12.07.2015 Views

Rampant HGT in microbial Rampant HGT in microbial eukaryotes

Rampant HGT in microbial Rampant HGT in microbial eukaryotes

Rampant HGT in microbial Rampant HGT in microbial eukaryotes

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Rampant</strong> <strong>HGT</strong> <strong>in</strong> <strong>microbial</strong><strong>eukaryotes</strong>Cheong X<strong>in</strong> Chan (C.X.)cx-chan@uiowa.eduDepartment t of Biology &Roy J. Carver Center for Comparative GenomicsThe University of IowaDepartment of Ecology, Evolution & Natural Resources &Institute t of Mar<strong>in</strong>e and Coastal SciencesRutgers University as of July 1, 2009SMBE 2009, Iowa City, IA. 4 June 2009


IntroductionHorizontal gene transfer (<strong>HGT</strong>)Doolittle WF(1999). Science284: 2124-2128.Transfer of genetic materials between non-l<strong>in</strong>eal organisms2


1992 PNAS, 89: 8990-42005 PNAS, 102: 14332-72007 Science, 317: 1753-62008PNAS, 105: 17867-712009MBE, 26: 367-743


IntroductionEndosymbiosis Endosymbiotic gene & evolution transfer of (EGT)<strong>eukaryotes</strong>Secondary EGTPrimaryEGT4


Objectives<strong>HGT</strong> <strong>in</strong> <strong>microbial</strong> <strong>eukaryotes</strong>• To exam<strong>in</strong>e the gene orig<strong>in</strong>s, i.e., extent of<strong>HGT</strong>/EGT <strong>in</strong> <strong>microbial</strong> <strong>eukaryotes</strong>• To exam<strong>in</strong>e the potential impact of <strong>HGT</strong>/EGT<strong>in</strong> these organisms on the reconstruction ofthe eukaryote tree of life5


EGT & <strong>HGT</strong> <strong>in</strong> D<strong>in</strong>oflagellates- Involvement of tertiary endosymbiosis(Yoon et al., 2005, MBE; Nosenko et al., 2006, MBE)- Tertiary EGT(e.g., eukaryote-eukaryote gene transfer)- EGT & <strong>HGT</strong>: key contributors to the genomemake-up- Genes are expected to have a variety ofevolutionary histories (to have come fromvarious sources of other l<strong>in</strong>eages)- Genomes are expected to be highly chimeric7


D<strong>in</strong>oflagellatesAlexandrium tamarensehttp://www.whoi.edu/science/B/redtide/species/alexandrium_images.htmlhttp://www.whoi.edu/redtide/page.do?pid=24595http://serc.carleton.edu/images/microbelife/topics/red_tide_for_ed.jpghttp://www.whoi.edu/cms/images/5_47876.jpg- Heterotrophic primary mar<strong>in</strong>eproducers, perid<strong>in</strong><strong>in</strong>-conta<strong>in</strong><strong>in</strong>g- Each cell is ~25-46 µm <strong>in</strong> length- Causative agent of “red tide” (HAB)- Produces saxitox<strong>in</strong> (a neurotox<strong>in</strong>)- Causes paralytic shellfish h poison<strong>in</strong>gi(PSP)- Limited genomic data 8


MethodologyGenome make-up of d<strong>in</strong>oflagellatesAlexandrium tamarense ESTs(12,329)Phylogenomic pipel<strong>in</strong>eML & BayesianMoustafa*, Chan* et al., (2008). Genome Informatics 21: 165-176.9


Results & DiscussionGenome make-up of d<strong>in</strong>oflagellates• One-half of the genes <strong>in</strong> A. tamarense encode novelfunctions• A. tamarense genes have diverse taxonomic orig<strong>in</strong>s• Chromalveolates and Plantae are major partners ofgene shar<strong>in</strong>g <strong>in</strong> d<strong>in</strong>oflagellates• Most genes from Plantae are from the green algae• Novel observation of GT <strong>in</strong>stances (440) between thehaptophytes (Emiliania huxleyi) to perid<strong>in</strong><strong>in</strong>d<strong>in</strong>oflagellates• Transferred genes with variety of functions, prote<strong>in</strong>targets not limited to chloroplast and mitochondria11


Results & DiscussionGreen genes <strong>in</strong> d<strong>in</strong>oflagellateshttp://www.morn<strong>in</strong>g-earth.org/Micromonas pusilahttp://genome.jgi-psf.org/Ost9901_3/Ostta.jpgPras<strong>in</strong>ophytes- Anciently derived green algae,pico<strong>eukaryotes</strong>- Each cell is < 2 µm <strong>in</strong> length- Likely candidates for crypticendosymbionts- Genomes of Micromonas andOstreococcus have recentlybeen completely sequenced,provid<strong>in</strong>g a sizeable gene poolfor analysisOstreococcus12


fucoxanth<strong>in</strong> d<strong>in</strong>operid<strong>in</strong><strong>in</strong> d<strong>in</strong>oTertiaryendosymbiosis• 125 pras<strong>in</strong>ophyte-derived gene <strong>in</strong>d<strong>in</strong>oflagellates• Possible explanations:• (a) <strong>HGT</strong> from a pras<strong>in</strong>ophyte source, or• (b) massive gene loss <strong>in</strong> all other chromalveolatel<strong>in</strong>eages• Example also shows putative EGT betweenhaptophyte l<strong>in</strong>eage with the fucoxanth<strong>in</strong>d<strong>in</strong>oflagellates(as expected <strong>in</strong> tertiary endosymbiosis)13


Results & DiscussionHaptophyte-derived genes <strong>in</strong> d<strong>in</strong>oflagellates• 400+ haptophyte-derived genes <strong>in</strong> A.tamarense (a perid<strong>in</strong><strong>in</strong> d<strong>in</strong>oflagellate)• 382 from Emiliania huxleyi (of which completegenome is available)• These genes encode various transferases andother prote<strong>in</strong>s crucial to cellular processes15


perid<strong>in</strong><strong>in</strong> d<strong>in</strong>ofucoxanth<strong>in</strong> d<strong>in</strong>oSPDS gene family (spermid<strong>in</strong>e synthase)16


Results & DiscussionHaptophyte-derived genes <strong>in</strong> d<strong>in</strong>oflagellatesWhat does that tell us?• Another “hidden” endosymbiosis<strong>in</strong> chromalveolates l at the baseof d<strong>in</strong>oflagellates – these genesare <strong>in</strong>stances of EGT• Haptophytes are common preyfor early diverg<strong>in</strong>g perid<strong>in</strong><strong>in</strong>d<strong>in</strong>oflagellates – these genesare <strong>in</strong>stances of <strong>HGT</strong>17


Results & DiscussionEffects on <strong>in</strong>ferr<strong>in</strong>g the tree of life• At least 32.4% of the total ESTs <strong>in</strong> this study show<strong>HGT</strong> history• The number represents a conservative estimate• Limited by <strong>HGT</strong> detectibility and taxon sampl<strong>in</strong>g• 387 (3.1%) “<strong>in</strong>formational/structural” genes show noevidence of <strong>HGT</strong> – represent signals of vertical<strong>in</strong>heritance• Chimeric i genomes of <strong>microbial</strong> <strong>eukaryotes</strong>complicate the resolution of these l<strong>in</strong>eages on thetree of life18


Conclusions• <strong>HGT</strong> among <strong>microbial</strong> <strong>eukaryotes</strong> is comparable to thosereported <strong>in</strong> prokaryotes• Phylogenetic markers that are useful for del<strong>in</strong>eat<strong>in</strong>grelationships with<strong>in</strong> other groups might proved <strong>in</strong>appropriatewhen applied to d<strong>in</strong>oflagellates (and chromalveolates)• Higher cellular complexity & greater gene cod<strong>in</strong>g capacity <strong>in</strong><strong>microbial</strong> <strong>eukaryotes</strong> (compared to prokaryotes) do notconstitute significant barriers to <strong>HGT</strong>• <strong>HGT</strong> <strong>in</strong> <strong>microbial</strong> <strong>eukaryotes</strong> are rampant• Many of these organisms are found <strong>in</strong> harsh and highlyvariable aquatic environments – they acquire foreign genes torepair, replace or provide novel traits to adapt to chang<strong>in</strong>genvironmental conditions19


AcknowledgementsBhattacharya GroupDebashish BhattacharyaAhmed MoustafaAdrián Reyes-PrietoValérie ReebBill LanierHeather TyraJeferson GrossNIH grant R01ES013679SMBE 2009, Iowa City, IA. 4 June 200920. The End

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!