.08 · 10 −1 9.74 · 10 −57510 3757 9.76 · 10 −2 8.14 · 10 −2 2.64 · 10 −5Table 5.11: Exterior Dirichlet BVP on <strong>the</strong> elephant.0.50.151010.10.80.6−0.50.80.60.050.4−10.400.20.20−1.50−0.05−0.2−0.4−2−0.2−0.4−0.1−0.6−2.5−0.6−0.15−0.8−1−0.500.50.511.5(a) Real part.0−0.5−1−3−3.5−0.8−1−0.500.500.511.5(b) Imaginary part.−0.5−1−0.2−0.25Figure 5.6: Solution to <strong>the</strong> exterior Dirichlet BVP on <strong>the</strong> elephant with E = 7510.


82 5 Numerical ExperimentsIn Tables 5.9, 5.10, 5.11 we provide <strong>the</strong> results with errors given by <strong>the</strong> <strong>for</strong>mulae (5.3)and <strong>the</strong> testing curve ϑ: [0, 1] → R 3 defined as⎡ ⎤ ⎡ ⎤−1 2ϑ(t) := ⎣ 0 ⎦ + t ⎣0⎦ <strong>for</strong> t ∈ [0, 1]. (5.9)1.1 0For <strong>the</strong> solution on <strong>the</strong> elephant see Figure 5.6.0.61430.4430.80.620.220.41010.20−1−2−0.2−0.40−1−20−0.2−3−4−4−2024024(a) Real part.−2−4−0.6−0.8−1−3−4−4−202024 4(b) Imaginary part.−2−4−0.4−0.6−0.8−1Figure 5.7: Scattered wave on <strong>the</strong> sound-soft sphere with E = 1240.41413320.520.5110000−1−1−2−0.5−2−0.5−3−3−4−4−2024024(a) Real part.−2−4−1−4−4−202024 4(b) Imaginary part.−2−4−1Figure 5.8: Total wave on <strong>the</strong> sound soft-sphere with E = 1240.Let us also consider <strong>the</strong> scattering problem (2.4) with a sound-soft obstacle, namely<strong>the</strong> sphere. For <strong>the</strong> incoming plane wave we chooseu i (x) := e iκ⟨x,d⟩


83with <strong>the</strong> unit direction vector d := √ 13[1, 1, 1] T . <strong>The</strong> scattered wave u s is depicted inFigure 5.7, in Figure 5.8 you can see <strong>the</strong> total wave u = u s + u i .5.5 Exterior Neumann <strong>Boundary</strong> Value ProblemNext we consider <strong>the</strong> exterior Neumann boundary value problem (3.48) with κ = 2 and<strong>the</strong> testing solutions (5.7) <strong>for</strong> Ω being <strong>the</strong> sphere and <strong>the</strong> cube and (5.8) in <strong>the</strong> case of <strong>the</strong>elephant.To solve <strong>the</strong> exterior Neumann problem and to find <strong>the</strong> missing Dirichlet data weuse <strong>the</strong> discretized variational <strong>for</strong>mulation related to <strong>the</strong> hypersingular boundary equation(3.51), i.e.,⟨D κ g D,h , ϕ i ⟩ ∂Ω =− 1 2 I − K∗ κ g N,h , ϕ i∂Ω<strong>for</strong> all i ∈ {1, . . . , N}and <strong>the</strong> matrix <strong>for</strong>mulationD κ,h g D =− 1 2 MT h − KT κ,h g N .E N Err D Err D,p Err ϑ320 162 1.92 · 10 −1 7.11 · 10 −2 1.92 · 10 −11240 622 6.36 · 10 −2 1.71 · 10 −2 5.34 · 10 −27432 3718 9.24 · 10 −3 4.39 · 10 −3 6.86 · 10 −3Table 5.12: Exterior Neumann BVP on <strong>the</strong> sphere.E N Err D Err D,p Err ϑ300 152 2.46 · 10 −1 2.32 · 10 −1 1.20 · 10 −11200 602 9.02 · 10 −2 4.18 · 10 −2 7.78 · 10 −27500 3752 1.86 · 10 −2 1.17 · 10 −2 1.11 · 10 −2Table 5.13: Exterior Neumann BVP on <strong>the</strong> cube.E N Err D Err D,p Err ϑ3962 1983 7.90 · 10 −2 5.59 · 10 −3 1.77 · 10 −27510 3757 7.14 · 10 −2 2.31 · 10 −3 1.78 · 10 −2Table 5.14: Exterior Neumann BVP on <strong>the</strong> elephant.


84 5 Numerical Experiments10.80.60.70.610.80.60.140.120.40.50.40.10.200.40.200.08−0.2−0.4−0.60.30.2−0.2−0.4−0.60.060.04−0.8−0.80.02−1−1−0.500.500.51 1(a) Real part.−0.5−10.10−1−1−0.500.500.51 1(b) Imaginary part.−0.5−10−0.02Figure 5.9: Solution to <strong>the</strong> exterior Neumann BVP on <strong>the</strong> sphere with E = 7432.0.310.510.250.80.60.40.80.60.20.40.20.30.40.20.150−0.20.20−0.20.1−0.4−0.60.1−0.4−0.60.05−0.8−1−0.500.50.511.5(a) Real part.0−0.5−10−0.1−0.8−1−0.500.500.511.5(b) Imaginary part.−0.5−10−0.05Figure 5.10: Solution to <strong>the</strong> exterior Neumann BVP on <strong>the</strong> elephant with E = 7510.In Tables 5.12, 5.13, 5.14 we provide <strong>the</strong> results, <strong>the</strong> error columns are given by (5.5)with <strong>the</strong> curve (5.9). Figures 5.9, 5.10 depict <strong>the</strong> solution to <strong>the</strong> exterior Neumann boundaryvalue problem on <strong>the</strong> sphere and <strong>the</strong> elephant, respectively.Let us also consider <strong>the</strong> scattering problem (2.4) with a sound-hard obstacle, namely<strong>the</strong> cube. For <strong>the</strong> incoming plane wave we chooseu i (x) := e iκ⟨x,d⟩with <strong>the</strong> unit direction vector d := √ 13[1, 1, 1] T . <strong>The</strong> scattered wave u s is depicted inFigure 5.11, in Figure 5.12 you can see <strong>the</strong> total wave u = u s + u i .


8540.540.430.430.220.320100.20.110−0.2−10−0.1−1−0.4−2−0.2−2−0.6−3−0.3−3−0.8−4−4−2024024(a) Real part.−2−4−0.4−0.5−4−4−202024 4(b) Imaginary part.−2−4−1Figure 5.11: Scattered wave on <strong>the</strong> sound-hard cube with E = 1200.4413130.52210.51000−10−1−0.5−2−2−3−0.5−3−1−4−4−2024024(a) Real part.−2−4−1−4−4−202024 4(b) Imaginary part.−2−4−1.5Figure 5.12: Total wave on <strong>the</strong> sound-hard cube with E = 1200.5.6 Exterior Mixed <strong>Boundary</strong> Value ProblemFinally, we consider <strong>the</strong> exterior mixed boundary value problem (3.53) with κ = 2, <strong>the</strong>testing solution (5.7) and Ω being <strong>the</strong> sphere and <strong>the</strong> cube. <strong>The</strong> testing domains aredecomposed in <strong>the</strong> same way as in <strong>the</strong> case of <strong>the</strong> interior mixed problem in Section 5.3.We solve <strong>the</strong> problem of finding <strong>the</strong> missing Cauchy data using <strong>the</strong> discretized Galerkinequations corresponding to <strong>the</strong> symmetric approach (3.56), i.e.,a(s h , t h , ψ k , ϕ l ) = F (ψ k , ϕ l )<strong>for</strong> all k ∈ E D , j ∈ N N


86 5 Numerical Experimentswith <strong>the</strong> related system of linear equationsVκ,h −K κ,h s −¯V κ,h − 1 ¯M 2 h + ¯K κ,h gN=D κ,h t ¯M T h − ¯KT κ,h−¯D κ,h g D .K T κ,h− 1 2E N Err D Err D,p Err N Err N,p Err ϑ320 162 1.04 · 10 −2 6.32 · 10 −3 8.09 · 10 −1 7.75 · 10 −1 7.18 · 10 −21240 622 2.51 · 10 −3 1.74 · 10 −3 5.06 · 10 −1 4.54 · 10 −1 1.20 · 10 −27432 3718 4.16 · 10 −4 2.68 · 10 −4 1.73 · 10 −1 1.53 · 10 −1 4.95 · 10 −4Table 5.15: Exterior mixed BVP on <strong>the</strong> sphere.E N Err D Err D,p Err N Err N,p Err ϑ300 152 2.76 · 10 −1 2.59 · 10 −1 1.71 · 10 −1 1.13 · 10 −1 1.24 · 10 −11200 602 1.01 · 10 −1 4.68 · 10 −2 6.52 · 10 −2 5.71 · 10 −2 7.78 · 10 −27500 3752 2.08 · 10 −2 1.31 · 10 −2 2.41 · 10 −2 2.29 · 10 −2 1.11 · 10 −2Table 5.16: Exterior mixed BVP on <strong>the</strong> cube.<strong>The</strong> results are summarized in Tables 5.15, 5.16 with <strong>the</strong> errors given by (5.6) and <strong>the</strong>curve ϑ: [0, 1] → R 3 defined by (5.9).


87ConclusionIn <strong>the</strong> preceding sections we described <strong>the</strong> application of <strong>the</strong> boundary element method <strong>for</strong>solving <strong>the</strong> <strong>Helmholtz</strong> equation in 3D. We showed that <strong>the</strong> method is a good alternativeto <strong>the</strong> widely used finite element method and in <strong>the</strong> case of exterior problems especially,<strong>the</strong> boundary integral <strong>for</strong>mulation seems more natural than <strong>the</strong> finite element approachwith an artificial boundary. In <strong>the</strong> last section we applied <strong>the</strong> Galerkin boundary elementmethod to various boundary value problems. In <strong>the</strong> tables provided we showed that <strong>the</strong>error decreases with increasing number of elements not only on <strong>the</strong> boundary but also in<strong>the</strong> domain itself.However, it should be noted that <strong>the</strong> method presented here is memory and computationallydemanding due to dense system matrices. This is a major drawback making<strong>the</strong> method inapplicable <strong>for</strong> large problems. To overcome this problem, fast boundary elementmethods have been developed, allowing to approximate some entries in <strong>the</strong> matricesgenerated by <strong>the</strong> discretized boundary integral operators. Due to a noticeable complexityreduction such methods offer very attractive alternatives to o<strong>the</strong>r standard approaches.To conclude, no elephant was hurt during <strong>the</strong> making of this <strong>the</strong>sis.


89References[1] ADAMS, Robert A.; FOURNIER, John J. F. Sobolev Spaces. Ox<strong>for</strong>d : Elsevier ScienceLtd, 2003. 305p.[2] BENTHIEN, George W.; SCHENCK, Harry A. Nonexistence and nonuniqueness problemsassociated with integral equation methods in acoustics. Computers & Structures.1997, 65, 3, p. 295–305.[3] BOUCHALA, Jiří. Úvod do <strong>Boundary</strong> <strong>Element</strong>s <strong>Method</strong>. In BLAHETA, Radim,STARÝ, Jiří. Proceedings of <strong>the</strong> conference SNA ’07 : Seminar on Numerical Analysis.Ostrava : Institute of Geonics AS CR, 2007. [in Czech][4] BURTON, A. J.; MILLER, G. F. <strong>The</strong> Application of Integral <strong>Equation</strong> <strong>Method</strong>s to <strong>the</strong>Numerical Solution of Some Exterior <strong>Boundary</strong>-Value Problems. Proceedings of <strong>the</strong>Royal Society of London. Series A, Ma<strong>the</strong>matical and Physical Sciences. 1971, 323,1553, p. 201–210.[5] BRAKHAGE, Helmut; WERNER, Peter Über das Dirichletsche Außenraumproblemfür die <strong>Helmholtz</strong>sche Schwingungsgleichung. Archiv der Ma<strong>the</strong>matik. 1965, 16, 1, p.325–329. [in German][6] COLTON, David; KRESS, Rainer. Applied Ma<strong>the</strong>matical Sciences : Inverse acousticand electromagnetic scattering <strong>the</strong>ory. Berlin : Springer–Verlag, 1998. 334 p.[7] DRÁBEK, Pavel; MILOTA, Jaroslav. <strong>Method</strong>s of Nonlinear Analysis : Applicationsto Differential <strong>Equation</strong>s. Basel : Birkhäuser, 2007. 568 p.[8] DUFFY, Michael G. Quadrature over a pyramid or cube of integrands with a singularityat a vertex. SIAM J. Numer. Anal. 1982, 19, 6, p. 1260–1262.[9] ENGLEDER, Sarah. Stabilisierte Randintegralgleichungen für äussere Randwertproblemeder <strong>Helmholtz</strong>-gleichung. [s.l.], 2006. 97 s. Technische Universität Graz. Diploma<strong>the</strong>sis. [in German][10] IHLENBURG, Frank. Applied Ma<strong>the</strong>matical Sciences : Finite <strong>Element</strong> Analysis ofAcoustic Scattering. New York : Springer, 1998. 224 p.[11] KUFNER, Alois; JOHN Oldřich; FUČÍK, Svatopluk. Function Spaces. Leyden : NoordhoffInternational Publishing, 1977. 454 p.[12] McLEAN, William. Strongly Elliptic Systems and <strong>Boundary</strong> Integral <strong>Equation</strong>s. Cambridge: Cambridge University Press, 2000. 357 p.[13] NÉDÉLEC, Jean-Claude. Acoustic and Electromagnetic <strong>Equation</strong>s : Integral Representations<strong>for</strong> Harmonic Problems. New York : Springer–Verlag, 2001. 316 p.[14] SADOWSKÁ, Marie. Solution of Variational Inequalities by <strong>Boundary</strong> Integral <strong>Equation</strong>s.[s.l.], 2005. 73 s. VŠB-TU Ostrava. Diploma <strong>the</strong>sis. [in Czech]


90[15] SAUTER, Stefan; SCHWAB, Christoph. <strong>Boundary</strong> <strong>Element</strong> <strong>Method</strong>s.Berlin : Springer–Verlag, 2011. 561 p.[16] SAUTER, Stefan; SCHWAB, Christoph. Quadrature <strong>for</strong> hp-Galerkin BEM in R 3 .Numer. Math. 1997, 78, p. 211–258[17] STEINBACH, Olaf; RJASANOW, Sergej. <strong>The</strong> Fast Solution of <strong>Boundary</strong> Integral<strong>Equation</strong>s. New York : Springer–Verlag, 2007. 279 p.[18] STEINBACH, Olaf. Numerical Approximation <strong>Method</strong>s <strong>for</strong> Elliptic <strong>Boundary</strong> ValueProblems : Finite and <strong>Boundary</strong> <strong>Element</strong>s. New York : Springer, 2008. 386 p.[19] ZAPLETAL, Jan. <strong>The</strong> <strong>Boundary</strong> <strong>Element</strong> <strong>Method</strong> <strong>for</strong> Dirichlet–Neumann <strong>Boundary</strong>Value Problem. [s.l.], 2009. 31 s. VŠB-TU Ostrava. Bachelor <strong>the</strong>sis. [in Czech][20] ZAPLETAL, Jan; BOUCHALA Jiří. <strong>The</strong> <strong>Boundary</strong> <strong>Element</strong> <strong>Method</strong> For SolvingDirichlet–Neumann <strong>Boundary</strong> Value Problems In 2D. Journal of Combinatorics, In<strong>for</strong>mation& System Sciences 2010, 35, 1-2, p. 111–126.[21] ZEIDLER, Eberhard. Applied Functional Analysis : Main Principles And <strong>The</strong>ir Applications.New York : Springer–Verlag, 1995. 404 p.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!